
Parallel Crew Scheduling in PAROS*

Panayiotis Alefragis 1, Christos Goumopoulos 1, Efthymios Housos 1 , Peter
Sanders 2, Tuomo Takkula 3, Dag Wedelin 3

1 University of Patras, Patras, Greece
Max-Planck-Institut f/ir Informatik, Saarbr/icken, Germany
s Chalmers University of Technology, GSteborg, Sweden

Abs t r ac t . We give an overview of the parallelization work done in
PAROS. The specific parallelization objective has been to improve the
speed of airline crew scheduling, on a network of workstations. The work
is based on the Carmen System, which is used by most European airlines
for this task. We give a brief background to the problem. The two most
time critical parts of this system are the pairing generator and the opti-
mizer. We present a pairing generator which distributes the enumeration
of pairings over the processors. This works efficiently on a large num-
ber of loosely coupled workstations. The optimizer can be described as
an iterative Lagrangian heuristic, and allows only for rather fine-grained
parallelization. On low-latency machines, parallelizing the two innermost
loops at once works well. A new "active-set" strategy makes more coarse-
grained communication possible and even improves the sequential algo-
rithm.

1 The PAROS Project

The PAROS (Parallel large scale automat ic scheduling) project is a joint effort
between Carmen Systems AB of GSteborg, Lufthansa, the University of Pat ras
and Chalmers University of Technology, and is supported under the European
Union E S P R I T HPCN (High Performance Comput ing and Networking) research
program. The aim of the project is to generally improve and extend the use and
performance of automat ic scheduling methods, stretching the limits of present
technology.

The start ing point of PAROS is the already existing Carmen (Computer
Aided Resource Management) System, used for crew scheduling by Lufthansa
as well as by most other major European airlines. The crew costs are one of the
main operating costs for any large airline, and the Carmen System has already
significantly improved the economic efficiency of the schedules for all its users.
For a detailed description of the Carmen system and airline crew scheduling in
general, see [1]. See also [3, 6, 7] for other approaches to this problem.

At present, a typical problem involving the scheduling of a medium size fleet
at Lufthansa requires 10-15 hours of computing, for large problems as much
as 150 hours. The closer to the actual day of operation the scheduling can take

* This work has been supported by the ESPRIT HPCN program.

1105

place, the more efficient it will be with respect to market needs and late changes.
Increased speed can also be used to solve larger problems and to increase the
solution quality. The speed and quality of the crew scheduling algorithms are
therefore important for the overall efficiency of the airline.

An important objective of PAROS is to improve the performance of the
scheduling process through parallel processing. There exist a t tempts to paral-
lelize similar systems on high end parallel hardware (see [7]), but our focus
is primarily to better utilize a network of workstations and/or multiprocessor
workstations, allowing airlines such as Lufthansa to use their already existing
hardware more efficiently.

In section 2 we give a general description of the crew scheduling process in
the Carmen system. The following sections report the progress in parallelizing
the main components of the scheduling process: the pairing generator in section
3, and the optimizer in section 4. Section 5 gives some conclusions and pointers
for future work.

2 S o l u t i o n M e t h o d o l o g y a n d t h e C a r m e n S y s t e m

For a given timetable of flight legs (non stop flights), the task of crew scheduling
is to determine the sequence of legs that every crew should follow during one or
several workdays, beginning and ending at a home base. Such routes are known
as pairings. The complexity of the problem is due to the fact the crews cannot
simply follow the individual aircraft, since the crews on duty have to rest in
accordance with very complicated regulations, and there must always be new
crews at appropriate locations which are prepared to take over. At Lufthansa,
problems are usually solved as weekly problems with up to the order of 104 legs.

For problems of this kind there is usually some top level heuristic which
breaks down the problem into smaller subproblems, often to different kinds of
daily problems. Due to the complicated rules, the subproblems are still difficult
to handle directly, and are solved using some strategy involving the components
of pairing generation and optimization.

