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Abstract. The recent progress on the tower number field sieve (TNFS) method reduce the complexity
of the discrete logarithm problem (DLP) in finite extensions Fqk of composite degree and this has a
major impact on the selection of pairing-friendly elliptic curve parameters. In this paper we revise
the criteria for selecting pairing-friendly elliptic curves in order to surpass the TNFS attacks in finite
extensions of composite embedding degree. We also update the criteria for selecting suitable elliptic
curves of prime embedding degree in order to meet today’s security requirements.
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1 Introduction

Let E/Fq be an ordinary elliptic curve over a prime field Fq, with Frobenius trace t = q+1−#E(Fq),
where E(Fq) is the group of Fq-rational points for which #E(Fq) ≈ q. Let E[r] be the group of r-
torsion points on E/Fq, for some r ∈ Z>0, i.e. all points on the curve whose order is finite and equal
to r. By D > 0 we denote the CM discriminant of the elliptic curve E/Fq. This is the square-free
integer satisfying the CM equation Dy2 = 4q − t2, for some y ∈ Z.

In general, an asymmetric pairing on an elliptic curve E/Fq is a bilinear, non-degenerate,
efficiently computable map of the form ê : G1 ×G2 −→ GT, where G1,G2 ⊂ E(Fq) and GT ⊂ F∗

qk
,

such that #G1 = #G2 = #GT = r, for some prime r. The positive integer k is called the embedding
degree of the curve E/Fq with respect to r and it is the smallest positive integer such that E[r] ⊆
E(Fqk). In pairing-based applications, an elliptic curve must satisfy certain rules. In particular:

1. The order of E/Fq is #E(Fq) = hr, for some small cofactor h ≥ 1 and a large prime r.
2. The ρ-value defined as ρ = log q/ log r must be close to 1, so that log r ≈ log q.
3. The prime r must be large enough, so that the DLP in G1,G2 is computationally hard.
4. The embedding degree k must be large enough, so that the DLP in the extension field Fqk (and

hence in GT) is approximately as hard as in G1,G2.
5. The embedding degree k must be small enough for efficient operations in GT.
6. The sizes of r and qk should provide a security level of 128, 256, or 512 bits, corresponding to

an AES key used for symmetric cryptography.

An elliptic curve E/Fq with embedding degree k satisfying these properties is called pairing-friendly.
A survey of methods for constructing pairing-friendly elliptic curves can be found in [6]. However

the smallest ρ-values are achieved by the Brezing-Weng method [2]. In this case the curve parameters
q, t, r are represented as polynomial families q(x), t(x), r(x) ∈ Q[x] respectively (see Section 2 for the
precise definition). Then pairing-friendly parameters are obtained by evaluating these polynomials
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at some x0 ∈ Z, such that q(x0) and r(x0) are both primes and 4q(x0) − t(x0)2 = Dy2, for some
square-free D > 0 and some y ∈ Z. Taking the above conditions into account, Freeman et al. [6]
suggested that pairing-friendly parameters should be chosen as in Table 1.

Table 1. Bit size of curve parameters and corresponding embedding degrees for a desired security level.

Security Level Subgroup Size Extension Field Size Embedding Degree k

in bits log r k log q ρ ≈ 1 ρ ≈ 2

128 256 3000− 5000 12− 20 6− 10

192 384 8000− 10000 20− 26 10− 13

256 512 14000− 18000 28− 36 14− 18

The complexity of the DLP in G1, G2 is O(
√
r) and it is achieved by Pollard’s rho algorithm.

In practice this means that for a n bit symmetric key, we need a curve whose order contains a
prime of size 2n, i.e. twice the security level. On the other hand, the complexity of the DLP in a
finite extension Fqk depends on the choice of the embedding degree k and the characteristic of the
extension field. In particular recall the usual L-notation given by the formula:

LN [`, c] := exp
[
(c+ o(1))(lnN)`(ln lnN)1−`

]
, with N = qk, (1.1)

for some real constants ` ∈ [0, 1] and c > 0. In general for a finite field extension, the NFS attack
applies with complexity LN [1/3, 1.923]. This complexity is still true for extensions of prime degree.
When k is composite and q has a special form (it derives from the evaluation of a polynomial at
some value), recent variants of the TNFS method, such as the extended TNFS (exTNFS) or special
exTNFS (SexTNFS) algorithms [7, 9] reduce the complexity of the DLP to LN [1/3, 1.526].

The new improvements have a major effect on the construction of pairing-friendly curves with
composite embedding degree. The most important consequence is that the extension field should
be taken larger than before. This means that the requirement ρ ≈ 1 may not be an ideal choice
for composite k any more. For example the Barreto-Naehrig (BN) curves [1] for k = 12 were ideal
for generating a 256 bit prime and a 3072 bit extension field (i.e. ρ ≈ 1). Such parameters in the
pre-TNFS period would correspond to an 128 bit security level. After the improvements of the
TNFS method and according to Equation (1.1), an extension field of this size reaches a security
level of 110 bits. To achieve an extension field with 128 bit security level, one should choose q12

around 4608 bits. Since ρ ≈ 1 in BN curves, this would result to log r ≈ 384 and hence a mismatch
between the security level in G1, G2 and in GT.

In this paper we revise the criteria for selecting polynomial families (q(x), t(x), r(x)) considering
the impact of the TNFS variants. For composite embedding degrees we propose the use of families
that are likely to produce a balanced security level between G1,G2 and GT and produce pairing-
friendly parameters that are resistant to TNFS attacks. Additionally, for prime values of k we
recommend the use of polynomial families that achieve balanced security levels, but were not
considered before due to a larger ρ-value. All families presented in this paper can provide a security
level of 128, 256 and 512 bits. We produce numerical examples of cryptographic value obtained by
our recommended families where the asymptotic complexity of the DLP in the finite extensions Fqk

is measured by using Equation (1.1) and ignoring the constant o(1).
In Section 2 we give an overview of families of pairing-friendly elliptic curves and focus on the

Brezing-Weng method [2] for their construction. In Sections 3 and 4 we present our suggestions on
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the selection of Brezing-Weng polynomial families that are suitable for producing pairing-friendly
parameters resistant to the TNFS variants. We also give numerical examples of pairing-friendly
parameters with cryptographic value. Finally, we conclude this paper in Section 5, summarizing
our recommendations for selecting suitable pairing-friendly parameters.

