A CONCEPTUAL MODEL AND THE SUPPORTING MIDDLEWARE FOR COMPOSING UBIQUITOUS

COMPUTING APPLICATIONS

N. Drosso§ C. Goumopouldsand A. Kameds?

'Computer Technology Institute, Hell#$ellenic Open University, Hellas

ABSTRACT

Given the resulting complexity of the ambient
applications that one can form in the Ubiquitous or
Pervasive Computing domain it is required to alostra
the intrinsic characteristics of specific commutima
models away from the application logic. These
applications will be characterized by the incregsin
ubiquity of interactions between many possibly
heterogeneous artifacts and services. This paper
presents the Plug/Synapse abstraction, which peewad
conceptual model for building ubiquitous computing
applications in a high-level programming manner.SsA
OS is the software layer that implements the

These objects may be new or improved versions of
existing objects, which by using the new technology
allow people to carry out new or old tasks in newd a
better ways. The provision of conceptual models and
software tools for creating, managing, communiggtin
with, and reasoning about, these new ecologies (or
UbiComp applications) is of paramount importance,
because people involvement is considered crucial fo
the successful adoption of this new computing pgrad
This paper introduces the Plug/Synapse model amd th
GAS-0OS middleware. The former provides a conceptual
model for building ubiquitous computing applicatsoin

a high-level programming manner. These are consitler
to consist of tangible objects (artifacts), whicrrg the
computing and networking technology required. The

Plug/Synapse model and the concepts encapsulated inlatter is embedded in these artifacts and suppbets

GAS, a generic architectural style, which can bedus
describe everyday environments populated with
computational artifacts. The paper focuses on #sigah
and architecture of GAS-OS, which is the minimurh se
of modules and functionalities that every devicestmu
have, in order to be a ubiquitous computing artifatd
participate in artifact collections.

1. INTRODUCTION

The vision of Ambient Intelligence (Aml) implies a
seamless environment of computing, advanced
networking technology and specific interfaces ISTAG
1). In one of its possible implementations, techggl
becomes embedded
furniture, clothes, vehicles, roads and smart riaser
and people are provided with the tools and the gases
that are necessary in order to achieve relaxing
interactions with this environment. The Aml
environment can be considered to host several
Ubiquitous Computing (UbiComp) applications, which
make use of the infrastructure pro-vided by the
environment and the services provided by the object
therein.

An important characteristic of Aml environmentshe
merging of physical and digital space (i.e. tangibl
objects and physical environments are acquiring a
digital representation). As the computer disappéars
the environments surrounding our activities, thgects
therein become augmented with Information and
Communication Technology (ICT) components (i.e.
sensors, actuators, processor, memory, wire-less
communication modules) and can receive, store g3oc
and transmit information; in the following, we shase

the term “artifacts” for this type of augmented extis.

in everyday objects such as

collective operation. This model is part of the
Gadgetware Architectural Style (GAS), which
constitutes a generic framework, shared by useds an
designers, for consistently describing, using, oeag
about UbiComp applications within the Aml
environment.

The rest of the paper is organized as follows. iSe@
goes through the Plug/Synapse model and offers an
example of everyday life scenario, before the deaid
architecture of the software that implements and
validates the model described in section 3. Secfion
presents some implementation details based on the
mentioned scenario, while section 5 provides a
performance evaluation of the software before gndst
approaches and conclusions are discussed in séction

2. THE ABSTRACTION LAYER: THE
PLUG/SYNAPSE MODEL FOR COMPOSING
UBICOMP APPLICATIONS

Within an Aml environment, a UbiComp application
may be composed of a number of heterogeneous
artifacts or devices, which may be stationary atgide.
Those artifacts and devices have different, dynalfyic
changing capabilities and specific ways to use thet

all of them can communicate.

