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a b s t r a c t

Taking into account that heart auscultation remains the dominant method for heart exam-

ination in the small health centers of the rural areas and generally in primary healthcare

set-ups, the enhancement of this technique would aid significantly in the diagnosis of

heart diseases. In this context, the present paper initially surveys the research that has

been conducted concerning the exploitation of heart sound signals for automated and

semi-automated detection of pathological heart conditions. Then it proposes an automated

diagnosis system for the identification of heart valve diseases based on the Support Vector

Machines (SVM) classification of heart sounds. This system performs a highly difficult diag-

nostic task (even for experienced physicians), much more difficult than the basic diagnosis

of the existence or not of a heart valve disease (i.e. the classification of a heart sound as

‘healthy’ or ‘having a heart valve disease’): it identifies the particular heart valve disease.

The system was applied in a representative global dataset of 198 heart sound signals, which

come both from healthy medical cases and from cases suffering from the four most usual

heart valve diseases: aortic stenosis (AS), aortic regurgitation (AR), mitral stenosis (MS) and

mitral regurgitation (MR). Initially the heart sounds were successfully categorized using a

SVM classifier as normal or disease-related and then the corresponding murmurs in the

unhealthy cases were classified as systolic or diastolic. For the heart sounds diagnosed as

having systolic murmur we used a SVM classifier for performing a more detailed classifica-

tion of them as having aortic stenosis or mitral regurgitation. Similarly for the heart sounds
diagnosed as having diastolic murmur we used a SVM classifier for classifying them as hav-

ing aortic regurgitation or mitral stenosis. Alternative classifiers have been applied to the

same data for comparison (i.e. back-propagation neural networks, k-nearest-neighbour and

naïve Bayes classifiers), however their performance for the same diagnostic problems was

lower than the SVM classifiers proposed in this work.

sound that the heart produces [1]. It is an operationally sim-

. Introduction
eart auscultation, defined as listening and interpretation of
he sound produced by the heart, has been a very important

ethod for diagnosing heart diseases from the early stages
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of medicine, since most heart diseases are reflected to the
ple, low cost and non-invasive method of high sensitivity to
most heart diseases. Although some new methods, such as
Echocardiography, and Medical Imaging modalities (i.e. Ultra-

erved.
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sound Imaging (US); Computed Tomography (CT); Magnetic
Resonance Imaging, (MRI), etc.), can provide more direct and
accurate evidence of heart disease than heart auscultation,
these methods require sophisticated and expensive equip-
ment and specialised personnel, so they are much more costly
and operationally complex [2–4]. These methods are suitable
for use in well organized healthcare environments, but not
in small health centres of the rural areas and generally in
primary healthcare set-ups. In these healthcare establish-
ments the heart auscultation remains the basic tool for a
first screening of patients and deciding which of them should
be referred to more complex and costly medical examina-
tions and tests (e.g. based on advanced imaging techniques)
and/or specialised cardiologists. Also, many heart diseases
cause differentiations of heart sound in much earlier stages
before they can be observed in other comparable techniques,
such as the Electrocardiogram (ECG) [4,5]. Therefore increasing
the accuracy and the whole effectiveness of heart ausculta-
tion is of critical importance for improving both the health
level of the populations (by diagnosing heart diseases in their
early stages) and also the economics of the health systems
(by avoiding unnecessary costly medical examinations and
tests due to incorrect screening). Furthermore, it should be
taken into account that in some circumstances, such as in the
developing countries, the auscultation is the only available
tool for diagnosis of heart diseases for most of their popu-
lation. The computer assisted auscultation requires only an
electronic stethoscope and a personal computer along with
the necessary software as will be described further on in this
paper.

Physicians require a lot of training and experience in order
to become capable to distinguish correctly all the components
of a heart sound in an objective and reproducible way, and then
based on them to make a correct diagnosis. However, most
internal medicine and cardiology training programs underes-
timate the value of heart auscultation and provide insufficient
(or even not at all) such training, so junior physicians are
not adequately trained in heart auscultation. Especially the
primary health care physicians, who are usually young and
inexperienced, have been reported to have poor heart auscul-
tation skills. The pool of skilled for this specific task clinicians,
who have been trained in the era before echocardiography,
continues to age, and the skills for heart auscultation is in
shortage and in danger to disappear [6–9].

For the above reasons it is quite useful to develop appro-
priate decision support systems that support clinicians in
making heart sound diagnosis, which will be quite beneficial,
especially in rural areas, in homecare and in primary health-
care. Such decision support systems may serve as diagnostic
adjunct or training tools for young physicians practicing in
remote health centers. As described in the next section, exten-
sive research and development work has been conducted in
this area, motivated both by the value they can offer to the
clinicians and the recent advances in information technology
systems, in digital electronic stethoscopes, in digital signal
processing methods and in pattern recognition and classifica-

tion methods [10–15,101]. Appropriate devices allow nowadays
the digitization and storage of heart sounds in digital format,
their inclusion in electronic health records, their transmission
to other (possibly remote) systems (e.g. using wireless tech-
n b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 47–61

nologies, the Internet, etc.), their presentation on a screen
(both in the time and in the frequency domain) and their
processing in order to remove noise and other undesirable
components. More advanced systems can also perform intelli-
gent processing and provide suggestions of diagnostic nature
to the doctor, e.g. concerning the existence of additional sound
components, such as the third heart sound (S3), the fourth
heart sound (S4), various murmurs, clicks, snaps, etc., or even
the existence of particular heart diseases. This combination
of the ‘traditional’ auscultation with the modern information
and communication technologies is expected to revitalise the
interest in and use of auscultation in the near future [14].

