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Abstract 

It is well-known that the high compression efficiency of test 
set embedding is compromised by its long test application times. 
To alleviate this problem we present a sophisticated version of 
the recently proposed State Skip LFSRs, the Variable-State Skip 
(VSS) LFSRs. By using VSS LFSR successive jumps of variable 
lengths can be performed in the state sequence of the LFSRs 
and thus the useless parts of the test sequences can be effec-
tively skipped. A low-overhead decompression architecture, 
that overcomes the limitations of simple State Skip LFSRs, is 
also proposed. The combination of VSS LFSRs with the pro-
posed architecture offers the very small test-data volumes of 
test set embedding, with drastically shortened test sequences. 
Also, in a multi-core environment where a common decompres-
sor is used, maximum test-sequence-length reduction can be 
achieved for every individual IP core that is tested. 

 
1. Introduction 

Testing of contemporary Systems on a Chip (SoCs) has 
become a very challenging task, due to the extensive integra-
tion of pre-designed and pre-verified modules (i.e., cores). 
Previous-generation Automatic Test Equipments (ATEs) are 
unable to keep up with the increasing memory, speed and 
channel capacity requirements. On the other hand, the acquisi-
tion of new generation ATEs requires large capital investments, 
which elevate the cost of the final products. Currently, the most 
effective way for solving this problem is Test Resource Parti-
tioning. According to Test Resource Partitioning, low cost test 
structures are integrated on-chip for easing the burden of test-
ing on ATEs, without compromising the test quality. 

The testing problem becomes even worse when Intellec-
tual Property (IP) cores of unknown structure are embedded in 
the SoCs. The structure of IP cores is often hidden from the 
system integrator and thus no design modifications can be 
made to them. Moreover, testing of such cores cannot take ad-
vantage of the Automatic Test Pattern Generation (ATPG) and 
Fault Simulation tools, which have been traditionally used for 
reducing the amount of test data that need to be stored in the 
ATE memory. Consequently, various state of the art methods 
like [2, 5, 7-9, 13, 18, 19, 22, 27, 28, 30, 31, 37, 40, 41] cannot 
be directly applied to IP cores. The only test information that is 
provided by the vendor of each IP core is a pre-computed test 
set, which has to be directly applied to the core. Due to their 
great size, these test sets are usually stored compressed in the 
ATE memory, and, during testing, they are downloaded and 
decompressed on chip by integrated decompressors. 

Most of the test data compression methods proposed in the 
literature utilize combinational and/or sequential linear de-
compressors [1, 20, 21, 24, 33, 38, 39]. Recently, various com-
pression methods that are based on compression codes (e.g., 
Golomb, Run Length, Huffman, etc.) have also emerged [3, 4, 
6, 10, 15, 16, 26, 29, 32, 35]. All these methods compress effi-
ciently the pre-computed test sets and have very short test ap-
plication times. The test data volumes can be further reduced 
by using test set embedding methods [11, 12, 14, 25, 34]. 

However, these methods require very long test sequences. To 
alleviate this problem, State Skip LFSRs (Linear Feedback 
Shift Registers) were recently proposed [36]. State Skip LFSRs 
retain the high-compression advantage of LFSR-based test set 
embedding, shortening at the same time the test sequences 
dramatically. In this way, they bridge the gap between test data 
compression and test set embedding, rendering the later a very 
attractive approach for testing IP cores. 

Even though the test sequences of [36] are very short 
compared to other test set embedding techniques, they are still 
much longer than those of test data compression methods. 
Additionally, the test-sequence reduction potential of State 
Skip LFSRs cannot be fully exploited by the decompression 
architecture proposed in [36], when multiple IP cores in a SoC 
should be tested. In this case, the system integrator has to re-
sort to the very expensive solution of using a separate decom-
pressor for each core, so as to minimize the overall test se-
quence length. On the other hand, if an area efficient solution 
is required, a single decompressor must be shared among all 
cores, which however cannot achieve maximum test sequence 
length reduction.  

