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by the Top Trading Cycles algorithm. Heuristic Cut-Cycle
tried to split at least one of the obtained partition sets, Cut-
and-Add tried to add an uncovered participant to an ex-
isting partition set on condition that the new partition re-
mained in the core. It was shown that as the total number
of participants grows, the percentage of participants un-
covered in the Top Trading Cycles partition decreases and
the percentage of successes of both heuristics grows.
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ProblemDefinition

Stackelberg games [15] may model the interplay amongst
an authority and rational individuals that selfishly demand
resources on a large scale network. In such a game, the
authority (Leader) of the network is modeled by a distin-
guished player. The selfish users (Followers) are modeled
by the remaining players.

It is well known that selfish behavior may yield a Nash
Equilibriumwith cost arbitrarily higher than the optimum
one, yielding unbounded Coordination Ratio or Price of
Anarchy (PoA) [7,13]. Leader plays his strategy first as-
signing a portion of the total demand to some resources of
the network. Followers observe and react selfishly assign-
ing their demand to the most appealing resources. Leader
aims to drive the system to an a posteriori Nash equilib-
rium with cost close to the overall optimum one [4,6,8,10].
Leader may also eager for his own rather than system’s
performance [2,3].

A Stackelberg game can be seen as a special, and
easy [6] to implement, case ofMechanismDesign. It avoids
the complexities of either computing taxes or assigning
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prices, or even designing the network at hand [9]. How-
ever, a central authority capable to control the overall de-
mand on the resources of a network may be unrealistic
in networks which evolute and operate under the effect of
many and diversing economic entities. A realistic way [4]
to act centrally even in large nets could be via Virtual Pri-
vate Networks (VPNs) [1]. Another flexible way is to com-
bine such strategies with Tolls [5,14].

A dictator controlling the entire demand optimally on
the resources surely yields PoA = 1. On the other hand,
rational users do prefer a liberal world to live. Thus, it is
important to compute the optimal Leader-strategy which
controls theminimum of the resources (Price of Optimum)
and yields PoA = 1. What is the complexity of comput-
ing the Price of Optimum? This is not trivial to answer,
since the Price of Optimum depends crucially on comput-
ing an optimal Leader strategy. In particular, [6] proved
that computing the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5. It says
that on nonatomic flows and arbitrary s-t networks &
latencies, computing the minimum portion of flow and
Leader’s optimal strategy sufficient to induce PoA = 1 is
easy [10].

Problem (G(V ; E); s; t 2 V ; r)
INPUT: Graph G, 8e 2 E latency `e, flow r, a source-
destination pair (s, t) of vertices in V.
OUTPUT: (i) The minimum portion ˛G of the total flow r
sufficient for an optimal Stackelberg strategy to induce the
optimum on G. (ii) The optimal Stackelberg strategy.

Models & Notations

Consider a graph G(V ; E) with parallel edges allowed.
A number of rational and selfish users wish to route from
a given source s to a destination node t an amount of
flow r. Alternatively, consider a partition of users in k
commodities, where user(s) in commodity i wish to route
flow ri through a source-destination pair (si ; ti ), for each
i = 1; : : : ; k. Each edge e 2 E is associated to a latency
function `e(), positive, differentiable and strictly increas-
ing on the flow traversing it.

Nonatomic Flows There are infinitely many users, each
routing his infinitesimally small amount of the total flow
ri from a given source si to a destination vertex ti in graph
G(V ; E). A flow f is an assignment of jobs f e on each edge
e 2 E. The cost of the injected flow f e (satisfying the stan-
dard constraints of the corresponding network-flow prob-
lem) that traverses edge e 2 E equals ce ( fe) = fe � `e( fe).
It is assumed that on each edge e the cost is convex with
respect the injected flow f e. The overall system’s cost is

the sum
P

e2E fe � `e ( fe) of all edge-costs in G. Let fP
the amount of flow traversing the si-ti path P. The la-
tency `P( f ) of si-ti pathP is the sum

P
e2P `e ( fe) of laten-

cies per edge e 2 P. The cost CP ( f ) of si-ti path P equals
the flow fP traversing it multiplied by path-latency `P( f ).
That is, CP ( f ) = fP �

P
e2P `e ( fe).

