
SUPPΟRTING THE CYBERCRIME INVESTIGATION PROCESS:
EFFECTIVE DISCRIMINATION OF SOURCE CODE AUTHORS

BASED ON BYTE-LEVEL INFORMATION

Georgia Frantzeskou, Efstathios Stamatatos, Stefanos Gritzalis
Laboratory of Information and Communication Systems Security, Aegean University

Department of Information and Communication Systems Engineering, Karlovasi, Samos, 83200, Greece
Email: gfran@aegean.gr, stamatatos@aegean.gr, sgritz@aegean.gr

Keywords: Source Code Authorship Analysis, Software Forensics, Security.

Abstract: Source code authorship analysis is the particular field that attempts to identify the author of a computer
program by treating each program as a linguistically analyzable entity. This is usually based on other
undisputed program samples from the same author. There are several cases where the application of such a
method could be of a major benefit, such as tracing the source of code left in the system after a cyber attack,
authorship disputes, proof of authorship in court, etc. In this paper, we present our approach which is based
on byte-level n-gram profiles and is an extension of a method that has been successfully applied to natural
language text authorship attribution. We propose a simplified profile and a new similarity measure which is
less complicated than the algorithm followed in text authorship attribution and it seems more suitable for
source code identification since is better able to deal with very small training sets. Experiments were
performed on two different data sets, one with programs written in C++ and the second with programs
written in Java. Unlike the traditional language-dependent metrics used by previous studies, our approach
can be applied to any programming language with no additional cost. The presented accuracy rates are much
better than the best reported results for the same data sets.

1 INTRODUCTION

In a wide variety of cases it is important to identify
the author of a piece of code. Such situations include
cyber attacks in the form of viruses, trojan horses,
logic bombs, fraud, and credit card cloning or
authorship disputes or proof of authorship in court
etc. But why do we believe it is possible to identify
the author of a computer program? Humans are
creatures of habit and habits tend to persist. That is
why, for example, we have a handwriting style that
is consistent during periods of our life, although the
style may vary, as we grow older. Does the same
apply to programming? Although source code is
much more formal and restrictive than spoken or
written languages, there is still a large degree of
flexibility when writing a program (Krsul, and
Spafford, 1996).

Source code authorship analysis could be applied
to the following application areas (Frantzeskou et al
2004):
1. Author identification. The aim here is to decide
whether some piece of code was written by a certain

author. This goal is accomplished by comparing this
piece of code against other program samples written
by that author. This type of application area has a lot
of similarities with the corresponding literature
where the task is to determine that a piece of work
has been written by a certain author.
2. Author characterisation. This application area
determines some characteristics of the author of a
piece of code, such as cultural educational
background and language familiarity, based on their
programming style.
3. Plagiarism detection. This method attempts to
find similarities among multiple sets of source code
files. It is used to detect plagiarism, which can be
defined as the use of another person’s work without
proper acknowledgement.
4. Author discrimination. This task is the opposite of
the above and involves deciding whether some
pieces of code were written by a single author or by
some number of authors. An example of this would
be showing that a program was probably written by
three different authors, without actually identifying
the authors in question.

5. Author intent determination. In some cases we
need to know whether a piece of code, which caused
a malfunction, was written having this as its goal or
was the result of an accidental error. In many cases,
an error during the software development process
can cause serious problems.

The traditional methodology that has been
followed in this area of research is divided into two
main steps (Krsul, Spafford 1995; MacDonell et al.
2001; Ding 2004). The first step is the extraction of
software metrics and the second step is using these
metrics to develop models that are capable of
discriminating between several authors, using a
machine learning algorithm. In general, the software
metrics used are programming - language dependent.
Moreover, the metrics selection process is a non
trivial task.