The main loop of the Carmen solution process is shown in Figure 1. Based on
an existing initial or current best solution a subproblem is created by opening
up a part of the problem. The subproblem is defined by a connection matrix
containing a number of legal leg connections, to be used for finding a better
solution. The connection matr ix is input to the pairing generator which enu-
meratively generates a huge number of pairings using these connections, Each
pairing must be legal according to the contractual rules and airline regulations,
and for each pairing a cost is calculated. The generated pairings are sent to the
optimizer, which selects a small subset of the pairings in order to minimize the
total crew costs, under the constraints that every flight leg must receive a crew.
In both steps the main algorithmic difficulty is the combinatorial explosion of
possibilities, typical for problems of this kind. Rules and costs are handled by a
special rule language, and is translated into runnable code by a rule compiler,
which is then called by the pairing generator,

1106

Solution
U p d a t e

Y E S

_ +

Curren! Pai r ings

o u b 0 r o b , e o
Selection

Connect ion Matr ix

G e n e r a t i o n

~ e t Cover ing P r o b l e m

 oo, o ,oo l
Opt imiza t ion

Fig. 1. Main loop in Carmen solution process.

A typical run of the Carmen system consists of 50-100 daily iterations in
which 104 to 106 pairings are generated in each iteration. Most of the time is
spent in the pairing generator and the optimizer. For some typical Lufthansa
problems, profiling reveals that 5-10% of the time is consumed in the overall
analysis and the subproblem selection, about 70-85% is spent in the pairing gen-
erator, and 10-20% in the optimizer. These figures can however vary considerably
for different kinds of problems. The optimizer can sometimes take a much larger
proportion of the time, primarily depending on the size and other characteristics
of the problem, the complexity of the rules that are called in the inner loop of
the pairing generator, and various parameter settings. As a general conclusion
however, it is clear that the pairing generator and the optimizer are the main
bottlenecks of the sequential system, and they have therefore been selected as
the primary targets for parallelization.

3 G e n e r a t o r Para l l e l i za t ion

The pairing generation algorithm is a quite straightforward depth first enumera-
tion that starts from a crew base, and builds a chain of legs by following possible
connections as defined by the matr ix of possible leg connections. The search is
heuristically pruned by limiting the number of branches in each node, typically
between 5-8. The search is also interrupted if the chain created so far is not legal.

The parallelization of the pairing generator is based on a manager/worker
scheme, where each worker is given a start leg from which it enumerates a part
of the tree. The manager dynamically distributes the start legs and the neces-
sary additional problem information to the workers in a demand driven manner.
Each worker generates all legal pairings of the subtree and returns them to the
manager.

The implementation has been made using PVM, and several efforts have
been made to minimize the idle and communication times. Large messages are
sent whenever possible. Load balancing is achieved by implementing a dynamic

1107

workload distribution scheme that implicitly takes into account the speed and
the current load of each machine. The number of start legs that are sent to each
worker is also changing dynamically with a fading algorithm. In the beginning,
a large number of start legs is given and in the end only one start leg per worker
is assigned. This scheme reconciles the two goals of minimizing the number of
messages and of good load balancing. Efficiency is also improved by pre-fetching.
A worker requests the next set of start legs before they are needed. It can then
perform computat ion while its request is being serviced by the manager.

The parallel machine can also be extended dynamically. It is possible to add
a new host at any time to the virtual parallel machine and this will cause a new
worker to be started automatically.

Another feature of the implementation is the suspend/resume feature which
makes sure that only idle workstations are used for generation. Periodically the
m anager requests the CPU load of the worker, suspends its operation if the CPU
load for other tasks is over a specified limit, and resumes its operation if the CPU
load is below a specified limit. The performance overhead depends on the rate
of the load checking operation which in any case is small enough (< 1%).

3.1 S c a l a b i l i t y

For the problems tested, the overhead for worker initialization depends on the
size of the problem and consists mainly of the initialization of the legality sys-
tem and the distribution of the connection matrix. This overhead is very smM1
compared to the total running time.

The data rate for sending generated pairings from a worker to the manager
is typically about 6 KB/s, assuming a typical workstation and Lufthansa rules.
This is to be compared with the standard Ethernet speed of 1 MB/s, so after
its start-up phase the generator is CPU bound for as many as 200 workstations.
Given the high granularity and the asynchronous execution pat tern we therefore
expect the generator to scale well up to the order of 100 workstations connected
with standard Ethernet, of course provided that the network is not too loaded
with other communication.

3.2 F a u l t T o l e r a n c e

Several fault tolerance features have been implemented. To be reliable when
many workstations are involved, the parallel generator can recover from task
and host failures. The notification mechanism of PVM [4] is used to provide
application level fault tolerance to the generator.

