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Abstract. This. paper addresses the problem of identifying the 

most likely music performer, given a set of performances of the 

same piece by a number of skilled candidate pianists. We propose a 

set of features for representing the stylistic characteristics of a

music performer. A database of piano performances of 22 pianists 

playing two pieces by F. Chopin is used in the presented

experiments. Due to the limitations of the training set size and the 

characteristics of the input features we propose an ensemble of

simple classifiers derived by both subsampling the training set and

subsampling the input features. Preliminary experiments show that 

the resulting ensemble is able to efficiently cope with this difficult

musical task, displaying a level of accuracy unlikely to be matched

by human listeners (under similar conditions). 

In this paper, we use AI (specifically: machine learning)

techniques in an attempt to express the individuality of music 

performers (pianists) in machine-interpretable terms by quantifying

the main parameters of expressive performance. In order to avoid

any subjective evaluation of our approach, we apply it to a well-

defined problem: the automatic identification of music performers, 

given a set of piano performances of the same piece of music by a

number of skilled candidate pianists. From this perspective, our task

can be viewed as a typical classification problem, where the classes

are the candidate pianists. A set of features that represent the

stylistic properties of a performer is proposed, introducing the 

‘norm performance’ as a reference point, while ideas taken from

machine learning research are applied to the construction of the

classifier. The dimensions of expressive variation that will be taken 

into account are the three main expressive parameters available to a

pianist: timing (variations in tempo), dynamics (variations in 

loudness), and articulation (the use of overlaps and pauses between

successive notes).

1 INTRODUCTION 

The representation of music as given in the printed score is not able

to capture every musical nuance. Hence, a piece played exactly as

notated in the printed score would sound mechanical. Expressive

music performance is the interpretation of a piece of music

according to the artist’s understanding of the structure (or

‘meaning’) of the piece. Every skilled performer continuously

modifies important parameters, such as tempo and loudness, in

order to stress certain notes or ‘shape’ certain passages. Expressive

performance is what makes music come alive and what

distinguishes one performer from another (and what makes some

performers famous). 

First experimental results show that it is indeed possible for a

machine to distinguish music performers (pianists) on the basis of

their performance style. From the point of view of machine

learning, this constitutes another supporting case for the utility of

ensemble learning methods (specifically, the combination of a large 

number of independent simple ‘experts’ [2]). The contribution of

this work to musicology is the identification (via machine learning

methodology) of a set of global characteristics of performance style

that seem to be relevant to distinguishing different artists. On the 

other hand, it must be stressed that the current results are still very

preliminary and limited because of the limited empirical data

available for this investigation. Obtaining precise measurements, in

terms of timing deviations, dynamics, and articulation, of

performances of highly skilled artists is a difficult task. We are

currently investing a large amount of effort into developing new 

methods for extracting expressive details from given recordings and

hope to be able to report on much more extensive experiments in 

the near future.

Because of its central role in our musical culture, expressive

performance is a central research topic in contemporary

musicology. One main direction in empirical performance research

aims at the development of rules or principles of expressive 

performance either with the help of human experts [6] or by

processing large volumes of data using machine learning techniques

[11]. Obviously, this direction attempts to explore the similarities

between skilled performers in the same musical context. On the

other hand, the differences between performers have not been

studied thoroughly. Repp [10] presented an exhaustive statistical

analysis of temporal commonalities and differences among 

distinguished pianists' interpretations of a well-known piece and

demonstrated the individuality of some famous pianists. However, 

the differences in music performance are still expressed generally

with aesthetic criteria rather than quantitatively.

2 DATA AND TERMINOLOGY

The data used in this study consists of performances played and

recorded on a Boesendorfer SE290 computer-monitored concert 

grand piano, which is able to measure every key and pedal

movement of the artist with very high precision. 22 skilled

performers, including professional pianists, graduate students and

professors of the Vienna Music University, played two pieces by F.

Chopin: the Etude op. 10/3 (first 21 bars) and the Ballade op. 38

(initial section, bars 1 to 45). The digital recordings were then
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transcribed into symbolic form and matched against the printed

score [3]. Thus, for each note in a piece we have precise

information about how it was notated in the score, and how it was

actually played in a performance. The parameters of interest are the

exact time when a note was played (vs. when it ‘should have been 

played’ according to the score) – this relates to tempo and timing –,

the dynamic level or loudness of a played note (dynamics), and the 

exact duration of played note, and how the note is connected to the

following one (articulation). All this can be readily computed from

our data.

