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ABSTRACT 
 
 
Given the resulting complexity of the ambient 
applications that one can form in the Ubiquitous or 
Pervasive Computing domain it is required to abstract 
the intrinsic characteristics of specific communication 
models away from the application logic. These 
applications will be characterized by the increasing 
ubiquity of interactions between many possibly 
heterogeneous artifacts and services. This paper 
presents the Plug/Synapse abstraction, which provides a 
conceptual model for building ubiquitous computing 
applications in a high-level programming manner. GAS-
OS is the software layer that implements the 
Plug/Synapse model and the concepts encapsulated in 
GAS, a generic architectural style, which can be used to 
describe everyday environments populated with 
computational artifacts. The paper focuses on the design 
and architecture of GAS-OS, which is the minimum set 
of modules and functionalities that every device must 
have, in order to be a ubiquitous computing artifact and 
participate in artifact collections. 
 
 
1. INTRODUCTION 
 
 
The vision of Ambient Intelligence (AmI) implies a 
seamless environment of computing, advanced 
networking technology and specific interfaces ISTAG 
1). In one of its possible implementations, technology 
becomes embedded in everyday objects such as 
furniture, clothes, vehicles, roads and smart materials, 
and people are provided with the tools and the processes 
that are necessary in order to achieve relaxing 
interactions with this environment. The AmI 
environment can be considered to host several 
Ubiquitous Computing (UbiComp) applications, which 
make use of the infrastructure pro-vided by the 
environment and the services provided by the objects 
therein. 
An important characteristic of AmI environments is the 
merging of physical and digital space (i.e. tangible 
objects and physical environments are acquiring a 
digital representation). As the computer disappears in 
the environments surrounding our activities, the objects 
therein become augmented with Information and 
Communication Technology (ICT) components (i.e. 
sensors, actuators, processor, memory, wire-less 
communication modules) and can receive, store, process 
and transmit information; in the following, we shall use 
the term “artifacts” for this type of augmented objects. 

These objects may be new or improved versions of 
existing objects, which by using the new technology, 
allow people to carry out new or old tasks in new and 
better ways. The provision of conceptual models and 
software tools for creating, managing, communicating 
with, and reasoning about, these new ecologies (or 
UbiComp applications) is of paramount importance, 
because people involvement is considered crucial for 
the successful adoption of this new computing paradigm.  
This paper introduces the Plug/Synapse model and the 
GAS-OS middleware. The former provides a conceptual 
model for building ubiquitous computing applications in 
a high-level programming manner. These are considered 
to consist of tangible objects (artifacts), which carry the 
computing and networking technology required. The 
latter is embedded in these artifacts and supports their 
collective operation. This model is part of the 
Gadgetware Architectural Style (GAS), which 
constitutes a generic framework, shared by users and 
designers, for consistently describing, using, reasoning 
about UbiComp applications within the AmI 
environment. 
The rest of the paper is organized as follows. Section 2 
goes through the Plug/Synapse model and offers an 
example of everyday life scenario, before the design and 
architecture of the software that implements and 
validates the model described in section 3. Section 4 
presents some implementation details based on the 
mentioned scenario, while section 5 provides a 
performance evaluation of the software before existing 
approaches and conclusions are discussed in section 6. 
 
 
2. THE ABSTRACTION LAYER: THE 
PLUG/SYNAPSE MODEL FOR COMPOSING 
UBICOMP APPLICATIONS 
 
 
Within an AmI environment, a UbiComp application 
may be composed of a number of heterogeneous 
artifacts or devices, which may be stationary or portable. 
Those artifacts and devices have different, dynamically 
changing capabilities and specific ways to use them; yet, 
all of them can communicate.  
By providing uniform abstractions and a supporting 
middleware, we treat objects as components of a 
UbiComp application. In this approach, a digital 
counterpart of the properties of artifacts and devices is 
created, while making them composeable, thus enabling 
their association in order to achieve synthetic 
functionality. The Plug/Synapse model, which can be 
seen as an extension to the client-server model, is based 
on the jigsaw metaphor and has appeared to end-users to 



be intuitive to use. The basic idea is that users connect 
at a logical level a service or content provider and a 
client, and thus compose applications in an ad-hoc, 
dynamic way. Simply by creating associations between 
everyday artifacts, people cause the emergence of new 
applications, which can enhance activities of work, re-
creation or self-expression, rendering their involvement 
in a natural and abstract way. 
The basic concepts encapsulated in our model are: 
• Plugs: From a user’s perspective, they make 

visible the artifacts’ properties, capabilities and 
services to people and to other artifacts; they are 
implemented as software classes 

