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Abs t r ac t .  We give an overview of the parallelization work done in 
PAROS. The specific parallelization objective has been to improve the 
speed of airline crew scheduling, on a network of workstations. The work 
is based on the Carmen System, which is used by most European airlines 
for this task. We give a brief background to the problem. The two most 
time critical parts of this system are the pairing generator and the opti- 
mizer. We present a pairing generator which distributes the enumeration 
of pairings over the processors. This works efficiently on a large num- 
ber of loosely coupled workstations. The optimizer can be described as 
an iterative Lagrangian heuristic, and allows only for rather fine-grained 
parallelization. On low-latency machines, parallelizing the two innermost 
loops at once works well. A new "active-set" strategy makes more coarse- 
grained communication possible and even improves the sequential algo- 
rithm. 

1 The PAROS Project  

The PAROS (Parallel large scale automat ic  scheduling) project is a joint effort 
between Carmen Systems AB of GSteborg, Lufthansa, the University of Pat ras  
and Chalmers University of Technology, and is supported under the European 
Union E S P R I T  HPCN (High Performance Comput ing  and Networking) research 
program. The aim of the project is to generally improve and extend the use and 
performance of automat ic  scheduling methods,  stretching the limits of present 
technology. 

The start ing point of PAROS is the already existing Carmen (Computer  
Aided Resource Management)  System, used for crew scheduling by Lufthansa 
as well as by most  other major  European airlines. The crew costs are one of the 
main operating costs for any large airline, and the Carmen System has already 
significantly improved the economic efficiency of the schedules for all its users. 
For a detailed description of the Carmen system and airline crew scheduling in 
general, see [1]. See also [3, 6, 7] for other approaches to this problem. 

At present, a typical problem involving the scheduling of a medium size fleet 
at Lufthansa requires 10-15 hours of computing,  for large problems as much 
as 150 hours. The closer to the actual day of operation the scheduling can take 
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place, the more efficient it will be with respect to market needs and late changes. 
Increased speed can also be used to solve larger problems and to increase the 
solution quality. The speed and quality of the crew scheduling algorithms are 
therefore important  for the overall efficiency of the airline. 

An important  objective of PAROS is to improve the performance of the 
scheduling process through parallel processing. There exist a t tempts  to paral- 
lelize similar systems on high end parallel hardware (see [7]), but  our focus 
is primarily to better utilize a network of workstations and/or  multiprocessor 
workstations, allowing airlines such as Lufthansa to use their already existing 
hardware more efficiently. 

In section 2 we give a general description of the crew scheduling process in 
the Carmen system. The following sections report the progress in parallelizing 
the main components of the scheduling process: the pairing generator in section 
3, and the optimizer in section 4. Section 5 gives some conclusions and pointers 
for future work. 

2 S o l u t i o n  M e t h o d o l o g y  a n d  t h e  C a r m e n  S y s t e m  

For a given timetable of flight legs (non stop flights), the task of crew scheduling 
is to determine the sequence of legs that every crew should follow during one or 
several workdays, beginning and ending at a home base. Such routes are known 
as pairings. The complexity of the problem is due to the fact the crews cannot 
simply follow the individual aircraft, since the crews on duty have to rest in 
accordance with very complicated regulations, and there must always be new 
crews at appropriate locations which are prepared to take over. At Lufthansa, 
problems are usually solved as weekly problems with up to the order of 104 legs. 

For problems of this kind there is usually some top level heuristic which 
breaks down the problem into smaller subproblems, often to different kinds of 
daily problems. Due to the complicated rules, the subproblems are still difficult 
to handle directly, and are solved using some strategy involving the components 
of pairing generation and optimization. 

The main loop of the Carmen solution process is shown in Figure 1. Based on 
an existing initial or current best solution a subproblem is created by opening 
up a part of the problem. The subproblem is defined by a connection matrix 
containing a number of legal leg connections, to be used for finding a better  
solution. The connection matr ix is input to the pairing generator which enu- 
meratively generates a huge number of pairings using these connections, Each 
pairing must be legal according to the contractual rules and airline regulations, 
and for each pairing a cost is calculated. The generated pairings are sent to the 
optimizer, which selects a small subset of the pairings in order to minimize the 
total  crew costs, under the constraints that  every flight leg must receive a crew. 
In both steps the main algorithmic difficulty is the combinatorial explosion of 
possibilities, typical for problems of this kind. Rules and costs are handled by a 
special rule language, and is translated into runnable code by a rule compiler, 
which is then called by the pairing generator, 
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Fig. 1. Main loop in Carmen solution process. 