In this paper initially the previous research work con-
cerning automated detection of various heart diseases and
pathological conditions from heart sound signals is reviewed.
Then a Support Vector Machine (SVM)-based diagnostic sys-
tem is proposed for heart valve disease identification using
heart sounds, which offers significant advantages analyzed in
the following sections. This system using low cost heart sound
signals, which can be acquired even in the smallest primary
healthcare center in an easy and non-invasive way, performs
a highly difficult diagnostic task (even for experienced physi-
cians), much more difficult than the basic diagnosis of simply
the existence or not of a heart valve disease (i.e. the classi-
fication of a heart sound as ‘healthy’ or ‘having a heart valve
disease’): it identifies the particular heart valve disease. In par-
ticular, it classifies heart sound signals at a first stage into
normal and disease-related and at second stage the unhealthy
sounds are categorized into four classes corresponding to the
four most usual heart valve diseases: aortic stenosis (AS),
aortic regurgitation (AR), mitral stenosis (MS) and mitral regur-
gitation (MR). This disease classification is performed in two
cascading steps. In the first step the sound heart signal is clas-
sified as having either a systolic murmur (which means AS
or MR) or a diastolic murmur (which means AR or MS) using
a two-class SVM classifier. In the second step there are two
different two-class SVM classifiers; the first of them classifies
the heart sound signals with systolic murmur (according to
the decision of the first step) as AS or MR cases, while the
second one classifies the heart sound signals with diastolic
murmur (according to the decision of the first stage) as AR
or MS cases. During the study of these classification prob-
lems, several alternative SVM kernels have been examined
in order to find the optimal automated classification scheme
with the highest performance. The work presented in this
paper constitutes the following step of previous research that
has been conducted by the authors concerning the differen-
tial diagnosis of heart valve diseases from heart sound signals
using decision trees [3,75], now attempting to investigate more
recent algorithms (i.e. advanced sound processing and SVM-
based classification) for this critical problem.

The rest paper is structured as follows: in Section 2, the pre-
vious related research work is surveyed, while in Section 3 the
data (heart sound signals) we used for constructing and test-
ing the SVM-based classifiers and the proposed heart sound
signals pre-processing methodology, aiming at the removal of

the noise and the extraction of the features, are described.
Section 4 presents the SVM classifiers that were developed
for the identification of heart valve diseases and an evalu-
ation of their performance for various kernel functions and
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arameters. The same section compares their performance
o the performance of a number of alternative classification
pproaches that have been applied to the same data, such as
ack-propagation neural networks, k-nearest-neighbour and
aïve Bayes classifiers. Finally Section 5 discusses the findings
nd concludes the paper.

. Related research work and background

xtensive research has been conducted concerning the
xploitation of the heart sound signals for automated and
emi-automated detection of various heart diseases and
athological conditions. This research covers several levels,
rom the signal processing level up to the final signal clas-
ification (diagnosis) level, so we can distinguish in it a
umber of research streams; the most important of them
re:

The analysis of the heart sound signals, aiming at
their optimal representation, using various methods, such
as time-frequency representations, wavelet transforms,
matching pursuit, short-time Fourier transform, high order
statistics, etc. [16–22].
The removal from the heart sound signals of various types
of noise (e.g. from the surroundings, from the lungs, etc.),
which distort their basic components and characteristics
and decrease their diagnostic potential; various methods
have been used for this purpose, such as adaptive filter-
ing, wavelet transform, reduced order Kalman filtering,
independent component analysis, multiscale products and
linear prediction, etc. [23–28].
The analysis of the heart tones S1, S2, S3, S4 and murmurs,
aiming to achieve highly accurate spectral estimation of
them, in order to enhance their diagnostic potential; the
main methods that have been used for this purpose are
wavelet transform, short-time Fourier transform, autore-
gressive modelling, matching pursuit and a number of
distributions (e.g. Bessel, Binomial Reduced Interference,
Cone-Kernel (CKD), etc.) [29–36]; this stream also includes a
number of studies dealing with the extraction of the aortic
and pulmonary components of the second heart sound (S2)
and then based on them (on the normalized splitting inter-
val between them) the estimation of the pulmonary artery
pressure [37–39].
The segmentation of the heart sound signal into heart cycles
and then the partitioning of each heart cycle into S1, systolic
phase, S2 and diastolic phase; various methods have been
used for this purpose, such as power spectral density calcu-
lation based on autoregressive models, normalized average
Shannon energy calculation, wavelet transform, homomor-
phic filtering, K-means clustering, etc. [5,40–43]; to this
stream also belongs a study by Hebden and Torry [44], which
proposes a back-propagation neural network-based method
for distinguishing between S1 and S2 peaks in both normal
and abnormal heart sound signals.

The detection of problems and mechanical changes of pros-
thetic heart valves from heart sound signals using various
methods, such as wavelet transform, spectral analysis and
digital filtering, fast Fourier transform, Fast Orthogonal
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 47–61 49

Search (FOS), Multiple Signal Classification (MUSIC), neural
networks, nearest neighbour classifiers, etc. [45–51].

• The diagnostic classification of heart sound signals; since
the present paper belongs to this heart sound research
stream, we are going to analyse it in more detail. Part of
these studies are dealing with the discrimination between
normal (from healthy subjects) and abnormal (from sub-
jects having a disease) heart sound signals [52–55], or with
the discrimination between innocent and pathological mur-
murs in children [2,56–62]. Other studies are dealing with
the detection from heart sound signals of particular heart
diseases, such as coronary artery diseases [63–67] and heart
valve diseases [68–75]. It should be emphasized that in
most of the studies of this research stream the diagnostic
classification of the heart sound signals is based on neu-
ral networks of various types (e.g. back-propagation, radial
basis function, self-organizing map, probabilistic neural
networks, etc.) [52–55,57,59,61–66,70,73,74]. On the contrary
there are only a few studies using other classifiers, such as
discriminant functions [58,72], decision trees [75], Bayesian
networks [54], etc.; therefore the diagnostic potential in this
domain of other classifiers than the neural networks has
not been sufficiently explored yet, so further research is
required in this direction.