• Synapses: They are associations between two 
compatible plugs, which make use of value 
mappings; they are implemented using a 
message-oriented set of protocols 

We assume that no specific networking infrastructure 
exists, thus ad-hoc networks are formed. The network 
interfaces used are highly heterogeneous ranging from 
infra-red communication over radio links to wired 
connections. Since every node serves both as a client 
and as a server (devices can either provide or request 
services at the same time), communication between 
artifacts can be considered as peer-to-peer Schollmeier 
2.  
Given the resulting complexity of the UbiComp 
applications that one can form in an AmI environment, 
it is required to abstract the intrinsic characteristics of 
specific communication models away from the 
application logic. The Plug/Synapse model is 
independent of the underlying protocols, needed for 
example to route messages or to discover resources in 
realization of an application. It only requires that 
artifacts are able to communicate and they have to run 
GAS-OS in order to “comprehend” each-other, so that 
people can access their services, properties and 
capabilities in a uniform way. People in that way would 
not need to be engaged in any type of formal 
“programming” in order to achieve the desired functions.  
The application is realized through the cooperation of 
artifacts in the form of established synapses between 
plugs. The approach adopted is that people live in an 
environment populated with artifacts; they have a 
certain need or task, which they think can be met or 
carried out by (using) a combination of services and 
capabilities; then, they search for artifacts offering these 
services and capabilities as plugs; they select the most 
appropriate ones and combine the respective plugs into 
functioning synapses; if necessary, they manually adapt 
or optimize the collective functionality.  
For example, let’s take a look at the life of Patricia, a 
27-year old single woman, who lives in a small 
apartment near the city centre and studies Spanish 
literature at the Open University. A few days ago she 
passed by this store, where she saw an advertisement 
about these new augmented artifacts, the “extrovert 
Gadgets”. Pat decided to enter. Half an hour later she 
had given herself a very unusual present: a few furniture 
pieces and other devices that would turn her apartment 
into a smart one! On the next day, she was anxiously 

waiting for the delivery of an eDesk (it could sense light 
intensity, temperature, weight on it, proximity of a 
chair), an eChair (it could tell whether someone was 
sitting on it), a couple of eLamps (one could remotely 
turn them on and off), and some eBook tags (they could 
be attached to a book, tell whether a book is open or 
closed and determine the amount of light that falls on 
the book). Pat had asked the store employee to pre-
configure some of the artifacts, so that she could create 
a smart studying corner in her living room. Her idea was 
simple: when she sat on the chair and she would draw it 
near the desk and then open a book on it, then the study 
lamp would be switched on automatically. If she would 
close the book or stand up, then the light would go off. 
The behavior requested by Pat requires the combined 
operation of the following set of artifacts: eDesk, eChair, 
eLamp and eBook. Some indicative plugs for each of 
these artifacts are: eDesk(Reading, Proximity), 
eChair(Occupancy), eLamp(Light_Switch) and 
eBook(Open/Close). Then a set of synapses has to be 
formed, for example, associating the Occupancy plug of 
the eChair and the Open/Close plug of the eBook to the 
Proximity plug of the eDesk, the Reading plug of the e-
Desk to the Light_Switch plug of the e-Lamp, etc. 
 
