
A CONCEPTUAL MODEL AND THE SUPPORTING MIDDLEWARE FOR COMPOSING UBIQUITOUS
COMPUTING APPLICATIONS

N. Drossos1, C. Goumopoulos1 and A. Kameas1, 2

1Computer Technology Institute, Hellas 2Hellenic Open University, Hellas

ABSTRACT

Given the resulting complexity of the ambient
applications that one can form in the Ubiquitous or
Pervasive Computing domain it is required to abstract
the intrinsic characteristics of specific communication
models away from the application logic. These
applications will be characterized by the increasing
ubiquity of interactions between many possibly
heterogeneous artifacts and services. This paper
presents the Plug/Synapse abstraction, which provides a
conceptual model for building ubiquitous computing
applications in a high-level programming manner. GAS-
OS is the software layer that implements the
Plug/Synapse model and the concepts encapsulated in
GAS, a generic architectural style, which can be used to
describe everyday environments populated with
computational artifacts. The paper focuses on the design
and architecture of GAS-OS, which is the minimum set
of modules and functionalities that every device must
have, in order to be a ubiquitous computing artifact and
participate in artifact collections.

1. INTRODUCTION

The vision of Ambient Intelligence (AmI) implies a
seamless environment of computing, advanced
networking technology and specific interfaces ISTAG
1). In one of its possible implementations, technology
becomes embedded in everyday objects such as
furniture, clothes, vehicles, roads and smart materials,
and people are provided with the tools and the processes
that are necessary in order to achieve relaxing
interactions with this environment. The AmI
environment can be considered to host several
Ubiquitous Computing (UbiComp) applications, which
make use of the infrastructure pro-vided by the
environment and the services provided by the objects
therein.
An important characteristic of AmI environments is the
merging of physical and digital space (i.e. tangible
objects and physical environments are acquiring a
digital representation). As the computer disappears in
the environments surrounding our activities, the objects
therein become augmented with Information and
Communication Technology (ICT) components (i.e.
sensors, actuators, processor, memory, wire-less
communication modules) and can receive, store, process
and transmit information; in the following, we shall use
the term “artifacts” for this type of augmented objects.

These objects may be new or improved versions of
existing objects, which by using the new technology,
allow people to carry out new or old tasks in new and
better ways. The provision of conceptual models and
software tools for creating, managing, communicating
with, and reasoning about, these new ecologies (or
UbiComp applications) is of paramount importance,
because people involvement is considered crucial for
the successful adoption of this new computing paradigm.
This paper introduces the Plug/Synapse model and the
GAS-OS middleware. The former provides a conceptual
model for building ubiquitous computing applications in
a high-level programming manner. These are considered
to consist of tangible objects (artifacts), which carry the
computing and networking technology required. The
latter is embedded in these artifacts and supports their
collective operation. This model is part of the
Gadgetware Architectural Style (GAS), which
constitutes a generic framework, shared by users and
designers, for consistently describing, using, reasoning
about UbiComp applications within the AmI
environment.
The rest of the paper is organized as follows. Section 2
goes through the Plug/Synapse model and offers an
example of everyday life scenario, before the design and
architecture of the software that implements and
validates the model described in section 3. Section 4
presents some implementation details based on the
mentioned scenario, while section 5 provides a
performance evaluation of the software before existing
approaches and conclusions are discussed in section 6.