In this paper we present a new approach, which
is an extension of a method that has been applied to
natural language text authorship identification
(Keselj et al., 2003). In our method, byte-level N-
grams are utilised together with author profiles. We
propose a new simplified profile and a new
similarity measure which enables us to achieve a
high degree of accuracy for authors for whom we
have a very small training set. Our methodology is
programming - language independent since it is
based on low-level information and is tested to data
sets from two different programming languages. The
simplified profile and the new similarity measure we
introduce provide a less complicated algorithm than
the method used in text authorship attribution and in
many cases they achieve higher prediction accuracy.
Special attention is paid to the evaluation
methodology. Disjoint training and test sets of equal
size were used in all the experiments in order to
ensure the reliability of the presented results. Note,
that in many previous studies the evaluation of the
proposed methodologies was performed on the
training set. Our approach is able to deal effectively
with cases where there are just a few available
programs per author. Moreover, the accuracy results
are high even for cases where the available programs
are of restricted length.

The rest of this paper is organized as follows.
Section 2 contains a review on past research efforts
in the area of source code authorship analysis.
Section 3 describes our approach and section 4
includes the experiments we have performed.
Finally, section 5 contains conclusions and future
work.

2 RELATED WORK

The most extensive and comprehensive application
of authorship analysis is in literature. One famous
authorship analysis study is related to Shakespeare’s
works and is dating back over several centuries.
Elliot and Valenza (1991) compared the poems of
Shakespeare and those of Edward de Vere, 7th Earl
of Oxford, where attempts were made to show that
Shakespeare was a hoax and that the real author was
Edward de Vere, the Earl of Oxford. Recently, a
number of authorship attribution approaches have
been presented (Stamatatos et. al, 2000; Keselj, et
al., 2003; Peng et al, 2004) proving that the author of
a natural language text can be reliably identified.

Although source code is much more formal and
restrictive than spoken or written languages, there is
still a large degree of flexibility when writing a
program (Krsul, and Spafford, 1996). Spafford and
Weeber (1993) suggested that it might be feasible to
analyze the remnants of software after a computer
attack, such as viruses, worms or trojan horses, and
identify its author. This technique, called software
forensics, could be used to examine software in any
form to obtain evidence about the factors involved.
They investigated two different cases where code
remnants might be analyzed: executable code and
source code. Executable code, even if optimized,
still contains many features that may be considered
in the analysis such as data structures and
algorithms, compiler and system information,
programming skill and system knowledge, choice of
system calls, errors, etc. Source code features
include programming language, use of language
features, comment style, variable names, spelling
and grammar, etc.

Oman and Cook (1989) used “markers” based on
typographic characteristics to test authorship on
Pascal programs. The experiment was performed on
18 programs written by six authors. Each program
was an implementation of a simple algorithm and it
was obtained from computer science textbooks.
They claimed that the results were surprisingly
accurate.

Longstaff and Shultz (1993) studied the WANK
and OILZ worms which in 1989 attacked NASA and
DOE systems. They have manually analyzed code
structures and features and have reached a
conclusion that three distinct authors worked on the
worms. In addition, they were able to infer certain
characteristics of the authors, such as their
educational backgrounds and programming levels.
Sallis et al (1996) expanded the work of Spafford
and Weeber by suggesting some additional features,

such as cyclomatic complexity of the control flow
and the use of layout conventions.

An automated approach was taken by Krsul and
Spafford (1995) to identify the author of a program
written in C. The study relied on the use of software
metrics, collected from a variety of sources. They
were divided into three categories: layout, style and
structure metrics. These features were extracted
using a software analyzer program from 88
programs belonging to 29 authors. A tool was
developed to visualize the metrics collected and help
select those metrics that exhibited little within-
author variation, but large between-author variation.
A statistical approach called discriminant analysis
(SAS) was applied on the chosen subset of metrics
to classify the programs by author. The experiment
achieved 73% overall accuracy.

Other research groups have examined the
authorship of computer programs written in C++
(Kilgour et al., 1997); (MacDonell et al. 2001), a
dictionary based system called IDENTIFIED
(integrated dictionary- based extraction of non-
language-dependent token information for forensic
identification, examination, and discrimination) was
developed to extract source code metrics for
authorship analysis (Gray et al., 1998). Satisfactory
results were obtained for C++ programs using case-
based reasoning, feed-forward neural network, and
multiple discriminant analysis (MacDonell et al.
2001). The best prediction accuracy has been
achieved by Case-Based Reasoning and it was 88%
for 7 different authors.