 
3. THE SYSTEM LAYER: GAS-OS 
MIDDLEWARE 
 
 
The key idea behind GAS-OS is the uniform abstraction 
of artifact services and capabilities via the plug/synapse 
high-level programming model that abstracts the 
underlying data communications and access 
components of each part of a distributed system. 
Inspired by MOM design a fundamental characteristic 
of GAS-OS is to enable non-blocking message passing. 
Messaging and queuing allow nodes to communicate 
across a network without being linked by a private, 
dedicated, and logical connection. Every node 
communicates by putting messages on queues and by 
taking messages from queues.  To cope with the need to 
adapt to a broad range of devices, we adapted ideas 
from micro-kernel design Tanenbaum et al 3) where 
only minimal functionality is located in the kernel, 
while extra services can be added as plug-ins.  
In order to maintain the autonomous nature of artifacts 
and at the same time make even the more resource 
constraint ones capable of participating in ubiquitous 
applications, the kernel of GAS-OS is designed to 
support only accepting and dispatching messages, 
managing local hardware resources (sensors/actuators), 
and the plug/synapse interoperability protocols. Fig. 1 
shows GAS-OS being embedded into the high-level 
design of an artifact. A Sensor / Actuator network 
together with custom FPGA or PIC micro-controller 
based boards are responsible for converting artifact data 
(e.g. pressure, luminosity etc.) to digital ones and vice 
versa Kameas et al 4. The Java Virtual Machine (JVM) 
layer assumes the responsibility of decoupling GAS-OS 



from typical local operations like memory management, 
serial and RF communication, etc. 
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Fig.1. High level design of an artifact 
 
Consequently, the JVM bridges the hardware – software 
gap, by passing sensor data from the hardware level, to 
the upper software entities. Digital data must be 
analyzed, grouped and treated in a different way for 
each artifact; thus, a specific artifact hardware 
management module, playing the role of a software 
driver, must be implemented per artifact. 
The GAS-OS kernel implements plugs and by using the 
plug/synapse interoperability protocols it can initialize 
or participate in a synapsing process. The 
communication module translates the high-level 
requests/replies into messages and by using low-level 
peer-to-peer networking protocols, it dispatches them to 
the corresponding remote service or device capability. 
The kernel is also capable of managing service and 
resource discovery messages in order to facilitate the 
formation of the proper synapses.  
In order to support the definition and realization of 
collective functionality, all artifacts should use a 
commonly understood vocabulary of services and 
capabilities, in order to mask heterogeneity in context 
understanding and real-world models. This has been 
implemented as a multi-level ontology, coupled with a 
GAS-OS mechanism that will be able to handle the 
knowledge described by ontology and use it in order to 
facilitate the communication between two or more 
artifacts Christopoulou and Kameas 5. 
Finally, the Java Virtual Machine layer allows the 
deployment on a wide range of devices from mobile 
phones and PDAs to specialized Java processors. The 
proliferation of Java-enabled end-systems makes Java a 
suitable underlying layer providing a uniform 
abstraction for the middleware. The proposed high level 
design hides the heterogeneity of the underlying 
artifacts, sensors, networks etc. (masked by JVM and 
GAS-OS) and provides the means to create large scale 
systems based on simple building blocks. 
 
 
 
 
 

 
 
GAS-OS Architecture 
 
 
The outline of the GAS-OS architecture is shown in 
Fig.2. The GAS-OS kernel implements the plug/synapse 
model manifesting the artifact’s services and 
capabilities through plugs, while providing the 
mechanisms (API and protocols) to perform synapses 
with other artifacts via the application layer. Synapses 
can be considered as virtual channels that feed the lower 
communication levels with high-level data. Interfacing 
with networking mechanisms (transport layer) is done 
via the Java platform and finally data are transmitted 
through the physical layer to the other end of the 
synapse to follow the reverse process of transforming 
low-level information (e.g. messages) to high-level one 
(e.g. service requests). Data departing or arriving to 
plugs usually affect one or more of the device 
capabilities (sensors/actuators), while the kernel 
assumes the responsibility of translating those data to 
artifact behavior (e.g. activate a specific actuator in 
order to achieve a goal).  
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Fig. 2. GAS-OS layered architecture diagram 
 
