
symmetryS S

Review

A State-of-the-Art Review on the Security of
Mainstream IoT Wireless PAN Protocol Stacks

Georgios Kambourakis 1,*,† , Constantinos Kolias 2,† , Dimitrios Geneiatakis 1,† ,
Georgios Karopoulos 1,† , Georgios Michail Makrakis 2,† and Ioannis Kounelis 1,†

1 European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy;
dimitrios.geneiatakis@ec.europa.eu (D.G.); georgios.karopoulos@ec.europa.eu (G.K.);
ioannis.kounelis@ec.europa.eu (I.K.)

2 Faculty of Computer Science, College of Engineering, University of Idaho, Idaho Falls, ID 83402, USA;
kolias@uidaho.edu (C.K.); makr7178@vandals.uidaho.edu (G.M.M.)

* Correspondence: georgios.kampourakis@ec.europa.eu; Tel.: +39-0332-78-5013
† These authors contributed equally to this work.

Received: 2 March 2020; Accepted: 25 March 2020; Published: 6 April 2020
����������
�������

Abstract: Protocol stacks specifically designed for the Internet of Things (IoT) have become
commonplace. At the same time, security and privacy concerns regarding IoT technologies are also
attracting significant attention given the risks that are inherently associated with the respective devices
and their numerous applications, ranging from healthcare, smart homes, and cities, to intelligent
transportation systems and industrial automation. Considering the still heterogeneous nature of
the majority of IoT protocols, a major concern is to find common references for investigating and
analyzing their security and privacy threats. To this end, and on top of the current literature,
this work provides a comprehensive, vis-à-vis comparison of the security aspects of the thus far most
widespread IoT Wireless Personal Area Network (WPAN) protocols, namely BLE, Z-Wave, ZigBee,
Thread, and EnOcean. A succinct but exhaustive review of the relevant literature from 2013 up to
now is offered as a side contribution.
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1. Introduction

Internet of Things (IoT) enables the interaction of physical components and objects with the
cyberspace. Precisely, IoT technologies and protocols not only make possible the exchange of data
at a global scale via the traditional internet infrastructure, but also facilitate a more direct way of
communication with devices in their vicinity. Recent studies [1] estimate that by 2025 more than
75 million IoT devices will be in place. Up to now, a plethora of IoT based solutions have been
developed to support real-time monitoring services in domains such as smart homes, smart cities,
healthcare, and workplace automation.

On the other hand, since these devices are among other ecosystems already present in our
workplaces and houses, their security and privacy aspects are a decisive factor toward the acceptance
of the related technologies and subsequently their market penetration. Namely, the direct impact of IoT
systems in the physical world in combination with their galloping adoption rate render their security a
matter of utmost urgency. Moreover, the vast majority of, e.g., home automation devices utilize wireless
technologies to enable communication with each other or with a controller or gateway. Thus, due to
the idiosyncrasies of the wireless channel and IoT limited processing capacities, security becomes
even more important.

During the last decade, security in the IoT has been the focus of much concern and research.
Numerous studies [2–6] have been published regarding the insecurity of IoT ecosystem. In particular,
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Rizvi et al. [2] and HaddadPajouh et al. [3] reviewed different types of application layer attacks against
IoT devices. In a more comprehensive study, the authors of [6] reviewed IoT security challenges and
reported well-known attacks across the various layers of a typical IoT architecture. They also proposed
possible security improvements considering IoT integration with other state-of-the-art technologies
such as blockchain and fog computing. The contribution in [4] discusses how IoT systems could be
exploited in order to accomplish distributed denial of service attacks (DDoS). Additionally, the authors
of [5] studied security and privacy issues in a smart home environment.

The work at hand provides a detailed state-of-the-art review of the security aspects of five
well-established and/or promising, modern Wireless Personal Area Network (WPAN) protocol
stacks, namely Bluetooth Low Energy (BLE), ZigBee, Z-Wave, Thread, and EnOcean. We discuss
and review their security characteristics and related attacks with emphasis on MAC and higher layers,
while physical layer security analysis remains out of scope. To the best of our knowledge, such a
comprehensive review, providing a common reference for the examination of the security aspects of
the currently most widespread WPAN IoT protocols, is still missing from the relevant literature.

The remainder of the paper is structured as follows. Section 2 introduces the protocols of interest
and details on their security aspects. Section 3 offers a review of the relevant literature works with
a focus on attacks and countermeasures, while Section 4 summarizes key security issues of WPAN
protocols. Section 5 concludes and gives pointers to future research.

2. Overview and Security Features

This section provides a concise analysis of the security features of each of the selected IoT protocols.
Our goal is not to delve into the details of each implementation, given that this is provided by the
respected specifications, but to ease and subserve the reading of the subsequent sections. Figure 1
offers a generic representation of the protocol stack of each considered technology with reference to
the Open Systems Interconnection (OSI) model, while Table 1 summarizes the basic security features
provided per protocol of interest.

Figure 1. Overview of protocols stacks.



Symmetry 2020, 12, 579 3 of 29

Table 1. Key security features per examined protocol (• = full support; ~ = exceptions exist).

Feature Protocols

BLE ZigBee Z-Wave S2 Thread EnOcean

Confidentiality ~ 1 • • • ~ 5

Msg. Authenticity & Integrity • • • • ~ 6

Anti-replay • • • • ~ 6

MITM protection ~ 2 • • • ~ 7

Device authentication ~ 3 • • 4 • • 8

1 Only for devices that support LE Privacy. 2 Only for devices that implement LE Secure connections. 3 Only with
OOB or Numeric Comparison. 4 Not mandatory for the “S2 unauthenticated” class. 5 Only for R-ORG S telegrams.
6 Only for R-ORG S that contain a rolling code field. 7 Only for applications that conform to the EnOcean high
security extension. 8 Via the teach-in procedure.

2.1. BLE

Bluetooth Low Energy (BLE) was introduced as part of Bluetooth 4.0 specification [7] to provide
Bluetooth-like communication capabilities to devices with limited computational and energy resources,
e.g., IoT devices. Similar to the classic Bluetooth, the communication follows the client–server
(master–slave) model. The communication is primarily optimized for conserving energy, with the
peripheral devices typically sending small amounts of data in bursty fashion. The maximum range
of BLE is 50 m for the devices that implement the Bluetooth 4.0 specification and up to 800 m for
Bluetooth 5 [8].

BLE operates in the 2.4 GHz frequency range and utilizes 40 communication channels. Since the
specific band may be saturated by communicating devices using other protocols, BLE has adopted
the adaptive frequency hopping mechanism as a means to deal with congestion and interference.
To cope with channel congestion and interference, the devices do not statically use a single channel,
but instead they hop from channel to channel staying there for a specific amount of time and transmit
only one packet.

There are two types of packets, i.e., the advertising and the data packets. The advertising packets
can be sent only through 3 out of the 40 channels. The Protocol Data Unit (PDU) of these packets
contains a 16-bit header and 0–37 bytes payload. The rest of the 37 channels are utilized for data
exchange purposes only. The Access Address has a value of 0x8e89bed6 (fixed) when a packet is a type
of advertising, but that field has a variable value for data packets.

Accessing data is achieved through the Attribute (ATT) protocol. In the ATT terminology, data are
referred to as attributes. To be more precise, an attribute is comprised of: (a) a handle, i.e., a number
that uniquely identifies an attribute; (b) a type, i.e., what the attribute corresponds to and this is defined
by a Universally Unique Identifier (UUID); (c) a value, i.e., the actual data; and (d) permissions, i.e.,
tags indicating whether the data can be only read, written or both. The attributes exist on the server,
and the client can access these attributes. As an example, consider the heart rate profile that may exist
on the slave, such as a smartwatch. The server on that slave device will offer the heart rate attribute.
In this scenario, the smartphone, which will be used as a master, will request access to that attribute
from the server component of the smartwatch. Lastly, the Generic Attribute (GATT) profile defines a
grouping of services and attributes to facilitate attribute discovery and access.

BLE was designed to provide a secure communication channel to interacting parties while
at the same time protecting the privacy of the end-users. The mechanisms adopted to achieve
these design principles are: (a) the pairing and bonding; (b) traffic encryption; and (c) the device
address randomization.

Pairing is a multi-phase process that takes place towards the establishment of a temporary trust
(authentication) between the communicating devices. Pairing does not persist across connections.
Bonding, on the other hand, is an optional sub-process which intends to extend the already established
trust for a prolonged period. Once bonding has taken place, the first device pairing phases may be
omitted. Thus, devices can connect much more quickly.
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In Phase 1 of the pairing process, the exchange I/O capabilities along with the requirements
for protection against Man-in-the-Middle (MITM) attacks take place. The capabilities determine
which of the alternative pairing methods will be used in the next phase. Alternative values are No
Input No Output, Display Only, Display Yes/No, Keyboard Only, and, finally, Keyboard Display.
These messages are not encrypted.

In Phase 2, important cryptographic keys get created and exchanged. The type of keys heavily
depends upon the version of the protocol. In Bluetooth 4.0 [7], the Temporary Key (TK) gets decided
through one of the three alternative pairing modes, namely: (a) Just Works, in which the TK is set to 0
(this is not secure); (b) the PassKey Entry, in which the TK becomes equal to a 6-digit PIN registered in
both devices; and (c) the Out of Band (OOB) by which the TK is exchanged using an alternative wireless
technology, e.g., NFC. The TK is used to derive the Short Term Key (STK) according to the s1 function
defined in the corresponding standard (Bluetooth Core Spec V4.2, Vol.3, Part H, Section 2.2.4 [9].
The STK is used to encrypt the communication subsequently. In Bluetooth 4.2 and above, a Long-Term
Key (LTK) is generated instead of an STK. To do so, the two devices first exchange public keys to
compute the Diffie–Hellman key (using the Elliptic Curve function P256) along with some random
numbers. Although the traditional pairing modes are supported, Bluetooth 4.2 relies on a new pairing
mode, namely the Numeric Comparison. This is similar to the Passkey Entry. However, the displayed
number is not used for the generation of TK or any other key but rather for protection against MITM
attacks. Finally, the Diffie–Hellman key, the device address, the random numbers, and the I/O
capabilities of the device are used to generate the LTK. The LTK is used for link encryption instead of
the STK.

