
 

 

Abstract— We are considering a facet of precision agriculture 
that concentrates on plant-driven crop management. By 
monitoring soil, crop and climate in a field and providing a 
decision support system that is able to learn, it is possible to 
deliver treatments, such as irrigation, fertilizer and pesticide 
application, for specific parts of a field in real time and 
proactively.  In this context, we have applied machine learning 
techniques to automatically extract new knowledge in the 
form of generalized decision rules towards the best 
administration of natural resources like water. The machine 
learning application model suggested in this paper is based on 
an inductive and iterative process of discovering knowledge 
on the basis of which, patterns and associations having arisen 
initially are re-examined to expand the pre-existing 
knowledge. The result of this study was the creation of an 
effective set of decision rules used to predict the plants’ state 
and the prevention of unpleasant impacts from the water stress 
in plants. 
 

Index Terms— data mining, decision rules, machine learning, 
precision agriculture, machine learning process model 

1. INTRODUCTION 
The urgent need to increase farming production, especially on 
an increasingly smaller piece of land, as well as the reduction 
of consuming resources such as water and fertilizers with 
respect to the environment, makes the use of new techniques 
and methods a first priority. Precision Agriculture (PA) is a 
suite of management strategies, technologies and practices that 
can solve the above problems. PA is an application of 
technologies and principles using information to manage 
spatial and temporal variability in order to increase the 
effectiveness of the resources and minimize environmental 
degradation. In other words, it is nothing but “doing the right 
thing, at the right time, in the right place, in the right way” [1], 
[2]. To make decisions for the achievement of the above goals, 
a basic approach is to monitor the plants’ state and their 
environment throughout the year, and then analyse and 
interpret the data collected.   

Thanks to developments in the field of wireless sensor 
networks as well as miniaturization of sensor systems, new 
trends have emerged in the area of PA. Wireless networks 
allow the deployment of sensing systems and actuation 
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mechanisms at a much finer level of granularity, and in a more 
automated implementation than has been possible before. 
Sensors and actuators can be used to precisely control the 
concentration of fertilizer in soil based on information 
gathered from the soil itself, the ambient temperature, and 
other environmental factors. Incorporating feedback into the 
system through the use of sensors, actuators, and decision-
making algorithms will allow a more fine-grained analysis that 
could adjust flow rate and duration in a way that is informed 
by local conditions. 

Given a framework that gathers the necessary data, the 
decision making to be performed requires knowledge 
extraction from these data. Towards this direction, we have 
applied techniques known as knowledge discovery or data 
mining. Data mining is the process of discovering previously 
unknown and potentially useful information from data [3]. 
Machine learning is one of the most important and useful data 
mining tools that can discover unknown regularities and 
patterns from data sets.   

The methodology we followed was based on applying 
machine learning techniques for inducing domain models of 
agriculture applications, which incorporates the process of 
discovering knowledge (data mining) with the close 
collaboration of the domain expert (agriculturist) and the 
machine learning expert.  

Specifically, different machine learning strategies were 
studied and compared to each other regarding the analysis of 
agricultural data. Given the complexity of the parameters to be 
monitored and controlled in an agricultural environment, 
coupled with the possible imprecision of the information 
delivered an iterative and explorative evaluation process was 
applied to all available data sets in order to select the most 
useful features so as to improve the intelligibility and accuracy 
of the results. Then the best machine learning algorithms were 
chosen for the automatic extraction of knowledge from the 
data in the form of decision rules. 

Finally, after taking into account the specificity of the 
application domain, all the derived rules were checked for 
their performance (based on the acceptable evaluation 
measures from the machine learning perspective), the 
scientific validity-reliability of the knowledge they express 
and the usage they have for the resolution of the problem 
examined.  

The remainder of this paper is organised as follows. Related 
work is discussed in section 2.  In section 3 we describe the 
phases of the machine learning process model applied for the 
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application domain concerned. Based on this process model 
machine learning experiments on real agricultural data are 
presented in section 4. We conclude our paper with a 
discussion on the practical results of the machine learning 
application and the evaluation of the process model. 

2. RELATED WORK 
Α proactive computing model by looping sensor data with 

actuators through a decision-making layer and the deployment 
of the system in a precision agriculture application was 
presented in [4]. In the work presented here, we actually 
follow and extend this model with a learning capability based 
on machine-learning algorithms which are used for inducing 
new rules by analysing logged datasets. The datasets used for 
the machine learning experiments in this work originate from 
the European IST FET Open project PLANTS [5]. The aim of 
this project was to optimise the efficiency and productivity of 
plant growth by using an array of sensors positioned around 
the crop which detects subtle plant/environmental signals and 
uses these as the basis for precision applications of water, 
pesticides or fertilisers.  