A worker failure is detected by the manager which also keeps the current
computing state of the worker. In case of a failure the state is used for reassigning
the unfinished part of the work to another worker. The failure of the manager
can be detected by the coordinating process, and a new manager will be started.
The recovery is achieved since the manager periodically saves its state to the
filesystem (usually NFS) and thus can restart from the last checkpoint. The
responsibility of the new manager is to reset the workers and to request only the

1108

generation of the pairings that have not been generated, or have been generated
partially. This behavior can save a lot of comput ing time, especially if the fault
appears near the end of the generation work.

3.3 E x p e r i m e n t a l R e s u l t s

We have measured the performance of the parallel generator experimentally. The
experiments have been performed on a network of HP 715/100 workstations of
roughly equivalent performance, connected by Ethernet at the comput ing center
of the University of Patras, during times when almost exclusive usage of the
network and the workstations was possible. The results are shown in Table 3.3.
Wha t we see is the elapsed t ime for a single iteration of the generator, and the
running t ime in seconds as a function of the number of CPUs. The speedup in
all cases is almost linear to the number of CPUs. The generation t ime decreases
in all cases almost linearly to the number of the CPUs used.

Table 1. Parallel generator times for typical pairing problems.

problem name legs pairings 1CPU 2 CPUs~4 CPUs 6 CPUs 8 CPUs 10 CPUs
lh_dl_gg 946 396908 26460 13771 7061 4536 3466 2818

lh_dl_splimp 946 318938 20760 10797 5448 3686 2797 2181
lh_wk_ggi6196 594560 31380 16834 8436 5338 4312 3288

~_dl_kopt 1087 159073 10860 5563 2804 1892 1385 1112

4 O p t i m i z e r P a r a l l e l i z a t i o n

The problem solved by the optimizer is known as the set covering problem with
additional base capacity constraints, and can be expressed as

min{cx : A x > 1, C x <_ d, x binary}

Here A is a 0-1 mat r ix and C is arbi trary non-negative. In this formulat ion every
variable corresponds to a generated pairing and every constraint corresponds to
a leg. The size of these problems usually range from 50 x 104 to 104 • 106
(constraints x variables), usually with 5-10 non-zero A-elements per variable. In
most cases only a few capacity (_<) constraints are present.

This problem in its general form is NP-hard, and in the Carmen System it
is solved by an algorithm [9], that can be interpreted as a bagrangian based
heuristic. Very briefly, the algorithm a t t empts to per turbate the cost function as
little as possible to give an integer solution to the LP-relaxation. From the point
of view of parallel processing it is worth pointing out that the character of the
algori thm is very different, and for the problems we consider also much faster,
compared to the common branch and bound approaches to integer programming,

1109

and is rather more similar to an iterative equation solver. This also means that
the approach to parallelization is completely different, and it is a challenge to
achieve this on a network of workstations.

The sequential algorithm can be described in the following simplified way
that highlights some overall aspects which are relevant for parallelization. On
the top level, the sequential algorithm iteratively modifies a Lagrangian cost
vector ~ which is first initialized to c. The goal of the iteration is to modify
the costs so that the sign pattern of the elements of ~ corresponds to a feasible
solution, where ~j < 0 means that ;gj ~--- 1, and where Cj > 0 means that Xj ~-~ 0.
In the sequential algorihm the iteration proceeds iteratively by considering o n e

c o n s t r a i n t a t a t i m e , where the computation for this constraint modifies the
values for the variables of that constraint. Note that this implies that values
corresponding to variables not in the constraint are not changed by this update.
The overall structure is summarized as

reset all s ~ to 0

repeat
for every constraint i

r i = ~i _ s i

s i = function of r ~, bi and some parameters
= r ~ + s i

increase g according to some rule
until no sign changes in

In this pseudocode, ~i is the sub-vector of ~ corresponding to non-zero ele-
ments of constraint i. The vector s i represents the contribution of constraint
i to ~. This contribution is cancelled out before every iteration of constraint i
where a new contribution is computed. The vectors r i are temporaries.

A property relevant to parallelization is that when an iteration of a constraint
has updated the reduced costs of its variables, then the following constraints have
to use these new updated values. Another property is that the vector s i is usually
a function of the current ~-values for at most two variables in the constraint, and
these variables are referred to as the c r i t i c a l v a r i a b l e s of the constraint.

In the following subsections we summarize the different approaches to par-
allelization that have been investigated. In addition to this work, an aggressive
optimization of the inner loops was performed, leading to an additional speedup
of roughly a factor of 3.