In the following, the term Inter-Onset Interval (IOI) will be used

to denote the time interval between the onsets of two successive

notes of the same voice. We define Off-Time Duration (OTD) as the 

time interval between the offset time of one note and the onset time

of the next note of the same voice. The 22 pianists are referred by

their code names (i.e., #01, #02, etc.).

3 FEATURES FOR CHARACTERIZING
PERFORMANCE STYLE

If we define (somewhat simplistically) expressive performance as 

‘intended deviation from the score’, then different performances 

differ in the way and extent the artist ‘deviates’ from the score, i.e.,

from a purely mechanical (‘flat’) rendition of the piece, in terms of

timing, dynamics, and articulation. In order to be able to compare

performances of pieces or sections of different length, we need to

define features that characterize and quantify these deviations at a

global level, i.e., without reference to individual notes and how

these were played.

Figure 1 (top) shows the timing deviation of five pianists (#01-

#05) from the printed score of Chopin's Etude op. 10/3 (measured 

as the difference between performed IOIs and the IOIs that would 

result from a mechanical performance of the piece at a pre-specified

fixed tempo). It is obvious that all the pianists tend to deviate from

the score in a similar way. That is not surprising. It is well known

that to a certain extent, expressive variation is correlated with the

structure of the piece of music (e.g., phrase structure, harmonic

structure, etc.); indeed, expressive performance is a means for the

performer to communicate structural information to the listener.

The peaks and dips of the resulting performance curves tend to

correlate (more or less strongly) with phrase boundaries and phrase 

centers. Thus, if we decide to rely on very global summarizations of

a pianist's tempo deviations etc. and not to encode detailed aspects 

of the music played (such as its phrase structure, harmonic 

structure, etc.), these global features will strongly depend on and

vary with the training set. Sampling the training set from slightly

different segments of the same piece may affect the output of the

classifier substantially.
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This problem can be avoided by the use of what we call ‘norm

deviation features’. In addition to the comparison of the 

performance of a certain pianist with the printed score, we propose

the average performance of a different set of performers as a 

reference point. Figure 1 (bottom) shows the timing deviation of

pianists #01-#05 from the average performance (i.e., norm) of the 

pianists #06-#10 for the same piece as above. As can be seen, the

timing deviations of the first set of pianists from the norm of the 

second set are more stable across the piece. This is a strong

indication that the norm deviation features should not be affected by

slight changes to the training set. Given a set of reference

performances, the norm deviation can be easily calculated for

timing, dynamics, and articulation.

Figure 1. Smoothed timing deviation of the pianists #01-#05 from

the printed score (above) and the norm of the pianists #06-#10 (below)

for the soprano notes of Chopin’s Etude op. 10/3.

Another valuable source of information comes from the 

exploitation of the so-called melody lead phenomenon [7]. Notes

that should be played simultaneously according to the printed score

(i.e., chords) are usually slightly spread out over time. A voice that

is to be emphasized precedes the other voices and is played louder.

Studies of this phenomenon [9] showed that melody lead increases

with expressiveness and skill level. Therefore, deviations between

the notes of the same chord in terms of timing and dynamics can

provide useful features that capture an aspect of the stylistic

characteristics of the music performer.

Specifically, then, we propose the following global features for

representing a music performance, given the printed score and a

performance norm derived from a given set of different performers:

Score deviation features:

D(IOIs, IOIm) timing

D(IOIs, OTDm) articulation

D(DLs, DLm) dynamics

Norm deviation features:

D(IOIn, IOIm) timing

D(OTDn, OTDm) articulation

D(DLn, DLm) dynamics

Melody lead features:

D(ONxy, ONzy) timing

D(DLxy, DLzy) dynamics

where D(x, y) (a scalar) denotes the deviation of a vector of

numeric values x from a reference vector y, IOIs and DLs are the

nominal inter-onset interval and dynamic-level, respectively,

according to the printed score, IOIn, OTDn, and DLn are the inter-



onset interval, the off-time duration, and the dynamic-level,

respectively, of the performance norm, IOIm, OTDm, and DLm are

the inter-onset interval, the off-time duration, and the dynamic-

level, respectively, of the actual performance, and ONxy, and DLxy

are the on-time and the dynamic-level, respectively, of a note of the

x-th voice within the chord y.