In this paper, a new test set embedding architecture that is 
based on Variable-State Skip LFSRs (VSS-LFSRs) is pre-
sented. The proposed architecture offers very short test se-
quences (very close to the test sequences of test data compres-
sion methods), with significantly smaller test data volumes 
than those of the latter methods. VSS LFSRs achieve much 
greater test-sequence-length reduction compared to State Skip 
LFSRs, since they can perform jumps of variable lengths in 
the normal LFSR state sequences. Moreover, the proposed 
architecture is very flexible and can fully exploit the State 
Skip property in the case of testing multiple IP cores in a SoC. 
Finally, the area cost of the decompressor is comparable to 
that of most state of the art compression schemes.  

 
2. Previous Work and Motivation 

Fig. 1 presents the State Skip LFSR reseeding architecture 
proposed in [36]. The LFSR is loaded from the ATE with an n-
bit seed (n is the LFSR size), which is expanded through a 
phase shifter into L test vectors of m·r bits each (m is the scan- 
chain volume and r the scan-chain length). The calculation of 
every seed is done by solving systems of linear equations [17] 
that are formed according to the following procedure: let the 
initial state of the LFSR be equal to the set of binary variables 
a0, a1, ..., an-1. At every clock cycle, m linear expressions of 
these variables are generated at the m outputs of the phase 
shifter. Thus, each bit of a test cube (i.e., test vector with x bits) 
corresponds to exactly one linear expression. Every linear ex-
pression corresponding to a specified bit of a test cube is set 
equal to that bit, and in this way a system of linear equations is 
formed. We distinguish two cases: L=1 (classical LFSR reseed-
ing), where each seed is expanded into exactly one test vector, 
and L>1 (test set embedding with reseeding), where each seed 
is expanded into more than one test vectors, or in other words, 
into a window of L test vectors. When L=1, one system of linear 
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Fig. 1. State Skip LFSR Reseeding Architecture 

equations is formed for every test cube, whereas when L >1, we 
have L systems for each test cube. 

Much better compression can be achieved when, during en-
coding, we can choose among L possible systems instead of one 
for every test cube. The reason is that the binary variables in the 
initial state of the LFSR are better exploited due to the greater 
solution space that vector-windows offer, and thus more test 
cubes can by encoded by every seed. Indeed, by using the effi-
cient seed selection algorithm of [14], and by increasing L from 
1 to 500, a compression improvement of up to 77.3% is 
achieved. On the other hand, by using windows, the test se-
quence length increases rapidly (from 100 to 400 times depend-
ing on the circuit), compared to the test sequence length for L=1. 
However, the vast majority of the pseudorandom vectors gen-
erated by every seed are useless, and only few of them corre-
spond to the required test cubes. 

In order to shorten the prohibitively long test sequences 
without sacrificing the high compression potential of the win-
dow-based LFSR reseeding approach, the State Skip LFSRs 
were introduced in [36]. State Skip LFSRs are normal LFSRs 
with the addition of a special linear circuit that is called State 
Skip circuit (see Fig. 1). The State Skip circuit, which consists 
only of a relatively small number of exclusive-or gates, receives 
as input the current state of the LFSR and calculates the state of 
the LFSR k cycles ahead (k>1). The State Skip circuit can be 
easily constructed as follows: the LFSR is initialized at state a0, 
a1, ... , an-1 and is simulated for k cycles. Then the value of every 
LFSR cell is a linear expression of the initial variables. The 
implementation of these linear expressions in hardware consti-
tutes the State Skip circuit. This is why the State Skip circuit 
can generate, in a single clock cycle, the state of the LFSR k 
cycles ahead. By using the State Skip circuit instead of the 
characteristic polynomial (a 2:1 mux is required before every 
LFSR cell), the LFSR performs successive jumps of constant 
length k in its state sequence, which is consequently traversed k 
times faster (k is called speedup factor).  