By providing uniform abstractions and a supporting
middleware, we treat objects as components of a
UbiComp application. In this approach, a digital
counterpart of the properties of artifacts and deviis
created, while making them composeable, thus ergbli
their association in order to achieve synthetic
functionality. The Plug/Synapse model, which can be
seen as an extension to the client-server modbhded

on the jigsaw metaphor and has appeared to end-isser

be intuitive to use. The basic idea is that usermect

at a logical level a service or content provided an
client, and thus compose applications in an ad-hoc,
dynamic way. Simply by creating associations betwee
everyday artifacts, people cause the emergencewf n
applications, which can enhance activities of waek,
creation or self-expression, rendering their ineohent

in a natural and abstract way.

The basic concepts encapsulated in our model are:

e Plugs. From a user's perspective, they make
visible the artifacts’ properties, capabilities and
services to people and to other artifacts; they are
implemented as software classes

e Synapses: They are associations between two
compatible plugs, which make use of value
mappings; they are implemented using a
message-oriented set of protocols

We assume that no specific networking infrastruetur
exists, thus ad-hoc networks are formed. The nétwor
interfaces used are highly heterogeneous rangimm fr
infra-red communication over radio links to wired
connections. Since every node serves both as at clie
and as a server (devices can either provide orestqu
services at the same time), communication between
artifacts can be considered as peer-to-peer Scaigim
2.

Given the resulting complexity of the UbiComp
applications that one can form in an Aml environtnen
it is required to abstract the intrinsic charastics of
specific communication models away from the
application logic. The Plug/Synapse model is
independent of the underlying protocols, needed for
example to route messages or to discover resoumces
realization of an application. It only requires ttha
artifacts are able to communicate and they haveito
GAS-OS in order to “comprehend” each-other, so that

waiting for the delivery of an eDesk (it could serlight
intensity, temperature, weight on it, proximity af
chair), an eChair (it could tell whether someoneswa
sitting on it), a couple of eLamps (one could reshot
turn them on and off), and some eBook tags (theydco

be attached to a book, tell whether a book is apen
closed and determine the amount of light that falts

the book). Pat had asked the store employee to pre-
configure some of the artifacts, so that she couvédite

a smart studying corner in her living room. Heradeas
simple: when she sat on the chair and she would dra
near the desk and then open a book on it, thesttity
lamp would be switched on automatically. If she ldou
close the book or stand up, then the light wouldffo

The behavior requested by Pat requires the combined
operation of the following set of artifacts: eDeskhair,
eLamp and eBook. Some indicative plugs for each of
these artifacts are: eDesk(Reading, Proximity),
eChair(Occupancy), eLamp(Light_Switch) and
eBook(Open/Close). Then a set of synapses has to be
formed, for example, associating the Occupancy pfug
the eChair and the Open/Close plug of the eBodkeo
Proximity plug of the eDesk, the Reading plug of th
Desk to the Light_Switch plug of the e-Lamp, etc.

3. THE SYSTEM
MIDDLEWARE

LAYER: GASOS

The key idea behind GAS-OS is the uniform abstoacti
of artifact services and capabilities via the piygapse
high-level programming model that abstracts the
underlying data communications and access
components of each part of a distributed system.
Inspired by MOM design a fundamental characteristic

people can access their services, properties and of GAS-OS is to enable non-blocking message passing

capabilities in a uniform way. People in that waguld

not need to be engaged in any type of formal
“programming” in order to achieve the desired fimuts.
The application is realized through the cooperatdn
artifacts in the form of established synapses betwe
plugs. The approach adopted is that people livann
environment populated with artifacts; they have a
certain need or task, which they think can be nret o
carried out by (using) a combination of servicesl an
capabilities; then, they search for artifacts affgrthese
services and capabilities as plugs; they selectnibst
appropriate ones and combine the respective phtgs i
functioning synapses; if necessary, they manualgpt

or optimize the collective functionality.