Artificial intelligence and especially machine learning have 
contributed to the creation of control systems in agriculture. 
Neural networks have already been used since the 1990s for 
the creation of  “smart” irrigation scheduling in the 
greenhouse environment [6]. In [7] the authors identified non-
linear relationships between plant water status and the textural 
features of pictorial information of the plant canopy by using a 
layered neural network.  

New Zealand is a characteristic example of a traditionally 
agricultural country which uses machine learning applications 
in farming activities. In [8] several projects in which machine 
learning has been used to assist data analysis are reported, 
such as a search for rules describing culling decisions in dairy 
herds, the isolation of factors governing apple bruising, the 
detection of cows “in heat” based on data collected during 
milking, and the analysis of a survey of microcomputer use in 
dairy farming. 

Considering the sensitivity of plants on the changing 
climatic conditions, weather imponderables, pests etc., a 
system must be flexible and quick responding. In [9], this 
complexity/uncertainty is overcome by using fuzzy controllers 
for the sophisticated control of agricultural systems. The 
control input can be, for instance, environment (relative 
humidity) and the control output can be fruit response (water 
loss and skin color) during product storage. 

 Genetic algorithms were used for control optimization 
through simulation in a crop producing greenhouse. The 
objective was to maximize profit while minimizing the 
expenses of heating, CO2 and electricity [10]. 

A key difference between the approaches considered above 
and our approach concerning the control and management of 
crop resources is that the former use optimization techniques 
that are based on measurements of the parameters only and do 
not aim to comprehend the way plants can operate. This fact 
as well as the inadequate understanding of key features of 
plant physiology, such as water stress, growth and 
photosynthesis, hampers their ability to build suitable 

mechanistic models for plant-based environmental control. 
Furthermore, many of the existing models have not been 
validated, or it is too difficult and costly to do so. 

The solution to the above problems suggested in this study, 
uses machine learning and, as a result, complements the 
existing plant monitoring system [4]. The system is not only 
based on the plants responses, but mainly on data analysis, 
knowledge extraction and prediction of expected future 
conditions. The application of machine learning in the 
application domain leads to the simplification of the 
knowledge discovery process from real data, while at the same 
time it increases the reliability of the control system by 
minimizing its complexity and construction cost. The rules 
produced are directly connected with the knowledge and 
experience of the system as well as with the operations of the 
plants. 

3. LEARNING MODEL 

A. Learning Scheme Selection  
A key goal of this work is to extract knowledge from 

available agricultural data and induce models that are in a easy 
manageable form by the decision making system and 
understandable to anyone involved in the crop production 
process. 

After studying various learning techniques such as genetic 
algorithms and neural networks, we concluded that they 
follow a ‘black box’ approach during their operation and that 
they lack in modeling the knowledge they produce in a form 
comprehensible to humans. Genetic algorithms are a powerful 
technique used for optimization control systems, in which 
decisions for actions are based on the reaction to the current 
measurements from plants and their environment. Neural 
networks can learn by transforming their internal structure 
rather than by registering properly represented knowledge. 
Therefore, although the above learning techniques can have 
satisfactory performance and  produce learning rules, they 
were avoided because they were considered unpractical and 
unsuitable for the problem discussed. Standard rule learning 
algorithms can produce models directly from data with 
classification or/and prediction accuracy analogous to, for 
instance, neural networks, but which are more comprehensible 
to humans/domain experts, than a neural model, thus our 
preference to the adoption of this technique. 

 Furthermore, despite the fact that the aim of the study is to 
solve a state diagnosis problem of the plants and these 
problems are satisfactorily solved from expert systems, the use 
of machine learning was considered necessary because the 
task of extracting rules is highly demanding and requires the 
expert to be fully aware of the problem.  In some cases, the 
expert cannot supply information that can be incorporated into 
the knowledge basis of the expert system. On the contrary, the 
use of machine learning and especially of classification 
techniques initially requires the experts’ knowledge (in the 
form of the class to which the data belongs) while later these 
techniques generate a model to explain the old and new 
examples.  This process allows existing rule sets to be easily 
updated over time if the plants’ state and their environment 
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change. 