2 Constructing Pairing-Friendly Elliptic Curves

For a prime q, let E/Fq be an elliptic curve with trace t and order #E(Fq) = hr, for some h ≥ 1 and
a prime r. For the rest of this paper we assume that q(x), t(x) and r(x) are non-zero polynomials
with coefficients in Q representing the prime q, the trace t and the prime r respectively.

Definition 1 (Freeman et al. [6]) A polynomial triple (q(x), t(x), r(x)) parameterizes a family
of pairing-friendly elliptic curves with embedding degree k and CM discriminant D if:

1. q(x) represents primes, i.e. it is non-constant, irresucible, with positive leading coefficient. Ad-
ditionally, q(x) ∈ Z, for some (or infinitely many) x ∈ Z and gcd({q(x) : x, q(x) ∈ Z}) = 1,

2. r(x) is non-constant, irreducible, integer-valued, with positive leading coefficient,
3. r(x) divides both q(x)+1−t(x) and Φk(t(x)−1), where Φk(x) is the kth cyclotomic polynomial,
4. there are infinitely many integer solutions (x, y) for the parameterized CM equation

Dy2 = 4q(x)− t(x)2. (2.1)

The ρ-value of a polynomial family is defined as ρ(q, t, r) = deg q/deg r. Condition 3 of Defini-
tion 1 implies that the order of the curve has a polynomial representation #E(Fq(x)) = h(x)r(x),

where h(x) ∈ Q[x] is the cofactor and t(x)− 1 is a primitive kth root of unity modulo r(x). There
are three types of families depending on the form of the polynomial f(x) = 4q(x)− t(x)2.

Definition 2 (Dry lo [3]) A polynomial family (q(x), t(x), r(x)) is:

1. complete, if f(x) = Dy(x)2, for some square-free D > 0 and y(x) ∈ Q[x],
2. complete with variable discriminant (CVD), if f(x) = g(x)y(x)2, for some linear g(x) ∈ Q[x],
3. sparse, if g(x) is quadratic, non-square, with positive leading coefficient.

Examples of complete families can be found in [1, 2, 6, 8, 12, 13]. CVD families are studied in [3, 6,
10, 11] and finally, a few examples of sparse families are presented in [3, 5, 6]. In this paper we focus
on complete and CVD polynomial families. This is because such families are easier to find and also
the generation of pairing-friendly parameters is simpler than in the case of sparse families.

2.1 The Brezing-Weng Method

The most commonly used method for constructing pairing-friendly polynomial families is due to
Brezing and Weng [2]. This method was initially applied for complete families and was later modified
by Dry lo [3], for the other two types of Definition 2. The number field K in Algorithm 1 is usually
chosen as the lth cyclotomic field Q(ζl), for some l > 0, such that k | l and

√
−D ∈ Q(ζl). Then

r(x) is the lth cyclotomic polynomial Φl(x) and thus K ∼= Q[x]/〈r(x)〉. A more detailed description
of the Brezing-Weng algorithm for complete families is given in Section 3.

In [3] (Algorithm 5, p. 312), Dry lo generalized the Brezing-Weng method in order to produce
CVD families of pairing-friendly elliptic curves. His method works by fixing a number field K
containing the primitive kth roots of unity and taking r(x) as the minimal polynomial of −z2, for
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Algorithm 1 The Brezing-Weng method [2].

Input: A number field K containing the kth roots of unity and
√
−D, for some square-free D > 0 and a fixed k > 0.

Output: A complete family with embedding degree k and discriminant D.

1: Find a polynomial r(x) ∈ Q[x], such that K ∼= Q[x]/〈r(x)〉.
2: Choose a primitive kth root of unity ζk ∈ K.
3: Let t(x), y(x) ∈ Q[x] be the polynomials mapping to ζk + 1 and (ζk − 1)/

√
−D in K respectively.

4: Compute q(x) by the relation 4q(x) = t(x)2 +Dy(x)2.
5: If q(x) represents primes, return (q(x), t(x), r(x)).

some z ∈ K, such that z2 is a primitive element of K. The difference between complete and CVD
families is that the CM discriminant in the first case is some fixed non-square positive value D,
while in the case of CVD families it is represented by some linear term g(x) = cx + d ∈ Q[x].
However, we can always apply the linear transformation x → (x− d)/c so that g(x) = x. We give
a full analysis on how to construct CVD families via the Brezing and Weng method in Section 4.
Sparse families can also be constructed by modifying the Brezing-Weng method (see [3]), however
we do not consider this type of families here. For such examples we refer to [3, 5, 6]

In any case we need the polynomials q(x), t(x) and r(x) to be integer-valued. This condition
can be tested by examining whether there exists a linear transformation x → (az + b) such that
q(az + b), t(az + b) and r(az + b) have integer coefficients. When (q(x), t(x), r(x)) is a complete
family, we can generate suitable pairing-friendly parameters by searching for some x0 ∈ Z, such
that q(x0) and r(x0) are both primes of a desired size (see Section 3 for details). On the other hand,
when (q(x), t(x), r(x)) is a CVD family, we are searching for some x0 ∈ Z, such that g(x0) = x0 is a
product of a square-free positive D times some perfect square y2 and q(x0), r(x0) are both primes
of a desired size (see Section 4 for the precise algorithm).

2.2 Our Contribution

Numerous examples can be found in the literature for both complete and CVD families of pairing-
friendly elliptic curves. These examples were aiming for ρ-values as close to 1 as possible. However
this condition may not be ideal any more for composite k, due to the improvements of the TNFS
method [7, 9] for extension fields of composite degree. In this paper we present a revision of the cri-
teria for selecting pairing-friendly polynomial families for prime and composite embedding degrees
in the range 5 ≤ k ≤ 39. More precisely, our contribution is summarized as follows.

1. Composite k: We propose complete and CVD families for various composite k that are suitable
for generating parameters resistant to the TNFS attacks presented in [7, 9]. These families have
larger ρ-values compared to previous results, in order to enlarge the extension field size k log q
and hence increase the complexity of the DLP in GT.

2. Prime k: We recommend complete and CVD families that have not been considered before
due to a larger ρ-value than other families. We argue that our proposals are ideal for generating
pairing-friendly parameters at a high and balanced security level in G1,G2 and GT.