2. THE ABSTRACTION LAYER: THE
PLUG/SYNAPSE MODEL FOR COMPOSING
UBICOMP APPLICATIONS

Within an AmI environment, a UbiComp application
may be composed of a number of heterogeneous
artifacts or devices, which may be stationary or portable.
Those artifacts and devices have different, dynamically
changing capabilities and specific ways to use them; yet,
all of them can communicate.
By providing uniform abstractions and a supporting
middleware, we treat objects as components of a
UbiComp application. In this approach, a digital
counterpart of the properties of artifacts and devices is
created, while making them composeable, thus enabling
their association in order to achieve synthetic
functionality. The Plug/Synapse model, which can be
seen as an extension to the client-server model, is based
on the jigsaw metaphor and has appeared to end-users to

be intuitive to use. The basic idea is that users connect
at a logical level a service or content provider and a
client, and thus compose applications in an ad-hoc,
dynamic way. Simply by creating associations between
everyday artifacts, people cause the emergence of new
applications, which can enhance activities of work, re-
creation or self-expression, rendering their involvement
in a natural and abstract way.
The basic concepts encapsulated in our model are:
• Plugs: From a user’s perspective, they make

visible the artifacts’ properties, capabilities and
services to people and to other artifacts; they are
implemented as software classes

• Synapses: They are associations between two
compatible plugs, which make use of value
mappings; they are implemented using a
message-oriented set of protocols

We assume that no specific networking infrastructure
exists, thus ad-hoc networks are formed. The network
interfaces used are highly heterogeneous ranging from
infra-red communication over radio links to wired
connections. Since every node serves both as a client
and as a server (devices can either provide or request
services at the same time), communication between
artifacts can be considered as peer-to-peer Schollmeier
2.
Given the resulting complexity of the UbiComp
applications that one can form in an AmI environment,
it is required to abstract the intrinsic characteristics of
specific communication models away from the
application logic. The Plug/Synapse model is
independent of the underlying protocols, needed for
example to route messages or to discover resources in
realization of an application. It only requires that
artifacts are able to communicate and they have to run
GAS-OS in order to “comprehend” each-other, so that
people can access their services, properties and
capabilities in a uniform way. People in that way would
not need to be engaged in any type of formal
“programming” in order to achieve the desired functions.
The application is realized through the cooperation of
artifacts in the form of established synapses between
plugs. The approach adopted is that people live in an
environment populated with artifacts; they have a
certain need or task, which they think can be met or
carried out by (using) a combination of services and
capabilities; then, they search for artifacts offering these
services and capabilities as plugs; they select the most
appropriate ones and combine the respective plugs into
functioning synapses; if necessary, they manually adapt
or optimize the collective functionality.
For example, let’s take a look at the life of Patricia, a
27-year old single woman, who lives in a small
apartment near the city centre and studies Spanish
literature at the Open University. A few days ago she
passed by this store, where she saw an advertisement
about these new augmented artifacts, the “extrovert
Gadgets”. Pat decided to enter. Half an hour later she
had given herself a very unusual present: a few furniture
pieces and other devices that would turn her apartment
into a smart one! On the next day, she was anxiously

waiting for the delivery of an eDesk (it could sense light
intensity, temperature, weight on it, proximity of a
chair), an eChair (it could tell whether someone was
sitting on it), a couple of eLamps (one could remotely
turn them on and off), and some eBook tags (they could
be attached to a book, tell whether a book is open or
closed and determine the amount of light that falls on
the book). Pat had asked the store employee to pre-
configure some of the artifacts, so that she could create
a smart studying corner in her living room. Her idea was
simple: when she sat on the chair and she would draw it
near the desk and then open a book on it, then the study
lamp would be switched on automatically. If she would
close the book or stand up, then the light would go off.
The behavior requested by Pat requires the combined
operation of the following set of artifacts: eDesk, eChair,
eLamp and eBook. Some indicative plugs for each of
these artifacts are: eDesk(Reading, Proximity),
eChair(Occupancy), eLamp(Light_Switch) and
eBook(Open/Close). Then a set of synapses has to be
formed, for example, associating the Occupancy plug of
the eChair and the Open/Close plug of the eBook to the
Proximity plug of the eDesk, the Reading plug of the e-
Desk to the Light_Switch plug of the e-Lamp, etc.