According to [36], the vector-sequence generated by every 
seed is partitioned into segments of size S. All segments em-
bedding at least one test cube are labeled as useful, whereas the 
rest are labeled as useless. The useful segments are traversed 
normally by using the characteristic polynomial of the LFSR, 
whereas the useless ones are traversed fast (k times faster than 
useful segments) by using the State Skip linear circuit. Note 
that test quality is not compromised, because all test cubes are 
embedded into the useful segments. However, since most of the 
segments are useless, the major portion of the pseudorandom 
sequence is bypassed and thus the test sequence length is sig-
nificantly reduced. The efficiency of this architecture strongly 
depends on segment size S, as well as on the speedup factor k. 
As it was shown in [36], the test sequences are considerably 
reduced when the value of S decreases and/or the value of k 

increases. In the first case the total size of useful segments de-
creases whereas the total size of useless segments increases 
(their sum though remains constant), since fewer useless vec-
tors remain in the useful segments (note that each useful seg-
ment may also contain some useless pseudorandom vectors, the 
volume of which depends on size S). Taking into account that a 
useless segment is generated faster than a useful one (its major 
portion is skipped), we deduce that the overall test sequence 
length decreases. In the second case, when k increases, the 
number of cycles required for the generation of useless seg-
ments decreases, and as a result the test sequence is also re-
duced. As a conclusion, small segments and large speedup fac-
tors are preferable. 

One limitation of the architecture proposed in [36] is that k 
must divide exactly the product S·(r+1), which is the number of 
clock cycles required for the normal generation (i.e., using the 
characteristic polynomial) of each segment (each vector re-
quires r clock cycles for loading the scan chains plus one cap-
ture cycle). If this condition is satisfied then a whole segment is 
traversed by using the State Skip circuit for exactly S·(r+1)/ k 
successive clock cycles. However, since small segments are 
preferable (usually in the range [2, 5]), the maximum value of k 
that divides exactly the product S·(r+1) is bounded by the value 
of r and thus a large speedup factor may not be possible. This 
limitation has an even more serious effect when multiple IP 
cores should be tested in a SoC. In this case, it is almost certain 
that the value of r will be different for every core. Then the only 
way to develop a single State Skip LFSR for testing all cores is 
to adjust the values of S and k, so as to satisfy the above condi-
tion for every core, which means that k must divide S exactly. 
As a result, it is impossible to select a small value for S and, at 
the same time, a large value of k. On the contrary, the values of 
both k and S will be either large or small. In the first case, every 
useful segment will contain many useless pseudorandom vec-
tors and thus the total number of cycles required for its genera-
tion will increase. In the second case, the small speedup factor k 
will not be able to drastically shorten the time required for the 
generation of the useless segments. Both scenarios negatively 
affect the performance of the proposed method.  

In this paper we propose a very efficient decompression ar-
chitecture which utilizes Variable-State Skip LFSRs, i.e. State 
Skip LFSRs which can perform jumps of variable lengths. Spe-
cifically, the State Skip circuit implements two speedup factors, 
one small (k) and one large (K). The large factor is used for 
minimizing the test time required for traversing large useless 
parts of the pseudorandom sequences, whereas the small factor 
is used for smaller useless parts. Even though two speedup fac-
tors are implemented, the proposed method does not need much 
more hardware than [36], since the speedup factors are properly 
selected so as to keep the overall overhead low. On the other 
hand, the test sequences are reduced considerably compared to 
[36]. Another significant advantage of the proposed method is 
that the values of k and K are independent of segment size S. 
This enables the designer to fully exploit the "test time-
hardware overhead" trade-off for single cores, as well as to 
achieve maximum test-sequence-length reduction for every 
core that is tested by a common decompressor in a SoC. 
 

