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ABSTRACT

Objective: Differentiating a fourth heart sound (S4), from a split first heart sound (SP1), or 
ejection click (EC), is often difficult particularly for inexperienced clinicians. The objective 
of this study was to develop and evaluate a computer-assisted classification tool to aid 
in this difficult differentiation problem, and in general for heart sound differentiation and 
diagnosis. 
Design: Developmental study.

Methods: Emphasis was given to the selection of appropriate features that are adequately 
independent from the heart sound signal acquisition method. Relevance analysis was initially 
performed to identify the features of the heart sound most relevant to aiding diagnosis of 
S4, SP1 and EC. To detect and differentiate S4, SP1 and EC, a detection decision tree 
(DeDT) and a differentiation decision tree (DiDT) were used independently and also together 
in a multiple decision tree architecture. The DeDT provides three suggestions for each heart 
sound pattern, whereas the DiDT provides one. The MuDT analyses the suggestions of both 
decision trees to provide one final suggestion for each sound pattern.

Results: Relevance analysis on the different heart sound features demonstrated that the 
most relevant features for aiding diagnosis of S4, SP1 and EC are the frequency features 
and the morphological features that describe S1. The DeDT architecture demonstrated an 
average classification accuracy of 80.56%, sensitivity of 70.93%, and specificity of 83.42%, 
but provided more than one suggestion for many cases. The DiDT architecture demon-
strated an average classification accuracy of 66.46%, a sensitivity of 66.15% and a speci-
ficity of 82.15%, and only provided one suggestion for each case. The MuDT architecture 
slightly improved performance compared to the DiDT architecture. Average classification 
accuracy was improved by 2.79%, classification sensitivity by 2.73% and classification 
specificity by 1.26% 

Conclusions: The present work has demonstrated that decision tree algorithms can be 
successfully used as the basis for a decision support system to assist inexperienced clini-
cians in heart sound diagnosis. Further work is currently in progress to improve the accu-
racy, specificity and sensitivity of the system.
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INTRODUCTION

Auscultation of the heart is a cheap screening method for cardiac pathology and 
is performed as part of the routine clinical examination. Experienced physi-
cians can often diagnose cardiac pathology on the basis of auscultation alone. 
Its importance as a diagnostic tool has, however, declined as echocardiography 
is routinely used today to investigate patients with suspected cardiac pathology. 
Echocardiography can provide both anatomical and physiological information 
and its value in aiding accurate diagnoses is well-established. However, it should 
be remembered that the initial request for an echocardiogram or a cardiologist 
consultation is usually based on the initial auscultatory findings. This is fre-
quently performed by the patient’s general practitioner who may not be expe-
rienced or confident in cardiac auscultation1. For these physicians a decision 
support system to assist them in diagnosing different heart sounds and helping 
them differentiate similar heart sounds would be helpful2. Such a system would 
be based on acquiring and codifying the relevant knowledge of experienced car-
diologists and making it available to them. 

In the past computer-assisted heart sound diagnosis has been treated as a clas-
sification problem. Classification algorithms were mainly based on:
 i) Discriminant analysis3

 ii) Nearest neighbour4

 iii) Bayesian networks5

 iv) Neural networks6,7

 v) Rule-based methods2,8,9

These different approaches have been necessary because heart sounds have 
more than one characteristic morphology, e.g. timing in the cardiac cycle, duration 
and character of murmurs, and different pathologies, e.g. aortic stenosis and mitral 
regurgitation, can produce similar heart sounds.

A normal heart sound consists of four components. These are the first heart 
sound (S1), the systolic phase, the second heart sound (S2) and the diastolic phase. 
Additional sounds, such as murmurs or click-like sounds are heard in patients with 
a variety of heart diseases.

Normally the mitral and tricuspid valves close simultaneously and are heard as 
a single first heart sound. If for any reason closure of the tricuspid valve is delayed, 
the two components of the first heart sound will be heard separately and this is 
referred to as a split first heart sound (SP1). Delayed closure of the tricuspid valve 
may, for example, occur with right bundle branch block (delayed contraction of the 
right ventricle) or an atrial septal defect (increased blood flow through the right 
ventricle)10. Ejection clicks are often heard shortly after S1. They are often caused 
by valve abnormalities, e.g. aortic or pulmonary stenosis10. The fourth heart sound 
(S4) is a click-like sound that is heard at the end of the diastole, just before S1. S4 
is thought to be due to forceful atrial contraction and occurs in conditions when 
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ventricular compliance is impaired, e.g. ventricular hypertrophy or fibrosis11. S4 is 
not heard in normal subjects. 