The early diagnosis of heart valve diseases, which is the
main subject of the present paper, is a very significant issue
in cardiology; for this reason considerable research has been
conducted for the development of computerised systems that
support the clinicians in diagnosing heart valve diseases. Part
of this research uses heart sound signals. Nygaard et al. [68]
assess the severity of aortic valve stenosis by estimating the
transvalvular pressure difference through spectral analysis of
cardiac systolic murmurs. Hebden and Torry [69] proposed a
method for distinguishing the systolic murmurs arising from
aortic stenosis and mitral regurgitation by estimating the fre-
quency content of S1 and S2. Brusco and Nazeran [70] describe
an ‘intelligent’ PDA-based wearable digital phonocardiograph,
which can not only record and display the heart sounds but
also apply several signal processing and statistical techniques
to segment these signals into four parts (S1, systole, S2 and
diastole) and then to perform diagnostic classification of them
using multilayer perceptron (MLP) neural networks; also they
describe the use of this system for classifying heart sounds
into the following five categories: normal, aortic regurgita-
tion, aortic stenosis, mitral regurgitation and mitral stenosis.
Herold et al. [71] propose a heart sound analysis method for
diagnosing aortic valve stenosis based on wavelet filtering and
envelope calculation and then on calculation of correlations
on the basis of these envelopes. In a similar direction Voss et
al. [72] describe a system aiming to support the general prac-
titioner in discovering aortic valve stenosis at an early stage;
it is based on wavelets and Fourier transform for the extrac-
tion of appropriate parameters of the heart sound signals, and
then on linear discriminant function analysis for the detection

of aortic valve stenosis from these parameters. Higuchi et al.
[73] propose a three-layered artificial neural network analysis
of phonocardiogram recordings for the diagnosis of the heart
condition in patients with heart murmurs; it enables the clas-
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Fig. 1 – Typical heart sound signals from a healthy heart
(upper part) and from a pathologic heart generating systolic
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sification of heart sounds into the following seven categories:
mitral stenosis, mitral regurgitation, aortic stenosis, aortic
regurgitation, ventricular septal defect, atrial septal defect and
patent ductus arteriosus. Ahlstrom et al. [74] developed a sys-
tem for systolic heart murmur classification; initially from
the heart sound signals, using a combination of techniques
(Shannon energy, wavelets, fractal dimensions, recurrence
quantification analysis and finally Pudil’s sequential floating
forward selection) it extracts a number of features, and then
based on them and using neural networks it classifies the mur-
murs as physiological or pathological ones. Pavlopoulos et al.
[75] propose a decision tree-based method for the differential
diagnosis of aortic stenosis from mitral regurgitation using
heart sounds. Recently Chauhan et al. [76] have developed
an automatic heart sound classification system (classification
of healthy heart sounds, systolic murmurs, diastolic mur-
murs and continuous murmurs), which uses a probabilistic
approach based on Mel-frequency cepstral coefficients (MFCC)
and Hidden Markov Models (HMM).

Significant research on the computerised diagnosis of heart
valve diseases has also been conducted based on other more
costly signals, such as Doppler Heart Sound (DHS), Com-
puted Tomography (CT) and Magnetic Resonance Imaging
(MRI) [77–82]. In this direction Turcoglu et al. [77] have devel-
oped a system for diagnosis of heart valve diseases from
DHS; initially it extracts features from the DHS using wavelet
transforms and short time Fourier transform, and then based
on these features it classifies the DHS as ‘normal’ (healthy)
or ‘abnormal’ using a back-propagation neural network. An
improvement of this system is described by Turcoglu et al. in
Refs. [78,79]; it consists of two layers: a ‘wavelet’ layer, which
performs adaptive feature extraction in the time-frequency
domain based on wavelet packet decomposition and wavelet
packet entropy, and a ‘multi-layer perceptron’, which is a feed-
forward neural network that performs classification of DHS
as normal or abnormal. Uguz et al. [80] and Comak et al. [81]
propose two more enhancements of the above system, which
are based on a Hidden Markov Model and Support Vector
Machines respectively. Vogel-Claussen et al. [82] are dealing
with a combination of electrocardiographically gated multi-
detector row Computed Tomography and Magnetic Resonance
Imaging for the non-invasive visualization and assessment of
the heart valves.

The present paper, as mentioned in the introduction, is
dealing with the use of Support Vector Machines for the identi-
fication of heart valve diseases from heart sound signals. In the
latest years, significant research work has been published in
the literature concerning automated diagnostic systems based
on the Support Vector Machines algorithm. Chazal et al. [83,84]
deal with the automatic processing of the Electrocardiogram
and the classification of the heartbeats into one of the five beat
classes recommended by ANSI/AAMI EC57:1998 standard, i.e.
normal beat, ventricular ectopic beat (VEB), supraventricular
ectopic beat (SVEB), fusion of a normal and a VEB, or unknown
beat type. Statistical classifiers and two stage classifiers (local
and global) have been adopted in their research, which prove

significant results of classification performance over previ-
ous studies. Campadelli et al. [85] propose an automated
system for the detection of lung nodules based on chest radio-
graphs; the automated classifiers are based on Support Vector
and diastolic murmurs (lower part).

Machines and the system is extensively trained with various
SVM kernel functions. Fan et al. [86] propose a method for
classification of structural brain Magnetic Resonance images
using a combination of deformation-based morphometry and
machine learning methods; the feature selection and the final
classification algorithm implemented are based on SVMs and
the reported results approximate the accuracy of 91% using
leave-one-out cross-validation procedure. As it can be derived
from the above exhaustive review, the research community
has not extensively utilized yet the SVM methodology, for the
problem of heart sound diagnosis, dealt in this paper.