3. Numerical Examples: For each of the recommended families we provide numerical examples
of pairing-friendly parameters achieving a security level of 128, 256, or 512 bits. For extension
fields of composite embedding degree we give an asymptotic complexity of LN [1/3, 1.526] group
operations achieved by the SexTNFS method. Since the TNFS variants do not apply for prime
degree extension fields, we generated parameters by following Table 1. Then the complexity of
the DLP in Fqk is computed by LN [1/3, 1.923], where N = qk.
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We argue that at present, finding families with the smallest ρ-value is not the main concern. The
families we use must have ρ-values such that the DLP in the extension field is resistant to various
NFS attacks and approximately as hard as in the r-order subgroups G1,G2 of E(Fq). To this end
our recommendations consist of families of pairing-friendly elliptic curves with ρ(q, t, r) ≤ 2.

3 Complete Families Revised

We give a more detailed description of the Brezing-Weng algorithm for constructing complete
families of pairing-friendly elliptic curves. By the discussion in Section 2, in order to apply the
Brezing-Weng method, we need to fix a number field K containing the primitive kth roots of unity,
for some k > 0 and the element

√
−D, for some square-free positive CM discriminant. By [12] we

know that the element
√
−D is contained in some cyclotomic field Q(ζm), for some m > 0. Thus

Algorithm 2 The Brezing-Weng method for complete families of pairing-friendly elliptic curves.

Input: An embedding degree k and a square-free D > 0, such that
√
−D ∈ Q(ζm), for some m > 0.

Output: A complete family with embedding degree k and discriminant D.

1: Set K = Q(ζl), where l = lcm(k,m) and r(x) = Φl(x), so that K ∼= Q[x]/〈r(x)〉.
2: Let u(x) and z(x) be the polynomials mapping to ζl and

√
−D respectively in Q[x]/〈r(x)〉.

3: For every i = 1, ..., ϕ(l)− 1, such that l/ gcd(i, l) = k set:

t(x) ≡
[
u(x)i + 1

]
mod r(x), y(x) ≡

[(
u(x)i − 1

)
z(x)−1

]
mod r(x). (3.1)

4: Compute q(x) by the relation 4q(x) = t(x)2 +Dy(x)2.
5: If q(x) represents primes, return (q(x), t(x), r(x)).

for a given embedding degree k and a CM discriminant D we can fix the number field K as Q(ζl),
where l = lcm(k,m). In this case we can set r(x) = Φl(x), where deg r = ϕ(l). In our examples
we have considered only cases where r(x) = Φl(x). However the polynomial r(x) can be chosen as
any irreducible polynomial with positive leading coefficient (see for example [1, 8, 13]). We get the
modified Brezing-Weng method presented in Algorithm 2. The complete families obtained by this
algorithm have ρ-values less than 2 and particularly:

ρ(q, t, r) =
deg q

deg r
=

2 max{deg t,deg y}
deg r

≤ 2(ϕ(l)− 1)

ϕ(l)
< 2.

Remark 1 In Algorithm 2, t(x) and y(x) are taken in Q[x]/〈r(x)〉 and so deg t,deg y ≤ ϕ(l)− 1.
Alternatively, we can choose lifts of these polynomials in Q[x] (see [2, 3]). Then by Equation (3.1):

t(x) = α(x)r(x) +
[
u(x)i + 1

]
mod r(x), y(x) = β(x)r(x) +

[(
u(x)i − 1

)
z(x)−1

]
mod r(x),

for some α(x), β(x) ∈ Q[x]. For example to achieve ρ(q, t, r) = 2 these lifts must be constant. ut

The conditions for the element
√
−D to lie in Q(ζl) are given in the next lemma. This is taken

from Murphy and Fitzpatrick [12].

Lemma 1 Let ζl be a primitive lth-root of unity and D a square-free positive integer.

1. If 2 - D, 4 - D and D | l, then:
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– If D ≡ 1 mod 4, we have
√
D ∈ Q(ζl) and Q(

√
D) ⊂ Q(ζl).

– If D ≡ 3 mod 4, we have
√
−D ∈ Q(ζl) and Q(

√
−D) ⊂ Q(ζl).

2. If 4 | l and D | l, but 2 - D, then
√
D,
√
−D ∈ Q(ζl) and Q(

√
D),Q(

√
−D) ⊂ Q(ζl).

3. If 8 | l and D | l, then
√
D,
√
−D ∈ Q(ζl) and Q(

√
D),Q(

√
−D) ⊂ Q(ζl).

Proof. See [12], Lemma 2.3. ut

The representation of
√
−D in the cyclotomic field Q(ζl) is based on the following facts. Let p be

an odd prime, ζp a primitive pth-root of unity and Q(ζp) the pth-cyclotomic field. Then:

(p−1)/2∏
i=1

(
ζip − ζ−ip

)
=

{ √
p, if p ≡ 1 mod 4√
−p, if p ≡ 3 mod 4

whereas
√

2 = ζ4ζ8(1 + ζ4) and
√
−2 = ζ8(1 + ζ4).

Algorithm 3 Finding suitable parameters using complete families.
Input: A complete family (q(x), t(x), r(x)) and a desired bit size Sr.
Output: A prime q, a (nearly) prime r and a Frobenius trace t.

1: Find a, b ∈ Z, so that q(x) ∈ Z, for every x ≡ b mod a.
2: Search for x0 ≡ b mod a, such that r(x0) = nr, for some prime r and n ≥ 1.
3: Set q = q(x0), r = r(x0)/n and t = t(x0).
4: If log r ≈ Sr and q is prime, return (q, t, r).

For every output of Algorithm 2, we need to make sure that the polynomials q(x), t(x) and r(x)
have integer coefficients. If this is true, then there exist a, b ∈ Z, such that q(x) ∈ Z, for every
x ≡ b mod a. In order to generate suitable elliptic curve parameters q, t and r, we are searching
for some x0 ≡ b mod a, such that q(x0) and r(x0) are both primes of a desired size. As stated in
many papers we can relax this condition and allow r(x0) to contain a small factor n ≥ 1. In this
case r = r(x0)/n must be a large prime. This process is described in Algorithm 3. We also need to
point out that the search for suitable parameters is affected by the degree of the polynomial r(x)
and as deg r grows it is harder to find suitable candidates x0.