For example, let's take a look at the life of Ra#j a
27-year old single woman, who lives in a small

Messaging and queuing allow nodes to communicate
across a network without being linked by a private,
dedicated, and logical connection. Every node
communicates by putting messages on queues and by
taking messages from queues. To cope with the toeed
adapt to a broad range of devices, we adapted ideas
from micro-kernel design Tanenbaum et al 3) where
only minimal functionality is located in the kerpel
while extra services can be added as plug-ins.

In order to maintain the autonomous nature of aot#

and at the same time make even the more resource
constraint ones capable of participating in ubioust
applications, the kernel of GAS-OS is designed to
support only accepting and dispatching messages,
managing local hardware resources (sensors/actator
and the plug/synapse interoperability protocolg. Ai

apartment near the city centre and studies Spanish shows GAS-OS being embedded into the high-level

literature at the Open University. A few days age s

design of an artifact. A Sensor / Actuator network

passed by this store, where she saw an advertisemen together with custom FPGA or PIC micro-controller

about these new augmented artifacts, the “extrovert
Gadgets”. Pat decided to enter. Half an hour laber
had given herself a very unusual present: a fewnitiue
pieces and other devices that would turn her apartm
into a smart one! On the next day, she was anxousl|

based boards are responsible for converting artifa@
(e.g. pressure, luminosity etc.) to digital oned aite
versa Kameas et al 4. The Java Virtual Machine JVM
layer assumes the responsibility of decoupling G2S-

from typical local operations like memory managemen
serial and RF communication, etc.

GASOS | Collaboration unit |

Communication

4+

Java Virtual Machine (JVM)

Artifact HW Management SW

RF Unit

FPGA / PIC

Sensors/ Actuators

Everyday Object

Fig.1. High level design of an artifact

Consequently, the JVM bridges the hardware — soétwa
gap, by passing sensor data from the hardware, level
the upper software entities. Digital data must be
analyzed, grouped and treated in a different way fo
each artifact; thus, a specific artifact hardware
management module, playing the role of a software
driver, must be implemented per artifact.

The GAS-OS kernel implements plugs and by using the
plug/synapse interoperability protocols it caniatize

or participate in a synapsing process. The
communication module translates the high-level
requests/replies into messages and by using logl-lev
peer-to-peer networking protocols, it dispatchesrtho

the corresponding remote service or device capgbili
The kernel is also capable of managing service and
resource discovery messages in order to facilitiage
formation of the proper synapses.

In order to support the definition and realizatioh
collective functionality, all artifacts should use
commonly understood vocabulary of services and
capabilities, in order to mask heterogeneity integn
understanding and real-world models. This has been
implemented as a multi-level ontology, coupled wath
GAS-OS mechanism that will be able to handle the
knowledge described by ontology and use it in okder
facilitate the communication between two or more
artifacts Christopoulou and Kameas 5.

Finally, the Java Virtual Machine layer allows the
deployment on a wide range of devices from mobile
phones and PDAs to specialized Java processors. The
proliferation of Java-enabled end-systems makea dav
suitable underlying layer providing a uniform
abstraction for the middleware. The proposed hiyell
design hides the heterogeneity of the underlying
artifacts, sensors, networks etc. (masked by JVM an
GAS-0S) and provides the means to create large scal
systems based on simple building blocks.

GAS-OS Architecture

The outline of the GAS-OS architecture is shown in
Fig.2. The GAS-OS kernel implements the plug/syeaps
model manifesting the artifact's services and
capabilities through plugs, while providing the
mechanisms (APl and protocols) to perform synapses
with other artifacts via the application layer. 8pees
can be considered as virtual channels that feetbtiner
communication levels with high-level data. Inteifar
with networking mechanisms (transport layer) is elon
via the Java platform and finally data are trantadit
through the physical layer to the other end of the
synapse to follow the reverse process of transfogmi
low-level information (e.g. messages) to high-lesré
(e.g. service requests). Data departing or arrivimg
plugs usually affect one or more of the device
capabilities (sensors/actuators), while the kernel
assumes the responsibility of translating those dat
artifact behavior (e.g. activate a specific actuato
order to achieve a goal).