Figure 1 shows the timing of S4, SP1 and EC in relation to the cardiac cycle, 
and Table 1 lists some of the common condition in which they occur. It should 
be noted that in many of these cases the patient is asymptomatic and abnormal 
cardiac auscultation is an incidental finding. However, detection of this abnormal 
heart sound is important to ensure early diagnosis and optimal management of 

Figure 1. Timing of split first heart sound (SP1), ejection click (EC), fourth heart 
sound (S4), diastolic murmur (DM) and systolic murmur (SM) in the heart cycle

Table 1. Clinical conditions in which SP1, EC and S4 can be heard

Clinical conditions with a split 
first heart sound (SP1)

Clinical conditions with an 
ejection click (EC)

Clinical conditions with a 4th 
heart sound (S4)

Atrial septal defect 
Right bundle branch block
Left ventricular ectopics
Tricuspid stenosis
Coarctation of the aorta
Normal (i.e no cardiac 

pathology)

Aortic Stenosis
Bicuspid aortic valve
Aortic regurgitation
Pulmonary stenosis
Eisenmenger’s syndrome
Pulmonary hypertension

Aortic stenosis
Severe systemic hypertension
Pulmonary hypertension
Hypertrophic cardiomyopathy
Ventyricular hypertrophy
Ventricular fibrosis
Myocardial ischaemia
Myocardial infarction
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abnormal cardiac conditions, e.g. antibiotic prophylaxis for dental procedures in 
a patient with a bicuspid aortic valve. 

From Figure 1 the difficulty in clearly differentiating sounds heard around S1 
can be appreciated. In this work we propose a method that uses time-frequency fea-
tures and decision tree classifiers for addressing this problem. We have attempted to 
develop a computer-based assisted system for analysing the morphological charac-
teristics of heart sounds and in particular for detecting and differentiating a fourth 
heart sound (S4), from a split first heart sound (SP1) or ejection click (EC).

 The approach adopted has been to divide heart sound diagnosis into a number 
of simpler sub-problems, each of them dealing either with a morphological charac-
teristic of the heart sound signal, e.g. timing of murmur, or frequency (tone) of the 
murmur9. Each of these sub-problems is dealt with using a method or algorithm 
which is most appropriate to analysing it, e.g. decision trees or neural networks. 
An arbitration module then processes and combines the partial diagnoses of 
these specialised sub-systems, to make a final diagnosis. All the above specialised 
sub-systems and the arbitration module incorporate and are based on expert 
knowledge. Their combination can lead to an integrated decision support system 
architecture for heart sound diagnosis, as shown in Figure 2. 

METHODS

Preprocessing of Heart Sound Signals 
The characteristics of the heart sound signal are significantly affected by factors 
related to the signal acquisition and preprocessing method. Therefore, a heart 
sound diagnosis algorithm should be tested in heart sound signals from different 
sources and recorded with different acquisition methods for objective evaluation. 
For this purpose we collected heart sound signals from nine different heart sound 
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Figure 2. Integrated decision support system architecture for heart sound diagnosis9
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sources (see Appendix) and created a “global” heart sound database. Because these 
sources were intended for training purposes they included heart sounds repre-
sentative of all heart diseases. These heart sounds files had already been diagnosed 
and linked to a specific heart disease; therefore, they incorporate the knowledge 
of numerous experts in this area. From the available heart sound signals of this 
database we chose the ones containing either S4, SP1 or EC. This resulted in a total 
of 100 heart sound signal files.

Each of these heart sound signal files was initially pre-processed and then 
converted to the corresponding heart sound feature vector, following a previously 
described method2,9. In particular, the pre-processing comprised of an initial nor-
malisation of each signal in order to account for the amplitude variations among 
the signals due to different acquisition and recording methods. A set of six process-
ing stages were then performed to identify S1 and S2 and their boundaries. 