The GAS-OS kernel encompasses a Communication 
Module, a Process Manager, a State Variable Manager, 
and a Memory Manager as shown in Fig 2. The 
Communication Module is responsible for 
communication between different GAS-OS nodes. This 
module implements algorithms and protocols for 
wireless, connectionless communication as well as 
mechanisms for internal diffusion of information 
exchanged. The Process Manager is the coordinator 
module of GAS-OS. Some of its most important tasks 
are to manage the processing policies of the GAS-OS, to 
accept and serve various tasks set by the other modules 
of the kernel and to implement the Plug/Synapse model. 
The State Variable Manager is a repository of the 



hardware environment (sensors/actuators) inside GAS-
OS reflecting at each particular moment the state of the 
hardware. The Memory Manager is responsible for 
handling the memory resources of an artifact, storing its 
state and caching information of other artifacts to 
improve communication performance. 
Using ontologies and the ontology manager plug-in, 
artifacts can obtain context-awareness and manifest 
higher-level behavior. Applications state their resource 
or service needs through concepts that are part of the 
artifact’s ontology. In that way, high-level descriptions 
of services and resources independent of the context of 
a specific application are possible Holmquist et al 6, 
facilitating the mutual understanding between 
heterogeneous artifacts as well as the discovery of 
services. The resource manager plug-in on the other 
hand, encounters physical resources scarcities by 
providing resource mapping and mediation services. 
The basic function it performs is to keep track of 
available resources and arbitrate among conflicting 
requests for those resources. Re-sources include OS-
level resources (memory, CPU, power, etc) as well as 
high-level resources such as sound, light, etc. Finally 
through the well-defined interfaces of the plug-in 
manager, other plug-ins (e.g. security) can be easily 
attached to the GAS-OS architecture. 
 
 
4. IMPLEMENTATION 
 
 
The current version of GAS-OS has been implemented 
in the Java Personal Edition (PE) that is fully 
compatible with the Java Standard Edition 1.1.8. 
Although Sun has abandoned the further development 
of Java PE, J2ME Personal Profile allows all Java PE 
programs to execute in J2ME compliant devices. So far, 
GAS-OS has been tested in laptops, IPAQs and finally 
in the EJC (Embedded Java Controller) board EJC 7. 
This decision provides platform independence and 
allows us to run GAS-OS on a multitude of different 
devices.  
The following sections will describe implementation 
details concerning three basic functions supported by 
GAS-OS in order to realize ubiquitous computing 
applications using the example introduced in section 2. 
Synapse management handles the process of associating 
logical channels (synapses) among artifacts, while inter-
artifact communication supports the formation and 
operation of synapses at the network layer by 
establishing peer-to-peer connections over various 
physical layers. Finally, interfacing with the artifact’s 
hardware describes how GAS-OS handles sensors and 
actuators of an artifact in order to satisfy the high-level 
behavior dictated by the association with other artifacts 
using the plug/synapse model. 
 
 
 
 
 

4.1. Synapse Management 
 
 
The management of synapses is performed by the 
Process Manager module. The Process Manager 
collaborates with the Communication Module and the 
State Variable Manager (Fig. 6), and sets up an event 
based internal messaging system that combine input 
from sensors and actuators with input received 
wirelessly from other artifacts. Furthermore, it 
implements the plug/synapse model and specifies the 
process for building a synapse. 
Consider the synapsing process among the Reading plug 
of the eDesk and the Light_Switch plug of the eLamp: 
• Synapse Request: The eDesk sends a “Connection 

Request” message to the eLamp. The message 
contains information concerning the eDesk and its 
Reading plug as well as the id/name of the 
Light_Switch plug. 
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Fig. 3. Synapse establishment between plugs Reading 
and Light_Switch 
 
• Synapse Response: When the eLamp receives the 

message it first checks the plug compatibility of 
the Reading and Light_Switch plugs. Plug 
compatibility lies in confirming that the two 
plugs are not both service providers only (output 
plugs) or both service receptors only (input 
plugs). In the example the Reading plug is output 
and the Light_Switch plug is input, so the 
compatibility test is passed, and an instance of 
the Reading plug is created in the eLamp (as a 
local reference) and a positive response is sent 
back to the eDesk. The instance of the Reading 
plug is notified for changes by its remote 
counterpart plug and this interaction serves as an 
intermediary communication channel. In case of 
a negative plug compatibility test, a negative 
response message is sent to the eDesk, while no 
instance of the Reading plug is created. When the 
eDesk receives a positive response, it also creates 
an instance of the Light_Switch plug, and the 
connection is established. Fig. 3 summarizes the 
whole procedure. 