3. Heart sound signals pre-processing

The heart sound signal from a healthy heart has the form
shown in the upper part of Fig. 1. Its basic components are:
the first heart sound (S1), which is generated by the nearly
simultaneous closure of the mitral and the triscupid valve,
being followed by the systolic phase, and the second heart
sound (S2), which is generated by the nearly simultaneous clo-
sure of the aortic and the pulmonic valve, being followed by
the diastolic phase. Most heart diseases generate additional
components in the heart sound, such as murmurs in the sys-
tolic or/and the diastolic phase (see lower part of Fig. 1), third
heart sound (S3), fourth heart sound (S4), clicks, snaps, etc.
Concerning the heart valve diseases dealt with in this paper,

aortic stenosis and mitral regurgitation generate systolic mur-
murs, while aortic regurgitation and mitral stenosis generate
diastolic murmurs [1,3].
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It should be emphasized that several factors related to the
cquisition method affect significantly the characteristics of
he acquired heart sounds. The most important of these fac-
ors are: the type of stethoscope used, the sensor that the
tethoscope has (e.g. microphone, piezoelectric film, etc.), the
tethoscope use mode (e.g. bell, diaphragm, extended), the fil-
ering applied to the heart sound signals (e.g. anti-tremor filter,
espiratory sound reduction filter, etc.), the way the stetho-
cope is pressed on the patients skin (firmly or loosely), the
atient’s position (e.g. supine position, standing, squatting),
he auscultation areas (i.e. apex, lower left sternal border, pul-

onic area, aortic area), the medicines that the patient is
aking, etc. These factors cannot be controlled in the everyday

edical practice, since it is very difficult to have fixed pre-
efined values of all the above factors in the everyday heart
uscultations; the uncontrolled variation of these factors adds
igh levels of noise to the acquired heart noise signals (i.e.
enerates additional components) and makes the detection
f various heart diseases and pathological conditions from
hese heart sound signals even more difficult. Therefore an
ffective system of heart diseases diagnosis from heart sounds
hould be able to cope with this problem. For this purpose it is
ecessary both for constructing the classifiers and for testing
hem to use a ‘global’ and representative dataset consisting
f heart sounds from various sources and recorded with dif-
erent acquisition methods and different values of the above
actors. In this direction for our research such a global and rep-
esentative heart sounds dataset has been created with heart
ound signals from eight different heart sound sources (edu-
ational audiocassettes, audio CDs, CD ROMs, files of existing
eart sound databases, etc.), which are mentioned in the ref-
rences section [87–95]. So this global dataset includes heart
ound signals acquired with various types of stethoscopes,
ensors and filters, in various modes, subjects’ positions and
uscultation areas, from subjects of various ages, heart condi-
ions and medical treatments. Such a dataset is more ‘noisy’
nd therefore more ‘difficult’ for the classifiers, than the more

homogeneous’ ones used by most similar studies, but it offers
he serious advantage that it enables a more realistic investi-
ation of classifiers’ construction and performance. For the
urposes of the present study, this dataset was completed
ith normal heart sounds collected by healthy persons (stu-
ents at the ages of 18–22) using an electronic stethoscope

Master Elite type manufactured by Welch Allyn). All the young
ubjects were checked by a physician participating in the study
nd the samples that correspond to abnormal heart sounds
ere excluded from the healthy dataset. The total number
f heart sound signals used in the experiments were 198: 38
ormal heart sounds, 41 heart sound signals with AS systolic
urmur, 43 ones with MR systolic murmur, 38 ones with a AR

iastolic murmur and 38 signals with a MS diastolic murmur.
ach of these pathological heart sound signals had been diag-
osed by a specialised cardiologist and classified to one of the
bove four basic heart valve diseases.

Also, due to the noise generated by the uncontrolled varia-
ion of the above factors it is necessary initially to apply an

fficient heart sound pre-processing for noise removal and
eature extraction. The pre-processing method we used and
he feature vector it produces is based on the algorithms pre-
ented in Refs. [3,75], and we outline it here as well for reasons
Fig. 2 – Heart sounds pre-processing procedure.

of paper completeness. It consisted of three phases. In the
first phase of the segmentation of the heart sound signals is
performed, i.e. the cardiac cycles in every signal are detected
by locating the S1 and S2 peaks (see Fig. 2). For this purpose
the collected heart sound samples were analyzed with the
Wavelet decomposition method described in [41], with the
only difference being that the 4th and 5th level detail was kept
(i.e. frequencies from 34 to 138 Hz), followed by calculation of
the normalized average Shannon Energy. Then a morpholog-
ical transform was applied aiming at the amplification of the
sharp peaks and the attenuation of the broad ones [5]. The
method described in Ref. [40] is used next to locate the peaks
corresponding to S1 and S2 and reject the others. Heart sound
segmentation was completed with an algorithm that deter-
mines the boundaries of S1 and S2 in each heart cycle, while
a method, similar to the one described in Ref. [44], was used
to distinguish S1 from S2 peaks.