Calculation of Feature Vectors
Following the preprocessing tasks, the corresponding feature vector was calculated 
for each heart sound signal. The selection of the features was based on the technique 
used by experienced clinicians for analysing heart sounds to make a diagnosis or 
differential diagnoses. These include features such as the timing of the additional 
noise in the cardiac cycle (i.e. whether it occurs in diastole or systole) and other 
characteristics of the sound e.g. its duration, and the frequency of its tone. For these 

Figure 3. Calculation of the 88 morphological features (F1–F88)
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Figure 4. Calculation of the 8 frequency features (F89–F96)
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reasons we decided to use a set of time domain morphological features that cover 
and describe the whole heart cycle, in combination with a set of frequency domain 
features concerning the energy of the systolic and the diastolic phase in four signifi-
cant frequency zones. These steps divide the signal into 88 morphological features 
and 8 frequency features as shown in Figures 3 and 4

Following the above described procedures, every heart sound signal was trans-
formed into a feature vector (pattern) with dimensions of 1 × 96. The feature vec-
tors of the initial 100 heart sound signals were stored in a database table with 100 
records and 98 attributes-fields: one attribute named ID is the pattern identification 
code, one attribute named S4_SP1_EC is the characterisation (diagnosis) of the 
corresponding heart sound signal as having S4, SP1 or EC, while the remaining 
96 attributes are the above 96 heart sound features (F1–F96).

Analysing the Heart Sounds
Before constructing and utilising the decision tree classifiers, we used relevance 
analysis12,13, to find the most suitable and relevant features for this classification 
problem. For this purpose, we used the value of the uncertainty coefficient12,13 
of each of the above 96 features, which are the independent variables, for rank-
ing them according to their relevance to the classifying attribute (S4_SP1_EC), 
which is the dependent variable. The calculation of the uncertainty coefficient of 
an independent variable regarding the dependent variable consists of a number 
of steps which gives a value between 0% and 100%. A low value (near 0%) of 
the uncertainty coefficient of an independent variable means that if we use this 
variable for partitioning the initial set of heart sounds there will be only a low 
increase in homogeneity regarding the dependent variable (and, therefore, low 
increase in classification rules accuracy), and, therefore, the relevance between 
this variable and the dependent variable is low. On the contrary a high value 
(near 100%) of the uncertainty coefficient of an independent variable indicates 
a high relevance with the dependent variable. In order to examine the relevance 
and the contribution to the differentiation of S4, SP1 and EC of each of the above 
mentioned 96 heart sound features, the uncertainty coefficients were calculated 
for each of them considering the S4_SP1_EC field as the classifying attribute 
– dependent variable.

Decision Tree Classifiers
A decision tree is a classification tree for classifying new instances (e.g. new heart 
sound feature vectors) into one of the categories of an important target attribute-
dependent variable based on a number of other attributes constituting the inde-
pendent variables13–15. To construct a decision tree we used a training data set of 
instances, for which we had the values of both the attributes that constitute the 
independent variables and the targeted attribute that constitutes the depend-
ent attribute. We determined the best test (= attribute + condition) for splitting 
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the training data set which creates the most homogeneous subsets regarding the 
dependent variable and, therefore, gives the highest classification accuracy. 

We used three different types of decision trees to analyse the heart sounds.
Detection Decision Tree (DeDT) Architecture. The detection decision tree 
(DeDT) architecture treats the problem of differentiation of S4, SP1 and EC 
as three two-category classification sub-problems: existence of S4 or not, 
existence of SP1 or not and existence of EC or not. Each of these simpler two-
category sub-problems is handled by a separate decision tree, which aims to 
detect whether the corresponding morphological characteristic exists or not 
in the examined heart sound. 
Differentiation Decision Tree (DiDT) Architecture. A differentiation decision 
tree (DiDT) treats the problem of differentiation of S4, SP1 and EC as a 
three-category classification problem, i.e. it classifies a feature vector-pattern 
as having either S4, SP1 or EC. 
Multiple Decision Tree (MuDT) Architecture. The multiple decision tree archi-
tecture combines the DiDT and DeDT architectures to exploit the advantages 
of both. The suggestions made by these two decision trees are analysed by an 
arbitration module that makes the final decision on which of these sugges-
tions should be accepted and which of them should be rejected (see Figures 
2 and 7). 

In order to examine the generalisation capabilities of the constructed decision 
tree structures, the available feature vectors-patterns set was divided in two subsets. 
The first subset included 60% of the records of each class of the heart sound pat-
terns set (S4, SP1 and EC classes), which were randomly selected and were used as 
the training set. The other subset consisted of the remaining patterns (40% of the 
records of each class) and were used as the test set. In this way the first training 
test (60%a–40%a) set scheme was formed. 