 
• Synapse Activation: After connection established, 

the two plugs are capable of exchanging data. 
Output plugs (Reading) use specific objects, 
called shared objects (SO), to encapsulate the 



plug data to send, while input plugs 
(Light_Switch) use specific event-based 
mechanisms, called shared object listeners (SOL), 
to become aware of incoming plug data. When 
the value of the shared object of the Reading plug 
changes the instance of the Light_Switch plug in 
the eDesk is notified and a synapse activation 
message is sent to the eLamp. The eLamp 
receives the message and changes the shared 
object of its Reading plug instance. This, in turn, 
notifies the target Light_Switch plug, which 
reacts as specified (Fig. 4). 
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Fig. 4. Synapse activation 
 
• Synapse Disconnection: Finally, if one of the two 

connected plugs breaks the synapse, a synapse 
disconnection message is sent to the remote plug in 
order to also terminate the other end of the synapse. 

 
 
4.2. Inter - Artifact Communication 
 
 
The Communication Module is responsible for 
communication between different artifacts. This module, 
implements protocols for wireless, connectionless 
communication as well as mechanisms for internal 
diffusion of information exchanged. Peer-to-peer 
communication is implemented adopting the basic 
principles and definitions of the JXTA project. Peers, 
pipes and endpoints are combined into a layered 
architecture that provides different levels of abstraction 
throughout the communication process. Peers 
implement protocols for resource and service discovery, 
advertisement, routing as well as the queuing 
mechanisms to support asynchronous message exchange. 
In order to avoid large messages and as a consequence 
traffic congestion in the network, XML-based messages 
are used to wrap the information required for each 
protocol. Pipes correspond to the session and 
presentation layers of the ISO-OSI reference model, 
implementing protocols for connection establishment 
between two peers, supporting multicast communication 
for service and resource discovery, while at the same 
time guaranteeing reliable delivery of messages. In 
cases where reliable network protocols are used in the 
transport layer (e.g. TCP/IP), pipes are reduced to 
acknowledging for application-level resource 
availability (e.g. sending synapse request message to an 
incompatible plug will return a NACK message). 
Endpoints are considered as the fundamental 
networking units and are associated to specific network 
resources (e.g. a TCP port). According to the transport 

layer chosen we can have many different endpoints (e.g. 
IP-based, Bluetooth, IrDA, etc.), which can also serve 
as a bridge for different networks. Finally, in order to 
discover and use services and resources beyond the 
reachability of wireless protocols (e.g. RF), we have 
adopted the Zone Routing (ZRP) hybrid routing 
protocol Pearlman and Haas 8. ZRP is a hybrid 
approach combining a proactive and a reactive part, 
trying to minimize the sum of their respective overheads 
and scales very well when the traffic or the mobility is 
increased. 
In the example introduced in section 2, both the eDesk 
and the eLamp own a communication module with an 
IP-based (dynamically determined) Endpoint. 
Plug/Synapse interactions (e.g. synapse establishment) 
are translated to XML messages by the communication 
module and delivered to the remote peer at the specified 
IP address. 
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Fig. 5. From Plug/Synapse interactions to p2p 
communication 
 