In an Nash equilibrium, all si-ti paths traversed by
nonatomic users in part i have a common latency, which
is at most the latency of any untraversed si-ti path. More
formally, for any part i and any pair P1;P2 of si-ti paths,
if fP1 > 0 then `P1 ( f ) � `P2 ( f ). By the convexity of edge-
costs the Nash equilibrium is unique and computable in
polynomial time given a floating-point precision. Also
computable is the unique Optimum assignment O of flow,
assigning flow oe on each e 2 E and minimizing the over-
all cost

P
e2E oe`e(oe ). However, not all optimally tra-

versed si-ti paths experience the same latency. In partic-
ular, users traversing paths with high latency have incen-
tive to reroute towards more speedy paths. Therefore the
optimal assignment is unstable on selfish behavior.

A Leader dictates aweak Stackelberg strategy if on each
commodity i = 1; : : : ; k controls a fixed ˛ portion of flow
ri, ˛ 2 [0; 1]. A strong Stackelberg strategy is more flex-
ible, since Leader may control ˛i ri flow in commodity i
such that

Pk
i=1 ˛i = ˛. Let a Leader dictating flow se on

edge e 2 E. The a posteriori latencyèe (ne) of edge e, with
respect to the induced flow ne by the selfish users, equals
èe(ne ) = `e(ne + se). In the a posteriori Nash equilibrium,
all si-ti paths traversed by the free selfish users in com-
modity i have a common latency, which is at most the
latency of any selfishly untraversed path, and its cost isP

e2E(ne + se ) �èe (ne).

Atomic Splittable Flows There is a finite number of
atomic users 1; : : : ; k. Each user i is responsible for rout-
ing a non-negligible flow-amount ri from a given source
si to a destination vertex ti in graph G. In turn, each flow-
amount ri consists of infinitesimally small jobs.

Let flow f assigning jobs f e on each edge e 2 E.
Each edge-flow f e is the sum of partial flows f 1e ; : : : ; f ke
injected by the corresponding users 1; : : : ; k. That is,
fe = f 1e + � � � + f ke . As in the model above, the latency on
a given si-ti pathP is the sum

P
e2P `e ( fe) of latencies per

edge e 2 P. Let f iP be the flow that user i ships through an
si-ti path P. The cost of user i on a given si-ti path P is
analogous to her path-flow f iP routed via P times the to-
tal path-latency

P
e2P `e( fe). That is, the path-cost equals

f iP �
P

e2P `e ( fe). The overall cost Ci(f ) of user i is the
sum of the corresponding path-costs of all si-ti paths.

In a Nash equilibrium no user i can improve his cost
Ci(f ) by rerouting, given that any user j ¤ i keeps his
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routing fixed. Since each atomic user minimizes its cost,
if the game consists of only one user then the cost of the
Nash equilibrium coincides to the optimal one.

In a Stackelberg game, a distinguished atomic Leader-
player controls flow r0 and plays first assigning flow
se on edge e 2 E. The a posteriori latency èe(x) of
edge e on induced flow x equals èe(x) = `e(x + se). In-
tuitively, after Leader’s move, the induced selfish play
of the k atomic users is equivalent to atomic split-
table flows on a graph where each initial edge-latency
`e has been mapped to èe . In game-parlance, each
atomic user i 2 f1; : : : ; kg, having fixed Leader’s strategy,
computes his best reply against all others atomic users
f1; : : : ; kg n fig. If ne is the induced Nash flow on edge e
this yields total cost

P
e2E (ne + se) �èe(ne ).

Atomic Unsplittable Flows The users are finite 1; : : : ; k
and user i is allowed to sent his non-negligible job ri only
on a single path. Despite this restriction, all definitions
given in atomic splittable model remain the same.

Key Results

Let us see first the case of atomic splittable flows, on par-
allel M/M/1 links with different speeds connecting a given
source-destination pair of vertices.