c
i)
| Application | 85
__________________ R
<
| API | N »
o c
Resource Manage| Ontology Manage Other 0 g,
plug-in plug-in plug-ins é =
| Plug-in manager |
@
=
Memory K
St_a((e Process Manager Manager "
Variable o)
Manager Communication Module | 2
__________________ [©)
Java Platform |
. | Transport Layer{CPIP, UDP, Sockets, etc.}
Device Capabilitie
(sensors/actuatorg) I
SIPhyS|caI Layer (802.1Bluetooth IrDA, etc)

Fig. 2. GAS-OS layered architecture diagram

The GAS-OS kernel encompasses a Communication
Module, a Process Manager, a State Variable Manager
and a Memory Manager as shown in Fig 2. The
Communication Module is responsible for
communication between different GAS-OS nodes. This
module implements algorithms and protocols for
wireless, connectionless communication as well as
mechanisms for internal diffusion of information
exchanged. The Process Manager is the coordinator
module of GAS-OS. Some of its most important tasks
are to manage the processing policies of the GASt®S
accept and serve various tasks set by the otheule®d

of the kernel and to implement the Plug/Synapseeaiod
The State Variable Manager is a repository of the

hardware environment (sensors/actuators) inside -GAS
OS reflecting at each particular moment the stathe
hardware. The Memory Manager is responsible for
handling the memory resources of an artifact, stpits
state and caching information of other artifacts to
improve communication performance.

Using ontologies and the ontology manager plug-in,
artifacts can obtain context-awareness and manifest
higher-level behavior. Applications state theirowse

or service needs through concepts that are patteof
artifact’'s ontology. In that way, high-level destions

of services and resources independent of the coafex

a specific application are possible Holmquist et6al
facilitating the mutual understanding between
heterogeneous artifacts as well as the discovery of
services. The resource manager plug-in on the other
hand, encounters physical resources scarcities by
providing resource mapping and mediation services.
The basic function it performs is to keep track of
available resources and arbitrate among conflicting
requests for those resources. Re-sources include OS
level resources (memory, CPU, power, etc) as well a
high-level resources such as sound, light, etcallyin
through the well-defined interfaces of the plug-in
manager, other plug-ins (e.g. security) can belyeasi
attached to the GAS-OS architecture.

4. IMPLEMENTATION

The current version of GAS-OS has been implemented
in the Java Personal Edition (PE) that is fully
compatible with the Java Standard Edition 1.1.8.
Although Sun has abandoned the further development
of Java PE, J2ME Personal Profile allows all Jaiza P
programs to execute in J2ME compliant devices.a&8p f
GAS-OS has been tested in laptops, IPAQs and inall
in the EJC (Embedded Java Controller) board EJC 7.
This decision provides platform independence and
allows us to run GAS-OS on a multitude of different
devices.

The following sections will describe implementation
details concerning three basic functions suppohgd
GAS-OS in order to realize ubiquitous computing
applications using the example introduced in sacfio
Synapse management handles the process of assgciati
logical channels (synapses) among artifacts, whiks-
artifact communication supports the formation and
operation of synapses at the network layer by
establishing peer-to-peer connections over various
physical layers. Finally, interfacing with the &att's
hardware describes how GAS-OS handles sensors and
actuators of an artifact in order to satisfy thghhievel
behavior dictated by the association with otheifaats
using the plug/synapse model.

4.1. Synapse M anagement

The management of synapses is performed by the
Process Manager module. The Process Manager
collaborates with the Communication Module and the
State Variable Manager (Fig. 6), and sets up amteve
based internal messaging system that combine input
from sensors and actuators with input received
wirelessly from other artifacts. Furthermore, it
implements the plug/synapse model and specifies the
process for building a synapse.

Consider the synapsing process among the Readigg pl
of the eDesk and the Light_Switch plug of the eLamp
Synapse Request: The eDesk sends a “Connection
Request” message to the eLamp. The message
contains information concerning the eDesk and its
Reading plug as well as the id/name of the
Light_Switch plug.