In Phase 3, the STK (or LTK) encrypts the link, and various keys calculated in the previous
phase get exchanged over that protected link. More specifically, the: (a) Identity Resolving Key (IRK),
i.e., a 128-bit key that is used for creating and resolving random addresses; and (b) the Connection
Signature Resolving Key (CSRK), i.e., a 128-bit key used for signing the traffic are sent. In versions lower
than 4.2 the following are also sent: (a) the LTK; (b) the Encrypted Diversifier (EDIV); and (c) a random
value (RAND). The last two keys are used for identifying the LTK in the device’s internal database.

Encryption is performed using the AES-CCM cipher with an encryption key size of 128 bits.
Communications get encrypted using the STK during the pairing process. The LTK is used to derive
other keys, including the one used for encrypting traffic. To achieve message authentication, BLE signs
packets with the CSRK. The method by which the signature gets calculated is given in Equation (1):

Sig = CMAC(CRSK, m||SigCntr, 64) (1)

where CMAC is a function for generating a Cipher-based Message Authentication Code utilizing
the AES-128 cipher, m is the plaintext message, SigCntr is a 4-byte counter that is initialized to 0
and is incremented for every message that is signed with the particular CRSK. The SigCntr gets
appended to the plaintext m (denoted as ||). The output of the function is a 64-bit sequence (the
length is provided as input to the function) that constitutes the signature. Devices that perform the
signature verification maintain the last verified SigCntr in the security database. During the subsequent
verification, they compare that value with a received SigCntr to check whether the received message
was sent as part of a replay attack.

BLE devices advertise their presence frequently, and since they are typically mobile devices that
may correspond to a signal, single owner privacy concerns arise. In further detail, the device’s MAC
address, which is usually a static identifier, can be used towards tracking devices and users. BLE has
adopted a mechanism for randomizing the MAC addresses of devices so that a passive eavesdropper
cannot follow a device after a certain period while at the same time authorized devices can resolve it.
The standard identifies several MAC addresses: (a) Public Address, i.e., the real value of the device’s
MAC address as provided by the manufacturer; (b) Static Address, i.e., an address randomly generated
after each power cycle which however remains static through this period; (c) Non-resolvable Private
Address, i.e., a random address that cannot be resolved, thus needs to be communicated somehow
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with a trusted party a priori; and (d) Resolvable Private Address, which is generated based on a shared
secret according to a process that can be reversed only by parties who are in possession of that secret.

The method used to generate MAC addresses (Resolvable Private address) is given in Equation (2).

MAC = r||E24 IRK||(r||pad104) (2)

where r is a 24-bit random number, and E is an encryption function that uses IRK as the key and
encrypts the random number r after it has been extended to 128 bits by adding 104 bits padding.
The output of that function is truncated to 24 bits and then is concatenated with r to form a 48-bit MAC.

2.2. ZigBee

ZigBee is patronized by the synonymous Alliance [10] established in 2002, and enables the
formation of a low-power, low data rate, wireless personal area network operating in unlicensed
bands, i.e., mainly in the 2.4 GHz frequency band. The typical transmission range of ZigBee covers
distances of 10–100 m with line-of-sight. The protocol’s two bottom layers are based on the IEEE
802.15.4 standard [11], supporting three different network topologies, namely, star, tree, and—the
more robust and resilient to failures—mesh. For creating multi-vendor interoperable products,
the upper layers of the protocol stack, namely Network and Application, are described in the respective
ZigBee Alliance standards, now in version 3.0. This newest version is built on the ZigBee PRO-2010
specification, which in turn is an enhanced version of the 2007 specification. Version 3.0 allows
for increased interoperability (e.g., the same ZigBee 3.0 network is possible to accommodate ZigBee
Home Automation, Health Care, and Light Link application profiles) as well as Internet connectivity,
and thus comprises a full protocol stack by adding mesh networking and security layers along with
an application framework.

ZigBee specifies three different logical device types, namely Coordinator (ZC), Router (ZR),
and End Device (ZED), such as a motion sensor or a smart light bulb. The one per network ZC is
in charge of bootstrapping and coordinating the network, and it may be used as a bridge to other
networks. After the network is formed, the ZC and ZR never sleep and need to be continuously
powered. The role of ZRs is to act as intermediate nodes between the ZC and the ZEDs and may
allow for other ZRs and ZEDs to join the network. A ZED is unable to route any traffic and authorize
other devices to join the network and can only communicate within the network through their parent
nodes, typically ZRs. In addition, to conserve power, a ZED is able to sleep by entering the so-called
low-power mode. ZCs and ZRs are also called ZigBee Full Function Devices (FFD), while a ZED is
known as a Reduced Function Device (RFD). Each ZigBee network is identified by a 16- or 64-bit
network ID. This number is assigned by the ZC upon creating the network. After that, each newcomer,
either a ZR or ZED, is given a randomly assigned address from the device it is joining. Of course,
such an address must be translated for enabling any sort of communication with devices located in an
external IP network.

The commissioning procedure in ZigBee offers four different ways for a node to exchange
network parameters, including the network identifier and the radio channel, and join a given network:
(a) “Association” is done by means of 802.11.4 management packets; (b) “Rejoin”, which employs
ZigBee-oriented IEEE 802.11.4 data packets; (c) “(Re)join via orphaning” is done by means of
ZigBee-oriented IEEE 802.11.4 management packets; and (d) “Out-of-Band”, which is vendor-specific.
The first method requires the network to be open to joining. After commissioning, and depending on
the security policy, the device can be authenticated against the network.

IEEE 802.15.4 defines AES-CCM* 128-bit block cipher (which is a minor variation of CCM mode
offering additional encryption capabilities) for protecting the data frames in transit and specifies
the use of the security enabled flag in the frame control field and the optional Auxiliary Security
Header field in the MAC frame structure; however, the standard does not specify key management
procedures or entity authentication policies. These issues should be handled by the upper layers.
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To this end, ZigBee security provisions are offered by the network and application layers. Specifically,
ZigBee offers security services, including key establishment and transport, frame confidentiality and
integrity (via the use of AES-CCM*), and replay protection. It has to be mentioned, however, that the
ZigBee trust model implicitly applies solely between different devices, while the layers of the stack and
the applications executed in the same device are assumed to trust each other. This means compromise
of one application may straightforwardly enable the attacker to hijack any other application running
on the same device.

A ZigBee network uses two symmetric 128-bit secret keys, namely the network and optionally
the link or application key. The former is used to protect broadcasts, and thus it is shared between
all the devices of a given network, while the latter protects unicast communications taking place at
the application layer. The network key can be obtained in two ways. namely it can be pre-installed
or received via key-transport, while the link key can be additionally obtained by a key establishment
procedure. By default, frame encryption and authentication is provided by the network layer via the
use of AES-CCM and the network key. If a link key is in place, and due to the aforementioned ZigBee’s
implicit trust model, the application layer may or may not enable two-tier security by means of the
network and the link key. That is, if the network layer has already enabled security via the network key,
then it is up to the application layer to provide additional security services via the link key. Optionally,
there exists a special type of keys called “Master keys”. That is, for two devices to generate link key
they need to execute the key establishment procedure. In this stage, a master key serves as an initial
shared secret among the devices and can be acquired by the respective device via pre-installation,
user-entered data (including a QR, PIN, or password) or key-transport.

In ZigBee PRO and v.3 there exist two security modes/models, namely centralized and distributed,
and subsequently a joining node embraces whichever security mode is used by the network it connects
to. The first mode, uses a trust center (TC), typically a ZC, which coordinates the network, grants or
disallows access to new devices, and administers the allocation of network and link keys to the
joining nodes. The network key is distributed to the newly joined node encapsulated with a 16-byte
pre-configured link key that is known to the node and the TC. After that, the TC may or may not
provide a fresh link key to the node for securing TC-to-node communication and for the node to re-join
the network if, e.g., the communication is lost. A major worry here is the type of the “pre-configured
link key”; if it is a network-wide key, as in certain application profiles, then the network key depends
solely on the secrecy of this single link key. In fact, this is the case with the home automation profile,
which uses the “ZigBeeAlliance09” global pre-configured link key to authenticate (re)joining devices
and distribute the network key. A solution to this shortcoming is offered by v.3. Even though it does
not specify any application profile, but a base device behavior (BDB), which also allows for the use of
a global pre-configured key for backward compatibility, it enables in addition the use of install codes
or a link key establishment procedure.

Specifically, for a centralized security network, a random 6–16-byte (plus a 2-byte CRC) install
code is programmed in the device during manufacturing and serves as an input to a hash function
to produce a link key for that node. During commissioning, the same install code must be obtained
by the TC using some out-of-band method in order for it to generate the same link key. Then,
after commissioning, the network key is passed to the node encapsulated by the bilateral unique
link key. It is implied that the install code should be only accessible to the legitimate owner of
the device. Generally, if the same link key is used across a number of network transactions, e.g.,
rejoins, without rekeying, then the network key is at stake. Precisely, following a device cloning,
and after issuing a rejoin request, the attacker may be able to obtain the network key via the use of a
compromised link key. Thus, in cases where a pre-configured link key is used, automatic rejoining
should be disabled by the TC, and only a user-instructed manual fresh join should be allowed.