3. THE SYSTEM LAYER: GAS-OS
MIDDLEWARE

The key idea behind GAS-OS is the uniform abstraction
of artifact services and capabilities via the plug/synapse
high-level programming model that abstracts the
underlying data communications and access
components of each part of a distributed system.
Inspired by MOM design a fundamental characteristic
of GAS-OS is to enable non-blocking message passing.
Messaging and queuing allow nodes to communicate
across a network without being linked by a private,
dedicated, and logical connection. Every node
communicates by putting messages on queues and by
taking messages from queues. To cope with the need to
adapt to a broad range of devices, we adapted ideas
from micro-kernel design Tanenbaum et al 3) where
only minimal functionality is located in the kernel,
while extra services can be added as plug-ins.
In order to maintain the autonomous nature of artifacts
and at the same time make even the more resource
constraint ones capable of participating in ubiquitous
applications, the kernel of GAS-OS is designed to
support only accepting and dispatching messages,
managing local hardware resources (sensors/actuators),
and the plug/synapse interoperability protocols. Fig. 1
shows GAS-OS being embedded into the high-level
design of an artifact. A Sensor / Actuator network
together with custom FPGA or PIC micro-controller
based boards are responsible for converting artifact data
(e.g. pressure, luminosity etc.) to digital ones and vice
versa Kameas et al 4. The Java Virtual Machine (JVM)
layer assumes the responsibility of decoupling GAS-OS

from typical local operations like memory management,
serial and RF communication, etc.

Java Virtual Machine (JVM) RF Unit

Sensors / Actuators

FPGA / PIC

Communication
Artifact HW Management SW

GAS-OS Collaboration unit

Everyday Object

Fig.1. High level design of an artifact

Consequently, the JVM bridges the hardware – software
gap, by passing sensor data from the hardware level, to
the upper software entities. Digital data must be
analyzed, grouped and treated in a different way for
each artifact; thus, a specific artifact hardware
management module, playing the role of a software
driver, must be implemented per artifact.
The GAS-OS kernel implements plugs and by using the
plug/synapse interoperability protocols it can initialize
or participate in a synapsing process. The
communication module translates the high-level
requests/replies into messages and by using low-level
peer-to-peer networking protocols, it dispatches them to
the corresponding remote service or device capability.
The kernel is also capable of managing service and
resource discovery messages in order to facilitate the
formation of the proper synapses.
In order to support the definition and realization of
collective functionality, all artifacts should use a
commonly understood vocabulary of services and
capabilities, in order to mask heterogeneity in context
understanding and real-world models. This has been
implemented as a multi-level ontology, coupled with a
GAS-OS mechanism that will be able to handle the
knowledge described by ontology and use it in order to
facilitate the communication between two or more
artifacts Christopoulou and Kameas 5.
Finally, the Java Virtual Machine layer allows the
deployment on a wide range of devices from mobile
phones and PDAs to specialized Java processors. The
proliferation of Java-enabled end-systems makes Java a
suitable underlying layer providing a uniform
abstraction for the middleware. The proposed high level
design hides the heterogeneity of the underlying
artifacts, sensors, networks etc. (masked by JVM and
GAS-OS) and provides the means to create large scale
systems based on simple building blocks.

GAS-OS Architecture

The outline of the GAS-OS architecture is shown in
Fig.2. The GAS-OS kernel implements the plug/synapse
model manifesting the artifact’s services and
capabilities through plugs, while providing the
mechanisms (API and protocols) to perform synapses
with other artifacts via the application layer. Synapses
can be considered as virtual channels that feed the lower
communication levels with high-level data. Interfacing
with networking mechanisms (transport layer) is done
via the Java platform and finally data are transmitted
through the physical layer to the other end of the
synapse to follow the reverse process of transforming
low-level information (e.g. messages) to high-level one
(e.g. service requests). Data departing or arriving to
plugs usually affect one or more of the device
capabilities (sensors/actuators), while the kernel
assumes the responsibility of translating those data to
artifact behavior (e.g. activate a specific actuator in
order to achieve a goal).