A typical run of the Carmen system consists of 50-100 daily iterations in 
which 104 to 106 pairings are generated in each iteration. Most of the time is 
spent in the pairing generator and the optimizer. For some typical Lufthansa 
problems, profiling reveals that 5-10% of the time is consumed in the overall 
analysis and the subproblem selection, about 70-85% is spent in the pairing gen- 
erator, and 10-20% in the optimizer. These figures can however vary considerably 
for different kinds of problems. The optimizer can sometimes take a much larger 
proportion of the time, primarily depending on the size and other characteristics 
of the problem, the complexity of the rules that  are called in the inner loop of 
the pairing generator, and various parameter  settings. As a general conclusion 
however, it is clear that the pairing generator and the optimizer are the main 
bottlenecks of the sequential system, and they have therefore been selected as 
the primary targets for parallelization. 

3 G e n e r a t o r  Para l l e l i za t ion  

The pairing generation algorithm is a quite straightforward depth first enumera- 
tion that  starts from a crew base, and builds a chain of legs by following possible 
connections as defined by the matr ix of possible leg connections. The search is 
heuristically pruned by limiting the number of branches in each node, typically 
between 5-8. The search is also interrupted if the chain created so far is not legal. 

The parallelization of the pairing generator is based on a manager/worker  
scheme, where each worker is given a start leg from which it enumerates a part 
of the tree. The manager dynamically distributes the start  legs and the neces- 
sary additional problem information to the workers in a demand driven manner.  
Each worker generates all legal pairings of the subtree and returns them to the 
manager. 

The implementation has been made using PVM, and several efforts have 
been made to minimize the idle and communication times. Large messages are 
sent whenever possible. Load balancing is achieved by implementing a dynamic 
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workload distribution scheme that implicitly takes into account the speed and 
the current load of each machine. The number of start legs that  are sent to each 
worker is also changing dynamically with a fading algorithm. In the beginning, 
a large number of start legs is given and in the end only one start leg per worker 
is assigned. This scheme reconciles the two goals of minimizing the number of 
messages and of good load balancing. Efficiency is also improved by pre-fetching. 
A worker requests the next set of start legs before they are needed. It can then 
perform computat ion while its request is being serviced by the manager.  

The parallel machine can also be extended dynamically. It is possible to add 
a new host at any time to the virtual parallel machine and this will cause a new 
worker to be started automatically. 

Another feature of the implementation is the suspend/resume feature which 
makes sure that  only idle workstations are used for generation. Periodically the 
m anager requests the CPU load of the worker, suspends its operation if the CPU 
load for other tasks is over a specified limit, and resumes its operation if the CPU 
load is below a specified limit. The performance overhead depends on the rate 
of the load checking operation which in any case is small enough (< 1%). 

3.1 S c a l a b i l i t y  

For the problems tested, the overhead for worker initialization depends on the 
size of the problem and consists mainly of the initialization of the legality sys- 
tem and the distribution of the connection matrix. This overhead is very smM1 
compared to the total running time. 

The data  rate for sending generated pairings from a worker to the manager 
is typically about 6 KB/s,  assuming a typical workstation and Lufthansa rules. 
This is to be compared with the standard Ethernet speed of 1 MB/s,  so after 
its start-up phase the generator is CPU bound for as many as 200 workstations. 
Given the high granularity and the asynchronous execution pat tern we therefore 
expect the generator to scale well up to the order of 100 workstations connected 
with standard Ethernet, of course provided that  the network is not too loaded 
with other communication. 

3.2 F a u l t  T o l e r a n c e  

Several fault tolerance features have been implemented. To be reliable when 
many workstations are involved, the parallel generator can recover from task 
and host failures. The notification mechanism of PVM [4] is used to provide 
application level fault tolerance to the generator. 