Synapse Request
Readin ACK Light_Switch '
plug plug
eDesk eLamp
ACK
Positive Response

Light_Switch Reading
Instance Instance

Fig. 3. Synapse establishment between plugs Reading
and Light_Switch

e Synapse Response: When the eLamp receives the
message it first checks the plug compatibility of
the Reading and Light Switch plugs. Plug
compatibility lies in confirming that the two
plugs are not both service providers only (output
plugs) or both service receptors only (input
plugs). In the example the Reading plug is output
and the Light Switch plug is input, so the
compatibility test is passed, and an instance of
the Reading plug is created in the eLamp (as a
local reference) and a positive response is sent
back to the eDesk. The instance of the Reading
plug is notified for changes by its remote
counterpart plug and this interaction serves as an
intermediary communication channel. In case of
a negative plug compatibility test, a negative
response message is sent to the eDesk, while no
instance of the Reading plug is created. When the
eDesk receives a positive response, it also creates
an instance of the Light_Switch plug, and the
connection is established. Fig. 3 summarizes the
whole procedure.

Synapse Activation: After connection established,

the two plugs are capable of exchanging data.
Output plugs (Reading) use specific objects,
called shared objects (SO), to encapsulate the

plug data to send, while input plugs
(Light_Switch) use specific event-based
mechanisms, called shared object listeners (SOL),
to become aware of incoming plug data. When
the value of the shared object of the Reading plug
changes the instance of the Light Switch plug in
the eDesk is notified and a synapse activation

message is sent to the eLamp. The elLamp

layer chosen we can have many different endpots (
IP-based, Bluetooth, IrDA, etc.), which can alsovse

as a bridge for different networks. Finally, in erdo
discover and use services and resources beyond the
reachability of wireless protocols (e.g. RF), wevéa
adopted the Zone Routing (ZRP) hybrid routing
protocol Pearlman and Haas 8. ZRP is a hybrid
approach combining a proactive and a reactive part,

receives the message and changes the sharedtrying to minimize the sum of their respective dweads

object of its Reading plug instance. This, in turn,
notifies the target Light Switch plug, which
reacts as specified (Fig. 4).

Synapse Activation

SO changedy SOL notified—
eDesk Reading Light_Switch eLamp
plug plug
ifi Update SO
Light_Switch | SOt Notied

Instance

Reading
Instance

Synapse Disconnection: Finally, if one of the two
connected plugs breaks the synapse, a synapse
disconnection message is sent to the remote plug in
order to also terminate the other end of the symaps

Fig. 4. Synapse activation

4.2. Inter - Artifact Communication

The Communication Module is responsible for
communication between different artifacts. This oied
implements protocols for wireless, connectionless
communication as well as mechanisms for internal
diffusion of information exchanged. Peer-to-peer
communication is implemented adopting the basic
principles and definitions of the JXTA project. Pee
pipes and endpoints are combined into a layered
architecture that provides different levels of adtion
throughout the communication process. Peers
implement protocols for resource and service disogv
advertisement, routing as well as the queuing

and scales very well when the traffic or the maypiis
increased.

In the example introduced in section 2, both thesD
and the eLamp own a communication module with an
IP-based (dynamically determined) Endpoint.
Plug/Synapse interactions (e.g. synapse establighme
are translated to XML messages by the communication
module and delivered to the remote peer at theifsgic

IP address.