Physical Layer (802.11,Bluetooth, IrDA, etc)

Transport Layer (TCP/IP, UDP, Sockets, etc.)

Resource Manager
plug-in

Ontology Manager
plug-in

Application

Java Platform

Memory
ManagerState

Variable
Manager

Process Manager

Communication Module

Other
plug-ins

API

G
A

S
-O

S
 K

er
ne

l
G

A
S

-O
S

p
lu

g-
in

s
A

pp
lic

at
io

n
la

ye
r

Device Capabilities
(sensors/actuators)

Plug-in manager

Fig. 2. GAS-OS layered architecture diagram

The GAS-OS kernel encompasses a Communication
Module, a Process Manager, a State Variable Manager,
and a Memory Manager as shown in Fig 2. The
Communication Module is responsible for
communication between different GAS-OS nodes. This
module implements algorithms and protocols for
wireless, connectionless communication as well as
mechanisms for internal diffusion of information
exchanged. The Process Manager is the coordinator
module of GAS-OS. Some of its most important tasks
are to manage the processing policies of the GAS-OS, to
accept and serve various tasks set by the other modules
of the kernel and to implement the Plug/Synapse model.
The State Variable Manager is a repository of the

hardware environment (sensors/actuators) inside GAS-
OS reflecting at each particular moment the state of the
hardware. The Memory Manager is responsible for
handling the memory resources of an artifact, storing its
state and caching information of other artifacts to
improve communication performance.
Using ontologies and the ontology manager plug-in,
artifacts can obtain context-awareness and manifest
higher-level behavior. Applications state their resource
or service needs through concepts that are part of the
artifact’s ontology. In that way, high-level descriptions
of services and resources independent of the context of
a specific application are possible Holmquist et al 6,
facilitating the mutual understanding between
heterogeneous artifacts as well as the discovery of
services. The resource manager plug-in on the other
hand, encounters physical resources scarcities by
providing resource mapping and mediation services.
The basic function it performs is to keep track of
available resources and arbitrate among conflicting
requests for those resources. Re-sources include OS-
level resources (memory, CPU, power, etc) as well as
high-level resources such as sound, light, etc. Finally
through the well-defined interfaces of the plug-in
manager, other plug-ins (e.g. security) can be easily
attached to the GAS-OS architecture.

4. IMPLEMENTATION

The current version of GAS-OS has been implemented
in the Java Personal Edition (PE) that is fully
compatible with the Java Standard Edition 1.1.8.
Although Sun has abandoned the further development
of Java PE, J2ME Personal Profile allows all Java PE
programs to execute in J2ME compliant devices. So far,
GAS-OS has been tested in laptops, IPAQs and finally
in the EJC (Embedded Java Controller) board EJC 7.
This decision provides platform independence and
allows us to run GAS-OS on a multitude of different
devices.
The following sections will describe implementation
details concerning three basic functions supported by
GAS-OS in order to realize ubiquitous computing
applications using the example introduced in section 2.
Synapse management handles the process of associating
logical channels (synapses) among artifacts, while inter-
artifact communication supports the formation and
operation of synapses at the network layer by
establishing peer-to-peer connections over various
physical layers. Finally, interfacing with the artifact’s
hardware describes how GAS-OS handles sensors and
actuators of an artifact in order to satisfy the high-level
behavior dictated by the association with other artifacts
using the plug/synapse model.