Ding (2004), investigated the extraction of a set
of software metrics of a given Java source code, that
could be used as a fingerprint to identify the author
of the Java code. The contributions of the selected
metrics to authorship identification were measured
by a statistical process, namely canonical
discriminant analysis, using the statistical software
package SAS. A set of 56 metrics of Java programs
was proposed for authorship analysis. Forty-six
groups of programs were diversely collected.
Classification accuracies were 62.7% and 67.2%
when the metrics were selected manually while
those values were 62.6% and 66.6% when the
metrics were chosen by SDA (stepwise discriminant
analysis).
The main focus of the previous approaches was the
definition of the most appropriate measures for
representing the style of an author. Quantitative and
qualitative measurements, referred to as metrics, are
collected from a set of programs. Ideally, such
metrics should have low within-author variability,
and high between-author variability (Krsul and
Spafford, 1996), (Kilgour et al., 1997). Such metrics
include

- Programming layout metrics: include those
metrics that deal with the layout of the program.
For example metrics that measure indentation,
placement of comments, placement of braces etc.

- Programming style metrics: Such metrics include
character preferences, construct preferences,
statistical distribution of variable lengths and
function name lengths etc.

- Programming structure metrics: include metrics
that we hypothesize are dependent on the
programming experience and ability of the author.
For example such metrics include the statistical
distribution of lines of code per function, ratio of
keywords per lines of code etc.

- Fuzzy logic metrics: include variables that they
allow the capture of concepts that authors can
identify with, such deliberate versus non
deliberate spelling errors, the degree to which
code and comments match, and whether identifiers
used are meaningful.

However, there are some disadvantages in this
traditional approach. The first is that software
metrics used are programming - language dependant.
For example metrics used in Java cannot be used in
C or Pascal. The second is that metrics selection is
not a trivial process and usually involves setting
thresholds to eliminate those metrics that contribute
little to the classification model. As a result, the
focus in a lot of the previous research efforts, such
as (Ding 2004) and (Krsul, Spafford 1995) was into
the metrics selection process rather than into
improving the effectiveness and the efficiency of the
proposed models.

3 OUR APPROACH

In this paper, we present our approach, which is an
extension of a method that has been successfully
applied to text authorship identification (Keselj, et al
2003). It is based on byte level n-grams and the
utilization of two different similarity measures used
to classify a program to an author. Therefore, this
method does not use any language-dependent
information.
An n-gram is an n-contiguous sequence and can be
defined on the byte, character, or word level. Byte,
character and word n-grams have been used in a
variety of applications such as text authorship
attribution, speech recognition, language modelling,
context sensitive spelling correction, optical
character recognition etc. In our approach, the Perl
package Text::N-grams (Keselj 2003) has been used
to produce n-gram tables for each file or set of files
that is required. An example of such a table is given
in Table 1. The first column contains the n-grams

found in a source code file and the second column
the corresponding frequency of occurrence.

Tab1e 1. n-gram frequencies extracted from a source

code file.
3-gram Frequency

sio 28
_th 28
f_(20
= 17
usi 16
_ms 16
out 15
ine 15
\n/* 15
on_ 14
_in 14
fp_ 14
the 14
sg_ 14
i 14
in_ 14

The algorithm used, computes n-gram based

profiles that represent each of the author category.
First, for each author the available training source
code samples are concatenated to form a big file.
Then, the set of the L most frequent n-grams of this
file is extracted. The profile of an author is, then, the
ordered set of pairs {(x1; f1); (x2; f2),…,(xL; fL)} of
the L most frequent n-grams xi and their normalized
frequencies fi. Similarly, a profile is constructed for
each test case (a simple source code file). In order to
classify a test case in to an author, the profile of the
test file is compared with the profiles of all the
candidate authors based on a similarity measure. The
most likely author corresponds to the least dissimilar
profile (in essence, a nearest-neighbour
classification model).

The original similarity measure (i.e. dissimilarity
more precisely) used by Keselj et al (2003) in text
authorship attribution is a form of relative distance:

where f1(n) and f2(n) are the normalized frequencies
of an n-gram n in the author and the program profile,
respectively, or 0 if the n-gram does not exist in the
profile. A program is classified to the author, whose
profile has the minimal distance from the program
profile, using this measure. Hereafter, this distance
measure will be called Relative Distance (RD).