A worker failure is detected by the manager which also keeps the current 
computing state of the worker. In case of a failure the state is used for reassigning 
the unfinished part of the work to another worker. The failure of the manager 
can be detected by the coordinating process, and a new manager will be started. 
The recovery is achieved since the manager periodically saves its state to the 
filesystem (usually NFS) and thus can restart from the last checkpoint. The 
responsibility of the new manager is to reset the workers and to request only the 
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generation of the pairings that  have not been generated, or have been generated 
partially. This behavior can save a lot of comput ing time, especially if the fault  
appears  near the end of the generation work. 

3.3 E x p e r i m e n t a l  R e s u l t s  

We have measured the performance of the parallel generator experimentally. The 
experiments have been performed on a network of HP 715/100 workstations of 
roughly equivalent performance, connected by Ethernet at the comput ing center 
of the University of Patras,  during times when almost exclusive usage of the 
network and the workstations was possible. The results are shown in Table 3.3. 
Wha t  we see is the elapsed t ime for a single iteration of the generator, and the 
running t ime in seconds as a function of the number  of CPUs. The speedup in 
all cases is almost linear to the number  of CPUs. The generation t ime decreases 
in all cases almost linearly to the number  of the CPUs used. 

Table  1. Parallel generator times for typical pairing problems. 

problem name legs pairings 1CPU 2 CPUs~4 CPUs 6 CPUs 8 CPUs 10 CPUs 
lh_dl_gg 946 396908 26460 13771  7061 4536 3466 2818 

lh_dl_splimp 946 318938 20760 10797  5448 3686 2797 2181 
lh_wk_ggi6196 594560 31380 16834  8436 5338 4312 3288 

~_dl_kopt 1087 159073 10860 5563 2804 1892 1385 1112 

4 O p t i m i z e r  P a r a l l e l i z a t i o n  

The problem solved by the optimizer is known as the set covering problem with 
additional base capacity constraints, and can be expressed as 

min{cx : A x  > 1, C x  <_ d, x binary} 

Here A is a 0-1 mat r ix  and C is arbi trary non-negative. In this formulat ion every 
variable corresponds to a generated pairing and every constraint corresponds to 
a leg. The size of these problems usually range from 50 x 104 to 104 • 106 
(constraints x variables), usually with 5-10 non-zero A-elements per variable. In 
most  cases only a few capacity (_<) constraints are present. 

This problem in its general form is NP-hard,  and in the Carmen System it 
is solved by an algorithm [9], that  can be interpreted as a bagrangian  based 
heuristic. Very briefly, the algorithm a t t empts  to per turbate  the cost function as 
little as possible to give an integer solution to the LP-relaxation.  From the point 
of view of parallel processing it is worth pointing out that  the character of the 
algori thm is very different, and for the problems we consider also much faster, 
compared to the common branch and bound approaches to integer programming,  
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and is rather more similar to an iterative equation solver. This also means that  
the approach to parallelization is completely different, and it is a challenge to 
achieve this on a network of workstations. 

The sequential algorithm can be described in the following simplified way 
that highlights some overall aspects which are relevant for parallelization. On 
the top level, the sequential algorithm iteratively modifies a Lagrangian cost 
vector ~ which is first initialized to c. The goal of the iteration is to modify 
the costs so that the sign pattern of the elements of ~ corresponds to a feasible 
solution, where ~j < 0 means that ;gj ~--- 1, and where Cj > 0 means that Xj ~-~ 0. 
In the sequential algorihm the iteration proceeds iteratively by considering o n e  

c o n s t r a i n t  a t  a t i m e ,  where the computation for this constraint modifies the 
values for the variables of that constraint. Note that this implies that  values 
corresponding to variables not in the constraint are not changed by this update. 
The overall structure is summarized as 

reset all s ~ to 0 

repeat 
for every constraint i 

r i = ~i _ s i 

s i = function of r ~, bi and some parameters 
# = r ~ + s i 

increase g according to some rule 
until no sign changes in 

In this pseudocode, ~i is the sub-vector of ~ corresponding to non-zero ele- 
ments of constraint i. The vector s i represents the contribution of constraint 
i to ~. This contribution is cancelled out before every iteration of constraint i 
where a new contribution is computed. The vectors r i are temporaries. 