Theorem 1 (Korilis, Lazar, Orda [6]) The Leader can en-
force in polynomial time the network optimum if she con-
trols flow r0 exceeding a critical value r0.

In the sequel, we focus on nonatomic flows on s-t graphs
with parallel links. In [6] primarily were studied cases that
Leader’s flow cannot induce network’s optimum and was
shown that an optimal Stackelberg strategy is easy to com-
pute. In this vain, if s-t parallel-links instances are re-
stricted to ones with linear latencies of equal slope then
an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]) The optimal Leader
strategy can be computed in polynomial time on any in-
stance (G; r; ˛) where G is an s-t graph with parallel-links
and linear latencies of equal slope.

Another positive result is that the optimal strategy can
be approximated within (1 + �) in polynomial time, given
that link-latencies are polynomials with non-negative co-
efficients.

Theorem 3 (Kumar, Marathe [8]) There is a fully
polynomial approximate Stackelberg scheme that runs in
pol y(m; 1

�
) time and outputs a strategy with cost (1 + �)

within the optimum strategy.

For parallel link s-t graphs with arbitrary latencies more
can be achieved: in polynomial time a “threshold” value
˛G is computed, sufficient for the Leader’s portion to in-
duce the optimum. The complexity of computing opti-
mal strategies changes in a dramatic way around the crit-
ical value ˛G from “hard” to “easy” (G; r; ˛) Stackelberg
scheduling instances. Call ˛G as the Price of Optimum for
graph G.

Theorem 4 (Kaporis, Spirakis [4]) On input an s-t par-
allel link graph G with arbitrary strictly increasing latencies
the minimum portion ˛G sufficient for a Leader to induce
the optimum, as well as her optimal strategy, can be com-
puted in polynomial time.

As a conclusion, the Price of Optimum ˛G essentially cap-
tures the hardness of instances (G; r; ˛). Since, for Stack-
elberg scheduling instances (G; r; ˛ � ˛G ) the optimal
Leader strategy yields PoA = 1 and it is computed as hard
as in P, while for (G; r; ˛ < ˛G ) the optimal strategy yields
PoA < 1 and it is as easy as NP [10].

The results above are limited to parallel-links connect-
ing a given s-t pair of vertices. Is it possible to efficiently
compute the Price of Optimum for nonatomic flows on
arbitrary graphs? This is not trivial to settle. Not only be-
cause it relies on computing an optimal Stackelberg strat-
egy, which is hard to tackle [10], but also because Proposi-
tion B.3.1 in [11] ruled out previously known performance
guarantees for Stackelberg strategies on general nets.

The central result of this lemma is presented below and
completely resolves this question (extending Theorem 4).

Theorem 5 (Kaporis, Spirakis [4]) On arbitrary s-t
graphs G with arbitrary latencies the minimum portion ˛G
sufficient for a Leader to induce the optimum, as well as her
optimal strategy, can be computed in polynomial time.

Example

Consider the optimum assignment O of flow r that wishes
to travel from source vertex s to sink t. O assigns flow oe
incurring latency `e(oe ) per edge e 2 G. Let Ps!t the set
of all s-t paths. The shortest paths in Ps!t with respect to
costs `e(oe ) per edge e 2 G can be computed in polyno-
mial time. That is, the paths that given flow assignment
O attain latency: minP2Ps!t

�P
e2P `e(oe )

�
i. e., minimize

their latency. It is crucial to observe that, if we want the in-
duced Nash assignment by the Stackelberg strategy to at-
tain the optimum cost, then these shortest paths are the
only choice for selfish users that eager to travel from s to t.
Furthermore, the uniqueness of the optimum assignment
O determines the minimum part of flow which can be self-
ishly scheduled on these shortest paths. Observe that any
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Stackelberg Games: The Price of Optimum, Figure 1
A bad example for Stackelberg routing

flow assigned byO on a non-shortest s-t path has incentive
to opt for a shortest one. Then a Stackelberg strategymust
frozen the flow on all non-shortest s-t paths.