3.1 Examples for 128, 192 and 256 bit Security Level

In Tables 2–4 we present examples of complete families with ρ(q, t, r) < 2 produced by Algorithm 2
aiming at a security level of 128, 192 and 256 bits respectively. Recall that our basic concern is not
to find the families with the smallest ρ-values. We are interested in families with ρ-values such that
the DLP in r-order subgroups G1,G2 of E(Fq) and in the extension field Fqk have approximately
the same difficulty. Therefore we also introduce complete families with ρ(q, t, r) = 2 in Table 5. All
complete families presented in this section derive from the following setup:

r(x) = Φl(x), u(x) = x, t(x) ≡
[
u(x)i + 1

]
mod r(x),

for some i = 1, . . . , ϕ(l) − 1, where u(x) is a primitive lth root of unity in Q[x]/〈r(x)〉. In the
case where ρ(q, t, r) = 2 we are taking some constant lifts α(x), β(x) ∈ Q for the polynomials
t(x) and y(x) respectively. The asymptotic complexity of the DLP in the finite extension Fqk is
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measured by the usual L-notation given in Equation (1.1). In particular, for prime embedding
degree, the complexity of Fqk is given by Lqk [1/3, 1.923], while when k is composite, according to
the improvements of the TNFS method we have Lqk [1/3, 1.526].

In Table 2 we give our recommendations for complete families families that are likely to achieve
an 128 bit security level in G1,G2 and Fqk . In this case the prime r must be approximately 256 bit
long. On the other hand the asymptotic complexity of the DLP in Fqk implies that k log q ≈ 2530
when k is prime and k log q ≈ 4352 when k is composite. In Table 2 we observe that the best balance
is achieved by the pairs (k, ρ) = (10, 1.75) and (12, 1.5). The remaining examples also achieve an
acceptable balance but with a slightly larger extension field. Another optimal balance in the prime
case can be achieved by families with k = 5 and ρ(q, t, r) = 2, where 5 log q ≈ 2550. On the other
hand, for the composite case, we can reach an extension field with 128 bit security level by choosing
k = 9 and ρ(q, t, r) = 2, where 9 log q ≈ 4608. For k = 8 the best ρ-values in the literature have

Table 2. Complete families at 128 bit security level with r(x) = Φl(x) and t(x) ≡ (xi + 1) mod r(x).

k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0

7
7 7 3 1.6667 {1, 4} mod 7

10
30 15 3 1.7500 {1, 3, 6, 13} mod 15 11 33 3 24 1.3000 {1, 2} mod 3

21 3 3 1.6667 1 mod 3 40 2 36 1.8750 {0, 4} mod 4
12

12 3 1 1.5000 1 mod 3

10 20 5 18 1.7500 {0, 4, 6, 10} mod 10 11 33 3 12 1.2000 1 mod 3 24 2 2 1.7500 1 mod 2

ρ(q, t, r) = 1.5, which corresponds to extension fields of size approximately 3072 bits. We argue
that the optimal case for k = 8 should be revised and use families with ρ(q, t, r) = 2. This will
give us extension fields around 4096 bits. By Remark 1 we can construct complete families with
ρ(q, t, r) = 2 by taking constant lifts of t(x) and y(x) in Q[x]. Such examples appear in Table 5 for
embedding degrees 5, 8, 9 and a security level of 128 bits.

Recommendations of complete families for 192 bit security level are presented in Table 3. In
this case the elliptic curve order must contain a prime r of size 384 bits. The prime embedding
degree case corresponds to k log q ≈ 6670, while for composite k we have k log q ≈ 11670. The

Table 3. Complete families at 192 bit security level with r(x) = Φl(x) and t(x) ≡ (xi + 1) mod r(x).

k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0

11 11 11 1 1.8000 1 mod 11

13 39 3

3 1.3333

1 mod 3
21 21 3

2 1.5000 {1, 2} mod 3

11 11 11

6 1.7000 {1, 2} mod 3 6 1.5833 10 1.6667 1 mod 3

18 1.8000
1 mod 3

18 1.5000 21 21 7 5 1.6667 {2, 4} mod 7

27 1.6000 30 1.4167 {1, 2} mod 3 24 24 2 1 1.5000 1 mod 4

30 1.9000 {1, 2} mod 3 16 16 2 1 1.7500 1 mod 2 24 24 3 1 1.2500 1 mod 3

best balance for the first case is achieved by the entries (k, ρ) = (11, 1.6) and (13, 1.3333). For
the composite case, the best balance is obtained by the pairs (k, ρ) = (21, 1.5) and (24, 1.25). For
composite embedding degrees, we can also obtain a nice balance by considering complete families
with k = 15 and ρ(q, t, r) = 2, where 15 log q ≈ 11520. Additionally, one could also choose families
with embedding degree 16 and ρ(q, t, r) = 2, where the extension field is 16 log q ≈ 12288. Such
examples are presented in Table 5 and require constant lifts of the polynomials t(x) and y(x).
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For a security level of 256 bits we recommend the complete families of Table 4. For prime
embedding degrees the optimal case is to use extension fields of size approximately 13500 bits,
while for composite degree extension fields we should have k log q ≈ 23780. In the composite k
case the best families are given by the pairs (k, ρ) = (33, 1.4) and (39, 1.167). For prime k we do
not have any examples in Table 4. However an 256 bit security level in Fqk can be achieved by

Table 4. Complete families at 256 bit security level with r(x) = Φl(x) and t(x) ≡ (xi + 1) mod r(x).

k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0 k l D i ρ(q, t, r) x0

27 27 3 7 1.7778 1 mod 3 30 30 3 1 1.5000 1 mod 3 32 32 2 1 1.6250 1 mod 2

28 28 7
1 1.5000 1 mod 7

33 33 3
14 1.4000 1 mod 3

39 39 3
1 1.1670 1 mod 3

3 1.8333 {1, 2, 4} mod 7 26 1.5000 {1, 2} mod 3 2 1.2500 {1, 2} mod 3

selecting complete families with k = 13 and ρ(q, t, r) = 2. This case generates extension fields with
13 log q ≈ 13312 bits. Two complete families for D = 3, 13 are given in Table 5. On the other hand,
for the composite case we could choose k = 24 and ρ(q, t, r) = 2, for which 24 log q ≈ 24576 bits.
Examples appear in Table 5, for D = 2, 3.

