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Problem Definition

Consider #n Boolean variables V = {x1,...,x,} and the
corresponding set of 2n literals L = {x1, X ..., Xn, X}
A k-clause is a disjunction of k literals of distinct under-
lying variables. A random formula ¢,, ,, in k Conjunctive
Normal Form (k-CNF) is the conjunction of m clauses,
each selected in a uniformly random and independent way
amongst the 2% (1) possible k-clauses on n variables in V.
The density ri of a k-CNF formula ¢,, ,, is the clauses-to-
variables ratio m/n.

It was conjectured that for each k > 2 there exists
a critical density 7} such that asymptotically almost all
(a.a.a.) k-CNF formulas with density r < r} (r > r}) are
satisfiable (unsatisfiable, respectively). So far, the conjec-
ture has been proved only for k = 2 [3,11]. For k > 3, the
conjecture still remains open but is supported by exper-
imental evidence [14] as well as by theoretical, but non-
rigorous, work based on Statistical Physics [15]. The value
of the putative threshold r} is estimated to be around 4.27.
Approximate values of the putative threshold for larger
values of k have also been computed.

As far as rigorous results are concerned, Friedgut [10]
proved that for each k > 3 there exists a sequence
rI(n) such that for any € > 0, a.a.a. k-CNF formu-
las Do, (¥ (m)—e)n] ((,bnjr(,;g(n)ﬂ)n]) are satisfiable (unsat-
isfiable, respectively). The convergence of the sequence
ri(n),n =0,1,...for k > 3 remains open.

Let now

= lim, L oori ()

= sup{ry : Pr[¢, |, is satisfiable — 1]}
and

7’;:+ = mn—><>o 7’;: (n)

= inf{r : Pr[¢, [+ n1is satisfiable — 0]} .

Obviously, 7}~ < r;*. Bounding from below (from above)
7~ (ri*, respectively) with an as large as possible (as small
as possible, respectively) bound has been the subject of in-
tense research work in the past decade.

Upper bounds to r;* are computed by counting argu-
ments. To be specific, the standard technique is to com-
pute the expected number of satistying truth assignments
of a random formula with density r; and find an as small
as possible value of ry for which this expected value ap-
proaches zero. Then, by Markov’s inequality, it follows
that for such a value of 4, a random formula ¢,, .7 is
unsatisfiable asymptotically almost always. This argument
has been refined in two directions: First, considering not
all satisfying truth assignments but a subclass of them with
the property that a satisfiable formula always has a satisfy-
ing truth assignment in the subclass considered. The re-
striction to a judiciously chosen such subclass forces the
expected value of the number of satisfying truth assign-
ments to get closer to the probability of satisfiability, and
thus leads to a better (smaller) upper bound r. However,
it is important that the subclass should be such that the
expected value of the number of satisfying truth assign-
ments can be computable by the available probabilistic
techniques.

Second, make use in the computation of the expected
number of satisfying truth assignments of typical charac-
teristics of the random formula, i. e. characteristics shared
by a.a.a. formulas. Again this often leads to an expected
number of satisfying truth assignments that is closer to the
probability of satisfiability (non-typical formulas may con-
tribute to the increase of the expected number). Increas-
ingly better upper bounds to r;* have been computed us-
ing counting arguments as above (see the surveys [6,13]).
Dubois, Boufkhad and Mandler [7] proved rj* < 4.506.
The latter remains the best upper bound to date.

On the other hand, for fixed and small values of k (es-
pecially for k = 3) lower bounds to 7}~ are usually com-
puted by algorithmic methods. To be specific, one designs
an algorithm that for an as large as possible ry it returns
a satisfying truth assignment for a.a.a. formulas ¢, |,, .
Such an ry is obviously a lower bound to ;. The simpler
the algorithm, the easier to perform the probabilistic anal-
ysis of returning a satisfying truth assignment for a given
1, but the smaller the r;’s for which a satisfying truth as-
signment is returned asymptotically almost always. In this
context, backtrack-free DPLL algorithms [4,5] of increas-
ing sophistication were rigorously analyzed (see the sur-
veys [2,9]). At each step of such an algorithm, a literal
is set to TRUE and then a reduced formula is obtained
by (i) deleting clauses where this literal appears and by
(ii) deleting the negation of this literal from the clauses it
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appears. At steps at which 1-clauses exist (known as forced
steps), the selection of the literal to be set to TRUE is made
so as a 1-clause becomes satisfied. At the remaining steps
(known as free steps), the selection of the literal to be set
to TRUE is made according to a heuristic that characterizes
the particular DPLL algorithm. A free step is followed by
a round of consecutive forced steps. To facilitate the prob-
abilistic analysis of DPLL algorithms, it is assumed that
they never backtrack: if the algorithm ever hits a contradic-
tion, i. e. a 0-clause is generated, it stops and reports fail-
ure, otherwise it returns a satisfying truth assignment. The
previously best lower bound for the satisfiability threshold
obtained by such an analysis was 3.26 < r;~ (Achlioptas
and Sorkin [1]).

The previously analyzed such algorithms (with the ex-
ception of the Pure Literal algorithm [8]) at a free
step take into account only the clause size where the se-
lected literal appears. Due to this limited information ex-
ploited on selecting the literal to be set, the reduced for-
mula in each step remains random conditional only on the
current numbers of 3- and 2-clauses and the number of yet
unassigned variables. This retention of “strong” random-
ness permits a successful probabilistic analysis of the algo-
rithm in a not very complicated way. However, for k = 3
it succeeds to show satisfiability only for densities up to
a number slightly larger than 3.26. In particular, in [1] it is
shown that this is the optimal value that can be attained by
such algorithms.