In particular, the idea sketched above achieves coordi-
nation ratio 1 on the graph in Fig. 1. On this graph Rough-
garden proved that 1

˛
� (optimum cost) guarantee is not

possible for general (s, t)-networks, Appendix B.3 in [11].
The optimal edge-flows are (r = 1):

os!v =
3
4
� � ; os!w =

1
4
+ � ; ov!w =

1
2
� 2� ;

ov!t =
1
4
+ � ; ow!t =

3
4
� �

The shortest path P0 2 P with respect to the optimum O
is P0 = s! v ! w ! t (see [11] pp. 143, 5th-3th lines be-
fore the end) and its flow is fP0 =

1
2 � 2�. The non short-

est paths are: P1 = s! v ! t and P2 = s! w ! t with
corresponding optimal flows: fP1 =

1
4 + � and fP2 =

1
4 + �.

Thus the Price of Optimum is

fP1 + fP2 =
1
2
+ 2� = r � fP0

Applications

Stackelberg strategies are widely applicable in network-
ing [6], see also Section 6.7 in [12].

Open Problems

It is important to extend the above results on atomic un-
splittable flows.
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ProblemDefinition

The three main types of mutations modifying biological
sequences are insertions, deletions and substitutions. The
simplest model involving these three types of mutations is
the so-called Thorne–Kishino–Felsenstein model [13]. In
this model, the characters of a sequence evolve indepen-
dently. Each character in the sequence can be substituted
with another character according to a prescribed reversible
time-continuous Markov model on the possible charac-
ters. Insertion-deletions are modeled as a birth-death pro-
cess, characters evolve independently and identically, with
insertion and deletion rates � and �.

The multiple statistical alignment problem is to cal-
culate the likelihood of a set of sequences, namely, what
is the probability of observing a set of sequences, given

all the necessary parameters that describe the evolution of
sequences. Hein, Jensen and Pedersen were the first who
gave an algorithm to calculate this probability [4]. Their
algorithm has O(5nLn) running time, where n is the num-
ber of sequences, and L is the geometric mean of the se-
quences. The running time has been improved to O(2nLn)
by Lunter et al. [10].

Notations

Insertions and Deletions In the Thorne–Kishino–
Felsenstein model (TKF91 model) [13], both the birth and
the death processes are Poisson processes with parameters
� and �, respectively. Since each character evolves inde-
pendently, the probability of an insertion-deletion pattern
given by an alignment can be calculated as the product of
the probabilities of patterns. Each pattern starts with an
ancestral character, except the first that starts with the be-
ginning of the alignment, end ends before the next ances-
tral character, except the last that ends at the end of the
alignment. The probability of the possible patterns can be
found on Fig. 1.

Evolutionary Trees An evolutionary tree is a leaf-
labeled, edge weighted, rooted binary tree. Labels are the
species related by the evolutionary tree, weights are evo-
lutionary distances. It might happen that the evolution-
ary changes had different speed at different lineages, and
hence the tree is not necessary ultrametric, namely, the
root not necessary has the same distance to all leaves.

Given a set S of l-long sequences over alphabet ˙ ,
a substitution model M on ˙ and an evolutionary tree T
labeled by the sequences. The likelihood of the tree is the
probability of observing the sequences at the leaves of the
tree, given that the substitution process starts at the root
of the tree with the equilibrium distribution. This likeli-
hood is denoted by P(SjT;M). The substitution likelihood
problem is to calculate the likelihood of the tree.

Let˙ be a finite alphabet and let S1 = s1;1s1;2 : : : s1;L1 ,
S2 = s2;1s2;2 : : : s2;L2 , : : : Sn = sn;1sn;2 : : : sn;Ln be se-

Statistical Multiple Alignment, Figure 1
The probabilities of alignment patterns. From left to right: k in-
sertions at the beginning of the alignment, a match followed by
k � 1 insertions, a deletion followed by k insertions, a deletion

not followed by insertions. ˇ = 1�e(���)t

���e(���)t

http://theory.stanford.edu/~tim/
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