B. Learning Process Model 
The data sets used consist of pre-classified examples. The 

classification was done by an expert of the application 
domain. The expert classified the examples through a set of 
domain rules. Our goal was to prescribe and verify the pre-
existing knowledge as well as to incorporate new, since  the 
domain model was not completed, by using machine learning 
algorithms. 

 For this reason  and taking also into account the need to 
model knowledge in a comprehensible form, we have chosen 
classification algorithms, which produce a classifier as a set of 
rules or decision tree that can be then exploited to predict the 
classification of new data cases and  can insert new rules to 
the domain model.  

Figure 1 illustrates, as a data flow diagram, the machine 
learning process model, which is an expanded form of the 
process model for machine learning application in agriculture 
that was created by the Waikato Environment for Knowledge 
Analysis (WEKA) group in University of Waikato in New 
Zealand [11]. Our key contribution is to complement the 
original model by suggesting practical criteria for the 
extraction of the knowledge produced (see Table 4 for a 
summary of the practical guide for evaluation data sets and 
decision rules).  

 
Fig. 1. Machine learning process model 

 
The above process is iterative and requires the cooperation of 
the plant science domain expert and the data mining expert. In 
this study, the above cooperation was determined by the 
practical guide (see Table 4). The collaboration between the 
two experts is crucial to transform the raw data from the 
sensors into the final datasets to be used by the machine 
learning algorithms. In the pre-processing phase the context 
data may require tidying up, removing extraneous attributes, 
handling missing values, detecting erroneous values, etc. In 
the analysis phase, the domain expert will provide information 
about data semantics and legal relaxations or transformations 
that can be applied to the data, whereas the domain modeller 
will guide the process in order to improve the intelligibility 
and the precision of the results. Their interaction may reveal 
for example, that one or more attributes are irrelevant, or 
attributes may be manipulated mathematically to combine two 
or more columns into a single derived attribute. For the actual 

data mining process algorithms provided by the WEKA  
workbench are used (e.g., OneR, ZeroR, NaiveBayes, J48, 
DecisionStump, Nηge). ZeroR and NaiveBayes were used  for 
generating a baseline performance metric that other learning 
schemes are compared with. Nηge is a nearest-neighbor 
method  for generating rules [12].  

Finally, in a post-processing phase the domain expert 
determines which part of the output rules is new useful 
knowledge to merit further exploration, and which part 
represent common knowledge. 

All the derived rules were checked for their performance 
based on the acceptable evaluation measures from the machine 
learning perspective. In order to measure the error rate of the 
learning schemes we used the 10-fold cross-validation 
method. We also used as rates to compare the performance of 
algorithms the overall success rate (the number of correct 
classifications) and the false positive rate (FP rate). The false 
positive (FP) rate is the proportion of examples which were 
classified as class X, but belong to a different class, among all 
examples which are not of class X. 

4. MACHINE LEARNING EXPERIMENTS  
For the machine learning experiments datasets from the 

PLANTS project were used. The application data examined 
consider strawberry plants where the plant is controlling 
irrigation when the corresponding plant state is diagnosed. The 
prototype setup consists of an array of 96 plants placed in a 
glasshouse. 

 The plant and environmental parameters are: ETR (Electron 
Transport Rate by PAM meter†), PAR (light by PAR meter‡), 
InfPAR (inflection PAR – a derived attributed by combining 
ETR and PAR), AmbC/PlantC (Ambient/Plant leaf 
temperature by thermistors), SM (Soil Moisture by probe EC-
10§), and the learning goals Status (HEALTHY/NOT 
HEALTHY), HeatStress (TRUE/FALSE), DroughtStress 
(TRUE/FALSE). 

The ETR corresponds to the chlorophyll fluorescence 
parameter which forms the backbone of a feedback 
mechanism to determine the state of the photosynthetic rate of 
the plant and from this determine how productive the plant is 
under the current conditions. The ETR is calculated by 
combining the chlorophyll fluorescence and light PAR 
measurements. The ETRxxx correspond to the ETR value 
returned by the PAM meter for the saturated PAR value xxx 
(xxx corresponds to a sample light rate of 000, 050, 070, 105, 
170, 270 and 425).  

Status is the characterization of the plant general stress 
status. DroughtStress is the characterization of the plant water 
stress status in relation to the soil moisture levels. HeatStress 
can occur independently of water stress when the ambient 
environmental temperature gets very high and plant 
transpiration cannot maintain leaf cooling. 