Networ k
}mapse Requ\est
eDesk Readin ACK Light_Switch
plug z/ BN plug__ -am
GAS-0S N o GAS-0S
kernel \. - ACK 5% kernel
Positive Response
Comm P T - > Comm
= XX X
eDesk Endpoint el amp Endpoint
1P:150.140.2.50 IP:150.140.2.66
Fig. 5. From Plug/Synapse interactions to p2p

communication

4.3. Interfacing with the Artifact Hardware

The interfacing of the artifact with its hardware
(sensors/actuators) is performed as collaboration
between the artifact hardware management softwate a
the State Variable Manager module of the GAS-OS.
The State Variable Manager (SVM) holds two separate
structures, one for the Read Only (RO) and onedHer
Read Write (RW) state variables. State Variablésece

mechanisms to support asynchronous message exchangehe state of an artifact's hardware, like sensard a

In order to avoid large messages and as a consegjuen
traffic congestion in the network, XML-based messag
are used to wrap the information required for each
protocol. Pipes correspond to the session and
presentation layers of the 1SO-OSI reference model,
implementing protocols for connection establishment
between two peers, supporting multicast commuradnati
for service and resource discovery, while at themesa
time guaranteeing reliable delivery of messages. In
cases where reliable network protocols are usettien
transport layer (e.g. TCP/IP), pipes are reduced to
acknowledging for application-level resource
availability (e.g. sending synapse request message
incompatible plug will return a NACK message).
Endpoints are considered as the fundamental
networking units and are associated to specificvork
resources (e.g. a TCP port). According to the paris

actuators. For example the eChair has two pressures
sensors (back, seat) to sense that someone g sitti it,

and the eLamp has one bulb actuator, both reflected
inside GAS-OS as state variables in the SVM (Fjg. 6
Through communication with the eChair hardware
management software (Fig. 6) the eChair's SVM
retrieves all the sensor information of the eClaid
registers itself as a listener for changes of the
environment. Moreover, it communicates with the
Process Manager to promote the eChair-eLamp
communication as it feeds the Weight plug with new
data coming from the hardware, which finally resalt

the Weight-Light synapse. On the other end of the
synapse the eLamp receives data from the Light cBwit
plug and through the Process Manager the data are
translated to low level actuator data, resultingthe
eLamp’s bulb actuator.

eChair GAS-0S

eChair State Variable ManageL :
Hardware '
RO State Variable | Value
Sensors backPressure true
backPressu
e seatPressure true
seatPressu

notify
Y

Occ::upancy
Process Manager

H Light_Switch }

Process Managgr :

update :

* s

eLamp State Variable ManageL

Hardware eLamp - E

Artifact HW RW State Variable | Value E

Actuator s [Managemer bulb true H

bulb SW ;
eLamp GAS-OS

Fig. 6. Communication with hardware

The matching of the “Occupied” / "Not Occupied”
values of the Occupancy plug with the “On” / "Off"
states of the Light_Switch plug, is done by configg

the properties of the synapse. So for example by
mapping the “Occupied” state of the eChair to tBa™
state of the eLamp and the “Not_occupied” to “Offé
have the following (desired) behavior: “sitting time
chair switches the lamp on while leaving the chair
switches the lamp off”. The Mappings structure sold
records where the key is the Synapse itself and the
content is a number of values-to-states mappings. T
Process Manager uses these mappings to filter the
incoming information from input plugs and give a
specific meaning to the incoming data.

5. PERFORMANCE EVALUATION

To estimate the performance of GAS-OS and its
appropriateness to support the execution of ulogsit
applications, a performance and scalability analysi
based on theoretical analysis as well as on exgaitanh
data was carried out. The results involve the mgmor
requirements of GAS-OS and the throughput for the
case of eGt discovery in relation to the available
services (plugs). Finally a pure experimental
measurement of the synapsing process and
communication takes place in order to obtain an
indication of the time required to set up a ubigust
application.

The code size of the current implementation of G2S-

is approximately 200 KB. Measuring the memory
footprint is crucial in order to indicate that GAES can

be executed on resource constraint devices. We
measured the memory footprint of the GAS-OS kernel

by instrumented special measurement code inside-GAS
OS and second using the JProbe Memory Profiler tool
JProbe 9. In both cases results seem to converge to
approximately 23Kbytes of memory, while during
runtime more memory may be allocated depending on
the application (e.g. number of plugs, synapsegicde
capabilities etc.).