A property relevant to parallelization is that  when an iteration of a constraint 
has updated the reduced costs of its variables, then the following constraints have 
to use these new updated values. Another property is that  the vector s i is usually 
a function of the current ~-values for at most two variables in the constraint, and 
these variables are referred to as the c r i t i c a l  v a r i a b l e s  of the constraint. 

In the following subsections we summarize the different approaches to par- 
allelization that have been investigated. In addition to this work, an aggressive 
optimization of the inner loops was performed, leading to an additional speedup 
of roughly a factor of 3. 

4.1 Constraint  Parallel  Approach 

A first observation is that  if constraints have no common variables they may be 
computed independently of each other, and a graph coloring of the constraints 
would reveal the constraint groups that  could be independent. Unfortunately, 
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the structure of typical set covering problems (with many variables and few long 
constraints) is such that  this approach is not possible to apply in a straightfor- 
ward way. The approach can however be modifed to let every processor maintain 
a local copy of 6, and a subset of the constraints. Each processor then iterates 
its own constraints and updates its local copy of 6. The different copies of 
must then be kept consistent through communication. Although the nature of 
the algorithm is such that  the ~ communication can be considerably relaxed, the 
result for our type of problems did not allow a significant speedup on networks 
of workstations. 

4.2  Var iab le  Para l l e l  A p p r o a c h  

Another way of parallelization is to parallelize over the variables and the in- 
ner loops of the constraint calculation. The main parts of this calculation that  
concern the parallelization are 

1) collect the ~ for the variables in the constraint. 
2) find the two least values of r i .  

3) copy the result back to 6. 

When the variables are distributed over the processors, each processor is then 
responsible for only one piece of 6 and the corresponding part of the A-matrix.  
Some of the operations needed for the constraint update can be conveniently 
done locally, but the double minimum computat ion requires communication. 
This operation is associative, and it is therefore possible to get the global minimal 
elements through a reduction operation on the local critical minimum elements. 
To minimize communication it is also possible to group the constraints and 
perform the reduction operation for several independent constraints at a time. 

This strategy has been successfully implemented on an SGI Origin2000, with 
a speedup of 7 on 8 processors. However, it cannot be used directly on a network 
of workstations due to the high latency of the network. We have therefore inves- 
tigated a relaxation to this algorithm, that  does a lazy update of 6. The approach 
is based on updating 6 only for the variables required by the constraint group 
that  will be iterated next. The reduced cost vector is then fully updated based 
on the contributions of the previous constraint group, during the reduction op- 
eration of the current constraint group, and so overlaps computat ion with both 
communication and idle time. The computational part  of the algorithm is slightly 
enlarged and the relaxation requires that  constraint groups with a reasonable 
number of common variables can be created. The graph colouring heuristics that  
have been used are based on [8], which gives 10-20% fewer groups than a greedy 
first fit algorithm, although the computation times are slightly higher. 

For numerical convergence reasons random noise is added in the solution pro- 
cess and even with minor changes in the parameters the running times can vary 
considerably, and also the solution quality can be slightly different. Tests are 
shown in Table 4.2 for pure set covering problems from the Swedish Railways, 
and the settings have been adjusted to ensure that  a similar solution quality 
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is preserved on the average (usually well within 1% of the opt imum),  and the 
problems shown here are considered as reasonably representative for the average 
case. Running t imes are given in seconds for the lazy variable parallel implemen- 
tat ion for 1 to 4 processors. The hardware in this test has been 4 • HP 715/100 
connected with 10 Mbps switched Ethernet.  It  can be seen tha t  reasonably good 
speedup results are obtained even for medium sized problem instances. For net- 
works of workstations a possibility could here also be to use faster networks such 
as SCI [5] or Myrinet [2] and streamlined software interfaces. 