If an application on a node wishes to enable secure peer-to-peer communications with another
node on the same network, then the TC acts as a proxy to generate and distribute a separate link key to
the involved nodes. Basically, given that the protection of the (global) network key is of utmost priority,
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node-to-node communications involving sensitive, especially end-user data, should be protected
by a corresponding link key. Lastly, the TC is in charge of periodically refreshing the network key,
by broadcasting the new key (with a new sequence number) encapsulated with the old one, and after
notifying all devices to activate the new key. This procedure may happen after a node join/leave event
to provide backward/forward secrecy and defend against replay attacks. However, network key
rolling should be done wisely, e.g., when the network commissioning is open or closed for joins,
otherwise it may create unnecessary overhead. The simpler and less-secure distributed model assumes
the existence of only ZR and ZED, so a ZR provides the network key to a joining node, either ZR
or ZED. To do so, all joining ZR and ZED must be pre-configured with a link key that is used to
encapsulate the network key prior to sending it to the newcomer node. Moreover, depending on the
security model used, and as a first line of defense, the TC or the ZR can maintain a white list in terms
of MAC addresses of the devices that are permitted to join, and thus authenticate themselves against
the network.

A certificate-based device authentication and key establishment is also provisioned for some
ZigBee application profiles, including smart-energy. For this, every node must carry a lightweight—as
compared to X.509—Elliptic Curve Cryptography (ECC) based Qu–Vanstone “implicit certificate”
issued by some trusted certification authority. If so, a link key to protect any communication
between two nodes can be generated via an Elliptic Curve Menezes–Qu–Vanstone (ECMQV) key
agreement scheme. Naturally, the downside of using certificates is that they require more memory
and processing resources at the device, especially if the device needs to hold certificates issued from
different authorities along with their root keys.

Regarding the security of the commissioning procedure, ZigBee optionally offers a user-friendly
proximity-based method called “Touchlink”. In this setting, the initiator, e.g., a remote control device,
perceives that a peer (to be joined in the network) device is in proximity, and transfers to it the network
parameters. However, for a device that has already joined the current network, but is about to be
moved to a new network, the initiator may transmit to it a factory reset command. This may leave
room for aggressors to hijack the device and move it to another network [12]. Thus, after a device is
commissioned and joined a given network, it should ignore any Touchlink messages stemming from
its network, or Touchlink should be disabled with an option to manually re-enable it if necessary by an
authorized technician. Another option for commissioning, is the co-called “out-of-band”. This method
has the advantage that authentication and the transfer of network parameters and the (encapsulated)
network key do not happen over the unprotected wireless medium. Such flexible methods include (a)
Near Field Communication (NFC) commissioning, which however is susceptible to attackers equipped
with an NFC reader; (b) QR code, which also suffers from the inherent weakness of NFC; and (c)
Over-web, which assumes some kind of a registration phase in a web page and obtaining the required
parameters online. On the downside, considering a large number of devices, this method does not
scale and transposes the security concerns at the website’s side.

2.3. Z-Wave

Z-Wave is a proprietary low-energy home automation protocol [13] developed in 2001. In 2012,
the protocol’s physical and MAC layers were specified as ITU-T recommendation G.9959 [14].
Z-Wave enables communications over a multi-hop mesh network of up to 232 nodes, which operates
on the 800–900 MHz band with a physical range of up to 100 m. The protocol is supported by
the Z-Wave Alliance, which provides certification of the respective products. For this, since 2016,
there exists a public interoperability (application) layer to ensure that devices from different vendors
are able to communicate and cooperate.

The early version of Z-Wave, namely S0, does not mandate encryption on the communication
link, making it prone to various attacks such as eavesdropping, message manipulation and injection.
Optionally, however, it can be secured by the AES-128-CCM authenticated encryption scheme. If this
scheme is enabled, the respective keys are generated during the pairing phase having as input the
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data sent to the nodes by the primary controller, which is in charge of managing the whole network.
In the S0 version of the protocol, this phase is protected by a hard-coded default key consisted of zeros.
This flaw allows an attacker to obtain the network key and consequently decrypt the traffic.

In 2016, the Z-Wave Alliance imposed stronger security called S2, for Z-Wave certified devices.
This latest revision employs Elliptic Curve Diffie–Hellman (ECDH), namely Curve25519 with a public
key length of 256 bits, for pairing proposes, thus making man-in-the-middle attacks practically
powerless. Note however that specific implementations of Curve25519 may be prone to side-channel
attacks, as demonstrated in [15].

All nodes in an S2 network segment use the same symmetric network key to communicate with
each other. This is done because managing through the use of different (unicast) link keys among all
nodes in a network would require much more resources and battery reserves, and would also demand
an additional separate key for multicast communication. Thus, the ECDH shared key is used by S2
nodes to derive a temporary link key, which in turn allows the controller in charge to securely transfer
one or more network keys to a newcomer node.

More specifically, S2 implementations partition logically a Z-Wave network into three distinct
security classes, namely “S2 access control”, “S2 authenticated”, and “S2 unauthenticated”, where each
has a unique network key. This segmentation of keys, i.e., one per device group, provides enough
guarantees that pieces of information collected from one network class cannot be used to decrypt
the traffic of another class. Specifically, the first class pertains to access control devices that must
be authenticated during inclusion, e.g., door locks, and therefore is considered the most trusted.
The second class applies to all typical smart-home devices, e.g., light dimmers and thermal sensors.
The last class specifically refers to all resource-constrained devices that may choose between being
authenticated or not during inclusion. Controllers that are not able to authenticate a joining device,
e.g., due to a limitation in their user interface, e.g., only a LED screen, may fall into this category.
For achieving interoperability with S0 devices, an S0 network key may be distributed to S2 devices by
using the temporary ECDH link key. In any case, such a key will be considered an S2 unauthenticated
class key.

A joining device that is granted access by a controller to more than one of the aforementioned
security classes would only accept incoming commands that are encrypted with the network key
belonging to the most trusted of them. Note, however, that a network node may be granted access by
a controller to a subset of the requested classes. A controller may control two different devices using,
e.g., the S2 access control class key and S2 authenticated class key correspondingly. In this case, the S2
device authentication process provides guarantees to the corresponding controller that a newcomer
is the legitimate physical device and not a rogue one. That is, for a new device to join the network,
and depending on the user interface, a controller may require the entity that installs the device to
enter a unique device-specific key, namely a sequence of decimal digits or a quick response (QR) code.

S2 is also based on AES-128-CCM mode for the provision of authenticated encryption,
and AES-128-CMAC for key derivation functions. For protecting against key-leakage attacks stemming
from predictable patterns in the frame payload as well as replay attacks, every transmitted frame is
scrambled by the use of a 13-byte nonce before encryption. The nonce is automatically updated prior
to each transmission. Finally, for cloud communications, S2 also offers the option to tunnel the Z-Wave
traffic over IP by means of a transport layer security (TLS) channel.

Given the security enhancements provided by S2, the weakest link in the chain is all legacy devices
which carry the S0 certification. As further discussed in Section 3.1, such devices are unlikely to be
updated by the respective vendor, and therefore they constitute a security liability for the network as
they remain vulnerable to a myriad of attacks.

2.4. Thread

Thread is a low-power wireless mesh networking protocol patronized by the “Thread Group”
Alliance launched on July 2014 [16]. As with ZigBee, Thread operates on the 2.4 GHz ISM band and
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relies on IEEE 802.15.4 radio standard for its MAC and physical layers. One of the strongest points of
Thread is that it caters for seamless connectivity to any IP-based network, including Ethernet, Wi-Fi,
and the Internet in general, without the help of a gateway. This is done thanks to the employment of
an IPv6 over Low-Power Wireless Personal Area Networks (6LoWPAN) layer [17,18], which allows
IPv6 packets to be transferred back and forth over any IEEE 802.15.4 connection.

A Thread network comprises one or more border routers that provide connection either to other
Thread or external networks; routers, which offer routing services to network devices; and end-devices.
By default, a router does not sleep, but it can demote its capabilities for becoming an end-device.
Therefore, an end-device may be router-eligible (REED) or not. A sleepy end-device is not able to relay
messages on behalf of other devices, but it can communicate only via its parent router. In a Thread
network partition, following an automatic process, a router device is elected among all the routers to
be the routing leader or simply Leader. This device keeps a registry of the assigned router addresses,
and decides which router-eligible end-device can be elevated to a router upon request. As with any
router in a Thread network, a Leader is allowed to have end-device children.

As already mentioned, Thread’s stack offers IPv6 addressing [19], meaning that devices support a
unique local address, a domain unique address (in a Thread domain model), and one or more global
unicast addresses, e.g., all local router multicast, mesh local multicast, etc. That is, the high-order n
bits of an IPv6 address (prefix) designate the network, while the rest correspond to specific addresses
in that network. Therefore, all the addresses in the same network are composed of the same first n bits.
The network prefix is selected by the device starting the network. After that, each device employs its
factory assigned 8-byte IEEE extended unique identifier (EUI) to derive its interface identifier as defined
in [17]. Moreover, as per the IEEE 802.15.4 specification, the Leader is responsible for assigning a
2-byte short address, i.e., the high bits in the address field, to each router in the corresponding network
partition. On the other hand, the 2-byte short address of an end-device is produced upon request,
e.g., when joining the network, from the address of its parent router. As a result, duplicate address
detection is enforced by Leaders for routers and by routers for end-devices. Note that the use of 2-byte
short rather than 8-byte MAC addresses leads to smaller packets and consequently may optimize
the network bandwidth. In any case, if a device lacks a short address, it must be addressed via its
MAC address. For improved privacy and security, the specification explicitly forbids the use of EUI,
with a potential exception for out-of-band commissioning. This means that after the network security
credentials have been successfully obtained, a node must randomize its EUI.