In a second phase, for each of the transformed heart sounds
that were produced in the first phase were calculated the stan-
dard deviation of the duration of all the heart cycles it includes,
the standard deviation of the S1 peak values of all heart cycles,
the standard deviation of the S2 peak values of all heart cycles

and the average heart rate. These values are the first four
scalar features (F1–F4) of the feature vector of each heart sound
signal.
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In a third phase, the rest of the features used for clas-
sification are extracted. For this purpose we calculated for
each transformed heart sound signal two mean signals for
each of the four structural components of the heart cycle,
namely two signals for the S1, two for the systolic phase, two
for the S2 and two for the diastolic phase. The first of these
mean signals focused on the frequency characteristics of the
heart sound, while the second mean signal focused on the
morphological time characteristics of the heart sound. In par-
ticular, the first signal is calculated as the mean value of each
component, after segmenting and extracting the heart cycle
components, time warping them and aligning them. The sec-
ond signal is calculated as the mean value of the normalized
average Shannon Energy Envelope of each component, after
segmenting and extracting the heart cycles components, time
warping them and aligning them. The second S1 mean sig-
nal is then divided into 8 equal parts, for each part the mean
square value is calculated and the resulting 8 values are used
as features (F5–F12). Similarly 24 scalar features for the sys-
tolic period (F13–F36), 8 scalar features for S2 (F37–F44) and 48
scalar features for the diastolic period (F45–F92) were calcu-
lated. Finally the systolic and diastolic phase components of
the above first mean signal were passed from four band-pass
filters: (a) a 50–250 Hz filter giving its low frequency content,
(b) a 100–300 Hz filter giving its medium frequency content, (c)
a 150–350 Hz filter giving its medium–high frequency content
and (d) a 200–400 Hz filter giving its high frequency content. For
each of these 8 outputs, the total energy was calculated and
was used as a feature in the heart sound vector (F93–F100). The
above three processing phases result in a heart sound feature
vector consisting of 100 components for each signal. These
feature vectors were used for the SVM-based classification
described in the next section.

4. Heart sounds SVM classification:
implementation and results

4.1. Basic principles of the Support Vector Machines

Support Vector Machines are a relatively new type of learning

machine, first introduced by Vapnik and colleagues [96–98],
that exhibit great performance in pairwise classification and
regression problems, while recently efficient algorithms have
been developed that extended their applicability to multi-

Fig. 4 – Data transformation ˚(
Fig. 3 – The maximum margin hyperplane.

class classification problems [99,100]. SVMs separate a given
set of binary labelled training data with a hyperplane that is
maximally distant from them (named the “maximum margin
hyperplane”), as it is depicted in Fig. 3.

Generally, the input space of N training data points (X1,
y1), (X2, y2), . . . (XN, yN) can be separated by a hypeplane
H : w ∗ X − b = 0. This hyperplane H is located by determining
two parallel hyperplanes H1, H2 that have the maximum mar-
gin 2/||w|| with the conditions that there are no data points
between them. The resulting optimization problem can be
formed as a convex quadratic problem in (w, b) in a convex
set. Using Lagrangian multipliers and the Wolfe dual formu-
lation, the optimal values w and b are calculated, where w is
expressed linearly with a selected number of the training data
which are the support vectors. In the case that no linear sep-
aration is possible, various kernel functions are employed in
order to transform the data into a non-linear feature space.
The hyperplane found by the SVM training algorithm in the
transformed feature space corresponds to a non-linear deci-
sion boundary in the initial input space as it is illustrated in

Fig. 4.

In the present research work, the kernel functions we
examined during the development of the SVM models were
polynomial, Gaussian and exponential, given by the following

x) into a non-linear space.
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Table 1 – Results of the SVM algorithm for the classification between “healthy” and “unhealthy” patient cases, where
GRBF stands for Gaussian Radial Basis Function.

SVM kernel function Errors FN FP TP TN Accuracy Sensitivity Specificity

GRBF sigma = 1.5 6 4 2 28 36 91.43% 87.50% 94.74%
GRBF sigma = 1 8 5 3 27 35 88.57% 84.38% 92.11%
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quations:

(Xi, Xj) = e−||Xi−Xj||2/2�2
(Gaussian radial basis function kernel)

(1)

(Xi, Xj) = (Xi · Xj + m)p (the polynomial kernel) (2)

(Xi, Xj) = e−||Xi−Xj||2/2�2

exponential radial basis function kernel) (3)

The validation procedure employed for the SVM classifiers
e developed is stratified 10-fold cross-validation. The data is
ivided randomly into 10 parts, in which each class is repre-
ented in approximately the same proportions as in the full
ataset. Each part is held out in turn and the learning scheme

s trained on the remaining nine-tenths; then its error rate is
alculated on the holdout set. Thus the learning procedure is
xecuted a total of 10 times on different training sets (which
ave a lot in common). Finally, the 10 error estimates are
veraged to yield an overall error estimate. In the models pre-
ented next, the data are supposed to be separable therefore
o penalty function is added to the optimization problem and
he parameter C is set to infinity.

.2. SVM-based diagnosis of healthy vs. pathological
ases

he development and implementation of SVM-based auto-
atic diagnostic system for cardiac sounds launches by

tudying patient cases of pathological heart murmurs and
ases where no heart disease is diagnosed. The pathological
eart murmurs are characterized as “unhealthy” cases in con-
rast with the “healthy” cases. The total data set used for the
evelopment of the model is comprised of 38 “healthy” and
2 “unhealthy” cases. The normal sounds were collected in
ealthy persons (students at the ages of 18–22) using an elec-
ronic stethoscope (Master Elite type manufactured by Welch
llyn) while the pathological sounds were randomly selected

rom the dataset described in Section 3. The validation proce-
ure employed was stratified 10-fold cross-validation instead
f using training/test sets for the reasons described in the
revious section. Several polynomial, Gaussian and exponen-
ial kernel functions have been used comparatively in order

o select the model with the best performance. The values
f sigma differentiate the several radial basis functions used
roviding different hyperplanes for the classification of data
uring the Support Vector Machines’ calculations. The per-
33 82.86% 78.13% 86.84%
30 74.29% 68.75% 78.95%

formance indices calculated were accuracy, specificity and
sensitivity as defined in Ref. [103].