Table 1. Comparison of score and norm deviation measures for

different types of distance and different methods of forming training

examples.

Accuracy (%)

Distance Equal-length Phrase-based

Ds 52.5 50

Dr 60 52.5

Dsa 40 30S
co

re

Dra 52.5 42.5

Ds 82.5 77.5

Dr 57.5 45

Dsa 45 45N
o
rm

Dra 20 20

For measuring the deviation in each of the above features,

different types of distance could be applied. We decided to choose

the appropriate type of distance for each feature category according

to its statistical significance in the training set. In the following

experiments, Chopin's Ballade op. 38 will be used as the training

material, and the Etude op.10/3 as the test piece. Pianists #01-#12 

will be used as the set of reference pianists to compute the ‘norm

performance’, and the task will be to learn to distinguish pianists

#13-#22. For determining the best type of distance measure for each

type of feature, the training piece (the Ballade) was divided into

four non-overlapping segments, each including 40 soprano notes. 

For each segment of the performance of the piece by the pianists

#13-#22, the values of the proposed features for the following 

different types of distance were calculated:
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Figure 2. Classification accuracy vs. training example length

(in soprano notes).

Then, analysis of variance (aka ANOVA) was applied to these 

values for extracting conclusions about the statistical significance of

the different types of distance and features. The most significant

features proved to be the deviation from the norm in terms of timing

and articulation, the timing deviation between the first and the third

voice as well as between the first and the fourth voice (the bass

line), and the deviation from the score in terms of timing and

articulation. As regards the different types of distances, Dr gave the 

best results for the score deviation features. This type of distance

has been used previously for comparing different performances. Ds

seems to be the appropriate selection for the norm deviation

features. Finally, Dsa fits better the melody lead features, which

indicates that information on whether a voice precedes or follows

the first voice in a chord is not that important as the degree to which 

deviates from it. 

4 THE CLASSIFICATION MODEL 

4.1 Problem characteristics

Since only two pieces were available (one of which should serve as 

independent test piece), the training examples of the music 

performer classifier should consist of piece segments rather than

entire musical pieces.

To determine the best mode of segmentation (equal length

segments or segments based on the piece's phrase structure), a

simple experiment was performed. A number of simple classifiers,

based on different types of features and distance definitions, were

trained (via discriminant analysis – see below) using the 

performances of the pianists #13-#22 of Ballade op. 38, with

different methods of segmenting the piece into training examples:

in one case, the piece was segmented into four parts of equal length

(40 soprano notes each), in the other, it was cut into four parts

according to phrase boundaries that were identified manually by a

human expert. Table 1 shows the classification accuracy results

(leave-one-out evaluation on the original data). As can be seen, in

all the cases the classifiers based on training examples of equal

length gave better or equal accuracy results in comparison with the

phrase-based classifiers. The norm deviation features generally 

outperformed the score deviation features. 

Figure 2 shows the relation of the length of the training

examples (number of soprano notes) with the classification

accuracy using Ballade op. 38 as testing ground and the norm

deviation features. The longer the segments that constitute the

training examples, the more accurate the classifier. This means that

for constructing reliable classifiers it is necessary to have training

examples as long as possible, which makes for a rather small

number of examples and again means that the number of input

features per example (segment) should be rather small (in order to

avoid overfitting of the training data).

4.2 The proposed ensemble

All the above characteristics of the problem suggest the use of an 

ensemble of classifiers rather than a unique classifier. Recent

research in machine learning [1, 4] has studied thoroughly the 

construction of meta-classifiers. In this study, we take advantage of

these techniques, constructing an ensemble of classifiers derived



Table 2. Description of the proposed simple classifiers. The third column indicates the number of training

examples (and their length in soprano notes) per class.