The Thread network is designed to be resilient with no single point of failure, because, even in
the case a Leader breaks, another router will be automatically elected to serve this role. This stands
true even for sleepy end-devices; if such a device loses communication with its parent, it will choose
another parent in a user-transparent manner. However, in the case where the single border router
confronts a failure, the network will become unavailable.

A Thread network can accommodate up to 32 routers, which employ next-hop routing, where the
link cost is calculated based on the received signal strength indicator (RSSI) of the adjacent nodes.
The routing table is maintained by the Thread stack to ensure that all routers maintain connectivity
to the rest of the routers in the network. Neighbor detection, establishment and configuration of
secure radio links, maintenance and dissemination of link reliability data including routing costs,
exchange of device capabilities information, and distribution of common configuration values such as
the channel and the network ID (PAN ID) are done by means of the Mesh Link Establishment (MLE)
protocol [20]. MLE messages, carried over single-hop unicast and multicast messages between routers,
are transmitted encapsulated in UDP datagrams with the source and destination ports set to 19788.
Multicast in Thread is based on the Multicast Protocol for Low-Power and Lossy Networks (MPL) [21],
i.e., simple flooding. Lastly, above the IP layer, Thread uses the Constrained Application Protocol
(CoAP) [22] over UDP. Specifically, CoAP is used by routers to exchange management messages and
to configure mesh-local and multicast addresses on the devices in the network.
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Given that Thread builds on top of the IEEE 802.15.4 two-layer stack, it also employs AES-CCM
128 bits for providing data frame confidentiality and integrity, where the latter service is applied to
both the frame header and the payload. MAC frame replay protection is implemented by having each
device maintaining an outgoing 4-byte frame counter, plus a separate frame incoming counter per
neighbor. Separate outgoing/incoming 4-byte counters are used by MPL to monitor the freshness
of messages transmitted by a given device. Every node exchanges such counters with its neighbors
by means of MLE handshake. Similar to ZigBee, due to the exploitation of 802.15.4, key derivation
and management as well as entity authentication are handled by the Thread layers. Specifically,
during network creation, the Leader of the network creates randomly a symmetric key called master
key (MK), which, as explained in the next paragraphs, is securely distributed to every joining node.
The MK is associated to a 1-byte key index, which is computed from a 4-byte sequence number.
Thread runtime communication for MAC and MLE layers is secured correspondingly by two separate
128-bit keys. These are derived from the 4-byte sequence number concatenated with the ASCII binary
representation of the string “Thread” using the SHA-256 HMAC under the MK. From the result, the first
128 bits serve as the MAC key, while the rest as the MLE key. The master key, along with other security
material and network parameters, including the PAN ID must be kept in the non-volatile memory of
every network node. This allows for a node to rejoin the network without human intervention, e.g.,
after a reset. Upon the expiration of the default key rotation timer, i.e., 672 h, the sequence number
is incremented by one, the KeyIndex value is updated, and a new pair of MAC and MLE keys are
produced. When this happens, the outgoing MAC and MLE frame counters are reset to zero.

Overall, in addition to over-the-air message confidentiality, integrity, and authenticity, link layer
security caters for access control, replay protection, and non-repudiation, thus blocking outsider attacks,
including eavesdropping, impersonation, message spoofing, tampering, and injection, as well as IEEE
802.15.4 MAC generic attacks, as given in [23]. However, given that the master key is network-wide,
thus compromise of any Thread device would expose it, additional security implemented at the
application layer is also suggested. To this end, CoAP and/over DTLS protocol can also be exploited
by applications and provide the basis for achieving secure end-to-end communications.

Device commissioning in Thread requires one device having the “Commissioner” role.
This device may already participate in an existing Thread network (native commissioner) or be
an external one (external commissioner), e.g., a mobile phone which is connected to a Wi-Fi, which in
turn has an interface to the Thread’s network Border router. To obtain the Commissioner role, which is
unique across the whole network, the candidate Commissioner device needs to be first authenticated
against the Leader. This phase is known as Petitioning and is done via a representative, i.e., the Border
router for an external commissioner or the commissioner router for a native one. At the start of the
Petitioning phase, and for achieving authentication, the Border router must learn the Commissioner’s
candidate credentials, namely, a pre-shared key for Commissioner (PSKc), which is derived via key
stretching by a passphrase having a length between 6 and 255 bytes. This key can be either entered
directly in the Border/Commissioner router or into any trusted Thread device and transferred to the
router. In addition, a re-keying process on PSKc is possible by means of MAC protected management
frames over CoAP. Next, on the basis of PSKc, the Commissioner candidate will trigger a DTLS
handshake with the router. The router on behalf of the Commissioner candidate, will mediate with the
Leader for appointing the Commissioner candidate to be the sole Commissioner/authenticator for
future joiners. In the case of an external Commissioner, itself and the Border router will maintain via
periodic keep-alive notifications the already established DTLS tunnel between them with the aim to
secure the exchange of subsequent CoAP petitioning, management, and relay messages. In the same
case, the Leader also notifies all routers about where to find the Commissioner. This is done implicitly,
namely, by advertising the Border router acting on behalf of the Commissioner. Then, any potential
Joiner router will be aware of where to proxy DTLS messages stemming from the Joiner.

On the other hand, the joining phase starts with an untrustworthy device, called the “Joiner”,
wishing to connect to the Thread network. In the beginning, the Joiner needs to locate and establish
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a P2P connection with a router, namely the “Joiner router”. Depending on the case, the latter entity
may also be the native Commissioner (simplest case), the Border router, or some other router. Next,
an authentication and key agreement (AKA) procedure between the Joiner and the Commissioner takes
place. For instance, in the case of an external Commissioner, AKA messages must be relayed via the
Joiner router and then the Border router, i.e., there exist three distinct connections: (a) Joiner-to-Joiner
Router P2P; (b) Joiner Router to Border Router via the Thread network; and (c) Border Router to
Commissioner via, e.g., a Wi-Fi. Recall, that the Border router maintains a DTLS connection to the
external Commissioner. AKA comprises a DTLS handshake using a password-authenticated key
exchange (PAKE) by “juggling” (J-PAKE) [24]. In fact, Thread employs an elliptic curve variant of
J-PAKE based on the NIST P-256 elliptic curve. This mechanism combines ECDH for key agreement and
Schnorr Non-interactive Zero-Knowledge Proof scheme [25] to: (a) authenticate the two peers based
on a relatively low-entropy (8–16-character alphanumeric string) passphrase set by the manufacturer
called pre-shared key for device (PSKd); and (b) produce a high-strength ephemeral shared secret
called Key Encryption Key (KEK) between them. In several cases, the PKSd is printed on the Joiner
as a QR code or serial number, which can be scanned by the Commissioner, e.g., a smartphone.
Nevertheless, having this key printed on a sticker, e.g., underneath the device, it may make it prone
to physical attacks. Note that the Commissioner authenticates the Joiner without letting it know the
MK. This is done by the Joiner router, which securely distributes the MK encapsulated with KEK along
with other network parameters to the Joiner. The KEK is delivered by the Commissioner to the Joiner
router, and is strictly disposable, thus providing enhanced security. In the end, the Joiner terminates
the secure Commissioning session and attaches itself to the Thread network. It should be pointed
out that the work in [26] provides proof that J-PAKE is resistant to dictionary attacks either off- or
on-line, offers forward secrecy, and session key independence. In addition, it is obvious that even if
the adversary has access to PSKc and/or PSKd, it is almost infeasible to guess the ephemeral DTLS
session keys and the KEK.

As already mentioned, Mesh Link Establishment (MLE) messages administer fundamental
operations in Thread dynamic mesh networks, where the topology and the physical environment
are subject to frequent changes. Specifically for security, MLE messages are used for disseminating
security material and frame counters between the devices. Due to their importance, MLE messages
enjoy confidentiality, authenticity and integrity, given that they are protected by AES-CCM as well,
but with a different key. In addition, each device keeps two separate MLE counters, namely incoming
and outgoing, for each of its neighbors. Naturally, MLE messages cannot be protected during
network discovery and before a Joiner is commissioned and has obtained the security material.
In fact, after successfully commissioned into the network, a Joiner would initiate a handshake to
attach to a parent. This process comprises four messages, namely Parent Request, Parent Response,
Child Request, and Child Response, and is resistant to replay attacks via the matching of a response
with its corresponding request. This is done via the use of a specific Type Value Length (TLV) type
called Challenge TLV, which is a randomly chosen byte string. Any subsequent, matching to this
request, response message must contain the same byte string in a Response TLV. This replay protection
however does not apply to MLE advertisement messages. In any case, Thread specifications put
forward that pieces of data carried over unprotected MLE messages should not be considered for
altering corresponding parameters acquired via secured messages.

The security of forwarding (by means of 6LoWPAN) and routing operations are addressed by the
security services applied to the link and MLE layers. In this respect, before transmission, every router
applies hop-by-hop encryption and integrity/authentication to 6LoWPAN headers and distance-vector
information. This protects the network against legacy attacks in Mobile Ad Hoc Network (MANET),
including message tampering, wormhole, black hole, etc. As already mentioned, MPL uses separate
sequence numbers to track the freshness of messages transmitted by a given device. This message
ordering scheme leaves room for DoS type of attacks, as described in [21]. Another security concern
in MPL is the use of the Trickle algorithm [27], which regulates the transmission rate of a node to
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the bare minimum needed to maintain the node internally consistent. That is, Trickle controls the
send rate so as each node hears a slow stream (“trickle”) of packets. In this respect, the security
considerations pinpointed in [27], i.e., forcing timer resets to drive nodes to transmit packets at a
much higher rate than needed, and preventing nodes from reaching consistency by suppressing
transmissions with “consistent” messages, also apply to MPL, and as a result may affect Thread too.
Overall, excluding insiders, the aforementioned attack options are not practical in Thread by virtue
of the security provisions offered at the link layer. On the other hand, in the case of an insider or
if a strong external adversary succeeds in compromising a router, then they can harvest network
credentials, e.g., the master key, and form that point on elevate their attack to the network at will. In a
more persistent attack scenario, the adversary who controls a router may selectively taint/pollute
distance vector protocol information and 6LoWPAN headers.