4.1. Synapse Management

The management of synapses is performed by the
Process Manager module. The Process Manager
collaborates with the Communication Module and the
State Variable Manager (Fig. 6), and sets up an event
based internal messaging system that combine input
from sensors and actuators with input received
wirelessly from other artifacts. Furthermore, it
implements the plug/synapse model and specifies the
process for building a synapse.
Consider the synapsing process among the Reading plug
of the eDesk and the Light_Switch plug of the eLamp:
• Synapse Request: The eDesk sends a “Connection

Request” message to the eLamp. The message
contains information concerning the eDesk and its
Reading plug as well as the id/name of the
Light_Switch plug.

eDesk

Synapse Request

Positive Response
Light_Switch

Instance

Reading
plug

Light_Switch
plug

ACK

ACK
eLamp

Reading
 Instance

Plug
Compatibility

Fig. 3. Synapse establishment between plugs Reading
and Light_Switch

• Synapse Response: When the eLamp receives the

message it first checks the plug compatibility of
the Reading and Light_Switch plugs. Plug
compatibility lies in confirming that the two
plugs are not both service providers only (output
plugs) or both service receptors only (input
plugs). In the example the Reading plug is output
and the Light_Switch plug is input, so the
compatibility test is passed, and an instance of
the Reading plug is created in the eLamp (as a
local reference) and a positive response is sent
back to the eDesk. The instance of the Reading
plug is notified for changes by its remote
counterpart plug and this interaction serves as an
intermediary communication channel. In case of
a negative plug compatibility test, a negative
response message is sent to the eDesk, while no
instance of the Reading plug is created. When the
eDesk receives a positive response, it also creates
an instance of the Light_Switch plug, and the
connection is established. Fig. 3 summarizes the
whole procedure.

• Synapse Activation: After connection established,

the two plugs are capable of exchanging data.
Output plugs (Reading) use specific objects,
called shared objects (SO), to encapsulate the

plug data to send, while input plugs
(Light_Switch) use specific event-based
mechanisms, called shared object listeners (SOL),
to become aware of incoming plug data. When
the value of the shared object of the Reading plug
changes the instance of the Light_Switch plug in
the eDesk is notified and a synapse activation
message is sent to the eLamp. The eLamp
receives the message and changes the shared
object of its Reading plug instance. This, in turn,
notifies the target Light_Switch plug, which
reacts as specified (Fig. 4).

eDesk

Light_Switch
 Instance

Reading
plug

Light_Switch
plug

SO changed

Update SO

SOL notified

SOL notified

Synapse Activation

eLamp

Reading
Instance

Fig. 4. Synapse activation

• Synapse Disconnection: Finally, if one of the two

connected plugs breaks the synapse, a synapse
disconnection message is sent to the remote plug in
order to also terminate the other end of the synapse.

4.2. Inter - Artifact Communication

The Communication Module is responsible for
communication between different artifacts. This module,
implements protocols for wireless, connectionless
communication as well as mechanisms for internal
diffusion of information exchanged. Peer-to-peer
communication is implemented adopting the basic
principles and definitions of the JXTA project. Peers,
pipes and endpoints are combined into a layered
architecture that provides different levels of abstraction
throughout the communication process. Peers
implement protocols for resource and service discovery,
advertisement, routing as well as the queuing
mechanisms to support asynchronous message exchange.
In order to avoid large messages and as a consequence
traffic congestion in the network, XML-based messages
are used to wrap the information required for each
protocol. Pipes correspond to the session and
presentation layers of the ISO-OSI reference model,
implementing protocols for connection establishment
between two peers, supporting multicast communication
for service and resource discovery, while at the same
time guaranteeing reliable delivery of messages. In
cases where reliable network protocols are used in the
transport layer (e.g. TCP/IP), pipes are reduced to
acknowledging for application-level resource
availability (e.g. sending synapse request message to an
incompatible plug will return a NACK message).
Endpoints are considered as the fundamental
networking units and are associated to specific network
resources (e.g. a TCP port). According to the transport

layer chosen we can have many different endpoints (e.g.
IP-based, Bluetooth, IrDA, etc.), which can also serve
as a bridge for different networks. Finally, in order to
discover and use services and resources beyond the
reachability of wireless protocols (e.g. RF), we have
adopted the Zone Routing (ZRP) hybrid routing
protocol Pearlman and Haas 8. ZRP is a hybrid
approach combining a proactive and a reactive part,
trying to minimize the sum of their respective overheads
and scales very well when the traffic or the mobility is
increased.
In the example introduced in section 2, both the eDesk
and the eLamp own a communication module with an
IP-based (dynamically determined) Endpoint.
Plug/Synapse interactions (e.g. synapse establishment)
are translated to XML messages by the communication
module and delivered to the remote peer at the specified
IP address.