Code Input features Tr. examples Acc. (%)

C11 Ds(IOIn, IOIm), Ds(OTDn, OTDm), Ds(DLn, DLm) 4x40 82.5

C21 Dr(IOIs, IOIm), Dr(IOIs, OTDm), Dr(DLs, DLm) 12x10 50.8

C22 Dr(IOIs, IOIm), Dr(IOIs, OTDm), Dr(DLs, DLm) 12x10 44.8

C23 Dr(IOIs, IOIm), Dr(IOIs, OTDm), Dr(DLs, DLm) 12x10 46.7

C24 Dr(IOIs, IOIm), Dr(IOIs, OTDm), Dr(DLs, DLm) 12x10 48.3

C31 Dsa(ON1m, ON2m), Dsa(ON1m, ON3m), Dsa(ON1m, ON4m) 4x40 57.5

C32 Dsa(DL1m, DL2m), Dsa(DL1m, DL3m), Dsa(DL1m, DL4m) 4x40 42.5

C33 Dsa(ON1m, ON2m), Dsa(DL1m, DL2m) 4x40 25.0

C34 Dsa(ON1m, ON3m), Dsa(DL1m, DL3m) 4x40 35.0

C35 Dsa(ON1m, ON4m), Dsa(DL1m, DL4m) 4x40 47.5

Table 3. Predictions of the individual simple classifiers on performances of the unseen test set (Etude op. 10/3). The first column

indicates the code of the actual performer. Correct predictions are in boldface. Last row summarizes correct guesses.

Actual C11 C21 C22 C23 C24 C31 C32 C33 C34 C35

#13 #13 #13 #16 #13 #18 #13 #13 #13 #13 #13

#14 #14 #21 #14 #22 #22 #21 #21 #13 #21 #15

#15 #21 #21 #14 #21 #14 #15 #13 #15 #17 #13

#16 #18 #18 #16 #18 #18 #16 #16 #19 #16 #16

#17 #17 #17 #17 #17 #17 #15 #17 #16 #16 #21

#18 #13 #13 #16 #18 #18 #17 #17 #22 #18 #14

#19 #13 #19 #19 #13 #13 #16 #19 #19 #16 #19

#20 #14 #21 #14 #14 #14 #20 #20 #14 #14 #20

#21 #14 #14 #14 #14 #14 #17 #17 #13 #21 #14

#22 #22 #17 #19 #19 #22 #16 #16 #15 #16 #16

Correct: 4 3 4 3 3 4 5 3 4 4

The combination of the resulting simple classifiers or experts is 

realized via a weighted majority scheme. The prediction of each

individual classifier is weighted according to its accuracy on the

training set [8]. Both the first and the second choice of a classifier

are taken into account. Specifically, the weight wij of the classifier

Cij is as follows: 

from subsampling the input features and subsampling the training

data set. The former technique is usually applied when multiple

redundant features are available. In our case, the input features

cannot be used concurrently due to the limited size of the training

set (i.e., only a few training examples per class are available) and

the consequent danger of overfitting. The latter technique is usually

applied when unstable learning algorithms are used for constructing

the base classifiers. In our case, a subset of the input features (i.e., 

the score deviation measures) is unstable – their values can change

drastically given a slight change in the selected training segments. xy

xy

ij

ij
a

a
w

Given the scarcity of training data and the multitude of possible

features, we propose the use of a relatively large number of rather

simple individual base classifiers (or ‘experts’, in the terminology

of [2]). Each expert is trained using a different set of features and/or

parts of the training data. The features and sections of the training 

performances used for the individual experts are listed in table 2.

C11 is based on the deviation of the performer from the norm. C21,

C22, C23, and C24 are based on the deviation of the performer from 

the score and are trained using slightly changed training sets

(because the norm features are known to be unstable relative to 

changes in the data). The training set was divided into four disjoint

subsets and then four different overlapping training sets were

constructed by dropping one of these four subsets (i.e., cross-

validated committees). Finally, C31, C32, C33, C34, and C35 are based

on melody lead features. The learning algorithm used to construct

the individual experts is discriminant analysis, a standard technique

of multivariate statistics, which constructs a set of linear functions

of the input variables by maximizing the between-group variance

while minimizing the within-group variance [5].

where aij is the accuracy of the classifier Cij on the training set (see 

table 2). aij/2 is used to compute the weight for the second choice of 

a classifier. The class receiving the highest votes is the final class

prediction. Specifically, if cij(x) is the prediction of the classifier Cij

for the case x and P is the set of possible classes (i.e., pianists) then

the final prediction is extracted as follows: 

ij

ijij
Pp

pxcwxc )(maxarg)(ˆ

where ||a=b|| is 1 if a is equal to b and 0 otherwise.