Table 2. Results for the lazy variable parallel code. 

problem name 
sj_daily_17sc 
sj_daily_14sc 
sj-daily-O4sc 
sj-daily_34sc 

rows columns 1CPU 2 CPUs 3 CPUs 4 CPUs 
58 1915 0.60 2.95 3.53 4.31 
94 7388 17.30 9.45 11.78 11.82 

429 38148 288.73 124.76 82.94 72.00 
419 156197 951.53 634.54 365.90 259.32 

4.3 Paral le l  Ac t ive  Set Approach  

As previously mentioned, the constraint update  is usually a function of at most  
two variables in the constraint. If  the set of these critical variables was known 
in advance, it would in principle be possible to ignore all other variables and 
receive the same result much faster. This is not possible, but it gives intuitive 
support  for a variation of the sequential algorithm, where a smaller number  of 
variables that  are likely to be critical are selected in an active set. The idea is 
to make the original algorithm work only on the active set, and then sometimes 
do a scan over all variables to see if more variables should become active. For 
our problems this is especially appealing considering the close relation to the 
so called column generation approach to the crew scheduling problem, see [3]. 
The approach was first implemented sequentially and turns out to work well on 
real problems. An additional and impor tant  performance benefit is tha t  the scan 
can be implemented by a columnwise traversM of the constraint ma t r ix  which is 
much more cache friendly and gives an additional sequential speedup of about  3 
for large instances. 

This modified algorithm also gives a new possiblity for parallelization. If  the 
active set is small enough, then the scan will dominate  the total  execution time, 
even if the active set is i terated many  times between every scan. In constrast  
to the original algorithm, all communicat ion necessary for a global scan of all 
variables can be concentrated into a single vector valued broadcast  and reduc- 
tion operation. Therefore, the parallel active set approach is successful even on a 
network of workstations connected over Ethernet.  Some results for pure set cov- 
ering problems from Lufthansa are shown in Table 4.3. The settings have been 
adjusted to ensure that  a similar solution quality is preserved on the average. 
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Running times are given in seconds for the original production code Prob l ,  the 
new code with the active set s trategy disabled, and with active set s t rategy for 
1, 2 and 4 processors. The hardware in this test has been 4 • Sun Ultra  1/140 
connected with a shared 100 Mbps Ethernet.  From these results, and other more 

Table  3. Results of parallel active set code. 

problem name rows columns Probl no active set 1CPU 2 CPUs 4 CPUs 
lh_d126_02 682 642613 9962 4071 843 412 294 
lh_d126_04 154 121714 1256 373 216 105 60 
lh_dtl_ll 5287 266966 1560 765 298 78 66 

lh_dt58_02 5339 409350 2655 2305 924 406 207 

extensive tests, it can be concluded tha t  in addition to the sequential speedup, 
we can obtain a parallel speedup of about  a factor of 3 using a network of four 
workstations. It  does not make sense however to increase the number  of work- 
stations significantly, since it is then no longer true that  the scan dominates  the 
total  running time. 

5 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We have demonstrated a fully successful parallelization of the two most  t ime 
critical components in the Carmen crew scheduling process, on a network of 
workstations. 

For the generator, where a coarse grained parallelism is possible, a good 
speedup can be obtained also for a large number  of workstations, when how- 
ever issues of fault tolerance become very important .  Further work includes the 
management  of multiple APC jobs, a refined task scheduling scheme, prepro- 
cessing inside the workers (e.g. elimination of identical columns) and enhanced 
management  of the virtual machine (active t ime windows of machines).  

For the optimizer, which requires a much more fine grained parallelism, Fig- 
ure 2 shows a theoretical model of the expected parallel speedup of the different 
parallelizations, for a typical large problem. Although the variable parallel ap- 
proach scales better,  the total  speedup is higher with the active set since the 
sequential algori thm is then faster. On the other hand, the active set can be 
responsible for a lower solution quality for some instances. Further tuning of the 
parallel active set s t rategy and other parameters  is therefore required to improve 
the stabili ty of the code both with respect to quality and speedup. I t  may  be 
possible to combine the two approaches but it is not clear if this would give a 
significant benefit. Also, the general capacity constraints are not yet handled in 
any of the parallel implementat ions.  

The parallel components have been integrated in a first PAROS proto type  
system that  runs together with existing Carmen components.  Given that  the 
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Fig. 2. Expected parallel speedup. 

generator and the optimizer are now much faster, we consider parallelization Mso 
of some other components such as the generation of the connection matrix, which 
should be comparatively simple. Other integration issues are the communicaton 
between the generator and the optimizer, which is now done through files, and 
related issues such as optimizer preprocessing. 
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