2.5. Enocean

EnOcean technology invented by the homonymous company and patronized by the EnOcean
Alliance is optimized for ultra-low power wireless battery-less “install and forget” devices and
energy harvesting applications in building and home automation, and is standardized in ISO/IEC
14543-3-10 [28]. To achieve the aforementioned goals, the EnOcean’s radio protocol (ERP) uses sub-GHz
frequency bands, namely 315, 868.3, 902, and 928 MHz, depending on the legal regulations applying
to each country. In addition, battery-less solutions exist employing the 2.4 GHz ISM band (IEEE
802.15.4) for enabling integration with ZigBee and BLE systems. The typical transmission range of the
technology covers distances of up to 30 m in buildings and up to 100 m with line-of-sight, while the
theoretical maximum data rate is 125 kbit/s. EnOcean supports the mesh network topology, where all
nodes can communicate point-to-point with each other in their wireless range. EnOcean devices can
also communicate with other networking realms, including TCP/IP-based, via the use of a gateway.
The three lower layers of the EnOcean protocol stack are realized by means of the ISO/IEC 14543-3-1X
standard, while the Alliance offers the EnOcean Equipment Profiles (EEP) application sub-layer for
supporting interoperability across diverse vendors and products under this standard [29].

Telegrams (messages) in EnOcean are identified in terms of either the unique device’s 32-bit chip
ID or a base ID. The latter is set in a pseudo-randomized manner in terms of a modulo function of
the chip ID, providing 65,536 possible base IDs in total. Two subsequent base IDs have a distance of
128. When the chip ID is used, which is the typical case, it also serves as a prevention measure against
device duplication. On the downside, replacing a device for another becomes cumbersome because
the teach-in procedure must be repeated against every controller. To overcome this problem, a base ID
can be used, which if needed, can be altered via the serial interface too.

Regarding security services, the latest specification in v2.5 [29] denotes that it is implemented “on
the OSI presentation layer of the ERP protocol stack”, meaning at the network layer of the ISO/IEC
14543-3-10 standard. Generally, a telegram may be secured or not, and this information is included
in the R-ORG 1-byte field, which identifies the type of message that is being communicated. Secure
messages (R-ORG S) are identified by the codes 0 × 30, 0 × 31, 0 × 33, or 0 × 35. In an R-ORG
S telegram, the data part of the message is always encrypted. In addition, the original message’s
R-ORG can optionally be encrypted after being concatenated with the data part. The option of not
also encapsulating the original insecure R-ORG field of the message in the encrypted data field is to
conserve energy at transmission time. As detailed in the following, EnOcean uses 128-bit AES for
encryption done in 16-byte chunks, and Cipher Based Message Authentication Code (CMAC) based
on AES for the authentication and integrity of R-ORG S telegrams. Note that the link layer of ISO/IEC
14543-3-10 standard also offers integrity protection via the “HASH” 4- or 8-bit field, but this is only for
detecting transmission failures and not defending against malicious actors.

In addition to the aforementioned security services, a R-ORG S may contain a rolling code (RLC)
field, which should be initialized to zero in every produced device, and afterwards change according to
a predefined scheme. Precisely, per every P2P communication, RLC increases monotonically each time
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a message is transmitted, and its value is checked by the receiver; if the value is not greater than the
previous received RLC, the receiver drops the message. As already mentioned, the RLC field should be
transmitted (explicit RLC strategy), but can be left out for saving energy (implicit RLC strategy). In the
latter case, the two ends must keep this code in sync, that is, the RLC shall be in an RLC window range.
Note however that the RLC is typically used as an input parameter to the calculation of CMAC and the
encryption of the data field, therefore the receiver always indirectly checks the correctness of the RLC.
Thus, if the RLC field is not transmitted, and the receiver observes a faulty, but always greater than
the previous, RLC, it tries the next few RLCs upward in the window range. If no match is perceived,
then the receiver returns to its local RLC value and drops the telegram. However, this scheme may
lead to a deadlock if more messages than the predefined RLC window are missed by the receiving end.
If so, the receiver needs to re-synchronize the RLC, typically via the teach-in procedure described in
the following.

The encryption scheme used by EnOcean in called variable AES (VAES), meaning the use of the
(variable) RLC value as an input to the AES procedure to increase its security. That is, the RLC
is XOR-ed with the fixed AES initialization vector (IV) and the result is fed to AES. This way,
the generated keystream is always different under the same secret key and until the RLC reaches its
maximum value. As discussed in the following paragraph, RLC rollover may or may not be permitted.
It is also implied that after changing the AES key, RLC must be set to zero. On the other hand,
the CMAC operation is an encrypt-then-mac scheme done also in 16-byte chunks, more specifically it
is executed after encryption over the data field, optionally the original R-ORG, and mandatorily the
RLC, if the latter is used, but not transmitted with the telegram. This information is first XOR-ed with
a sub-key derived from the secret key and the result is fed to AES to produce the final CMAC.

The details of secure communication between two peers are configured via a unidirectional or
bidirectional teach-in procedure, where typically the device to be learned is placed in proximity to
the receiver. Normally, the teach-in procedure is done via the wireless or serial interface. During this
procedure the peers transmit to each other the encryption method (VAES, EnOcean High Security or
no encryption), key, RLC presence, RLC size (16, 24 or 32 bits), RLC rollover flag, and CMAC size (no
MAC or 3 or 4 bytes) that will be used during the operation mode. First off, the receiving device must
be in learning mode to accept the teach-in messages from a transmitting peer. The latter sends the
security teach-in message whenever its teach-in trigger is activated. The teach-in message carries all
the aforementioned security parameters of the transmitting device, which are learned and stored by
the receiver. The parameters pertaining to the cipher suite to be used are contained in the security level
format (SLF) byte of the teach-in message. The specification urges that the AES key and RLC value
should not be sent in the clear, but instead encapsulated by a pre-shared key (PSK) or by other means,
e.g., using the serial interface. Note that the 128-bit PSK plus the SLF are normally printed on a sticker
on the transmitting device, and thus can be entered or scanned (in the case of QR code or NFC tag)
into the receiving device.

To defend against man-in-the-middle (MITM) attacks, the specifications [29] define the EnOcean
high security extension. This extension is specially designed for applications that require a high safety
level, such as door locks, and can be typically applied if at least one of the peers is line-powered.
Precisely, this extension tackles scenarios where the active attacker eavesdrops on the communication
and blocks the victim receiver. If successful, the aggressor is able to replay the communication at a
later time. Note that such an attack is realistic because the receiver has not updated its local RLC value,
and hence it will correctly parse and accept the replayed message. The remedy to this problem is
offered via the use of a 32-bit random or incremental, non-repeating nonce as a challenge, and a timeout
of 500 ms to guarantee time limitation bound to the specific nonce. Specifically, the communication
can be authenticated in a unidirectional or bidirectional way. In the first case, the sender transmits
a request for communication to the receiver and starts the timeout. The receiver generates a fresh
nonce, transmits it to the sender, and starts the timeout. Now, the sender can transmit the data to the
receiver in an authenticated way; either it incorporates the nonce along with the data in the generated
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CMAC or, if RLC is not used, it includes the nonce as the IV in the VAES encryption phase. For any
subsequent authenticated data transmission, the aforementioned process should be repeated, meaning
the use of a fresh nonce.

3. Literature Review

Up to now, a significant mass of works has provided a review on the IoT security ecosystem.
The paper at hand concentrates on contributions pertaining to the security of major WPAN protocols,
intentionally neglecting more generic works on IoT security and others that analyze IoT frameworks
from a security viewpoint (e.g., [6,30–38]). Precisely, the works considered by the present paper
are organized in two groups. The first one concentrates on the security features offered by a
specific wireless IoT protocol, e.g., BLE, ZigBee, or Z-Wave, and focuses on specific attacks and
countermeasures. To ease the navigation through these works, we summarize them in Table 2.
The second part provides a vis-à-vis or more discrete comparison of different protocols concentrating
on one or more layers of the protocol’s stack. In this second category of works, we also include
contributions related to the security of the IEEE 802.15.4 standard, given that the 802.15.4 protocol
stack is common to Thread and ZigBee protocols. More precisely, spanning a period from 2013 to 2019,
the following subsections summarize in chronological order the most relevant works published either
in scientific journals or conferences per each of the aforementioned groups. Note that, to the best of
our knowledge, no specific work on the security of EnOcean exists so far, thus no respective discussion
is included in Section 3.1, including Table 2.

Table 2. Summary of literature works per examined protocol (as discussed in Section 3.1).

Protocol Published Works per Type of Attack

BLE

Key derivation [39–45]
User tracking [46–49]
Activity detection [46]
Person identification [46–48]
Replay attack [40,43,44]
Advertisement spoofing [40,48]
Exposed services [40,50]
OTP authentication token interception [40]
Cross-application tracking [51]
Eavesdropping [41,44,46,49,52]
Denial of Service [43,46]
Downgrading [45]

Z-Wave

Eavesdropping [53]
Replay [54]
Key derivation [55]
Rogue controller [56]
Integrity vulnerabilities of the routing protocol, Black hole [57]
Unauthorised commands [58]

ZigBee

Battery drain [59,60]
Key sniffing [59]
Key recovery through storage dump, Same-NONCE, Processor overloading (DoS) [61]
Replay [61–63]
Network discovery and device identification [12,62]
Eavesdropping [62]
Jamming [64]
Device takeover [12,64–66]
Reset device to factory settings, Permanent device disconnect, Network key extraction [12]
Network and device reconfiguration [67]

Thread

Jamming and flooding, Handshake flooding, Network leave, Key compromise, Replay, Same-Nonce,
Guaranteed Time Slot, PAN ID conflict, Acknowledgment, DoS, Back-off and Clear Channel
Assessment manipulation, Repudiation [68]
Electromagnetic side-channel, Key generation [69]
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3.1. Group I

3.1.1. BLE

The work in [39] was one of the first to outline practical attacks against the BLE protocol.
The author implemented a set of open-source tools, primarily a sniffer software based on the Ubertooth
platform [70], which is capable of “following” BLE connections as they hop across frequencies.
The process of predicting the next channel to hop is not trivial. While the state-of-the-art was capable
of only monitoring newly established connections, the proposed tools can do so on pre-existing
connections by recovering critical connection parameters. The authors showed that this is the first
step towards other more malicious attacks, including the injection of packets as well as bypassing the
BLE encryption.