4.3 Experimental results

The individual base classifiers as defined above were trained on the

performances of the Ballade op.38 by pianists #13-#22; pianists 

#01-#11 were used to define the ‘performance norm’. Both the

individual base classifiers and the combined ensemble classifier

were then tested on an independent test piece, the Etude op.10/3.

Table 3 shows the classification results for the individual base

classifiers. The classification accuracy of each individual classifier

ranges between 30% and 50%. The errors of norm deviation and

score deviation classifiers are partially correlated (i.e., common

misclassifications: #16-#18, #19-#13, #20-#14, #21-#14). On the 

The last column in table 2 shows the accuracy of each individual

expert on the training data (estimated via leave-one-out cross-

validation). As can be seen, the classifier based on norm deviation 

features is by far the most accurate.



other hand, the errors of the melody lead classifiers are highly

uncorrelated in comparison to the others. Note that uncorrelated 

errors are very crucial for constructing ensembles of classifiers [4].

Table 4 shows the classification results of the ensemble 

classifier. The ensemble correctly identified the pianist in 7 out of

10 cases, which gives an accuracy of 70%. The ensemble thus

performs substantially better than any of the constituent classifiers.

The score assigned to each prediction can be used as an indication

of the classifier's certainty. Thus, the classification of the

performances by pianists #14, #18, and #22 are the most difficult

cases since the distance of the first choice from the second choice is

less than 0.05.

Note that 70% is a high success rate in a 10-class task. Note also

that this would be a very difficult task for a human: imagine you

first hear 10 different pianists performing one particular piece (and

that is all you know about the pianists), and then you have to

identify each of the 10 pianists in a recording of another (and quite

different) piece. We are planning a classification experiment with

human listeners to measure the level of human performance in this

type of task; we expect it to be substantially lower.

5 CONCLUSIONS 

We have presented a computational approach to the problem of 

discriminating between music performers playing the same piece of

music, and introduced a set of features that capture some aspects of

the individual style of each performer. In order to cope efficiently 

with this problem, we proposed a classification model that takes

advantage of various techniques of constructing meta-classifiers.

The results show that the differences between music performers can

be quantified. While human experts use mostly aesthetic criteria for

recognizing different performers, it is demonstrated that the 

individuality of each performer can be objectively captured using

machine-interpretable features.

This research is performed in the context of a large research

project whose goal is to study fundamental principles of expressive

music performance with AI methods. The current study can be seen 

as another attempt at discovering and quantifying features that are 

crucial to understanding and modeling this complex phenomenon.

The proposed features can be easily computed and do not make 

use of any piece-specific information (e.g., extracted by structural

or harmonic analysis). However, the results cannot be easily

interpreted in terms of the traditional music theory. Thus, the

proposed features are not likely to help in the explanation of the 

differences between the performers. Such a task would require

features associated with particular local musical contexts and piece-

specific information.

Table 4. Predictions (first and second choice) of the ensemble of the

simple classifiers on performances of the unseen test set (Etude op. 10/3).

The first column indicates the code of the actual performer. Correct

predictions are in boldface. Last row summarizes correct guesses. 

Actual 1st choice Score 2nd choice Score

#13 #13 0.56 #18 0.23

#14 #14 0.31 #21 0.29

#15 #21 0.34 #14 0.25

#16 #16 0.46 #18 0.34

#17 #17 0.47 #15 0.16

#18 #18 0.30 #13 0.26

#19 #19 0.40 #13 0.27

#20 #14 0.42 #20 0.22

#21 #14 0.51 #22 0.15

#22 #22 0.29 #16 0.25

Correct: 7 1

The reliability of our current results is still severely

compromised by the very small set of empirical data that were 

available. It is planned to invest substantial effort in the future into

collecting and precisely measuring a larger and more diverse set of 

performances by a set of different pianists (on a computer-

controlled piano). Studying famous concert pianists with this

approach would require us to be able to precisely measure timing,

dynamics, and articulation from sound recordings, which 

unfortunately still is an unsolved signal-processing problem.
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