Table 5. Complete families at 128, 192 and 512 bit security level with lifts of t(x) and y(x).

k l D i α(x) β(x) ρ(q, t, r) x0 Security Level

5 15 3 3 1 1 2.0000 {0, 2, 3} mod 3

128

5 20 5 4 1 0 2.0000 {0, 2, 8, 10} mod 10

8 8 2 3 1 0 2.0000 1 mod 2

8 24 3 9 1 −1 2.0000 1 mod 3

9 9 3 5 1 1 2.0000 2 mod 3

15 15 3 4 1 1 2.0000 {0, 3} mod 3

192

15 15 15 7 1 1 2.0000 {11, 14} mod 15

15 60 5 4 1 0 2.0000 {0, 4, 6, 10} mod 10

16 16 2 1 1 0 2.0000 {0, 1, 2} mod 2

16 48 3 9 1 1 2.0000 2 mod 3

13 39 3 12 1 1 2.0000 {0, 3} mod 3

256
13 52 13 4 1 0 2.0000 {0, 2, 4, 8, 18, 22, 24, 26} mod 26

24 24 3 6 1 1 2.0000 2 mod 3

24 24 2 7 1 1 2.0000 2 mod 4

More of complete families can be constructed by choosing the polynomial r(x) to be other than
the lth cyclotomic polynomial. For such examples, see [8, 13], which however need to be updated,
as the proposed families were produced in the pre-TNFS period. We only give one example of
non-cyclotomic families here. Recall that for k = 12 Barreto and Naehrig [1] proposed a complete
family for D = 3 and ρ(q, t, r) = 1. In particular the BN family is:

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1, t(x) = 6x2 + 1, q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

and u(x) = 6x2 is a primitive 12th root of unity in Q[x]/〈r(x)〉. This example was ideal in the pre-
TNFS period, since for a 256 bit prime r, it produces an extension field of 3072 bit. Due to the recent
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improvements of the TNFS method, we need to consider extensions fields with 12 log q ≈ 4608 and
so ρ(q, t, r) = 1.5. The next example is produced by Barreto and Naehrig’s setup.

Example 1 For l = k = 12 and D = 3, set

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

u(x) = 6x2 =⇒ t(x) ≡
[
u(x)7 + 1

]
mod r(x) = −6x2 + 1

q(x) = 1728x6 + 2160x5 + 1548x4 + 756x3 + 240x2 + 54x+ 7

Then ρ(q, t, r) = 1.5 and all polynomials have integer coefficients. ut

Table 6. Numerical examples of pairing-friendly parameters from complete families.

Family k D x0 n log r k log q ρ L
qk

[1/3, c]

Table 5
5 5 4339430220 ≡ 0 mod 10 1 256 2550 1.9922 128

5 3 4467952995 ≡ 0 mod 3 1 256 2560 2.0000 128

Table 2
7 7 10179463309681 ≡ 1 mod 7 7 256 3003 1.6758 137

7 3 2714125 ≡ 1 mod 3 1 256 2975 1.6602 136

Table 5

8 2 60985336081474503491 ≡ 1 mod 2 82 256 4184 2.0430 125

8 3 4296478348 ≡ 1 mod 3 1 256 4096 2.0000 124

8 3 7562084023 ≡ 1 mod 3 73 256 4200 2.0508 125

9 3 7567161105890 ≡ 2 mod 3 1 256 4617 2.0039 130

Table 2

10 5 4658060020 ≡ 0 mod 10 1 256 4470 1.7461 128

10 15 4506234361 ≡ 1 mod 15 1 256 4470 1.7461 128

11 3 9328 ≡ 1 mod 3 463 254 3454 1.2362 145

12 3 19476673796408493595 ≡ 1 mod 3 1 256 4584 1.4922 130

Exam. 1 12 3 7968144943122361485 1 256 4644 1.5117 130

Table 3

11 3 621071 ≡ 2 mod 3 1 384 7172 1.6979 197

11 3 609856 ≡ 1 mod 3 1 384 6743 1.5964 192

13 3 66427 ≡ 1 mod 3 1 384 6643 1.3307 191

13 3 65771 ≡ 2 mod 3 1 384 7046 1.4115 195

Table 5

15 3 663228522589779 ≡ 0 mod 3 751 384 11805 2.0495 192

15 15 281474976719246 ≡ 11 mod 15 1 384 11550 2.0052 190

15 5 17399844 ≡ 4 mod 10 1 384 11505 1.9974 190

16 2 297221152944808 ≡ 0 mod 2 1 384 12272 1.9974 195

16 3 17003435 ≡ 2 mod 3 1 384 12288 2.0000 195

Table 3
21 3 4371055696 ≡ 1 mod 3 1 384 12054 1.4948 193

24 3 524070931301332 ≡ 1 mod 3 73 384 11688 1.2682 191

Table 5

13 3 3176547 ≡ 0 mod 3 1 512 13468 2.0234 255

13 13 3188926 ≡ 0 mod 26 1 512 13455 2.0215 255

24 3 18858059538137430449 ≡ 2 mod 3 1 512 24576 2.0000 258

24 2 19228544116597719574 ≡ 2 mod 4 1 512 24576 2.0000 258

Table 4

27 3 389679094 ≡ 1 mod 3 1 512 24597 1.7793 258

28 3 7094524748557 ≡ 1 mod 7 1 512 26208 1.8281 265

30 3 36738675093168908494 ≡ 1 mod 3 151 512 23340 1.5195 253

33 3 52489264 ≡ 1 mod 3 1 512 23628 1.3984 254

39 3 3305782 ≡ 1 mod 3 157 512 23556 1.1797 254
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Applying Algorithm 3 to our complete families we produced some numerical examples for security
levels of 128, 192 and 256 bits. These are presented in Table 6. The x0 denotes the integer input
for the polynomials q(x), t(x) and r(x). The search for suitable x0 is performed by taking random
x0 ∈ Z for which deg r · log x0+log(lc(r)) is approximately equal to the desired security level, where
lc(r) is the leading coefficient of r(x). Note that if r(x) = Φl(x), then log(lc(r)) = 0. We considered
primes q = q(x0) and r = r(x0)/n, for some relatively small n ≥ 1. This factor n > 1 might be
helpful in some cases as it further increases the size of the extension field. The security level in the
r-order subgroups G1,G2 is taken as log r/2. On the other hand, the security level in the extension
field Fqk is measured by the L-notation of Equation (1.1), namely Lqk [1/3, c], where c = 1.923 when
k is prime and c = 1.526 when k is composite. In general we want Lqk [1/3, c] ≈ log r/2.

4 CVD Families Revised

By Definition 2, the polynomial f(x) = 4q(x) − t(x)2 is equal to the product of some linear term
g(x) = cx+ d times a perfect square y(x)2. As stated earlier, we can apply a linear transformation
x → (x − d)/c in order to obtain g(x) = x. The difference in the case of CVD families is that the
CM discriminant is represented by the linear term g(x) = x. Thus for a fixed embedding degree k
we need to find a number field K containing the primitive kth roots of unity and the element

√
−x.