4.3. Interfacing with the Artifact Hardware 
 
 
The interfacing of the artifact with its hardware 
(sensors/actuators) is performed as collaboration 
between the artifact hardware management software and 
the State Variable Manager module of the GAS-OS. 
The State Variable Manager (SVM) holds two separate 
structures, one for the Read Only (RO) and one for the 
Read Write (RW) state variables. State Variables reflect 
the state of an artifact’s hardware, like sensors and 
actuators. For example the eChair has two pressures 
sensors (back, seat) to sense that someone is sitting on it, 
and the eLamp has one bulb actuator, both reflected 
inside GAS-OS as state variables in the SVM (Fig. 6). 
Through communication with the eChair hardware 
management software (Fig. 6) the eChair’s SVM 
retrieves all the sensor information of the eChair and 
registers itself as a listener for changes of the 
environment. Moreover, it communicates with the 
Process Manager to promote the eChair-eLamp 
communication as it feeds the Weight plug with new 
data coming from the hardware, which finally result in 
the Weight-Light synapse. On the other end of the 
synapse the eLamp receives data from the Light_Switch 
plug and through the Process Manager the data are 
translated to low level actuator data, resulting in the 
eLamp’s bulb actuator. 
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Fig. 6. Communication with hardware 
 
The matching of the “Occupied” / ”Not Occupied” 
values of the Occupancy plug with the “On” / ”Off” 
states of the Light_Switch plug, is done by configuring 
the properties of the synapse. So for example by 
mapping the “Occupied” state of the eChair to the “On” 
state of the eLamp and the “Not_occupied” to “Off” we 
have the following (desired) behavior: “sitting on the 
chair switches the lamp on while leaving the chair 
switches the lamp off”. The Mappings structure holds 
records where the key is the Synapse itself and the 
content is a number of values-to-states mappings. The 
Process Manager uses these mappings to filter the 
incoming information from input plugs and give a 
specific meaning to the incoming data. 
 
 
5. PERFORMANCE EVALUATION 
 
 
To estimate the performance of GAS-OS and its 
appropriateness to support the execution of ubiquitous 
applications, a performance and scalability analysis 
based on theoretical analysis as well as on experimental 
data was carried out. The results involve the memory 
requirements of GAS-OS and the throughput for the 
case of eGt discovery in relation to the available 
services (plugs). Finally a pure experimental 
measurement of the synapsing process and 
communication takes place in order to obtain an 
indication of the time required to set up a ubiquitous 
application. 
The code size of the current implementation of GAS-OS 
is approximately 200 KB. Measuring the memory 
footprint is crucial in order to indicate that GAS-OS can 
be executed on resource constraint devices. We 
measured the memory footprint of the GAS-OS kernel 
running upon the Sun Personal Java on a Compaq IPAQ 
PDA reference system. First, measurements were done 

by instrumented special measurement code inside GAS-
OS and second using the JProbe Memory Profiler tool 
JProbe 9. In both cases results seem to converge to 
approximately 23Kbytes of memory, while during 
runtime more memory may be allocated depending on 
the application (e.g. number of plugs, synapses, device 
capabilities etc.). 
 

 
Fig. 7. Up: Maximum number of synapses when 
constraining memory versus the number of plugs that 
can participate. Down: Number of eGts that can be 
discovered in a certain period of time versus the number 
of plugs. 
 
As plugs and synapses are mainly what increases 
memory during the execution of an application, we 
studied the relation between the number of plugs and 
the number of synapses that participate for constraint 
amounts of memory. Maximum memory allocation is 
achieved when each plug participates in only one 
synapse (Fig. 7 Up). The more plugs participating in 
one synapse, the more the allocated memory until we 
reach the memory constraint. From this point and on 
(peaks) more synapses can only be achieved if 
distributed to fewer plugs.  
In order to measure the throughput of GAS-OS we 
consider the process of discovering eGts with a certain 
number of plugs. Studying the discovery process gives 
an indication of the number of eGts that will be 



discovered in a certain period of time, and as a 
consequence how long will the user have to wait in 
order to discover his ubiquitous environment. The 
number of eGts that can be discovered in successive 
time intervals, versus the number of plugs (Fig. 7 
Down): in order to have maximum performance 
overhead, we have to get to a large number of plugs per 
eGt. 
 