GAS-OS
kernel

Comm

GAS-OS
kernel

Comm

Network
Synapse Request

ACK

ACK

Positive Response

Reading
plug

Light_Switch
plug

eDesk eLamp

eDesk Endpoint
IP:150.140.2.50

eLamp Endpoint
IP:150.140.2.66

Fig. 5. From Plug/Synapse interactions to p2p
communication

4.3. Interfacing with the Artifact Hardware

The interfacing of the artifact with its hardware
(sensors/actuators) is performed as collaboration
between the artifact hardware management software and
the State Variable Manager module of the GAS-OS.
The State Variable Manager (SVM) holds two separate
structures, one for the Read Only (RO) and one for the
Read Write (RW) state variables. State Variables reflect
the state of an artifact’s hardware, like sensors and
actuators. For example the eChair has two pressures
sensors (back, seat) to sense that someone is sitting on it,
and the eLamp has one bulb actuator, both reflected
inside GAS-OS as state variables in the SVM (Fig. 6).
Through communication with the eChair hardware
management software (Fig. 6) the eChair’s SVM
retrieves all the sensor information of the eChair and
registers itself as a listener for changes of the
environment. Moreover, it communicates with the
Process Manager to promote the eChair-eLamp
communication as it feeds the Weight plug with new
data coming from the hardware, which finally result in
the Weight-Light synapse. On the other end of the
synapse the eLamp receives data from the Light_Switch
plug and through the Process Manager the data are
translated to low level actuator data, resulting in the
eLamp’s bulb actuator.

Sensors
backPressur

e
seatPressure

eChair
Artifact HW
Management

SW

RO State Variable Value

backPressure true

seatPressure true

eChair
Hardware

State Variable Manager

Occupancy

Process Manager

notify

eChair GAS-OS

Occupied

Actuators
bulb

eLamp
Artifact HW
Management

SW

RW State Variable Value

bulb true

eLamp
Hardware

State Variable Manager

Light_Switch

Process Manager

update

eLamp GAS-OS

On

Synapse
properties

Fig. 6. Communication with hardware

The matching of the “Occupied” / ”Not Occupied”
values of the Occupancy plug with the “On” / ”Off”
states of the Light_Switch plug, is done by configuring
the properties of the synapse. So for example by
mapping the “Occupied” state of the eChair to the “On”
state of the eLamp and the “Not_occupied” to “Off” we
have the following (desired) behavior: “sitting on the
chair switches the lamp on while leaving the chair
switches the lamp off”. The Mappings structure holds
records where the key is the Synapse itself and the
content is a number of values-to-states mappings. The
Process Manager uses these mappings to filter the
incoming information from input plugs and give a
specific meaning to the incoming data.

5. PERFORMANCE EVALUATION

To estimate the performance of GAS-OS and its
appropriateness to support the execution of ubiquitous
applications, a performance and scalability analysis
based on theoretical analysis as well as on experimental
data was carried out. The results involve the memory
requirements of GAS-OS and the throughput for the
case of eGt discovery in relation to the available
services (plugs). Finally a pure experimental
measurement of the synapsing process and
communication takes place in order to obtain an
indication of the time required to set up a ubiquitous
application.
The code size of the current implementation of GAS-OS
is approximately 200 KB. Measuring the memory
footprint is crucial in order to indicate that GAS-OS can
be executed on resource constraint devices. We
measured the memory footprint of the GAS-OS kernel
running upon the Sun Personal Java on a Compaq IPAQ
PDA reference system. First, measurements were done

by instrumented special measurement code inside GAS-
OS and second using the JProbe Memory Profiler tool
JProbe 9. In both cases results seem to converge to
approximately 23Kbytes of memory, while during
runtime more memory may be allocated depending on
the application (e.g. number of plugs, synapses, device
capabilities etc.).