3. Proposed Scheme 
After seed-calculation (i.e., test cube encoding in pseudo-

random-vector-windows), which is performed according to 
[14], every L vector-window of a seed is partitioned into L/S 
segments of S vectors each. The seed calculation algorithm 
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guarantees that every test cube will be embedded in at least 
one segment of one of the seeds. However, many test cubes 
consist of a small number of specified bits and thus they are 
fortuitously embedded in more than one segment of one or 
more seeds. For that reason, a greedy segment-selection proc-
ess is applied for selecting a small number of segments that 
embed all test cubes. The selected segments are labeled as 
useful and the rest as useless. Then, the seeds are grouped ac-
cording to the number of useful segments that their windows 
contain, and they are sorted in ascending order: group 1 con-
tains all seeds with 1 useful segment, group 2 contains all seeds 
with 2 useful segments and so on. By applying this grouping, 
the generation of the vector-window of each seed terminates 
right after the generation of the last useful segment. 

According to the proposed method, the test vectors of all 
useful segments are generated in Normal Mode (i.e. the LFSR 
generates the vectors of the segment by using its characteristic 
polynomial) and they are applied to the core under test. On the 
other hand, all useless segments are traversed in the Variable 
State Skip mode, i.e., the LFSR operates using the Variable 
State Skip circuit, and performs successive jumps of length k 
(k-mode) or K (K-mode). 

Let A be the number of useless segments between two use-
ful segments Si, Sj (j=i+A+1). Then the LFSR requires 
C=A·S·(r+1) cycles for traversing these useless segments in 
Normal mode. By using the Variable State Skip circuit, the 
proposed method traverses these A segments much faster: at 
first K-mode is used (the LFSR performs jumps of length K) 
for C1=⎣(A·S·(r+1))/K⎦ successive cycles. We then switch to k-
mode (the LFSR performs jumps of length k) for C2= 
⎣(A·S·(r+1)-C1·K)/k⎦ cycles, and finally Normal mode is used 
for C3=A·S·(r+1)-C1·K-C2·k cycles (note that each one of the 
C1, C2 and C3 cycles corresponds to a jump of length K, k and 
1 respectively, and thus C= C1·K+C2·k+C3). In other words, 
K–mode is used for traversing the major part of the useless 
segments, k-mode is used for the remaining part which cannot 
be traversed in K–mode (its length is smaller than K), and fi-
nally Normal mode is used for the last part that cannot be trav-
ersed in k–mode (its length is smaller than k). Therefore, in-
stead of C cycles, only C1+C2+C3 cycles, are required for 
traversing the useless segments. For example if K=100, k=15, 
A=20, S=6 and r=20, we have C=2520, C1=25, C2=1, and C3= 
5. Consequently 31 cycles are required instead of 2520 cycles. 
The calculation of C is done during the generation of the test 
vectors of useful segment Si that precedes the A useless seg-
ments. Specifically, while the test vectors of segment Si are 
applied to the core, the next segments (Si+1, Si+2, …) are exam-
ined one by one until the next useful one is found. For every 
useless segment found, its size in cycles [i.e., S·(r+1)] is added 
to a counter. Consequently, when the next useful segment is 
found, this counter contains the number of cycles C for travers-
ing the A useless segments. Then the reverse process begins 
and this counter is decreased initially by K, then by k and fi-
nally by 1, until it reaches 0. Specifically, while the value of 
the counter is greater than or equal to K, the K-mode is used 
and the counter is decreased by K. This is repeated until the 
value of the counter drops below K. Then, while the value of 
the counter is greater than or equal to k, the k-mode is used and 
the counter is decreased by k. This is repeated until the value of 
the counter drops below k. Finally, if the value of the counter is 
not zero, the Normal mode is used and the counter decreases by 
one. This is repeated until the counter reaches 0, which indi-
cates that all useless segments have been traversed. 
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Fig. 2. Proposed Architecture 

The proposed architecture is shown in Fig. 2. It consists of 
four main units:  
a) The Vector Generation unit, which comprises the LFSR, the 

Phase Shifter and the Variable State Skip circuit. This unit is 
responsible for loading the scan chains with the test vectors, 
and for traversing the useless pseudorandom segments by 
performing successive jumps of length K or k. The operation 
of this unit is controlled by the signal StateSkipMode. 