We set K = Q(ζl) and r(x) = Φl(x), for some l > 0, with k | l and then search for a polynomial

Algorithm 4 The Brezing-Weng method for CVD families of pairing-friendly elliptic curves.
Input: An embedding degree k.
Output: A CVD family with embedding degree k.

1: Set K = Q(ζl), where k | l and r(x) = Φl(x), so that K ∼= Q[x]/〈r(x)〉.
2: Find a polynomial z(x) ∈ K, such that −z(x)2 ≡ x mod r(x).
3: Let u(x) be the polynomial mapping to ζl in K.
4: For every i = 1, ..., ϕ(l)− 1, such that l/ gcd(i, l) = k set:

t(x) ≡
[
u(x)i + 1

]
mod r(x), y(x) ≡

[(
u(x)i − 1

)
z(x)−1

]
mod r(x). (4.1)

5: Compute q(x) by the relation 4q(x) = t(x)2 + xy(x)2.
6: If q(x) represents primes, return (q(x), t(x), r(x)).

z(x) ∈ K such that −z(x)2 ≡ x mod r(x). This search is easy when r(x) is the lth cyclotomic
polynomial (see for example [3]). However if we set r(x) as any irreducible polynomial in Q[x] the
search is harder, especially as deg r grows. We then conclude to Algorithm 4 which is a modified
version of the Brezing-Weng method for constructing CVD polynomial families of pairing-friendly
elliptic curves. The families produced by this algorithm have generally ρ-values:

ρ(q, t, r) =
deg q

deg r
=

max{2 deg t, 2 deg y + 1}
deg r

≤ 2ϕ(l)− 1

ϕ(l)
< 2.

By Remark 1 another option for the fourth step of the algorithm is to consider lifts α(x), β(x) ∈ Q[x]
of the polynomials t(x) and y(x).

The outputs of Algorithm 4 are potential CVD families. As in the case of complete families, we
need to make sure that the constructed polynomials are integer-valued. Thus we need to search for
a, b ∈ Z, such that q(x) ∈ Z, for every x ≡ b mod a. In order to generate pairing-friendly parameters
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Algorithm 5 Finding suitable parameters using CVD families.
Input: A CVD family (q(x), t(x), r(x)) and a desired bit size Sr.
Output: A prime q, a (nearly) prime r and a Frobenius trace t.

1: Find a, b ∈ Z, so that q(x) ∈ Z, for every x ≡ b mod a.
2: Search for x0 ∈ Z of the form x0 = Dy2, with x0 ≡ b mod a, such that r(x0) = nr for some prime r and n ≥ 1.
3: Set q = q(x0), r = r(x0)/n and t = t(x0).
4: If log r ≈ Sr and q is prime, return (q, t, r) and D.

using this type of families, we are searching for x0 ∈ Z, such that q(x0) is prime and r(x0) is nearly
prime, i.e. it contains a small factor n ≥ 1. An additional condition in this case is that g(x0) must
be equal to the product of some square-free D > 0 times a perfect square y2. We can perform this
search by setting x0 = Dy2 and vary D, y until we hit a valid pair (D, y), for which g(x0) = Dy2.
This procedure is described in Algorithm 5. Once again this process is affected as deg r grows.

In general, CVD families are a nice choice for applications that require large and flexible CM
discriminants. Although there is no particular attack on elliptic curves with small discriminants,
in [4] it is recommended to use curves with large D. However we emphasize on the fact that the
values for D to be tested must be relatively small (e.g. D < 107), in order construct the elliptic
curve efficiently. Another option for constructing elliptic curves with flexible CM discriminants is
to use sparse families (see for example [3, 5, 6]), but in this case the procedure of generating suitable
parameters is a little more complicated.

4.1 Examples for 128, 192 and 256 bit Security Level

In Tables 7–9 we give examples of CVD families produced by Algorithm 4, with ρ(q, t, r) < 2.
Additionally, in Table 10 we present CVD families with ρ(q, t, r) ≈ 2, which are obtained by
considering constant lifts for the polynomials t(x) and y(x). In all families of Tables 7–10 we have
taken l = 2l′, for some odd l′ > 0 and k = l′ or k = 2l′. Furthermore we set:

r(x) = Φl(x), u(x) = x, t(x) ≡
(
u(x)i + 1

)
mod r(x), z(x) = x

l/2+1
2 ,

for i = 1, . . . , ϕ(l)− 1, where u(x) and z(x) represent a primitive lth root of unity and the element√
−x respectively in K = Q[x]/〈r(x)〉. This setup was first considered by Dry lo in [3], however his

examples are aiming for the families with the smallest ρ-value for each embedding degree. Here we
recommend more CVD families with ρ-values achieving a nice balance between the security level of
an r-order subgroup of E(Fq) and the extension field Fqk . In addition, our recommendations intend
to produce extension fields Fqk such that the DLP is resistant against the improved TNFS attacks.
These recommendations do not necessarily coincide with the smallest ρ-values.

In Table 7 we gather the recommended CVD families for an 128 bit security level. Recall
from Section 3 that in this case log r = 256 bits and we are looking for extension fields where
k log q ≈ 2530 for prime embedding degrees and k log q ≈ 4352 for the composite case. Note that
for k = 10, the smallest ρ-value obtained by Algorithm 4 is ρ(q, t, r) = 1.5. Such a family produces
extension fields with size 10 log q ≈ 3840 bits. The complexity of the DLP in this extension field
is Lq10 [1/3, 1.526] ≈ 120, which is slightly small for an 128 bit security level. Our recommendation
in this case is the family with k = 10 and ρ(q, t, r) = 1.75 which produces extension fields of
10 log q ≈ 4480 bits with DLP complexity Lq10 [1/3, 1.526] ≈ 128.