Fig. 7. Up: Maximum number of synapses when
constraining memory versus the number of plugs that
can participate. Down: Number of eGts that can be
discovered in a certain period of time versus the number
of plugs.

As plugs and synapses are mainly what increases
memory during the execution of an application, we
studied the relation between the number of plugs and
the number of synapses that participate for constraint
amounts of memory. Maximum memory allocation is
achieved when each plug participates in only one
synapse (Fig. 7 Up). The more plugs participating in
one synapse, the more the allocated memory until we
reach the memory constraint. From this point and on
(peaks) more synapses can only be achieved if
distributed to fewer plugs.
In order to measure the throughput of GAS-OS we
consider the process of discovering eGts with a certain
number of plugs. Studying the discovery process gives
an indication of the number of eGts that will be

discovered in a certain period of time, and as a
consequence how long will the user have to wait in
order to discover his ubiquitous environment. The
number of eGts that can be discovered in successive
time intervals, versus the number of plugs (Fig. 7
Down): in order to have maximum performance
overhead, we have to get to a large number of plugs per
eGt.

TABLE 1 - Synapsing and Communication Times

Min, Max and average times in milliseconds to create
the 1st and the last synapse in a GadgetWorld of 5 eGts
with a total of six synapses. After creating the 1st
synapse only a few milliseconds are required to create
the rest of the synapses, while the average time of
approximately 1 sec for all six synapses is acceptable.
For communication between 2 eGts having a synapse,
the average time is only a few milliseconds, which is
acceptable for real time applications.

Using code instrumentation, we measured the average
time for making a synapse and for communicating in an
application where five eGts are inter-connected with six
synapses (Table 1). These measurements include the
overhead of the IEEE 802.11b protocol, while messages
exchanged vary from a few bytes to 1 Kbyte. Synapse
times refer to the amount of time needed from the point
the user specifies a synapse up to the time this synapse
is completed. In cases where the eGts, specified to form
a synapse, are not aware of each other, a discovery
phase is also included in the overall synapsing process.
Thus, the min synapse time refers to a synapse without a
discovery, while the max to a synapse with a discovery
overhead. It is important that after synapses are
established (GW set-up) communication between eGts
is fast, satisfying our requirement for real time response.

6. CONCLUSIONS

Several research efforts are attempting to design
ubiquitous computing architectures. Project “Smart-Its”
6 aims at developing small devices, which, when
attached to objects, enable their association based on the
concept of “context proximity”. Thus, the collective
functionality of such a system is mainly composed of
the computational abilities of the Smart-Its, without
taking into account the “nature” of the participating
objects. A more complete and generic approach is
undertaken by project “Oxygen”, which enables human-
centered computing by providing special computational
devices, handheld devices, dynamic networks and other

supporting technologies Oxygen 10. Another interesting
project is “Accord”, which is focused in developing a
Tangible Toolbox (based on the metaphor of a tangible
puzzle) that will enable people to easily embed
functionality into existing artefacts around the home and
enable these devices to be integrated with each other
Accord 11. Other related research efforts are:
• Gaia Román and Campbell 12 provides an

infrastructure to spontaneously connect devices
offering or using registered services. Gaia-OS
requires a specific system software infrastructure
using CORBA objects, while mobile devices
cannot operate autonomously without the
infrastructure;

• BASE Becker et al 13 is a component-oriented
micro-kernel based middleware, which, although
provides support for heterogeneity and a uniform
abstraction of services, the application
programming interface requires specific
programming capabilities by users;