b) The Segment Type unit, which consists of a decoder and a 
combinational logic block, the Segment Type Select block, 
which determines whether a segment is useful or not. The 
decoder is used for reducing the hardware overhead of the 
common decompressor in a multi-core environment. 

c) The Look-Ahead unit, which consists of the Segment Look-
Ahead counter and the Jump Select block. During the genera-
tion of a useful segment, it locates the next useful segment 
and when the generation of the current useful segment is 
complete, it controls the Vector Generation unit so as to trav-
erse the intermediate useless segments in State Skip mode. 

d) The Controller, which comprises various counters that con-
trol the operation of the whole decompressor. 
Initially the LFSR is loaded from the ATE with the first 

seed of the seed-group 1 (note that every seed of group 1 in-
cludes only one useful segment). Group counter is initialized 
to 1, Useful Segment counter is loaded with the value of 
Group counter and the rest counters are reset to 0. The genera-
tion of the test vectors of the first segment (which is always 
useful according to the seed selection algorithm) begins. The 
loading of the test vectors into the scan chains is controlled by 
the Bit and Vector counters. During the generation of every 
useful segment, Normal Mode is used. When all test vectors of 
the segment have been applied, Useful Segment counter de-
creases by one and, for the case at hand, reaches 0. Every time 
Useful Segment counter reaches 0, all useful segments of the 
current seed have been generated and thus the decompressor 
can proceed with the next seed. Thus, Seed counter increases 
by one in order to enable the loading of the next seed from the 
ATE, and all counters except for the Seed and Group counters 
are initialized again in the same way as before. This is re-
peated for every seed of the same group. 

When all seeds of the current group have been processed, 
Group counter increases by one so as to enable the loading of 
the next group of seeds (group 2 - it includes seeds with 2 use- 
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Fig. 3. Test Sequence Length Using Speedup Factor K 

ful segments). Note that the value of Group counter is equal to 
the number of useful segments of every seed in the group (this 
is why Useful Segment counter is loaded with the value of 
group counter every time a new seed is loaded in the LFSR). 

The Look-Ahead unit is also activated at the beginning of 
seed-group 2. This unit operates concurrently with the genera-
tion of every useful segment of each seed and determines the 
number of cycles between the last state of the current useful 
segment and the first state of the next useful one (i.e., it calcu-
lates number C). The Segment Look-Ahead counter is reset at 
the beginning of every seed. The values of this counter are in 
the range [0, L/S) and correspond to the L/S segments of every 
window. During the generation of any useful segment, this 
counter increases by one at every clock cycle and checks the 
segments that follow the useful segment that is currently gen-
erated, until the next useful one is found. This is indicated by 
the FoundUsefulSegment signal of the Segment Type Select 
unit, which determines if a segment is useful or not by exam-
ining the values of the Segment Look-Ahead, Seed and Group 
counters. Every time the Segment Look-Ahead counter is in-
creased by one, the Cycle counter inside the Jump Select unit 
is increased by S·(r+1). Thus, when the Segment Look-Ahead 
counter stops after having found the next useful segment, Cy-
cle counter contains the number C.  

When the application of the test vectors of the current use-
ful segment completes, and if the next segment is not a useful 
one, the operation mode of the LFSR is switched to the Vari-
able State Skip mode. Then, the value of Cycle counter is 
compared against K, and while it is greater than or equal to K, 
the K-mode is used and the counter is decremented by K. 
When the value of Cycle counter drops below K, the above 
process continues with comparisons against k. While the Cycle 
counter value is greater than or equal to k, the k-mode is used 
and the counter is decremented by k. When Cycle counter 
drops below k, the above process continues with comparisons 
against 0. While its value is larger than 0, the Normal mode is 
used and the counter is decremented by 1 (note that in this 
case, the LFSR simply passes through the states, i.e., no vector 
is loaded in the scan chains).  