During the experimental studies the linear SVM classi-
fiers recognised all samples as pathological heart murmurs,
which means that they were completely biased. The polyno-
mial kernel functions were used extensively, but performed
poorly with accuracies lower than 70%. Gaussian and expo-
nential kernel functions were tried as alternative solutions.
The highest performances correspond to the Gaussian kernel
functions, which are presented in Table 1. The accuracy of the
SVM classifiers with different kernel functions and parame-
ters are depicted in Fig. 5a. The parameter sigma in Table 1 and
Fig. 5 is the � value in the Gaussian Radial Basis Function ker-
nel appearing in equation 1. Since the GRBF exhibited the best
performance this parameter is considered quite important for
the calculation of the SVM model and it is dealt with great
attention. Moreover, additional classifiers have been devel-
oped for comparison, using alternative approaches, such as
k-nearest-neighbour, naïve Bayes and back-propagation neu-
ral networks [101]. The validation procedure selected was once
again stratified 10-fold cross-validation and the results are
illustrated in Fig. 5b. As it is concluded from Fig. 5b the perfor-
mance of these alternative classifiers was lower than the best
SVM classifiers, which achieves 91.43% accuracy, while the
best of the examined alternative classifiers achieves accuracy
below 80%.

4.3. SVM-based diagnosis of systolic vs. diastolic
phase heart murmurs

In the second stage, an automated classifier for the discrimi-
nation between heart sound signals with systolic or diastolic
murmurs has been developed using the above presented SVM
algorithm. In this case we used the 160 pathological heart
sounds from the collected dataset; 84 of them were diagnosed
as having either aortic stenosis or mitral regurgitation (i.e. as
having systolic murmurs), while the remaining 76 ones were
diagnosed as having either aortic regurgitation or mitral steno-
sis (i.e. as having diastolic murmurs). Similar experiments
were conducted as in the first stage using the same validation
procedure (stratified 10-fold cross-validation).

For the sake of following the definitions of accuracy, sensi-
tivity and specificity in all the models presented in the paper,
as ‘positive data’ are considered the ones belonging to the
first of the two categories to be discriminated, while the ones
belonging to the second category are characterised as ‘nega-

tive’. In this case for instance, systolic murmurs are considered
as positive and diastolic as negative data.

Linear SVM classifiers were again completely biased in the
heart sound data set, that is to say they recognised each
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Fig. 5 – (a) Dependence of accuracy on the kernel functions used to develop the SVM classifier of “healthy” vs. “unhealthy”
patient cases and their parameters (b) Comparison of alternative classification methods with the proposed SVM classifier.
(KNNC stands for K nearest neighbour classifier, NAIVEBC stands for naïve Bayes classifier, BPXNC stands for neural
network classifier trained with back-propagation, SVC stands for Support Vector Machine classifier.)

Table 2 – Results of the SVM algorithm for the classification between systolic and diastolic murmurs, where GRBF stands
for Gaussian Radial Basis Function.

SVM kernel function Errors FN FP TP TN Accuracy Sensitivity Specificity

GRBF sigma = 2 14 9 5 75 71 91.25% 89.29% 93.42%

GRBF sigma = 1 18 10 8 74
GRBF sigma = 1.5 18 10 8 74
GRBF sigma = 0.5 20 11 9 73

test set either as total systolic or diastolic heart murmurs.
Polynomial kernel functions were tried with various degrees,
and performed poorly with accuracies lower than 60%. The
highest performances correspond to the Gaussian kernel func-
tions, which are presented in Table 2. The accuracy of the
SVM classifiers with different kernel functions and param-
eters are depicted in Fig. 6a. The results obtained from the
use of alternative to SVM classifiers are illustrated in Fig. 6b.
As it is concluded from Fig. 6b their performance was lower
than the best SVM classifier, which achieves a 91.25% accuracy,

while the best of the examined alternative classifiers accu-
racy remains below 80%. A deeper investigation of the SVM
classifiers sensitivity and specificity shows quite satisfactory
results, as presented in Fig. 7.

Fig. 6 – (a) Dependence of accuracy on the kernel functions used
heart diseases and their parameters. (b) Comparison of alternati
(KNNC stands for K nearest neighbour classifier, NAIVEBC stands
network classifier trained with back-propagation, SVC stands for
68 88.75% 88.10% 89.47%
68 88.75% 88.10% 89.47%
67 87.50% 86.90% 88.16%

4.4. SVM-based diagnosis of aortic stenosis vs. mitral
regurgitation

Support Vector Machines were also deployed in order to
achieve automated diagnosis of aortic stenosis (AS) vs. mitral
regurgitation (MR) for the cases diagnosed by the SVM classi-
fier described above in Section 4.3 as having systolic murmurs.
The heart sound dataset used consisted of 41 cases of aortic
stenosis and 43 cases of mitral regurgitation. The performance
indices calculated for the SVM classifiers with the highest

accuracy (which were again the Gaussian) are shown in Table 3
(as already mentioned above, aortic stenosis murmurs are
considered as positive, while mitral regurgitation murmurs
are negative data). Linear SVM classifiers and polynomial

to develop the SVM classifier of systolic vs. diastolic phase
ve classification methods with the proposed SVM classifier.

for naïve Bayes classifier, BPXNC stands for neural
Support Vector Machine classifier.)
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Fig. 7 – Dependence of sensitivity (a) and specificity (b) on the various kernel functions used to develop the SVM classifier of
systolic vs. diastolic phase heart murmurs and their parameters.

Table 3 – Results of the SVM algorithm for the classification between aortic stenosis (AS) and mitral regurgitation (MR),
where GRBF stands for Gaussian Radial Basis Function.