4.1 Constraint Parallel Approach

A first observation is that if constraints have no common variables they may be
computed independently of each other, and a graph coloring of the constraints
would reveal the constraint groups that could be independent. Unfortunately,

1110

the structure of typical set covering problems (with many variables and few long
constraints) is such that this approach is not possible to apply in a straightfor-
ward way. The approach can however be modifed to let every processor maintain
a local copy of 6, and a subset of the constraints. Each processor then iterates
its own constraints and updates its local copy of 6. The different copies of
must then be kept consistent through communication. Although the nature of
the algorithm is such that the ~ communication can be considerably relaxed, the
result for our type of problems did not allow a significant speedup on networks
of workstations.

4.2 Var iab le Para l l e l A p p r o a c h

Another way of parallelization is to parallelize over the variables and the in-
ner loops of the constraint calculation. The main parts of this calculation that
concern the parallelization are

1) collect the ~ for the variables in the constraint.
2) find the two least values of r i .

3) copy the result back to 6.

When the variables are distributed over the processors, each processor is then
responsible for only one piece of 6 and the corresponding part of the A-matrix.
Some of the operations needed for the constraint update can be conveniently
done locally, but the double minimum computat ion requires communication.
This operation is associative, and it is therefore possible to get the global minimal
elements through a reduction operation on the local critical minimum elements.
To minimize communication it is also possible to group the constraints and
perform the reduction operation for several independent constraints at a time.

This strategy has been successfully implemented on an SGI Origin2000, with
a speedup of 7 on 8 processors. However, it cannot be used directly on a network
of workstations due to the high latency of the network. We have therefore inves-
tigated a relaxation to this algorithm, that does a lazy update of 6. The approach
is based on updating 6 only for the variables required by the constraint group
that will be iterated next. The reduced cost vector is then fully updated based
on the contributions of the previous constraint group, during the reduction op-
eration of the current constraint group, and so overlaps computat ion with both
communication and idle time. The computational part of the algorithm is slightly
enlarged and the relaxation requires that constraint groups with a reasonable
number of common variables can be created. The graph colouring heuristics that
have been used are based on [8], which gives 10-20% fewer groups than a greedy
first fit algorithm, although the computation times are slightly higher.

For numerical convergence reasons random noise is added in the solution pro-
cess and even with minor changes in the parameters the running times can vary
considerably, and also the solution quality can be slightly different. Tests are
shown in Table 4.2 for pure set covering problems from the Swedish Railways,
and the settings have been adjusted to ensure that a similar solution quality

IIII

is preserved on the average (usually well within 1% of the opt imum), and the
problems shown here are considered as reasonably representative for the average
case. Running t imes are given in seconds for the lazy variable parallel implemen-
tat ion for 1 to 4 processors. The hardware in this test has been 4 • HP 715/100
connected with 10 Mbps switched Ethernet. It can be seen tha t reasonably good
speedup results are obtained even for medium sized problem instances. For net-
works of workstations a possibility could here also be to use faster networks such
as SCI [5] or Myrinet [2] and streamlined software interfaces.

Table 2. Results for the lazy variable parallel code.

problem name
sj_daily_17sc
sj_daily_14sc
sj-daily-O4sc
sj-daily_34sc

rows columns 1CPU 2 CPUs 3 CPUs 4 CPUs
58 1915 0.60 2.95 3.53 4.31
94 7388 17.30 9.45 11.78 11.82

429 38148 288.73 124.76 82.94 72.00
419 156197 951.53 634.54 365.90 259.32

4.3 Paral le l Ac t ive Set Approach

As previously mentioned, the constraint update is usually a function of at most
two variables in the constraint. If the set of these critical variables was known
in advance, it would in principle be possible to ignore all other variables and
receive the same result much faster. This is not possible, but it gives intuitive
support for a variation of the sequential algorithm, where a smaller number of
variables that are likely to be critical are selected in an active set. The idea is
to make the original algorithm work only on the active set, and then sometimes
do a scan over all variables to see if more variables should become active. For
our problems this is especially appealing considering the close relation to the
so called column generation approach to the crew scheduling problem, see [3].
The approach was first implemented sequentially and turns out to work well on
real problems. An additional and impor tant performance benefit is tha t the scan
can be implemented by a columnwise traversM of the constraint ma t r ix which is
much more cache friendly and gives an additional sequential speedup of about 3
for large instances.