Note that if the next useful segment has been found before 
the completion of the generation of the current useful segment, 
the Look-Ahead unit stops and waits until generation is com-
plete. In the case that the generation of the current useful seg-
ment has finished and the next useful segment has not yet been 
determined, the above described state skipping process begins, 
provided that the value of Cycle counter is greater than or equal 
to K. Every time the value of Cycle counter is greater than or 
equal to K, the StateSkipMode signal is set properly so as the 
LFSR to operate in K-mode. If the value of Cycle counter is 
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Fig. 4. Overhead of State Skip Circuits 

smaller than K but equal or greater than k, then a k-jump is tem-
porarily avoided (the Vector Generation unit stalls), since there 
is the possibility that Cycle counter will increase above K in the 
next cycles (the Segment Look-Ahead counter continues to 
increase), and thus a large jump will be performed. Note that 
Cycle counter has to be increased by S·(r+1) (due to the in-
crease of the Segment Look-Ahead counter), and, at the same 
time, it has to be decreased by K (due to a jump of length K). 
For that reason, Cycle counter is either decreased by K-S·(r+1)  
[if K≥S·(r+1)] or it is increased by S·(r+1)-K [if K<S·(r+1)]. In 
this way, the two operations are overlapped and the generation 
of the test vectors terminates faster. 

 
4. Evaluation and Comparisons 

The proposed method was implemented in C programming 
language and experiments were conducted on a Pentium PC for 
the larger ISCAS '89 benchmark circuits, assuming 32 scan 
chains for each one of them. Uncompacted test sets generated 
by Atalanta [23] that offer complete stuck-at fault coverage 
(100%) were used. The running time of the proposed method is 
only a few minutes. In the sequel, the test sequence length re-
sults are reported as number of vectors and the test data vol-
ume results are reported as number of bits. 

In our first set of experiments we study the effect of the large 
speedup factor K on the test sequence length. We provide re-
sults for the s13207 and s15850 benchmark circuits (the rest 
circuits exhibit similar behavior). Fig 3. presents the test se-
quence length (TSL) results obtained by varying K in the range 
[50, 240], with k=15. The segment size used in all cases was 
S=2 and the window size was L=200. It is obvious that when K 
increases, TSL reduces. The achieved reduction saturates when 
K increases above a value, which depends on the core under test. 
We observe that for some values of K, TSL exhibits large in-
stant drops. The reason is that the corresponding values of K 
happen to divide exactly the number of cycles required for gen-
erating normally a number of, let say m, segments. Conse-
quently, every time the number of useless segments between 
two useful ones is a multiple of m, these segments are traversed 
by using only the large speedup factor K (i.e., without using the 
small speedup factor and the LFSR polynomial).  

In the next set of experiments, we study the area overhead of 
the State Skip circuits for various speedup factors. Fig. 4 pre-
sents the results for the examined benchmark circuits (the 
LFSR sizes can be found in Table 1). The area overhead of the 
State Skip circuits is reported in gate equivalents (one gate 
equivalent corresponds to a 2-input nand gate). Note that in Fig. 
4 every examined State Skip circuit implements one speedup 
factor. The results in Fig. 4 are partitioned into two regions 
separated by the dashed line: the left region corresponds to the  
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Table 1. Comparisons among the Various LFSR Reseeding Methods 
  Clas. Reseeed. (L=1) L=200 L=500 
 LFSR TSL Impr. (%) over TSL Impr. (%) over
 Size 