For an 192 bit security level our recommendations of CVD families are summarized in Table 8.
For prime embedding degrees the extension field must satisfy k log q ≈ 6670 and in the composite
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Table 7. CVD families at 128 bit security level with r(x) = Φl(x), z(x) = x
l/2+1

2 and t(x) ≡ (xi + 1) mod r(x).

k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0

7 14
4 1.3333

1 mod 2
9 18 10 1.8333 1 mod 2 11 22 6 1.2000 1 mod 2

8 1.5000 10 10 1 1.7500 1 mod 2 14 14 1 1.5000 1 mod 2

case k log q ≈ 11670. Additionally, the prime r must be chosen such that log r = 384 bits. The best
balance for prime k is obtained by the families with (k, ρ) = (11, 1.6) and (13, 1.333). Although

Table 8. CVD families at 192 bit security level with r(x) = Φl(x), z(x) = x
l/2+1

2 and t(x) ≡ (xi + 1) mod r(x).

k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0

11 22
8 1.6000

1 mod 2
17 34 18 1.1875 1 mod 2

25 50
14 1.4000

1 mod 2
14 1.7000

18 18
1 1.8333

1 mod 2
26 1.3500

13 26

2 1.4167

1 mod 2

5 1.6667
26 26

1 1.2500
1 mod 2

8 1.3333
22 22

7 1.4000
1 mod 2

7 1.1667

16 1.5833 13 1.5000 34 34 9 1.1250 1 mod 2

there exist families with ρ(q, t, r) < 1.6 for k = 11, they do not reach the security level of 192 bits
in the extension field. For composite embedding degrees we have even more options. For a security
level of 256 bits our proposals for CVD families are presented in Table 9. Recall that in this case

Table 9. CVD families at 256 bit security level with r(x) = Φl(x), z(x) = x
l/2+1

2 and t(x) ≡ (xi + 1) mod r(x).

k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0 k l i ρ(q, t, r) x0

17 34
4 1.5625

1 mod 2
25 50

6 1.8500

1 mod 2
27 54

2 1.7222
1 mod 2

12 1.5000 18 1.8000 16 1.7778

19 38

4 1.5000

1 mod 2

32 1.9500
34 34

3 1.4375
1 mod 2

14 1.5556

26 26

5 1.9167

1 mod 2

11 1.3750

22 1.3889 11 1.8333
38 38

11 1.2222
1 mod 2

23 46 24 1.1364 1 mod 2 17 1.7500 21 1.2778

the prime r is around 512 bits. The extension field should be of size around 13500 bit for prime k
and approximately 23780 bits when k is composite.

In Table 10 we give some examples of CVD families with ρ(q, t, r) ≈ 2. These examples are
constructed by considering constant lifts α(x) and β(x) for t(x) and y(x) respectively. In particular,
a constant lift α(x) ∈ Q only for t(x) will result is families with ρ-value equal to 2. On the other
hand if we consider a constant lift β(x) ∈ Q for y(x) as well, we will get ρ(q, t, r) = 2 + 1/ϕ(l). For
the later case we give an example for k = 13, with ρ(q, t, r) = 2.0833.

Alternatively, as mentioned also in the case of complete families, we can choose r(x) as any
irreducible polynomial, other than Φl(x). Here we give only one example for k = 8 (see also [3]).
Such choices are likely to produce more examples for embedding degrees where the above setup
fails to generate suitable families. However in this case it is sometimes hard to determine suitable
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Table 10. CVD families at 128, 192 and 512 bit security level with lifts of t(x) and y(x).

k l i α(x) β(x) ρ(q, t, r) x0 Security Level

5 10 6 1 0 2.0000 {0, 2} mod 2
128

9 18 4 1 0 2.0000 {0, 2} mod 2

15 30 4 3 0 2.0000 {0, 2} mod 2 192

13 26 2 3 0 2.0000 {0, 2} mod 2
256

13 26 6 1 1 2.0833 {0, 2} mod 2

Table 11. Non-cyclotomic CVD families at 128, 192 and 512 bit security level.

k l r(x) t(x) z(x) ρ(q, t, r) x0 Security Level

12 12 Φ12(2x) 2x + 1 4x3 + 2x2 − x 1.7500 3 mod 4
128

14
28 Φ28(2x)

(2x)2 + 1
1024x11 + 8x4

1.4167 3 mod 4

28 −(2x)9 + 1 1.7500 3 mod 4
256

30 30 Φ30(5x) −(5x)2 + 1 (5x)7 + 2(5x)6 + (5x)5 − (5x)4 − (5x)3 − 5x + 1 1.6250 1 mod 2

polynomials z(x), such that z(x)2 ≡ −x mod r(x). The general way to do this is to set z(x) ∈
Q[x]/〈r(x)〉 to be in its general form:

z(x) = zϕ(l)−1x
ϕ(l)−1 + · · ·+ z1x+ z0

and search for coefficients zi, such that z(x)2 ≡ −x mod r(x). In Table 11 we give some examples of
CVD families with ρ(q, t, r) < 2, where r(x) = Φl(ax) and u(x) = ax, for some a ∈ Z. For k = 30,
this family was first introduced in [3]. For k = 28, Dry lo presented a CVD family for r(x) as in
Table 11 with ρ(q, t, r) = 1.5. Our family in this case has ρ(q, t, r) = 1.75 and produces extension
fields of size 28 log q ≈ 25088 bits. This corresponds to a security level around 261 bits. Below we
give an example where r(x) is not the lth cyclotomic polynomial, for k = 8 and ρ(q, t, r) = 2. This
family is obtained by taking a constant lift for the trace polynomial. Additionally, the polynomials
r(x) and z(x) are taken from Dry lo [3] who presented a CVD family for the same embedding degree,
but with ρ(q, t, r) = 1.5.

Example 2 For l = k = 8 we take Dry lo’s polynomials [3]:

u(x) = (−x3 + 5x2 − 16x+ 2)/12, r(x) = x4 − 4x3 + 8x2 + 8x+ 4, z(x) = (−x2 + 2x− 2)/4,

so that z(x)2 ≡ −x mod r(x). Set the following polynomials:

t(x) = −r(x) + u(x), y(x) ≡
[
(u(x)− 1)z(x)−1

]
mod r(x), 4q(x) = t(x)2 + xy(x)2.

We obtain a CVD family with embedding degree 8 and ρ(q, t, r) = 2, which is integer-valued when
x ≡ 23 mod 24. ut

In Table 12 we give some numerical results of pairing-friendly parameters obtained by the CVD
families of this section. Our results are aiming at 128, 192 and 256 bit security levels and various
values of D up to 107. The entries for x0 denote the input for the polynomials q(x), t(x) and r(x).
These are obtained by Algorithm 5 in the following way. We are selecting random square-free values
for D up to 107 and for each D we are searching for random y ∈ Z, such that

deg r [logD + 2 log y] + log(lc(r))
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is approximately equal to the desired security level. Then we set x0 = Dy2. In Table 12 we have
recorded the first such examples that came up. In some cases, in order to reach a desired security
level, we need y = 1, so that x0 = D. This happens in families where deg r is large. Furthermore, as
in the case of complete families, we are looking for x0, such that q = q(x0) and r = r(x0)/n are both
primes, for some small factor n ≥ 1. In almost every example of Table 12 this small factor is equal
to 1. The complexity of the DLP in the r-order subgroups of E(Fq) is log r/2 and in the extension

Table 12. Numerical examples of pairing-friendly parameters from CVD families.