This modified algorithm also gives a new possiblity for parallelization. If the
active set is small enough, then the scan will dominate the total execution time,
even if the active set is i terated many times between every scan. In constrast
to the original algorithm, all communicat ion necessary for a global scan of all
variables can be concentrated into a single vector valued broadcast and reduc-
tion operation. Therefore, the parallel active set approach is successful even on a
network of workstations connected over Ethernet. Some results for pure set cov-
ering problems from Lufthansa are shown in Table 4.3. The settings have been
adjusted to ensure that a similar solution quality is preserved on the average.

1112

Running times are given in seconds for the original production code Prob l , the
new code with the active set s trategy disabled, and with active set s t rategy for
1, 2 and 4 processors. The hardware in this test has been 4 • Sun Ultra 1/140
connected with a shared 100 Mbps Ethernet. From these results, and other more

Table 3. Results of parallel active set code.

problem name rows columns Probl no active set 1CPU 2 CPUs 4 CPUs
lh_d126_02 682 642613 9962 4071 843 412 294
lh_d126_04 154 121714 1256 373 216 105 60
lh_dtl_ll 5287 266966 1560 765 298 78 66

lh_dt58_02 5339 409350 2655 2305 924 406 207

extensive tests, it can be concluded tha t in addition to the sequential speedup,
we can obtain a parallel speedup of about a factor of 3 using a network of four
workstations. It does not make sense however to increase the number of work-
stations significantly, since it is then no longer true that the scan dominates the
total running time.

5 C o n c l u s i o n s a n d F u t u r e W o r k

We have demonstrated a fully successful parallelization of the two most t ime
critical components in the Carmen crew scheduling process, on a network of
workstations.

For the generator, where a coarse grained parallelism is possible, a good
speedup can be obtained also for a large number of workstations, when how-
ever issues of fault tolerance become very important . Further work includes the
management of multiple APC jobs, a refined task scheduling scheme, prepro-
cessing inside the workers (e.g. elimination of identical columns) and enhanced
management of the virtual machine (active t ime windows of machines).

For the optimizer, which requires a much more fine grained parallelism, Fig-
ure 2 shows a theoretical model of the expected parallel speedup of the different
parallelizations, for a typical large problem. Although the variable parallel ap-
proach scales better, the total speedup is higher with the active set since the
sequential algori thm is then faster. On the other hand, the active set can be
responsible for a lower solution quality for some instances. Further tuning of the
parallel active set s t rategy and other parameters is therefore required to improve
the stabili ty of the code both with respect to quality and speedup. I t may be
possible to combine the two approaches but it is not clear if this would give a
significant benefit. Also, the general capacity constraints are not yet handled in
any of the parallel implementat ions.

The parallel components have been integrated in a first PAROS proto type
system that runs together with existing Carmen components. Given that the

1113

/ i ," !
�9 !

t s S

:.. j

2 3 4 5 8 7

. . . . " ~ " VBD]
- - I:~ralel Active Set]

Fig. 2. Expected parallel speedup.

generator and the optimizer are now much faster, we consider parallelization Mso
of some other components such as the generation of the connection matrix, which
should be comparatively simple. Other integration issues are the communicaton
between the generator and the optimizer, which is now done through files, and
related issues such as optimizer preprocessing.

R e f e r e n c e s

1. E. Andersson, E. Housos, N. Kohl, and D. Wedelin. OR in the Airline Industry,
chapter Crew Pairing Optimization. Kluwer Academic Publishers, Boston, London,
Dordrecht, 1997.

2. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, 3. N. Seizovic,
and W.-K. Su. Myrinet: A gigabit-per-second Local Area Network. IEEE Micro,
15(1):29-36, Feb. 1995.

3. J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis. Handbooks in Operations Re-
search and Management Science, chapter Time Constrained Routing and Schedul-
ing. North-Holland, 1995.

4. A. Geist. Advanced programming in PVM. Proceedings of EuroPVM 96, pages 1-6,
1996.

5. IEEE. Standard for the scalable coherent interface (sci), 1993. IEEE Std 1596-1992.
6. S. Lavoie, M. Minoux, and E. Odier. A new approach for crew pairing problems by

column generation with an application to air transportation. European Journal of
Operational Research, 35:45-58, 1988.

7. R. Maxsten. RALPH: Crew Planning at Delta Air Lines. Technical Report. Cutting
Edge Optimization, 1997.

8. A. Mehrota and M. Trick. A clique generation approach to graph coloring. IN-
FORMS Journal o] Computing, 8, 1996.

9. D. Wedelin. An algorithm for large scale 0-1 integer programming with application
to airline crew scheduling. Annals o] Operations Research, 57, 1995.