TDV TSL K/k TDV 
Norm. SS VSS Norm. SS 

K/k TDV 
Norm. SS VSS Norm. SS 

s9234 44 10692 243 54/18 7128 32400 1784 1465 95.5% 17.9% 165/15 6688 76000 3055 2455 96.8% 19.6%
s13207 24 8856 369 230/46 3816 31800 1756 1180 96.3% 32.8% 230/46 2688 56000 2701 1440 97.4% 46.7%
s15850 39 11622 298 168/42 6669 34200 1740 1091 96.8% 37.3% 168/42 6201 79500 2791 1470 98.2% 47.3%
s38417 85 58225 685 318/53 48110 113200 13113 3026 97.3% 76.9% 318/53 47005 276500 21865 3230 98.8% 85.2%
s38584 56 22680 405 235/47 7056 25200 6639 1935 92.3% 70.9% 235/10 5152 46000 9054 1958 95.7% 78.4%

Table 2. Comparisons of the Proposed Approach against Test Data Compression Methods 

  [1]   [20] [24] [39]   [26] [32] [21] [33] Clas. LFSR 
Reseed. (L=1) 

Prop.  
L=200 

Circuit TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV TSL TDV
s9234 170 15092 205 12445 10302 - 159 30144 - - - 161 17198 243 10692 1465 7128

s13207 229 12798 266 11859 10484 10810 236 20988 74423 266 14307 242 26004 369 8856 1180 3816
s15850 244 15480 269 12663 11411 12405 126 25140 26021 226 15067 306 32226 298 11622 1091 6669
s38417 376 37020 376 36430 32152 32154 99 85225 45003 376 49001 854 89132 685 58225 3026 48110
s38584 296 31574 296 30355 31152 31000 136 57120 73464 296 28994 599 63232 405 22680 1935 7056

 
State Skip circuits implementing the small speedup factors k, 
whereas the right region corresponds to the State Skip circuits 
implementing the large speedup factors K. By looking at the left 
region (small speedup factors k) we can see that the overhead of 
the State Skip circuit is low (below 120 gate equivalents in all 
cases) and increases almost linearly with k. By looking at the 
right region (large speedup factors K) we see that the overhead 
is higher compared to the results of the left region, but interest-
ingly it exhibits significant fluctuations (i.e., ups and downs). 
According to our experiments, this behavior is caused by ex-
actly the same fluctuations in the mean number of binary vari-
ables per LFSR cell, during symbolic LFSR simulation. The 
designer can take advantage of this property and choose a high 
speedup factor that is in the neighborhood of a local minimum 
so as to achieve high performance and low area overhead at the 
same time. The large speedup factors that were chosen for each 
benchmark circuit are circled in Fig. 4. Even though the se-
lected values of K are very high (between 54 and 318) the 
hardware overhead of the corresponding State Skip circuit is 
between 50 and 250 gate equivalents, which is rather small. 
Note that the overall area overhead of the Variable State Skip 
circuits will be higher, due to the addition of the State Skip cir-
cuit implementing the small speedup factor k. 

Table 1 presents the test data volumes (TDV) and test se-
quence lengths (TSL) achieved by: a) the classical LFSR re-
seeding method, which does not use vector-windows (L=1), and 
b) the window-based test set embedding approaches with re-
seeding that utilize: i) normal LFSRs (labeled "Norm."), ii) 
State Skip LFSRs (labeled "SS") [36], and iii) Variable State 
Skip LFSRs (labeled "VSS"). The window sizes for the last 
three approaches were L=200 and 500. The first two columns 
present the circuit name and the size of the utilized LFSR. Col-
umns 3 and 4 present the TDVs and TSLs of the classical re-
seeding method. Columns 5-11 and 12-18 present the TDV-
TSL results of the rest three methods for L=200 and L=500 
(note that the test data volumes of these methods are the same 
and thus they are reported under the same column). Columns 
labeled "K/k" present the values of the large/small speedup fac-
tors of the VSS LFSRs that were used in each case [the large 
speedup factors are near to local area-minimums (see Fig. 4) in 
order to keep the hardware overhead low]. Columns labeled 
“Impr. (%) over Norm.” and “Impr. (%) over SS” report the 
TSL reduction percentage achieved by VSS LFSRs over nor-
mal and SS LFSRs respectively. It is obvious that when vector-
windows are used, the TDV drops significantly compared to the 

classical LFSR resseding. However, at the same time the test 
sequence length increases rapidly. The test sequence length is 
greatly improved by using SS-LFSRs but it still remains high, 
especially in the case of large benchmarks. On the other hand, 
VSS LFSRs offer short test sequences in all cases. Moreover, 
their test-sequence-reduction ability is only slightly affected by 
the utilized window size, giving the designer the opportunity to 
increase the compression as much as possible with negligible 
test-sequence overhead. 