The vast majority of fitness trackers fail to implement the address randomization part of the
BLE specification. The authors of [46] conducted a study on BLE traffic between fitness trackers and
smartphones. They pinpointed that the aforementioned implementation failure provides attackers with
the capability for user tracking, activity detection, and person identification. For example, the traffic
between devices has a direct correlation to the intensity levels of user activity. This implies that,
by passively eavesdropping on a connection, an attacker can infer a user’s activity type, e.g., walking,
sitting, and running. The study showed that these issues exist on over 90% of five major fitness
tracker manufacturers.

The authors of [47] conducted a large-scale study regarding the advertisements from 214 different
types of BLE-equipped devices. They concluded that BLE devices leak private information that may
be used for tracking, profiling, as well as fingerprinting of the end-users. More fearfully, some devices
permit connections without a pre-existing relationship between the devices. The authors argued
that the vast majority of existing solutions require a firmware update, which in real-life conditions is
impractical. Their proposed system, coined BLE-Guardian, opportunistically uses reactive jamming to
hide protected devices. It also adopts a mechanism for achieving device hiding, without interfering
with the rest in the same channel.

The work in [40] introduces the tool gattacker. This tool is capable of operating in three alternative
modes: (a) central mode, which gathers advertisements and other information transmitted by devices
in the vicinity; (b) peripheral mode, in which an attacking device acts as a device emulator; and (c)
data interception and manipulation mode, which is implemented using hook functions.

In [48], the authors outlined several inefficiencies of the BLE-based beacon services. Such are
often used to provide a higher level of granularity to mobile user location inference, e.g., to the cm
level. They rely on the analysis of the Received Signal Strength Indicator (RSSI) contained in BLE
advertisement messages. Nevertheless, the lack of advertisement messages protection opens the door
for: (a) beacon hijacking, i.e., to register beacons using beacon identifiers to be able to advertise the
attacker’s services instead; (b) user profiling, i.e., to register utilized beacon identifiers for the sake of
tracking user’s location and habits; (c) presence inference, i.e., track user movement based on static
identifiers contained in the broadcasted messages; (d) beacon silencing, i.e., transmit a flood of other
beacons to confuse the victim’s receivers and render the beacon service unresponsive; and (e) user
annoyance, i.e., deplete the power resources of a device at a higher pace.

An alternative attack is presented in [51]. As a first step, an installed application is configured to
listen for advertising packets broadcasted by other BLE devices in the area. By doing so, the application
can effectively derive a fingerprint of the victim user with the advertisements in the area. At a
subsequent phase, the mobile application may share this database with other applications. Assuming
that the victim operates in the same environment, the new application will be able to infer a link
between the pseudonym of its user with the pseudonym of that user in the previous application thus,
achieving cross-application tracking.

The contribution in [50] introduces a tool, namely the Profiler, which assesses the minimum level
of security applied to data of BLE devices (not limited to normal operating conditions). Profiler is also
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capable of checking for static PIN codes used during PassKey Entry mode, by executing a dictionary
attack. The results show that at least one unauthenticated write could be performed in 83% of the tested
devices. Using as a paradigm a BLE keyboard connected to a PC, the authors of [41] demonstrated
that BLE devices provide no guarantees in regard to the security of the exchanged data.

A novel attack is proposed in [71], namely the BLE injection-free attack. Unlike the most popular
attacks against BLE, the described attack does not rely upon packet injection or signal jamming,
which automatically makes it more stealthy. Rather it takes advantage of the fact that BLE devices can
only store a limited number of keys. The attacker attempts to establish a large number of connections
with the target device. To be more efficient, they may rely on multiple BLE interfaces, or, alternatively,
they may spoof various MAC addresses. Once the maximum number of keys supported by the device
has been installed, whenever a new bonding request is received, the device will delete one of the keys
to give its place to a new one. This situation effectively renders a device unable to communicate with
the other party. While this is the most frequent scenario, other implementations handle this situation
differently. For instance, instead of deleting keys, they downright deny connection to new users or
allow insecure connections without bonding. The work in [42] details a MITM attack that can be
launched against BLE. The authors showed that this vulnerability is due to the fact that a malicious
entity can eavesdrop on the public keys of the devices during the initial phase of pairing.

The authors of [52] noticed that, when multiple applications are hosted under the same device
(this is frequent in the mobile device ecosystem), it is possible for a malicious application to exploit
the trusted relationship between the host and the device which was created by the benign authorized
application. More fearfully, unauthorized applications may achieve this while requesting minimal
permissions, thus operating more stealthily. Specifically, in the Android platform, the keys that are
created in the pairing and bonding process are not associated between the BLE device and the mobile
application, but rather between the BLE device and the operating system as a whole. Therefore,
a malicious application can access the existing BLE data of other applications located in the same
device without initiating pairing or reuse the connection of the legitimate mobile application and the
BLE device. Moreover, the authors conducted a large-scale study that concluded that 45% of auxiliary
mobile BLE applications do not implement measures to protect BLE data. Interestingly, this number
rises to about 70% for medical BLE-powered applications.

Despite the address randomization mechanism, other static identifiers residing in payload of BLE
advertisement packets, i.e., the UUID in combination with the lack of encryption, may lead to user
and device fingerprinting. The research in [49] shows that this identifier might not only be obtained
from the BLE traffic but also by analyzing the companion mobile apps’ binary. An attacker that has the
capability of scanning all applications in an app store can retrieve all possible UUIDs, and fingerprint
all devices statically. At a subsequent stage, the attacker can scan for nearby advertisement packets to
locate such devices based on the UUIDs. The experimental results indicated that 94.6% of the devices
are fingerprintable by attackers, and unauthorized access can be performed in 7.4% of them.

The work in [43] demonstrates certain insecurities of BLE protocol by deploying a testbed
architecture comprised of open-source software and hardware. Precisely, the authors demonstrated
how encryption can be broken and well-known attacks such as DDoS and replay attacks can be
executed. The same methodology has been followed by the work in [44]. Moreover, the authors of [45]
studied the security of the BLE pairing process. By testing 18 different widely used BLE devices,
they concluded that MITM and downgrading attacks are possible.

3.1.2. Z-Wave

The pioneering work in [53] offers a hardware and software implementation to eavesdrop on
Z-Wave communications. Via this device, the authors detailed the encryption and data origin
authentication security services provided at the application layer, and elaborated on a certain
vulnerability in the key exchange protocol they found, which can be used by attackers who do
not posses the encryption keys to remotely unlock doors.
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The next year, the authors of [54], after implementing a generic wireless monitor/injector tool
based on Software Defined Radio using GNU Radio and the well-known Python Scapy library,
were able via a replay attack to prevent a Z-Wave alarm device from arming. The work in [55]
concentrates on the key derivation strategy of Z-Wave. To solve the identified deficiencies, the authors
introduced a re-keying and IV derivation scheme. In addition, the work in [72] introduces an open
source tool for pen-testing Z-Wave networks and uses it to abuse fluorescent lamps.

The work in [56] capitalizes on a vulnerability to allow the placement of a rogue controller into the
network, which allows building a hidden communication channel with any poorly-protected device.
A more recent work on the security features of the same protocol [57] employs a real-world Z-Wave
network and reverse engineered some critical networks aspects, including frame forwarding and
topology management in an effort to identify intrinsic integrity vulnerabilities of the routing protocol.
In addition, the authors managed to perform a black hole attack by taking advantage of the discovered
vulnerabilities. Another work by some of the same authors [73] extends and experimentally evaluates
a “Z-Wave Misuse-Based Intrusion Detection System (MBIDS)” originally proposed in [74].

The authors of [58] demonstrated that it is possible to send unauthorized commands to Z-Wave
S2 certified products by forcing them to use the less secure Z-Wave S0 protocol and manipulating the
underlying traffic. This procedure is allowed in order to keep backward compatibility with products
supporting the Z-Wave S0 protocol.

3.1.3. ZigBee

The work in [59], after investigating certain ZigBee vulnerabilities, presents a couple of practical
attacks against such devices. First, the authors demonstrate that it is possible to drain the battery
resources of a device by constantly waking it up using a special signal. The other attack the authors
investigated was feasible due to certain deficiencies in the key exchange process under the standard
security level. The authors also proposed countermeasures to shield devices from these two kinds of
attacks. The article in [75] contributes to the AES-CTR encryption scheme used by ZigBee. That is,
the authors claimed that cryptographic operations with counter mode may be quite slow for a
plethora of ZigBee devices, especially when time sensitive applications are involved. To remediate
this issue, they proposed the use of ciphers based on chaotic functions. Moreover, the work in [61]
offers an experimental evaluation of the ZigBee devices manufactured by a specific vendor. In their
testbed, the authors considered smart-house applications, demonstrated a number of practical attacks,
and proposed the corresponding remedies.