Family k D x0 n log r k log q ρ L
qk

[1/3, c]

Table 10 5 8871207 D · 15114722 ≡ 0 mod 2 1 256 2555 1.9961 128

Table 7 7 9160269 D · 9032 ≡ 1 mod 2 1 256 2674 1.4922 130

Exam. 2 8 814127 D · 67272832 ≡ 23 mod 24 9 256 4136 2.0195 124

Table 7 9 908587 D · 29032 ≡ 1 mod 2 1 256 4212 1.8281 125

Table 10 9 4330077 D · 13022 ≡ 0 mod 2 1 256 4590 1.9922 130

Table 7
10 3281749 D · 25756752 ≡ 1 mod 2 1 256 4470 1.7461 128

11 9647 D · 732 ≡ 1 mod 2 1 256 3355 1.1914 143

Table 11 12 4725179 D · 15174432 ≡ 3 mod 4 1 256 5352 1.7422 138

Table 7 14 2358697 D · 17572 ≡ 1 mod 2 1 256 5348 1.4922 138

Table 11 14 1350211 D ≡ 3 mod 4 1 256 5040 1.4063 135

Table 8
11 1040779 D · 6112 ≡ 1 mod 2 1 384 6743 1.5964 192

13 179 D · 49592 ≡ 1 mod 2 1 384 6630 1.3281 191

Table 10 15 876018 D · 183412 ≡ 0 mod 2 1 384 11550 2.0052 190

Table 8

17 13841 D · 352 ≡ 1 mod 2 1 384 7718 1.1823 203

18 2331871 D · 29497672 ≡ 1 mod 2 1 384 11502 1.6641 190

22 87847 D · 20512 ≡ 1 mod 2 1 384 11770 1.3932 191

25 614161 D ≡ 1 mod 2 1 384 12925 1.3464 199

26 8281427 D · 232 ≡ 1 mod 2 1 384 11596 1.1615 190

34 4895 D · 592 ≡ 1 mod 2 1 384 14620 1.1198 209

Table 10 13 711401 D · 31362 ≡ 0 mod 2 1 512 13832 2.0781 258

Table 9

17 1971089 D · 472 ≡ 1 mod 2 1 512 13566 1.5586 256

19 2166897 D · 132 ≡ 1 mod 2 1 512 13471 1.3848 255

23 16403 D · 252 ≡ 1 mod 2 1 512 13340 1.1328 254

25 307795 D · 132 ≡ 1 mod 2 1 512 23650 1.8477 254

26 2385911 D · 17352 ≡ 1 mod 2 1 512 24362 1.8301 257

27 2703 D · 3712 ≡ 1 mod 2 1 512 23760 1.7188 254

Table 11
28 2143411 D · 12912 ≡ 1 mod 2 1 512 25060 1.7480 260

30 4895545 D · 9028732 ≡ 1 mod 2 1 512 24870 1.6191 259

Table 9
34 3628579 D · 352 ≡ 1 mod 2 1 512 23902 1.3730 255

38 2193243 D · 132 ≡ 1 mod 2 1 512 23712 1.2188 254

field Fqk is Lqk [1/3, c], where c = 1.923 for prime k and c = 1.526 for composite embedding degrees,
according to the new results regarding the TNFS attacks.

5 Conclusion

Since the improvements on the TNFS method [7, 9], there has been much discussion on whether
pairings can be indeed used for robust cryptographic applications. Especially for composite embed-
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ding degrees k, these TNFS variants have a major effect. Consequently it is necessary to update
the criteria for selecting elliptic curve parameters for pairing-based implementations.

In this paper we presented families of pairing-friendly elliptic curves with composite embedding
degree that are suitable for producing parameters resistant to the TNFS attacks. Additionally
for prime embedding degrees we proposed families which can provide a nice balance between the
security level of the r-order subgroups G1,G2 of E(Fq) and the security level of Fqk . Some of the
recommended families were not considered before, due to a larger ρ-value. However we argue that
at present, larger ρ-values can be advantageous, especially for composite k, since a larger ρ implies
a larger extension field and hence an increase of the complexity of the DLP in Fqk .

Table 13. Recommended (complete or CVD) families at 128, 192 and 256 bit security level.

Security Level: 128 bits Security Level: 192 bits Security Level: 256 bits

k ρ k log q L
qk

[1/3, c] k ρ k log q L
qk

[1/3, c] k ρ k log q L
qk

[1/3, c]

5 2.0000 2560 128 11 1.6000 6758 192 13 2.0000 13312 254

7 1.5000 2688 131 13 1.3333 6656 191 17 1.5625 13600 256

8 2.0000 4096 124 15 2.0000 11520 190 19 1.3889 13511 255

9 1.8333 4224 125 16 2.0000 12288 195 23 1.1364 13382 254

9 2.0000 4608 130 17 1.1875 7752 203 24 2.0000 24576 258

10 1.7500 4480 128 18 1.6667 11520 190 25 1.8500 23680 254

11 1.2000 3379 144 21 1.5000 12096 194 26 1.8333 24405 257

12 1.5000 4608 130 22 1.4000 11827 192 27 1.7222 23808 255

14 1.4167 5077 135 24 1.2500 11520 190 28 1.7500 25088 260

14 1.5000 5376 139 25 1.3500 12960 199 30 1.6250 24960 260

26 1.1667 11648 191 33 1.4000 23654 254

34 1.3750 23936 255

38 1.2222 23780 255

39 1.2500 24960 260

Our recommendations are summarized in Table 13. The three columns correspond to the three
security levels of 128, 192 and 256 bits. In each column we record the embedding degree k and the
ρ-value ρ(q, t, r) achieved by a complete or CVD family (or both) presented in Sections 3 and 4.
For each family we also calculate the extension field size by k log q, where log q = ρ log r and log r is
twice the security level. In addition we give the asymptotic complexity of the DLP in the extension
field Fqk , which is measured by the usual L-notation Lqk [1/3, c], where c = 1.923 when k is prime
and c = 1.526 when k is composite. Finally we have presented extended numerical results of pairing-
friendly parameters obtained by our recommended families, with a balanced security level for both
composite and prime embedding degrees.
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