Data gathering as described above was performed for a 

 
† Junior PAM, Gademann Instruments: http://www.gademann.com/  
‡ Skye SKP215 Quantum Sensor: http://www.alliance-

technologies.net/meteo/PARTENAIRES/SKYE/skye.htm  
§ ECHO probe model EC-10: http://www.ech2o.com/specs.html.  
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period of several weeks corresponding to the early 
development stage of the crop and yielding a very large  
dataset. For the analysis purposes we have divided this dataset 
into two smaller. The first data set is called 
"ETR_Photosynthetic Activity" and includes 439 instances, 8 
attributes and 1 class. The second set is called "eMultiPlant" 
and includes 1485 instances, 11 attributes and 3 classes. A 
segment of this dataset, used for running the machine learning 
algorithms with the WEKA workbench, is given in Table 1.  

 
TABLE 1. A SEGMENT OF THE DATASET, USED FOR RUNNING MACHINE 

LEARNING ALGORITHMS WITH THE WEKA 
ETR Status AmbC Plant C SM 
387.1 OK 22.37 21.65 0.65 
432.9 OK 22.37 21.65 0.64 
412.8 OK 21.65 21.16 0.64 
372.3 OK 21.65 20.92 0.64 
463.8 OK 22.01 20.92 0.60 
422.9 OK 22.01 20.67 0.60 
315.8 OK 21.65 20.43 0.59 
305.7 Not OK 21.28 20.43 0.59 

 
The most relevant attributes were chosen in each data set 

and new important subsets arose. For example, in the 
"eMultiPlant" dataset we used the "GainRatioAttributeEval" 
attribute evaluator with the "Ranker" ranking method and 3 
new important subsets arose, one for each classification goal 
(Status, HeatStress and DroughtStress). These data sets were 
evaluated by the domain expert as reliable who confirmed the 
correlation of the attributes with the prediction class.  

Using WEKA we ran machine learning algorithms for all 
data sets and extracted a number of useful rules (Table 2). 
These rules take the form IF antecedent condition(s) THEN 
consequent condition, where antecedent condition is a 
conjunction of parameter-based tests and consequent condition 
is a category (e.g., a plant state such as healthy or not healthy). 
As we can see in Table 2, at least 2 rules were found to define 
each classifying variable of the plant. According to the domain 
expert, the rules that decide whether DroughtStress or 
HeatStress is true determine the request of irrigation. 
 

TABLE 2.  THE RULES SET DERIVED FOR RUNNING MACHINE LEARNING 
ALGORITHMS WITH THE WEKA 

Rule 
id Inferred Rule Correctly 

Classified 

1 IF  InfPAR < 249  
THEN Status is NOT HEALTHY 

100% 

2 IF  ETR425 <= 295  
THEN Status is NOT HEALTHY 

89% 

3 IF  ETR270 <= 238  
THEN Status is NOT HEALTHY 

84% 

4 IF Δtemp <= (-1)  
THEN HeatStress is TRUE 

100% 

5 
IF (18.34 <= AmbC <= 28.5) AND               
(20.81 <= PlantC <=29.91) AND     
(3.39 <= Δtemp <= -1.3) 
THEN HeatStress is TRUE         

100% 

6 IF (PlantC > 24.42) and (ΕTR50 <= 60)  
THEN HeatStress is TRUE  

95% 

7 IF   PlantC > 27 
THEN HeatStress  is TRUE 

96,5% 

8 IF   SM < 0.6 
THEN DroughtStress is TRUE 

98,2% 

9 IF  InfPAR  < 243  
THEN DroughtStress is TRUE 

93,6% 

10 IF  SM <= 0.69  
THEN Status is NOT HEALTHY 

95% 

11 IF  DroughtStress == TRUE 
THEN Status is NOT HEALTHY 

95% 

 
The attribute Δtemp in rule 4 denotes temperature difference 

(AmbC-PlantC) and was derived in the Analysis phase.  

5. DISCUSSION  
The results of the methodology applied were satisfactory 

and showed the usefulness of machine learning to deal with 
real problems in the field of Precision Agriculture. The 
methodology was successful to extract new knowledge from 
the data and to induce it in an understandable and easily 
expandable form. This can positively contribute to the 
understanding and validation of the usefulness of control 
systems, which have predictable abilities, and can avert 
difficult conditions for the plants. 