• TinyOS Hill et al 14, an event driven operating
system, designed to provide support for deeply
embedded systems (i.e. sensor networks), which
require concurrency intensive operations while
constrained by minimal hardware resources;

The overall innovation of the Gadgetware Architectural
Style (GAS) approach lies in viewing the process where
people configure and use complex collections of
interacting artifacts, as having much in common with
the process where system builders design software
systems out of components. In the proposed approach,
the Plug/Synapse model provides a high-level
abstraction of the component interfaces and the
composition procedure.
Then, GAS-OS, the software that implements GAS, can
be considered as a component framework that
determines the interfaces that components may have and
the rules governing their composition. GAS-OS
manages resources shared by artifacts, and provides the
underlying mechanisms that enable communication
(interaction) among artifacts. For example, the proposed
concept supports the encapsulation of the internal
structure of an artifact and provides the means for
composition of an application, without having to access
any code that implements the interface. Thus, this
approach provides a clear separation between
computational and compositional aspects of an
application, leaving the second task to ordinary people,
while the first can be undertaken by experienced
designers or engineers.
The benefit of this approach is that, to a large extent,
system design is already done, because the domain and
system concepts are specified in the generic
architecture; all people have to do is realize specific
instances of the system. Composition achieves
adaptability and evolution: a component-based
application can be reconfigured with low cost to meet
new requirements. The possibility to reuse devices for
several purposes - not all accounted for during their
design - opens possibilities for emergent uses of

ubiquitous devices, whereby the emergence results from
actual use.

REFERENCES

1. ISTAG in FP6: Working Group 1, IST Research

Content, Final Report,
http://www.cordis.lu/ist/istag.htm

2. Schollmeier R.,2001,“A Definition of Peer-to-Peer
Networking for the Classification of Peer-to-Peer
Architectures and Applications”, Proceedings of the
First International Conference on Peer-to-Peer
Computing P2P’01

3. Tanenbaum A.S., et al,August 1991,“The Amoeba

Distributed Operating System-A Status Report”,
Computer Communications, vol. 14, no. 6, pp. 324-
335

4. Kameas A., et al,2003,“An Architecture that Treats

Everyday Objects as Communicating Tangible
Components”, in Proceedings of the 1st IEEE
International Conference on Pervasive Computing
and Communications (PerCom03), Fort Worth,
USA

5. Christopoulou E., Kameas A., “GAS Ontology: an

ontology for collaboration among ubiquitous
computing devices”, to appear in 2004 Special
Issue on Protégé the International Journal of
Human – Computer Studies

6. Holmquist L.E., et al,Sept. 2001,“Smart-Its Friends:

A Technique for Users to Easily Establish
Connections between Smart Artifacts”, in
Proceedings of UBICOMP 2001, Atlanta, GA,
USA

7. EJC website: http://www.embedded-web.com/

8. Pearlman M. and Haas Z.,August 1999,

“Determining the Optimal Configuration for the
Zone Routing Protocol”, IEEE Journal on Selected
Areas in Communications, Vol. 17, No 8

9. JProbe website:

http://www.quest.com/jprobe/index.asp

10. Oxygen project website: http://oxygen.lcs.mit.edu/

11. Accord project website:

http://www.sics.se/accord/home.html

12. Román M. and Campbell R.H., September

2000,“GAIA: Enabling Active Spaces”,
Proceedings of the 9th ACM SIGOPS European
Workshop, pp. 229-234, Kolding, Denmark

13. Becker C., et al,2003,“BASE - A Micro-broker-
based Middleware For Pervasive Computing”, in
Proceedings of the 1st IEEE International
Conference on Pervasive Computing and
Communication (PerCom03), Fort Worth, USA

14. Hill J, et al,2000,”System architecture directions for

networked sensors.” in Proceedings of ACM
Architectural Support for Programming Languages
and Operating Systems conference