One of the inherent advantages of this approach
is that it is language independent since it is based on
low-level information. As a result, it can be applied
with no additional cost to data sets where programs

are written in C++, Java, perl etc. Moreover, it does
not require multiple training examples from each
author, since it is based on one profile per author.
The more source code programs available for each
author, the more reliable the author profile. On the
other hand, this similarity measure is not suitable for
cases where only a limited training set is available
for each author. In that case, for low values of n, the
possible profile length for some authors is also
limited, and as a consequence, these authors have an
advantage over the others. Note that this is
especially the case in many source code author
identification problems, where only a few short
source code samples are available for each author.

In order to handle this situation, we propose a
new similarity measure that does not use the
normalized differences fi of the n-grams. Hence the
profile we propose is a Simplified Profile (SP) and is
the set of the L most frequent n-grams {x1, x2,…,xL}.
If SPA and SPP are the author and program simplified
profiles, respectively, then the similarity distance is
given by the size of the intersection of the two
profiles:

)2(PA SPSP ∩
where |X| is the size of X. In other words, the similarity
measure we propose is just the amount of common n-
grams in the profiles of the test case and the author. The
program is classified to the author with whom we
achieved the biggest size of intersection. Hereafter,
this similarity measure will be called Simplified
Profile Intersection (SPI). We have developed a
number of perl scripts in order to create the sets of n-
gram tables for the different values of n (i.e., n-gram
length), L (i.e., profile length) and for the
classification of the program file to the author with
the smallest distance.

4 EXPERIMENTS

4.1 Comparison with a Previous
Approach

Our purpose during this phase was to check that the
presented approach works at least equally well as the
previous methodologies for source code author
identification. For this reason, we run this
experiment with a data set that has been initially
used by Mac Donell et al (2001) for evaluating a
system for automatic discrimination of source code
author based on more complicated, language-
dependent measures. All programs were written in
C++. The source code for the first three authors was
taken from programming books while the last three
authors were expert professional programmers. The

)1(
)()(

))()((2)()(
2

21

21
2

2
)(2)(1

21 ∑∑
∈∈

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+ +

−−
=

profilenprofilen
nfnf nfnf

nfnfnfnf

data set was split (as equally as possible) into the
training set 50% (134 programs) and the test set 50%
(133 programs). The best result reported by Mac
Donell et al (2001) on the test set was 88% using the
case-based reasoning (that is, a memory-based
learning) algorithm. Detailed information for the
C++ data set is given in Table 2. Moreover, the
distribution of the programs per author is given in
Table 3.

Table 2. The data sets used in this study. ‘Programs per
author’ is expressed by the minimum and maximum

number of programs per author in the data set. Program
length is expressed by means of Lines Of Code (LOC).

Data Set C++ Java
Number of authors 6 8
Programs per author 5-114 5-8
Total number of programs 268 54
Training set programs 134 28
Testing set programs 133 26
Size of smallest program (LOC) 19 36
Size of biggest program (LOC) 1449 258
Mean LOC per program 210 129
Mean LOC in training set 206.4 131.7
Mean LOC in testing set 213 127.2

Table 3. Program distribution per author for the C++ data

set.
 Training Set Test Set
Author 1 34 34
Author 2 57 57
Author 3 13 13
Author 4 6 6
Author 5 3 2
Author 6 21 21

We used byte-level n-grams extracted from the
programs in order to create the author and program
profiles as well as the author and program simplified
profiles. Table 4 includes the classification accuracy
results for various combinations of n (n-gram size)
and L (profile size). In many cases, classification
accuracy reaches 100%, much better than the best
reported (MacDonell et al, 2001) accuracy for this
data set (88% on the test set). This proves that the
presented methodology can cope with effectively
with the source code author identification problem.
For n<4 and L<1000 accuracy drops. The same
(although to a lower extent) stands for n>6.