SVM kernel function Errors FN FP TP TN Accuracy Sensitivity Specificity

GRBF sigma = 1 7 3 4 38 39 91.67% 90.48% 92.86%
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GRBF sigma = 0.5 10 3 7 38
GRBF sigma = 1.5 12 6 6 35
GRBF sigma = 5 12 6 6 35

ernel functions with various degrees continued to perform
oorly with accuracies less than 62%. On the other hand,
aussian and exponential kernel functions performed satis-

actorily, with Gaussian ones achieving highest performances,
s shown in Table 3. Accuracy indices for the various SVM clas-
ifiers based on different kernel functions and parameters are
llustrated in Fig. 8a. The alternative classifiers we examined
gain exhibited lower performance than SVM, which achieves
91.67% accuracy, as it is shown in Fig. 8b. A further investi-

ation of the above SVM classifiers’ sensitivity and specificity
ndices is presented in Fig. 9.

.5. SVM-based diagnosis of aortic regurgitation vs.

itral stenosis

inally, an additional SVM classifier has been developed for
he discrimination of aortic regurgitation vs. mitral stenosis

ig. 8 – (a) Dependence of accuracy on the kernel functions used
itral regurgitation cases and their parameters. (b) Comparison

VM classifier. (KNNC stands for K nearest neighbour classifier, N
eural network classifier trained with back-propagation, SVC sta
36 88.10% 84.44% 92.31%
37 85.71% 85.37% 86.05%
37 85.71% 85.37% 86.05%

for the cases diagnosed by the SVM classifier described above
in Section 4.3 as having diastolic murmurs. The dataset used
includes 38 aortic regurgitation cases and 38 mitral steno-
sis cases. In this case again Gaussian and exponential radial
basis functions resulted in SVM classifiers with very good
performance, while linear SVM classifiers and polynomial ker-
nel functions resulted again in much lower performance. The
highest results achieved with Gaussian functions are shown
in Table 4 (aortic regurgitation murmurs are considered as
positive, while mitral stenosis murmurs as negative data).
Accuracy indices for the various SVM classifiers based on dif-
ferent kernel functions and parameters are shown in Fig. 10a.
The performance of the alternative classifiers we examined

in comparison to the proposed SVM-based ones is shown
in Fig. 10b; again we remark that these alternative classi-
fiers exhibited lower performance than SVM, which achieves
a 93.42% accuracy. A further investigation of the above SVM

to develop the SVM classifier of aortic stenosis cases vs.
of alternative classification methods with the proposed
AIVEBC stands for naïve bayes classifier, BPXNC stands for
nds for Support Vector Machine classifier.)
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Fig. 9 – Dependence of sensitivity (a) and specificity (b) on the various kernel functions used to develop the SVM classifier of
aortic stenosis cases vs. mitral regurgitation and their parameters.

Fig. 10 – (a) Dependence of accuracy on the various kernel functions used to develop the SVM classifier of aortic
regurgitation vs. mitral stenosis and their parameters. (b) Comparison of alternative classification methods with the SVM
classifier. (KNNC stands for K nearest neighbour classifier, NAIVEBC stands for Naïve Bayes classifier, BPXNC stands for
neural network classifier trained with back-propagation, SVC stands for Support Vector Machine classifier.)

Table 4 – Results of the SVM algorithm for the classification between aortic regurgitation (AR) and mitral stenosis (MS),
where GRBF stands for Gaussian Radial Basis Function.

SVM kernel function Errors FN FP TP TN Accuracy Sensitivity Specificity

GRBF sigma = 1 5 2 3 36 35 93.42% 94.74% 92.11%

GRBF sigma = 0.5 7 3 4 35
GRBF sigma = 1.5 7 3 4 35
GRBF sigma = 2 11 6 5 32

Fig. 11 – Dependence of sensitivity (a) and specificity (b) on the v
of aortic regurgitation vs. mitral stenosis and their parameters.
34 90.79% 92.11% 89.47%
34 90.79% 92.11% 89.47%
33 85.53% 84.21% 86.84%

arious kernel functions used to develop the SVM classifier
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lassifiers’ sensitivity and specificity indices is presented in
ig. 11.

. Discussion and conclusions

n the previous sections a methodology for automated heart
alve diseases identification using simple heart sounds, which
s based on SVM classifiers has been presented. As concluded
rom the surveyed related work presented in Section 2, most of
he previous research on the diagnostic classification of heart
ound signals is based on neural networks, while the diagnos-
ic potential of other types of classifiers in this domain has
ot been sufficiently explored yet. Taking into account this

act, the present paper contributes to bridging this gap.
The proposed methodology includes initially a pre-

rocessing step of the heart sound signal, being followed by
three-step diagnosis phase based on SVM classifiers: in the
rst step the heart sound signal is classified as normal or
athological, in the second step the type of heart murmur

systolic or diastolic) is detected, while in the third step it is
ecided if the sound corresponds to an aortic or mitral disease.

t should be emphasized that the proposed methodology offers
ignificant advantages, since it uses lower cost and higher
vailability signals (i.e. heart sound signals, while most of the
revious research is based on more costly signals, such as
oppler Heart Sounds). More specifically the required equip-
ent consists of an electronic stethoscope (the one bought

or the needs of this study was Master Elite type manufac-
ured by Welch Allyn and costs 400$) and an ordinary personal
omputer with the appropriate software for sound collection,
re-processing and classification. Thus the total equipment
ost for the proposed methodology is less than 1000$ (400$ if
e consider that most health centers already have PCs), while

he alternative solutions are much more expensive (more that
000$ for Doppler Heart Sound, and much more for CTs and
RIs), without taking into account the processing units that
eed to be connected with the output of theses devices.