The authors of [62] exercised reconnaissance operations on a ZigBee communications for
discovering all networks in proximity along with the participating devices and identified their
security configuration or any other useful piece of information by eavesdropping on the network
traffic. The authors also exercised a replay attack and proposed a number of countermeasures.
The work in [64] elaborates on the security measures in ZigBee from a practical viewpoint, aiming at
investigating the protocol’s shortcomings. More interestingly, the authors implement a software
framework which can be used by pen-testers to eavesdrop on ZigBee communication messages and
inspect the security properties of encrypted networks. The tool, based on scapy-radio and killerbee,
enables the tester to automatically execute certain network operations, including node leave or join
operations, detecting insecure key transport, etc. In the same year, Cao et al. [60] introduced an
energy depletion attack against ZigBee devices by exploiting certain vulnerabilities existing in the
IEEE 802.15.4 standard, i.e., the MAC and physical layers of ZigBee. The authors demonstrated the
impact of the attack, which ranges from DoS to replay, and propose measures to defend against it.

The work in [76] deals with the security of ZigBee Light Link (ZLL), which is nowadays very
popular for smart lighting in smart-house ecosystems. The authors attempted to develop an extensible
formal security model for the ZLL commissioning protocol, which enables the creation of a ZLL
network from scratch and adding new nodes to it. In the course of their investigation, they realized that
such an endeavor may be prone to misconstructions due to the existing implicit security assumptions



Symmetry 2020, 12, 579 18 of 29

done to achieve the security goals described in the respective standards. The authors of [12] focused
on the security of Touchlink commissioning procedure introduced in ZigBee 3.0 in December 2016,
and they showed that it is insecure, i.e., it presents inherent flaws. This is done by performing a
number of attacks against legacy ZigBee products via their own open-source penetration testing
framework. Specifically, they showed that a passive attacker can extract key material from a distance
of 130 m, while an active one is in position to hijack devices from distances of 190 m. The lesson
learnt is that Touchlink commissioning should be discontinued given that even one Touchlink-enabled
device jeopardizes the whole ZigBee network. In the same year, Ronen et al. [65] dredged up a
critical vulnerability in ZigBee implementation: the Touchlink part of the ZLL protocol. The authors
demonstrated that such a bug would enable the aggressor to obtain control over a great number, if not
all, of the smart lamps of a city, and then turn the lights off or even entangle all hijacked smart devices
in a DDoS attack.

In [66], the authors presented an attack based on Remote AT Commands, which enables a
malicious user to reconfigure or disconnect IoT sensors from the network. For instance, an attacker can
send a Remote AT Command to a connected sensor and force it to join a malicious network in order to
capture the traffic between the sensor and the network.

More recently, the authors of [63] elaborated on the possibility for replay attacks in ZigBee and
demonstrate via experiments that the frame counter used by ZigBee to defend against replay attacks
will not suffice when the network uses the same network key. This is especially true when the network
key is pre-configured in the devices and there is no provision of re-keying. To fix this shortcoming,
the authors also propose the use of multiple network keys along with a key generating method.
The work in [77] assesses several kinds of threats against ZigBee networks and proposes and evaluates
a security framework destined to real-time network monitoring and detection of the respective attacks.
Moreover, the authors of [78] focused on hardware device identity verification (fingerprinting) for
ZigBee devices. Their scheme relies on a number of Distinct Native Attribute features extracted from
selected signal responses in an effort to tell legitimate and rogue devices apart. The authors of [67]
utilized remote AT Commands in a similar way as [66]. In this case, the attacker is able to change the
data destination address, the node ID and the network (i.e., PAN) ID.

3.1.4. Thread

Thus far, the literature dedicated specifically to Thread protocol security is scarce. We identified
the following two works published in 2018. The authors of [68] examined the security features of
the Thread protocol, and, under this prism, introduced a taxonomy for the security assessment of
building automation systems. They pinpointed several potential shortcomings of Thread, and they
validated the results of their analysis by testing a number of attacks, including jamming, handshake
flooding, network leave, and key compromise. They also proposed and assessed potential remedies
for reducing the attack surface and resist certain attacks. The authors concluded that Thread is proved
to be significantly more resilient to attacks than competitive non-IP solutions. The work in [69]
conducts a side-channel vulnerability study in terms of differential electromagnetic analysis along with
specific network mechanisms on OpenThread [79], an open-source implementation of the Thread stack.
The goal of the authors was to manipulate the security material or to obtain the network credentials.
After summarizing the attack vectors and vulnerabilities found, they concluded that the inherent
security mechanisms of Thread make side-channel attacks considerably difficult. They also proposed a
number of countermeasures to defeat this kind of attacks in future implementations.

3.2. Group II

The authors of [80] focused on two security issues of the IEEE 802.15.4 standard, namely the
establishment of pairwise keys, which, as already pointed out, is unspecified and left to the upper
layers, and the fact that broadcast keys are shared among multiple nodes. To mitigate these
limitations, they proposed a pairwise key establishment scheme, and a practical and secure protocol
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for authenticating broadcast frames. The work in [81] also highlights on the fact that the IEEE 802.15.4
standard depends on upper layers to utilize any security feature and profile they provide, including the
generation and exchange of secret keys. In view of this observation, the authors introduced a security
framework for the sake of proposing diverse ilks of security architectures, a scheme for bootstrapping
IEEE 802.15.4 domain security, and a lightweight method to negotiate link layer secret keys between
the network devices. The work in [82] focuses on the security features of various existing standards
and protocols destined to the IoT ecosystem, including IEEE 803.15.4, 6LoWPAN, CoAP and DTLS.
The authors also elaborated on open research issues and challenges for fueling future work in the area.

The authors of [83] provided an empirical security analysis of the “SmartThings” smart home
programming platform, which amongst others supports ZigBee and Z-Wave. They performed static
source code analysis of many applications and device handlers destined to this platform, and they
identified several threats related to insufficiently undocumented features. They highlighted that more
than half of the SmartApps offered by the respective store are over-privileged. To provide proofs
regarding their findings, they mounted four different attacks ranging from stealing door lock codes
to disabling the vacation mode of a smart house and triggering a fake fire alarm. In the same year,
the work in [84] concentrates on system on a chip (SoC) devices, which are available for building IEEE
802.15.4 networks. Such devices typically incorporate an AES accelerator for supporting AES-CCM
operations necessary for encryption and authentication of messages by the respective IoT protocol.
Using the Atmel ATMega128RFA1 chip in a proof-of-concept implementation, the authors conducted
side-channel power analysis to examine the possible leakages of AES accelerator, and show that this
may lead to the recovery of the encryption key used by the protocol running on top of IEEE 802.15.4.

The work in [85] elaborates on the main security aspects of mainstream protocols and standards
used in wireless sensor network (WSN) deployments, including IEEE 802.15.4, 6LoWPAN, and CoAP.
Based on a generic WSN layered architecture, among others, the authors considered security threats
and existing countermeasures on a per layer basis. The authors of [86] detailed on five wireless IoT
protocols employed for home automation, namely KNX-RF, EnOcean, ZigBee, Z-Wave, and Thread.
The security features of each protocol is succinctly described along with a side-by-side comparison
based on several criteria. The authors of [87] surveyed the security features of BLE, LoRaWAN,
ZigBee and Z-Wave protocols. They elaborated on specific shortcomings and vulnerabilities and
showed how these issues have been addressed by the respective protocol throughout its development.
In the same year, Dragomir et al. [88] focused on the security aspects of IoT protocols, including ZigBee
and Thread, as specified by standardization bodies and industry alliances. In addition, the authors
of [89] investigated smart home security under the prism of existing standards and mechanisms,
including ZigBee, BLE, and Z-Wave. The authors categorize and analyze major security issues,
and presented relevant threats along with the countermeasures employed by the current systems.
As a side contribution, the authors offered a list of good practices for strengthening security in smart
home ecosystems.

The work in [90] focuses on the ZigBee, Z-wave, and BLE protocols, and details on their security
aspects and deficiencies as depicted by the relevant literature. In the same year, the authors of [91]
elaborated on the security features of Z-Wave and Thread protocols in an effort to identify present
and future security challenges. They referred to several types of attacks against these two protocols
and detail on the ways such attacks can be addressed. After introducing a taxonomy of cyber-physical
threats, the work in [92] examines a plethora of potential attacks in the smart home environment based
on the presented taxonomy. The authors concentrated on both the attack vectors and the potential
consequences on the systems and the occupants of such a house. They also provided a comprehensive
review of existing defences along with a discussion on the open research challenges. The paper takes
into consideration attack vectors pertaining to a great number of both wired and wireless protocols
used in smart home realm, including Bluetooth, ZigBee, and Z-Wave.
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4. Discussion

This section summarizes key issues stemming from both the presentation and analysis of each
protocol of interest and the related literature.

(a) Protocols that support mesh networking infrastructure, i.e., ZigBee, Thread, EnOcean,
and Z-Wave, are more robust in terms of connectivity and “service” availability in contrast to
other architectures.

(b) The introduction of improved security mechanisms as a result of a new version of a protocol
should not be considered a panacea. For instance, although Z-Wave S2 offers advanced security
features over its predecessor, it can be still leapfrogged by evil-doers to eavesdrop on and/or
tamper with certain communication messages.

(c) All the examined protocols cater for over-the-air confidentiality, source authentication,
and integrity. Barring some exceptions [61–63], they also offer protection against replay
attacks, which can lead to unauthorized control of nodes. These essential security properties
for any wireless protocol are effective against external attacks, such as eavesdropping,
impersonation, message spoofing, tampering, and injection, as well as MAC layer generic
attacks. More interestingly, EnOcean provides a scheme to repel MITM attacks, but this can
be only enabled in practice for line-powered devices. Not less important, some or all of the
aforementioned security services are mandatory for devices/applications that require a high
safety level, such as door locks, while less security-sensitive ones may not enable such services
at all.