More importantly, RD performs much worse
than SPI in all cases where at least one author profile
is shorter than L. For example for L=1000 and n=2,
L is greater than the size of the profile of Author
No5 (the maximum L of the profile of Author No 5
is 769) and the accuracy rate declines to 51%. This
occurs because the RD similarity measure (1) that
calculates similarity is affected by the size of the
author profile. When the size of an author profile is
lower than L, some programs are wrongly classified
to that author. In summary, we can conclude that the
RD similarity measure is not as accurate for those n,
L combinations where L exceeds the size of even
one author profile in the dataset. In all cases, the
accuracy using the SPI similarity measure is better
than (or equal to) that of RD. This proves that this
new and simpler similarity measure is not affected
by cases where L is greater than the smaller author
profile.

Table 4. Classification accuracy (%) on the C++ data set for different values of n-gram size and profile size using two

similarity measures: Relative Distance and Simplified Profile Intersection.
Profile
Size L n-gram Size

 2 3 4 5 6 7 8
 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI

200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7

1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100

4.2 Application to a Different
Programming Language

The next experiment was performed on a different
data set from a different programming language. In
more detail the new data set consists of student
programs (assignments from a programming
language course) written in Java. Detailed
information for this data set is given in Table 2. We
used 8 authors. From each author 6-8 programs were
chosen. Table 5 shows the distribution of programs
per author. The size of programs was between 36
and 258 lines of code. The data set was split in
training and test set of approximately equal size.
This data set has been chosen in order to evaluate
our approach when the available training data per
author are limited (6-7 short programs per author).
Note that the programs written by students usually
have no comments, their programming style is
influenced by the instructor, they can be plagiarised,
circumstances that create some extra difficulties in
the analysis.

Table 5. Program distribution per author of the Java data

set.

 Training Set Test Set
Author 1 3 3
Author 2 4 4
Author 3 3 2
Author 4 3 3
Author 5 4 4
Author 6 3 3
Author 7 4 3
Author 8 4 4

The results of the proposed method to this data
set are given in Table 6. The best accuracy rate
achieved with similarity measure RD was 84.6%.
Again, when the profile size of at least one author is
shorter than the selected profile size L, the accuracy
of RD drops significantly. Using the similarity
measure SPI, the best result was 88.5%. In generally
SPI performed better than RD. Moreover, it seems
that 4<n<7 and 1000<L<3000 provide the best
accuracy results.

4.3 The Significance of Training Set
Size

The purpose of this experiment was to examine the
degree in which the training set size affects the
classification accuracy. For this reason we used the
C++ data set for which we reached classification
accuracy of 100% for many n, L combinations with
both similarity measures. This result has been
achieved by using a training set of 134 programs in
total. For the purposes of this experiment we used
the same test set as in the experiment of section 4.1
but now we used training sets of different, smaller
size. The smallest training set was comprised by
only one program from each author and the biggest
by 5 programs from each one (with the exception of
one author for whom the available training programs
were only 3). The presented source code author
identification approach was applied to these new
training sets using n=6 and L=1500 and similarity
measure SPI. Note that the training size of authors
was smaller than L in many of these experiments
and as already explained, in such cases the
classification accuracy decreases dramatically when
using the similarity measure RD.

Table 6. Classification accuracy (%) on the Java data set for different values of n-gram size and profile size using two

similarity measures: Relative Distance and Simplified Profile Intersection.

Profile
Size L n-gram Size

 3 4 5 6 7 8
 RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI

1000 80.8 80.8 84.6 84.6 84.6 84.6 80.8 80.8 80.8 80.8 84.6 84.6
1500 84.6 84.6 76.9 76.9 80.8 80.8 84.6 84.6 80.8 80.8 80.8 80.8

2000 53.8 80.8 65.4 80.8 76.9 80.8 84.6 88.5 84.6 84.6 84.6 84.6
2500 53.8 73.1 53.8 76.9 53,8 80.8 84.6 88.5 84.6 88.5 84.6 84.6
3000 53.8 73.1 53.8 80.8 50 76.9 53.8 84.6 69,2 84.6 84.6 84.6

The accuracy results achieved are shown in
Table 7. As can be seen, even with just one program
per author available in the training set, high
classification accuracy was achieved. By adding a
second program per author the accuracy increased
significantly above 96%. Note that the second
programs added in the training set were in average
longer than the first programs (see second column in
table 7). We reached 100% of accuracy for training
set based on five programs per author. This is a
strong indication that our approach is quite effective
even when very limited size of training set is
available; a condition usually met in source code
author identification problems.