100

90 1284

Lt
bytes

3

84 Kbytes

\
\
\80

Synapses

32 Kbytes

20 60 100 120 140

40,
t0set

ec

100 200 300 400 500

Plugs
Fig. 7. Up: Maximum number of synapses when
constraining memory versus the number of plugs that
can participate. Down: Number of eGts that can be
discovered in a certain period of time versus tieler
of plugs.

600 700 800 900 1000

As plugs and synapses are mainly what increases
memory during the execution of an application, we
studied the relation between the number of plugs an
the number of synapses that participate for coinstra
amounts of memory. Maximum memory allocation is
achieved when each plug participates in only one
synapse (Fig. 7 Up). The more plugs participating i
one synapse, the more the allocated memory until we
reach the memory constraint. From this point and on
(peaks) more synapses can only be achieved if
distributed to fewer plugs.

In order to measure the throughput of GAS-OS we
consider the process of discovering eGts with saser
number of plugs. Studying the discovery procesggiv

running upon the Sun Personal Java on a Compag IPAQ an indication of the number of eGts that will be

PDA reference system. First, measurements were done

discovered in a certain period of time, and as a
consequence how long will the user have to wait in
order to discover his ubiquitous environment. The

supporting technologies Oxygen 10. Another inténgst
project is “Accord”, which is focused in developirg
Tangible Toolbox (based on the metaphor of a tdagib

number of eGts that can be discovered in successive puzzle) that will enable people to easily embed

time intervals, versus the number of plugs (Fig. 7
Down): in order to have maximum performance
overhead, we have to get to a large number of phegs
eGt.

TABLE 1 - Synapsing and Communication Times

Min (ms) 651 841 63
Max (ms) 1632 1422 W6
Average (ms) 914 1019 183.2

Min, Max and average times in milliseconds to create
the 1% and the last synapse in a GadgetWorld of 5 eGts
with a total of six synapses. After creating the 1%
synapse only a few milliseconds are required to create
the rest of the synapses, while the average time of
approximately 1 sec for all six synapses is acceptable.
For communication between 2 eGts having a synapse,
the average time is only a few milliseconds, which is
acceptable for real time applications.

functionality into existing artefacts around therteoand
enable these devices to be integrated with eacér oth
Accord 11. Other related research efforts are:

e Gaia Roman and Campbell 12 provides an
infrastructure to spontaneously connect devices
offering or using registered services. Gaia-OS
requires a specific system software infrastructure
using CORBA objects, while mobile devices
cannot operate autonomously without the
infrastructure;

e BASE Becker et al 13 is a component-oriented
micro-kernel based middleware, which, although
provides support for heterogeneity and a uniform
abstraction of services, the application
programming interface requires specific
programming capabilities by users;

e TinyOS Hill et al 14, an event driven operating
system, designed to provide support for deeply
embedded systems (i.e. sensor networks), which
require concurrency intensive operations while
constrained by minimal hardware resources;

The overall innovation of the Gadgetware Architeatu
Style (GAS) approach lies in viewing the procesereh
people configure and use complex collections of

Using code instrumentation, we measured the average interacting artifacts, as having much in commonhwit

time for making a synapse and for communicatingrin
application where five eGts are inter-connectedh wik

synapses (Table 1). These measurements include thethe Plug/Synapse model

overhead of the IEEE 802.11b protocol, while messag
exchanged vary from a few bytes to 1 Kbyte. Synapse
times refer to the amount of time needed from thiatp
the user specifies a synapse up to the time thapse

is completed. In cases where the eGts, specifiédrio

a synapse, are not aware of each other, a discoverythe

phase is also included in the overall synapsinge¢ss.
Thus, the min synapse time refers to a synapseutith
discovery, while the max to a synapse with a discpv
overhead. It is important that after synapses are
established (GW set-up) communication between eGts
is fast, satisfying our requirement for real tiresponse.