It is known that during the analysis stage, characteristics 
with lower informational value that do not play a significant 
role in the creation of the learning model, are usually removed 
from the dataset. Following another approach, we chose the 
best characteristics to improve the classification precision of 
the learning model without ‘getting rid of’ of the attributes 
initially not chosen as the best. 

On the contrary, based on the suggested model and the 
practical guide (see Table 4) and by using the WEKA feature 
selection tools we analysed the relation between the attributes 
of lower informational value and the learning goals, and we 
finally created new data sets. The aforementioned 
methodology eliminated the danger of the appearance of 
highly complicated rules including many parameters often 
irrelevant to the classification class. 

In addition, it offered a solution to a real problem appearing 
in crop control systems, i.e., the difficulty in gathering 
measurements of some main parameters due to possible 
damages caused to sensors. For instance, we see in Table 2 
that the rules for the prediction of the Status can be based on 3 
different parameters. Therefore, the inability to execute a rule 
due to the absence of its defining parameter can be easily and 
reliably dealt with the execution of a similar rule which uses 
another parameter. 

Another interesting point is that the rules responded 
satisfactorily to the evaluated measures from the machine 
learning perspective. Table 3 shows the overall success rate 
and the FP rate for the classifiers of the Status learning goal. 
In the FP Rate column the values in parentheses refer to class 
NOT HEALTHY, whereas outside refer to class HEALTHY. 
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From Table 3 we can observe that the FP rate for class 
HEALTHY (i.e., the cases which incorrectly classified as 
HEALTHY while being NOT HEALTHY) takes the minimum 
value with the DecisionStump algorithm. On the other hand, 
the OneR algorithm gives the higher accuracy but with the 
higher FP rate. Considering it preferable to deal with a 
healthy state as being problematic than not to deal at all with 
an unhealthy plant state we chose the DecisionStump as better 
than another. 

 
TABLE 3.OVERALL SUCCESS RATE  AND THE  FP RATE  FOR STATUS  

WEKA ML Classifier Correctly 
Classified FP RATE 

NaïveBayes Simple 88.18 % 0.16 (0.11)

ZeroR 80.18 % 1 (0)

OneR 91.59 % 0.13 (0.07)

J48 89.41 % 0.09 (0.11)

DecisionStump 89.13    % 0.05 (0.12)

     
The evaluation of the data quality and the validity of the 

produced knowledge were based on the practical criteria 
shown in Table 4. The necessity to use these control criteria 
arose from the research and the experiments performed for the 
sake of this study. These criteria can complement the existing 
machine learning application methodology on agricultural 
data, thus, increasing the reliability and effectiveness of crop 
control systems.  

In conclusion, we should point out that through a number of 
experiments, new attributes were created, attribute subsets 
were chosen, thus creating new data sets, which ran in 
different learning models examining and evaluating different 
parameters each time. The attempt to evaluate the same states 
with different parameters was totally successful as far as this 
may be feasible. Therefore, the knowledge base of the system 
will be enriched with an expanded and precise set of rules. 
This fact further benefits the system, which can now support 
decision making even if a problem arises in the measurement 
gathering process of several basic parameters. 

Although the inferred rules were reasoned by experts as 
rational to use, further work is needed towards the verification 
of the above estimation. This includes the execution of long 
term experimentations to verify repeatedly the assessments 
and to mask out possible errors or declinations. To gather and 
verify sensitivity to stress data, for example, it would be 
needed replicate populations of plants at the same growing 
stage but under the particular stress and one would also need 
to have complete control over all parameters (light, heat, 
humidity, fertilisation, irrigation, etc.); to gather the data there 
will be needed a large number of heterogeneous sensors and 
the experiment would have to be carried out repeatedly. 

 
TABLE 4. PRACTICAL GUIDE FOR DATA SET AND DECISION RULES EVALUATION  

1. Evaluation of the usefulness of the plant and environmental 
parameters through application of machine learning techniques and 
the knowledge of a domain expert. 

2. Analysis of the states in which the plants can be found using all the 
available parameters. 

3. Classification of the majority of the attributes in new subsets 
according to their value and their connection with the learning goals. 

4. Evaluation of Classification Precision (percentage of successful rule 
covering in new examples). 

5. Cost evaluation of erroneous classifications. 

6. Evaluation of the Knowledge Independence Rate expressed by rules 
(low dependency on many attributes is desirable) 

7. Scientific evaluation of Knowledge Validity from an application 
domain expert. 

8. Evaluation of the Transferability and Management of the rules.  
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