(d) While energy-preserving, the use of a network-wide key to protect communications between
devices leaves more room to aggressors. Protocols mitigate this threat by means of either
additional security offered at the application layer (e.g., DTLS in Thread), network segmentation
which leads to segmentation of keys (e.g., security classes in Z-Wave), or EEC-based AKA
procedures to secure the transfer of such a key to joining devices. The frequent change of
network-wide keys can also help toward the same direction.

(e) Perhaps the most important weakness is related to devices having old certifications,
for providing backward compatibility. That is, despite the fact that the protocols constantly
evolve to cope with certain shortcomings, IoT devices are designed to be of long-lived and
install-and-forget nature. Therefore, typically, their firmware is rarely updated by the respective
vendor, and, therefore, until their withdrawal, are prone to several attacks.

(f) In addition to the employment of standardized technologies as the IEEE 802.15.4 and ITU-T
G.9959 in wireless IoT protocol stacks, the use of standardized or well-established security
mechanisms, such as the DTLS, CoaP, and J-PAKE protocols in Thread, is a big step towards
more interoperable and robust, in terms of security, solutions. In any case, especially when
it comes to security, the “not-invented-here” syndrome should be avoided because amongst
others can easily lead to positive biases, which in turn may create falsely elevated expectations.
On the downside, it is expected that, due to the use of ECC schemes (or more generally public
key cryptography) as in DTLS, J-PAKE, ECMQV, and Curve25519, the respective IoT protocols
are also susceptible to clogging/flooding attacks.

(g) At this point it has been made clear that the IoT ecosystem is highly fragmented in terms
of adopted wireless communication technologies. This diversity stems mainly from the (i)
computational resources and (ii) energy resources of the devices, as well as the (iii) bandwidth
and (iv) security requirements of the application. Protocols such as 6LoWPAN attempt to bridge
the interoperability gap at a higher layer. Nevertheless, such attempts introduce security issues
of their own [93,94] and secondarily fail to cover the majority, let alone the totality, of alternative
protocols. To this date, the problem of interoperability in a secure fashion in the IoT realm
largely remains open with several works providing comprehensive descriptions on the issues
as well as potential solutions [95–97].
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(h) A large number of attacks is a product of misconfiguration or poor implementation decisions
on behalf of device manufacturers. This phenomenon is particularly true in the case of BLE
communications where such flaws allow the tracking of users through their mobile devices and
potentially the full dismantle of the encryption services offered by the protocol.

(i) For enabling the reset of devices in an automatic manner, e.g., in the case of accidental
malfunction or loss of power, some important pieces of data must be kept in the device’s
persistent, non-volatile storage. Note that storing such information in a centralized manner,
e.g., in a trusted remote location, including the cloud, may be prone to backhaul link
disconnection problems, and thus pivotal data should be stored in each network node.
Such data include network information, security material, authentication and commissioning
data, factory-default settings, and others, and therefore they must be sufficiently protected
from compromise after a device is hijacked. Most of the protocols specifically address this issue
for the case a device leaves the network (secure leaving). For instance, in Thread, this event
is completed over CoAP management messages and starts when a device receives a network
leave request by the Commissioner. Then, the device must delete all network security material
from its persistent memory and transit itself into the uncommissioned state. In any case,
the authenticity of leave messages should be guaranteed in order to prevent spoof leave attacks
resulting in device isolation. In addition, certain countermeasures should be deployed against
device theft incidents, namely a device is stolen and moved to another network where it can be
manipulated. For instance, as explained in Section 2.2, ZigBee Touchlink commissioning may
be susceptible to this threat.

(j) The use of more powerful devices acting as network coordinators (e.g., TC in ZigBee and
Commissioner and Border router in Thread) can be of major help in applying and enforcing
security policies in a centralized manner. As a first layer of defence, such devices can make use
of white/black lists to enforce device authentication in terms of, e.g., MAC address, but they can
also cater for fine-grained device authorization, e.g., if a device is allowed to rejoin the network,
if a device is allowed to create a link key for P2P enabling P2P communication with another
device, etc. On the negative side, such devices, including network gateways, are inherently
alluring targets for attackers, and thus may create a single point of failure if their attack surface
is not minimized.

(k) Closely related to the previous issue is that of device tamper protection. Naturally, this kind
of defence is in many cases unrealistic to be offered by means of physical isolation, and thus
it should be applied through the use of tamper-proof hardware. For the same reason,
firmware updates need to be delivered in a secure manner because may also result in having
the device compromised and/or be enslaved in a bot army [4,98].

(l) In cases where the WPAN network makes use of cloud services, then all nodes become
susceptible to a plethora of Internet attacks if the connection to the cloud is not secure
end-to-end.

(m) An interesting and timely kind of attacks against WPAN devices capitalizes on physical
side-channel analysis techniques. Such techniques have been traditionally exploited for
mounting attacks against cryptographic systems in general, but, as discussed in Section 3,
they have been lately tested against certain WPAN protocols either for device fingerprinting
[78] or for obtaining the network credentials [79,84]. A possible research direction could be the
use of physical side-channel analysis for also defending intrusions against such devices. In fact,
this idea is not new, as it has already been explored in recent works mainly for industrial and
other kind of IoT devices [99–102].

(n) Inevitably, as the case with virtually any wireless technology, all the protocols discussed
in the context of this work are prone to DoS attacks caused by radio jamming. This may
result to loss of service due to—even in some cases unintentional—interference (recall that,
among others, IEEE 802.11 also uses the 2.4 GHz band). Consider, for example, a door-lock
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which is clogged with interference to block it from locking. Typically, this threat is mitigated by
“frequency agility”, including frequency hopping (e.g., BLE) or dynamic frequency selection
and transmission power control (e.g., ZigBee) for migrating the network to a “quieter” channel,
and raising alarms if the problem persists. Such a scheme may be implemented in a network
manager/coordinator node as the case may be. The same threat, but for the upper layers,
applies to key control frames, including beacons. Namely, the aggressor may flood the network
controller/router with a surge of spurious beacon request messages send to a specific of several
radio channels aiming to overload or paralyze the latter device.

5. Conclusions

Wireless IoT technologies and applications are in a constant state of growth with a plethora of
use cases ranging from personal to industrial ecosystems. For instance, a 2019 report by On World
states that “by 2024, global annual shipments of 802.15.4 mesh chipsets will reach 1 billion” [103].
This IoT boom is anticipated to be further spurred by the global roll-out of 5G mobile networks
featuring low latency, extremely high bandwidth, and superior reliability as well as comprehensive
(I)IoT connectivity. However, behind this technological and market evolution certain doubts exist as
to the uncertainty and the potential for unintended consequences. Perhaps, the greatest concern has
to do with the security aspects of such wireless technologies, given that they are inherently prone
to a plethora of passive and active attacks, mainly due to the uncontrolled wireless medium they
operate in.

The work at hand is the first to our knowledge to conduct a comprehensive and comparative
review of the security features offered by the most commonly used or promising WPAN technologies
today, namely BLE, ZigBee, Z-Wave, Thread, and EnOcean. The objective of the review is twofold: first,
to present the state-of-the-art regarding the security aspects of each examined protocol, and, second,
to offer a succinct, but all-encompassing, review of the works in the literature investigating certain
security weaknesses per protocol. The current work can be used as a reference to anyone interested
in obtaining a holistic view of the security requirements and potential pitfalls of such IoT protocols,
and it is also expected to foster research efforts to the development of security-by-design solutions in
the particular domain.
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Abbreviations

The following abbreviations are used in this manuscript:

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks
AES Advanced Encryption Standard
AES-CTR AES Counter mode of operation
AKA Authentication & Key Agreement
ATT Attribute (protocol)
BDB ZigBee Base Device Behavior
BLE Bluetooth Low Energy
CCM Counter with CBC-MAC mode of operation
CMAC Cipher-based Message Authentication Code
CoAP Constrained Application Protocol
CRC Cyclic Redundancy Check
CSRK Connection Signature Resolving Key
DoS Denial of Service
DTLS Datagram Transport Layer Security protocol
ECC Elliptic Curve Cryptography
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ECDH Elliptic Curve Diffie–Hellman
ECMQV Elliptic Curve Manazes-Qu-Vanstone key agreement
EDIV Encrypted Diversifier
EEP EnOcean Equipment Profiles
ERP EnOcean’s Radio Protocol
EUI IEEE Extended Unique Identifier
FFD ZigBee Full Function Device
GATT Generic Attribute
IEEE The Institute of Electrical and Electronics Engineers
IoT Internet of Things
IRK Identity Resolving Key
ISM Industrial, Scientific and Medical radio spectrum
IV Initialization Vector
KEK Key Encryption Key
LoRaWAN Long Range Wide Area Network
LTK Long Term Key LTK
MAC Message Authentication Code
MANET Mobile Ad Hoc Network
MITM Man-in-the Middle
MK Master Key
MLE Mesh Link Establishment protocol
MPL Low-Power and Lossy Networks
NFC Near Field Communication
OOB Out of Band association model
OSI Open Systems Interconnection model
P2P Peer-to-Peer
PAKE Password-Authenticated Key Exchange
PAN Personal Area Network
PIN Personal Identification Number
PSK Pre-Shared Key
PDU Protocol Data Unit
QR Quick Response code
RAND Random value
REED Thread Router-Eligible Device
RFD ZigBee Reduced Function Device
RLC EnOcean’s Rolling Code
RSSI Received Signal Strength Indicator
SLF EnOcean’s Security Level Format
SoC System on a Chip
STK Short Term Key
TC Trust Center
TK Temporary Key
TLS Transport Layer Security
TLV Type Value Length
UUID Universally Unique Identifier
VAES Variable AES
WPAN Wireless Personal Area Network
ZC ZigBee Coordinator
ZED ZigBee End-Device
ZR ZigBee Router
ZZL ZigBee Light Link
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