6. CONCLUSIONS

Several research efforts are attempting to design
ubiquitous computing architectures. Project “Snitst-

6 aims at developing small devices, which, when
attached to objects, enable their association basebe
concept of “context proximity”. Thus, the colleaiv
functionality of such a system is mainly composéd o
the computational abilities of the Smart-Its, witho
taking into account the “nature” of the participati
objects. A more complete and generic approach is
undertaken by project “Oxygen”, which enables human
centered computing by providing special computation
devices, handheld devices, dynamic networks aner oth

the process where system builders design software
systems out of components. In the proposed approach
provides a high-level
abstraction of the component interfaces and the
composition procedure.

Then, GAS-0S, the software that implements GAS, can
be considered as a component framework that
determines the interfaces that components may &iade
rules governing their composition. GAS-OS
manages resources shared by artifacts, and prothides
underlying mechanisms that enable communication
(interaction) among artifacts. For example, theppsed
concept supports the encapsulation of the internal
structure of an artifact and provides the means for
composition of an application, without having tcess
any code that implements the interface. Thus, this
approach provides a clear separation between
computational and compositional aspects of an
application, leaving the second task to ordinarypbe,
while the first can be undertaken by experienced
designers or engineers.

The benefit of this approach is that, to a largeemix
system design is already done, because the domdin a
system concepts are specified in the generic
architecture; all people have to do is realize #igec
instances of the system. Composition achieves
adaptability and evolution: a component-based
application can be reconfigured with low cost toetne
new requirements. The possibility to reuse devices
several purposes - not all accounted for duringr the
design - opens possibilities for emergent uses of

ubiquitous devices, whereby the emergence reguits f
actual use.

REFERENCES

10.

11.

12.

ISTAG in FP6: Working Group 1, IST Research
Content, Final Report,
http://www.cordis.lu/ist/istag.htm

Schollmeier R.,2001,“A Definition of Peer-to-Peer

Networking for the Classification of Peer-to-Peer

Architectures and Applications”, Proceedings of the
First International Conference on Peer-to-Peer
Computing P2P'01

Tanenbaum A.S., et al,August 1991,“The Amoeba
Distributed Operating System-A Status Report”,
Computer Communicationsol. 14 no. 6, pp. 324-
335

Kameas A., et al,2003,“An Architecture that Treats
Everyday Objects as Communicating Tangible
Components”, in Proceedings of the 1st IEEE
International Conference on Pervasive Computing
and Communications (PerComQ3Jort Worth,
USA

Christopoulou E., Kameas A., “GAS Ontology: an
ontology for collaboration among ubiquitous
computing devices”, to appear in 2004 Special
Issue on _Protégé the International Journal of
Human — Computer Studies

Holmquist L.E., et al,Sept. 2001,“Smatrt-Its Friends
A Technique for Users to Easily Establish
Connections between Smart Artifacts”, in
Proceedings of UBICOMP 2001Atlanta, GA,
USA

EJC websitehttp://www.embedded-web.com/

Pearlman M. and Haas Z.,August 1999,
“Determining the Optimal Configuration for the
Zone Routing Protocol”, IEEE Journal on Selected
Areas in Communication®/ol. 17, No 8

JProbe website:
http://www.quest.com/jprobe/index.asp

Oxygen project websitdtttp://oxygen.lcs.mit.edu/

Accord project website:
http://www.sics.se/accord/home.html

Roman M. and Campbell R.H., September
2000,“GAIA: Enabling Active Spaces”,
Proceedings of the™ACM SIGOPS European
Workshop pp. 229-234, Kolding, Denmark

13. Becker C., et al,2003,"BASE - A Micro-broker-

based Middleware For Pervasive Computing”, in
Proceedings of the__1st IEEE International
Conference on Pervasive Computing and
Communication (PerCom03frort Worth, USA

. Hill J, et al,2000,”System architecture directidos

networked sensors.” in Proceedings of ACM
Architectural Support for Programming Languages
and Operating Systeneenference