Key Results

In [12], a DPLL algorithm is described (and then prob-
abilistically analyzed) such that each free step selects the
literal to be set to TRUE taking into account its degree (i. e.
its number of occurrences) in the current formula.

Algorithm Greedy [Section 4.A in 12]

The first variant of the algorithm is very simple: At each
free step, a literal with the maximum number of occur-
rences is selected and set to TRUE. Notice that in this
greedy variant, a literal is selected irrespectively of the
number of occurrences of its negation. This algorithm suc-
cessfully returns a satisfying truth assignment for a.a.a.
formulas with density up to a number slightly larger
than 3.42, establishing that 5~ > 3.42. Its simplicity, con-
trasted with the improvement over the previously ob-
tained lower bounds, suggests the importance of analyzing
heuristics that take into account degree information of the
current formula.

Algorithm CL [Section 5.A in 12]

In the second variant, at each free step ¢, the degree of
the negation T of the literal 7 that is set to TRUE is also
taken into account. Specifically, the literal to be set to
TRUE is selected so as upon the completion of the round
of forced steps that follow the free step ¢, the marginal
expected increase of the flow from 2-clauses to 1-clauses
per unit of expected decrease of the flow from 3-clauses
to 2-clauses is minimized. The marginal expectation cor-
responding to each literal can be computed from the num-
bers of its positive and negative occurrences. More specifi-
cally, if m;, i = 2, 3 equals the expected flow of i-clauses to
(i — 1)-clauses at each step of a round, and 7 is the literal
set to TRUE at the beginning of the round, then 7 is chosen
so as to minimize the ratio | ﬁr’sj | of the differences Ams,
and Amj3 between the beginning and the end of the round.
This has as effect the bounding of the rate of generation of
1-clauses by the smallest possible number throughout the
algorithm. For the probabilistic analysis to go through, we
need to know for each i,j the number of literals with de-
gree i whose negation has degree j. This heuristic succeeds
in returning a satisfying truth assignment for a.a.a. formu-
las with density up to a number slightly larger than 3.52,
establishing that 3~ > 3.52.

Applications

Some applications of SAT solvers include Sequential Cir-
cuit Verification, Artificial Intelligence, Automated de-
duction and Planning, VLSI, CAD, Model-checking and
other type of formal verification. Recently, automatic SAT-
based model checking techniques were used to effectively
find attacks on security protocols.

Open Problems

The main open problem in the area is to formally show
the existence of the threshold r: for all (or at least some)
k > 3. To rigorously compute upper and lower bounds
better than the ones mentioned here still attracts some in-
terest. Related results and problems arise in the framework
of variants of the satisfiability problem and also the prob-
lem of colorability.
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Problem Definition

The application of techniques from Combinatorial and Al-
gebraic Topology has been successful at solving a number
of problems in distributed computing. In 1993, three in-
dependent teams [3,15,17], using different ways of gener-
alizing the classical graph-theoretical model of distributed
computing, were able to solve set agreement a long-
standing open problem that had eluded the standard ap-
proaches. Later on, in 2004, journal articles by Herlihy and
Shavit [15] and by Saks and Zaharoglou [17] were to win
the prestigious Godel prize. This paper describes the ap-
proach taken by the Herlihy/Shavit paper, which was the
first draw the connection between Algebraic and Combi-
natorial Topology and Distributed Computing.

Pioneering work in this area, such as by Biran, Moran,
and Zaks [2] used graph-theoretic notions to model un-
certainty, and were able to express certain lower bounds in
terms of graph connectivity. This approach, however, had
limitations. In particular, it proved difficult to capture the
effects of multiple failures or to analyze decision problems
other then consensus.

Combinatorial topology generalizes the notion of
a graph to the notion of a simplicial complex, a structure
that has been well-studied in mainstream mathematics for
over a century. One property of central interest to topolo-
gists is whether a simplicial complex has no “holes” below
a certain dimension k, a property known as k-connectiv-
ity. Lower bounds previously expressed in terms of con-
nectivity of graphs can be generalized by recasting them
in terms of k-connectivity of simplicial complexes. By ex-
ploiting this insight, it was possible to solve some open
problems (k-set agreement, renaming), to pose and solve
some new problems ([13]), and to unify a number of dis-
parate results and models [14].

Key Results

A vertex v is a point in a high-dimensional Euclidean
space. Vertexes Vo, . . . , v, are affinely independent if v, —
V0, ..., vy —v are linearly independent. An n-dimensional
simplex (or n-simplex) S" = (5o, ..., s,) is the convex hull
of a set of n + 1 affinely-independent vertexes. For exam-
ple, a 0-simplex is a vertex, a 1-simplex a line segment,
a 2-simplex a solid triangle, and a 3-simplex a solid tetra-
hedron. Where convenient, superscripts indicate dimen-
sions of simplexes. The $, ..., 5, are said to span S". By
convention, a simplex of dimension d < 0 is an empty
simplex.

A simplicial complex (or complex) is a set of simplexes
closed under containment and intersection. The dimen-
sion of a complex is the highest dimension of any of its
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