For the second scheme (60%b–40%b) the same proportions (60% training 
set–40% test set), were kept but random different patterns were selected for the 
training set. In the same way two more schemes were created (70%a–30%a and 
70%b–30%b) with a different proportion (70% training set–30% test set).

For the DiDT architecture, classification accuracy was calculated as the ratio of 
the number of the correctly classified patterns to the total number of patterns of 
the test data set. For the DeDT architecture, classification accuracy was calculated 
using the following equation:

) sounds X non  sounds (X tested
sounds) X nonsounds (X classifiedcorrectly 

_
+

+
=XAccuracy

where X stands for either S4, SP1 or EC

For each of the three morphological characteristics (S4, SP1, EC) classifica-
tion sensitivity and classification specificity were also calculated. The classification 
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sensitivity for a morphological characteristic is defined as the ratio of the number 
of the patterns correctly classified as having this morphological characteristic to 
the total number of patterns having this morphological characteristic of the test 
data set. Similarly, the classification specificity for a morphological characteristic is 
defined as the ratio of the patterns correctly classified as not having this morpho-
logical characteristic to the total number of patterns not having this morphological 
characteristic of the test data set.

RESULTS

For each heart sound feature we calculated the uncertainty coefficient separately 
from the training data set of each of the above four data schemes. Then, based on 
these four values, we calculated the average value and the standard deviation of 
the uncertainty coefficients. The average values and the standard deviations of the 
uncertainty coefficient for the most important features are shown in Figure 5.

The graph demonstrates that the most relevant features of the classifying attribute 
S4_SP1_EC are the frequency features, i.e. high frequency energy and medium 
frequency energy in the diastolic and systolic phases, and also the morphological 
features that describe the first heart sound. These results are compatible with our 
physical understanding of the problem that S4, SP1 and EC click-like sounds appear 
almost simultaneously with S1. Also each of these click-like sounds is usually related 
to specific heart diseases that have heart sound murmurs in the systolic and the 
diastolic phase. The standard deviation values are generally smaller than 7%, showing 
that the uncertainty coefficients calculated from each scheme separately, especially 
the ones of the most relevant features, are similar and consistent.

Figure 5. Average values and standard deviations of the uncertainty coefficient for 
the most important features regarding S4_SP1_EC as the classifying attribute
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Figure 6 gives the results obtained with the DeDT architecture. This shows an 
average classification accuracy of 80.56%, an average classification sensitivity of 
70.93% and average classification specificity of 83.42%. The major drawback with 
the DeDT architecture is that for many cases it gives more than one suggestion. 

Table 2 shows the results for classification accuracy, sensitivity and specificity for 
each of the four datasets using the differentiation decision tree (DiDT) architecture. 
The average accuracy and sensitivity was 66% and the specificity 82%. It should be 
mentioned that all the calculated classification sensitivity and specificity values pre-
sented in this paper are based on a lower number of patterns than the corresponding 
classification accuracy values (i.e. while the classification accuracy is based on all the 
patterns of the test data set, the classification sensitivity is based only on the ones 
having the specific morphological characteristic, and the classification specificity is 
based only on the ones not having the morphological characteristic). It should also 
be mentioned that the classification accuracy for the training data set was 100% for 
all the examined cases with both the DiDT and the DeDT.

The multiple decision tree architecture combines the DiDT and DeDT architec-
tures and exploits the advantages of both (Figure 7). Because the DeDT architecture 

Figure 6. Classification accuracy, sensitivity and specificity results for the detection 
decision tree architecture (DeDT)
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has better classification performance for this problem than the DiDT architecture, 
the arbitration module can be based on the following rule:

“If only one DeDT detects its corresponding morphological characteristic, 
then the final suggestion is the one of this DeDT, otherwise the final sug-
gestion is the one of the DiDT”. 

Figure 7. Multiple decision tree architecture
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The results concerning the classification performance achieved using the MuDT 
architecture, in combination with the above arbitration rule, are shown in Table 3 
for all four data schemes, while a comparison with the results of the DiDT archi-
tecture are shown in Figure 8. We can see that the MuDT architecture results in 
improvement of the classification performance in comparison with the DiDT with 
an increase of 2.79% in classification accuracy, 2.73% in classification sensitivity 
and 1.26% in classification specificity.