Table 2 compares the proposed method against the most effi-
cient test data compression methods which are suitable for IP 
cores of unknown structure. Comparisons against the test set 
embedding techniques of [12, 14, 25] are omitted, since the 
method proposed in [36] (which is included in Table 1) per-
forms better than these techniques. In all but one case (s38417) 
the proposed method performs better than the compared test 
data compression methods, in terms of test data volume. The 
test sequences of the proposed method are longer but close to 
those of the test data compression methods. We note that for the 
s38417 circuit, the test set generated by Atalanta consists of a 
very high volume of specified bits (93123 specified bits), which 
leads to the relatively reduced TDV performance in this case. 

We next present the hardware overhead results of the pro-
posed method for the case of s13207 (the results for the rest 
circuits are similar, since excluding the LFSR and the Segment 
Type Select unit, the hardware overhead of the remaining de-
compressor units does not depend on the test set). The overhead 
of the Variable State Skip circuit for k=46 and K=230 is equal 
to 203 gate equivalents. For the same circuit, the total overhead 
of the LFSR, Phase Shifter, counters, control and decoding 
logic, for L=200 and S=5, is 627 gate equivalents. All the above 
units need to be implemented only once in a SoC, where a 
common decompressor is used for testing different cores. This 
makes their overall cost much smaller. The only unit that has to 
be implemented separately for every core is the Segment Type 
Select unit, whose hardware overhead for s13207 is between 44 
and 262 gate equivalents, for 50≤L≤500 and 2≤S≤50. Note that, 
excluding the Variable State Skip circuit, which is larger than 
the State Skip circuit of [36], the area overhead of the rest of the 
proposed decompressor is close to that of [36]. 

In our last experiment we applied the proposed approach and 
that of [36] to a hypothetical multi-core SoC consisting of the 5 
larger ISCAS '89 benchmarks. In both cases a common decom-
pressor was used and only the Segment Type Select unit was 
implemented separately for each core. Table 3 presents the TSL 
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Table 3. VSS vs. SS LFSRs for multiple cores 
 SS-LFSR VSS-LFSR 

S k TSL Area K k TSL Area 
TSL  

Impr. (%) 
2 2 53471 9% 318 21 8511 10,5% 84.1% 
5 5 31358 7,7% 159 5 15682 8,8% 50.0% 

10 10 33736 6,6% 18 10 26731 7,8% 20.8% 
 

and area overhead results for three segment sizes, 2, 5 and 10, 
and for LFSR size=85. The area overhead is reported as the 
percentage of the area of the decompresssor to the total area 
occupied by the 5 cores. It is obvious that the TSL gain is very 
high compared to [36] and reaches 84.1%. On the other hand, 
the hardware overhead increase is very small (between 1-1.5% 
of the total area of the 5 cores). Therefore, we conclude that the 
proposed scheme exploits better than [36] the State Skip prop-
erty, especially when it is applied to multiple cores in a SoC. 
 

5. Conclusions 
An advanced version of the State Skip LFSRs, which were 

recently proposed in [36], was introduced. Variable State Skip 
LFSRs reduce considerably the test application time by utiliz-
ing two speedup factors, a large and a small one. With proper 
selection of these factors the area of the proposed scheme is 
only a little higher than that of [36]. In the same time great 
reduction of the test application time is achieved (up to 85.2%) 
compared to [36]. Moreover, the proposed architecture does 
not suffer from the limitations of [36] and thus it can be effi-
ciently used for testing multiple IP cores in a SoC. 
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