TABLE 1 - Synapsing and Communication Times 

 
Min, Max and average times in milliseconds to create 
the 1st and the last synapse in a GadgetWorld of 5 eGts 
with a total of six synapses. After creating the 1st 
synapse only a few milliseconds are required to create 
the rest of the synapses, while the average time of 
approximately 1 sec for all six synapses is acceptable. 
For communication between 2 eGts having a synapse, 
the average time is only a few milliseconds, which is 
acceptable for real time applications. 
 
Using code instrumentation, we measured the average 
time for making a synapse and for communicating in an 
application where five eGts are inter-connected with six 
synapses (Table 1). These measurements include the 
overhead of the IEEE 802.11b protocol, while messages 
exchanged vary from a few bytes to 1 Kbyte. Synapse 
times refer to the amount of time needed from the point 
the user specifies a synapse up to the time this synapse 
is completed. In cases where the eGts, specified to form 
a synapse, are not aware of each other, a discovery 
phase is also included in the overall synapsing process. 
Thus, the min synapse time refers to a synapse without a 
discovery, while the max to a synapse with a discovery 
overhead. It is important that after synapses are 
established (GW set-up) communication between eGts 
is fast, satisfying our requirement for real time response. 
 
 
6. CONCLUSIONS 
 
 
Several research efforts are attempting to design 
ubiquitous computing architectures. Project “Smart-Its” 
6 aims at developing small devices, which, when 
attached to objects, enable their association based on the 
concept of “context proximity”. Thus, the collective 
functionality of such a system is mainly composed of 
the computational abilities of the Smart-Its, without 
taking into account the “nature” of the participating 
objects. A more complete and generic approach is 
undertaken by project “Oxygen”, which enables human-
centered computing by providing special computational 
devices, handheld devices, dynamic networks and other 

supporting technologies Oxygen 10. Another interesting 
project is “Accord”, which is focused in developing a 
Tangible Toolbox (based on the metaphor of a tangible 
puzzle) that will enable people to easily embed 
functionality into existing artefacts around the home and 
enable these devices to be integrated with each other 
Accord 11. Other related research efforts are: 
• Gaia Román and Campbell 12 provides an 

infrastructure to spontaneously connect devices 
offering or using registered services. Gaia-OS 
requires a specific system software infrastructure 
using CORBA objects, while mobile devices 
cannot operate autonomously without the 
infrastructure; 

• BASE Becker et al 13 is a component-oriented 
micro-kernel based middleware, which, although 
provides support for heterogeneity and a uniform 
abstraction of services, the application 
programming interface requires specific 
programming capabilities by users; 

• TinyOS Hill et al 14, an event driven operating 
system, designed to provide support for deeply 
embedded systems (i.e. sensor networks), which 
require concurrency intensive operations while 
constrained by minimal hardware resources; 

The overall innovation of the Gadgetware Architectural 
Style (GAS) approach lies in viewing the process where 
people configure and use complex collections of 
interacting artifacts, as having much in common with 
the process where system builders design software 
systems out of components. In the proposed approach, 
the Plug/Synapse model provides a high-level 
abstraction of the component interfaces and the 
composition procedure. 
Then, GAS-OS, the software that implements GAS, can 
be considered as a component framework that 
determines the interfaces that components may have and 
the rules governing their composition. GAS-OS 
manages resources shared by artifacts, and provides the 
underlying mechanisms that enable communication 
(interaction) among artifacts. For example, the proposed 
concept supports the encapsulation of the internal 
structure of an artifact and provides the means for 
composition of an application, without having to access 
any code that implements the interface. Thus, this 
approach provides a clear separation between 
computational and compositional aspects of an 
application, leaving the second task to ordinary people, 
while the first can be undertaken by experienced 
designers or engineers. 
The benefit of this approach is that, to a large extent, 
system design is already done, because the domain and 
system concepts are specified in the generic 
architecture; all people have to do is realize specific 
instances of the system. Composition achieves 
adaptability and evolution: a component-based 
application can be reconfigured with low cost to meet 
new requirements. The possibility to reuse devices for 
several purposes - not all accounted for during their 
design - opens possibilities for emergent uses of 



ubiquitous devices, whereby the emergence results from 
actual use. 
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