DISCUSSION

In this paper we investigated the use of decision trees for the differentiation of S4, 
SP1 and EC, which is a difficult and challenging problem in cardiac auscultation. 
In this direction several decision tree structures and architectures have been con-
structed and evaluated as to their classification accuracy, sensitivity and specificity 
for diagnosing these different heart sounds.

We chose to use decision trees classification algorithms because the knowledge 
representation model that they produce is compatible with the practices followed 
by clinicians in making differential diagnoses. Decision trees do not work as a 
‘black box’ but offer a full justification for their suggestions. Using decision trees, 
clinicians can trace back the model and either accept or reject the proposed sug-
gestion, thus increasing their confidence about the final diagnosis. In contrast, 
neural networks and algorithms that need a lot of iterations in order to converge 
on a solution do not offer a justification of their suggestions and are regarded as 
‘black boxes’ by clinicians. 

The DiDT architecture provides one final suggestion for each heart sound pattern, 
but its classification performance is lower in comparison with the DeDT architecture. 
The DeDT architecture has better classification performance, but provides three sug-
gestions for each heart sound pattern; if these three suggestions are not consistent, 
the result can be confusing and probably less useful to the clinician. The multiple 
decision tree (MuDT) architecture achieves higher classification performance than 
the DiDT and also provides a single suggestion.

This work has demonstrated that decision tree algorithms can be used as a basis 
for decision support systems to assist inexperienced clinicians with heart sound 
diagnosis. Decision trees can be very useful knowledge management tools in this 
area. They codify and effectively incorporate the knowledge of numerous highly 
specialised and experienced doctors, making them a valuable and useful tool for 
the exploitation and dissemination of knowledge. Such computer-based support 
can play a role in improving the quality and effectiveness of primary care, particu-
larly in small and remote areas. In these places it may help reduce unnecessary 
patient travel for specialist consultations and investigations.

Different decision tree structures and architectures were constructed and tested 
on various training and test data sets. Their performance on the training data sets 
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was 100% successful, while their performance on the test data sets, which is an 
indicator of their generalisation capabilities, was satisfactory. For this difficult and 
complicated differentiation problem our decision tree structures achieved classi-
fication accuracy and sensitivity levels of almost 70% and classification specificity 
levels greater than 80%. These results are encouraging, taking into account the 
limited amount of data available for this study, and also the existing possibilities 
for classification performance improvements.

Relevance analysis can be used to determine a small critical subset of the ini-
tial set of features that contains most of the information required for heart sound 
diagnosis.

Further improvement in the classification performance of the examined decision 
tree structures and architectures is necessary. We believe that this is possible by:
 a) Using more heart sound signals with these morphological characteristics 

to give us larger training and test data sets.
 b) Developing more sophisticated MuDT architectures. For example, we can 

improve the architecture shown in Figure 7 by adding three two-categories 
DeDTs in the first (suggestion) stage. Each of these will be trained and 
become specialised (and, therefore, more efficient than the three-categories 
DiDT) in differentiating between two of the three targeted morphological 
characteristics (i.e. one DiDT for differentiating between S4 and SP1, one for 
differentiating between SP1 and EC, and one for differentiating between S4 
and EC). If two DeDTs detect the corresponding morphological character-
istics, then the arbitration module will use the output of the corresponding 
two-categories DiDT as the final suggestion; if all three DeDTs detect the 
corresponding morphological characteristics, then the arbitration module 
will use the output of the three-categories DiDT as the final suggestion.

Along these directions, further research is already in progress. Additional 
research is being conducted concerning the use of neural network architectures 
for this differentiation problem, and the comparison of their classification per-
formances with those of the decision trees architectures. Initial results from such 
studies have shown that neural network architectures can provide small improve-
ments in classification performance (2–3% increase in classification accuracy). This 
improvement in performance compensates for the disadvantage of being a ‘black 
box’ that does not provide justification for its suggestions.

Further research is required for the development of a systematic methodology 
for designing arbitration rules. In addition the design of an appropriate MuDT 
architecture for achieving the best classification performance for a specific prob-
lem, which could possibly include as ‘nodes’ not only decision trees but also other 
types of classifiers as well, is an open research question. Finally, the proposed 
decision trees structures and architectures can be applied to other heart sound 
diagnosis (or medical diagnosis in general) problems and should be further evalu-
ated and improved.
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