The presented methodology attempts to provide a highly
etailed diagnosis, taking into account that it does not diag-
ose simply the existence or not of a heart valve disease, but

t goes much further, and identifies the particular heart valve
isease. In all the classification stages SVM classifiers with
aussian and exponential radial basis functions had a quite
atisfactory performance. In the first stage of categorization
normal vs. pathological) the accuracy was above 91%. In the
econd stage for the classification of heart signals as hav-
ng systolic or diastolic murmur an equally high accuracy of
1.25% has been achieved. Finally in the third stage related
o the more detailed classification as aortic stenosis or mitral
egurgitation (in the case of having diagnosed a systolic mur-

ur in the first stage) the accuracy achieved was 91.67%, while
or the classification as aortic regurgitation or mitral stenosis
in the case of having diagnosed a diastolic murmur in the first
tage) the accuracy achieved was 93.42%. Since the method-
logy involves three (3) independent steps the total accuracy

f the overall heart valve disease identification system is the
roduct of the above figures. Thus for the case of systolic dis-
ases the total accuracy is 0.9143 × 0.9125 × 0.9167 = 0.7648 or
6.48% and for the diastolic diseases the total accuracy is sim-
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 47–61 57

ilarly 0.9143 × 0.9125 × 0.9342 = 0.7794 or 77.94%. The reported
accuracy however was characterized as satisfactory by the col-
laborating physicians, taking into account the highly global
and heterogeneous dataset used (including heart sound sig-
nals acquired with various types of stethoscopes, sensors and
filters, in various modes, subjects’ positions and auscultation
areas, from subjects of various ages, heart conditions and
medical treatments); such a dataset enables a more realis-
tic investigation of classifiers’ construction and performance,
but on the other hand it is more ‘noisy’ and therefore more
‘difficult’ for the classifiers, in comparison with the more
‘homogeneous’ ones used by most similar studies.

The alternative classifiers we examined for comparison
purposes (back-propagation neural networks, k-nearest-
neighbour and Naïve Bayes classifiers) exhibited much lower
performance for the same diagnostic problems and using
the same dataset than the proposed SVM-based classifiers.
Also, it is worth mentioning that the performance of these
SVM-based classifiers is higher in comparison with the corre-
sponding performance of the decision trees-based classifiers,
which have been investigated previously by the authors for
the same diagnostic problems and using the same data [3,75].
We also compared the results of this study with the ones
reported by other similar studies of the literature reviewed in
Section 2 that use other different datasets of heart sounds. The
study of Ahlstrom et al. [74] uses a combination of techniques
(Shannon energy, wavelets, fractal dimensions, recurrence
quantification analysis and finally Pudil’s sequential floating
forward selection) for extracting features and then neural net-
works for classifying systolic murmurs as physiological or
pathological, achieving finally 86% correct classification of a
homogeneous heart sounds dataset; this performance is lower
than the 91.43% accuracy we have achieved in the classifica-
tion of the heart sounds as normal or pathological, though our
dataset is much more global and heterogeneous. On the con-
trary, the five studies of Turcoglu et al. [77–79], Uguz et al. [80]
and Comak et al. [81], which are all based on a common homo-
geneous dataset of Doppler Heart Sounds (that require much
more costly and operationally complex equipment), achieve
91–95% correct classification as ‘normal’ (healthy) or ‘abnor-
mal’ using various classifiers, which is slightly higher than
the corresponding accuracy achieved in the present study
(91.43%). Similar conclusions are drawn from the comparison
with the study of Chauhan et al. [76], which uses a proba-
bilistic approach based on Mel-frequency cepstral coefficients
and Hidden Markov Models, and achieves in a homogeneous
heart sounds dataset the following classification accuracies:
95.7% for continuous murmurs, 96.25% for systolic murmurs
and 90% for diastolic murmurs.

According to the literature [6–9], the primary health care
physicians, who are usually young and inexperienced, have
been reported to have poor heart auscultation skills. The pool
of skilled for the specific task clinicians, who have been trained
in the era before echocardiography, continues to age, and the
skills for heart auscultation is in shortage and in danger to
disappear. Thus, as indicated also by the performed survey,

the development of automated characterization systems for
heart sounds in clinical settings, aiming mostly at the diag-
nosis of heart valve diseases, preoccupies several R&D labs
and medical teams. As clinical machine intelligence tech-
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niques mature, it seems they can offer increasingly exciting
prospects for improving the effectiveness and efficiency of
patient care and the development of more reliable Clinical
Decision Support Systems (CDSS) in cardiology. According to
a recent review [102] published studies of clinical machine
intelligence systems are increasing rapidly, and their quality
is improving. The field of automated characterization of heart
related signals follows that rule. It seems that the introduc-
tion of such diagnostic tools may enhance preventive care in
cardiology, facilitating the early diagnosis of heart diseases.
Such tools are mostly intended for inexperienced medical
personnel that could help them in the diagnosis of heart
pathologies at early stages. In addition these decision support
systems may be used for their training. When compared to
medical experts in the field, even the systems with the best
results, depict slightly lower performance in terms of accu-
racy and confidence in diagnosis. However it is admitted by
the physicians that they are very useful in producing second
opinions. In any case the presented system is not to be used
for replacing the physicians, but only to serve as diagnostic
adjunct.

The financial cost of the introduction of the presented sim-
ple CDSS for heart sound assessment is rather low; roughly
estimated above less than 1.000 $. This system may be eas-
ily incorporated in routine clinical practice for heart related
diseases diagnosis and prognosis. In order to convince physi-
cians employing such tools more rigorous evaluation studies
of CDSSs should be conducted including large numbers of
participants and significant budgets. However the evaluation
results presented in Section 4 are quite encouraging for the
future. It is our belief that the methodology presented in
this paper provides significant evidence to warrant trials with
important clinical outcomes. The heterogeneity of the data
used in this research causes several influences on the compa-
rability of the data and limits the results of this study. Future
research work should involve the collection of bigger datasets
with heart sound samples under controlled conditions in
order to enhance the calculation of the Support Vectors and
the potential exploitation of additional features calculated
using other extraction methods during the pre-processing
phase. Also further research is required for the investigation
of efficient feature selection tools and advanced classifiers
based on fusion strategies and on the combination of sev-
eral classifiers in order to improve the overall classification
performance.
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