Table 7. Classification Accuracy (%) on the C++ data set
using different training set size (in programs per author).

Training
Set Size

Mean LOC
in Training Set

Accuracy
(%)

1 52 63.9
2 212 96.2
3 171 97
4 170 99.2
5 197 100

5 CONCLUSIONS

In this paper, an approach to source code authorship
analysis has been presented. It is based on byte-level
n-gram profiles, a technique successfully applied to
natural language author identification problems. The
accuracy achieved for two data sets from different
programming languages were 88.5% and 100% on
test sets disjoint from training set, improving the
best reported results for this task so far. Moreover
the proposed method is able to deal with very
limited training data, a condition usually met in
source code authorship analysis problems (e.g.,
cyber attacks, source code authorship disputes, etc.)
with no significant compromise in performance.

We introduced a new simplified profile and a
new similarity measure. The advantage of the new
measure over the original similarity measure is that
it is not dramatically affected in cases where there is
extremely limited training data for some authors.
Moreover, the proposed method is less complicated
than the original approach followed in text
authorship attribution.

More experiments have to be performed on
various data sets in order to be able to define the
most appropriate combination of n-gram size and
profile size for a given problem. The role of
comments has also to be examined. In addition,
cases where all the available source code programs

are dealing with the same task should be tested as
well. Another useful direction would be the
discrimination of different programming styles in
collaborative projects.

6 ACKNOWLEDGMENTS

We would like to thank Dr. Steve Mac Donell and
Dr. Adamidis for providing the source code used in
the presented experiments.

REFERENCES

Ding, H., Samadzadeh, M., H., Extraction of Java
program fingerprints for software authorship
identification, The Journal of Systems and Software,
Volume 72, Issue 1, Pages 49-57 June 2004,

Elliot, W., and. Valenza, R.,1991, Was the Earl of Oxford
The True Shakespeare?, Notes and Queries, 38:501-
506.

Gray, A., Sallis, P., and MacDonell, S.,, Identified
(integrated dictionary-based extraction of non-
language-dependent token information for forensic
identification, examination, and discrimination): A
dictionary-based system for extracting source code
metrics for software forensics. In Proceedings of
SE:E&P’98 (Software Engineering: Education and
Practice Conference), IEEE Computer Society Press,
pages 252–259., 1998.

Gray, A., Sallis, P., and MacDonell, S., Software
forensics: Extending authorship analysis techniques to
computer programs, in Proc. 3rd Biannual Conf. Int.
Assoc. of Forensic Linguists (IAFL'97), pages 1-8,
1997.

Frantzeskou, G., Gritzalis, S., Mac Donell, S., Source
Code Authorship Analysis for supporting the
cybercrime investigation process, in Proc. 1st
International Conference on e-business and
Telecommunications Networks (ICETE04), Vol 2,
pages (85-92), 2004.

Keselj, V., Peng, F., Cercone, N., Thomas, C., N-gram
based author profiles for authorship attribution, In
Proc. Pacific Association for Computational
Linguistics, 2003.

Keselj, V.,. Perl package Text::N-grams
http://www.cs.dal.ca/~vlado/srcperl/N-grams or
http://search.cpan.org/author/VLADO/Text-N-grams-
0.03/N-grams.pm, 2003.

Kilgour, R. I., Gray, A.R., Sallis, P. J., and MacDonell, S.
G., A Fuzzy Logic Approach to Computer Software
Source Code Authorship Analysis, In the Fourth
International Conference on Neural Information
Processing -- The Annual Conference of the Asian

Pacific Neural Network Assembly (ICONIP'97).
Dunedin. New Zealand, 1997.

Krsul, I., and Spafford, E. H, Authorship analysis:
Identifying the author of a program, In Proc. 8th
National Information Systems Security Conference,
pages 514-524, National Institute of Standards and
Technology., 1995.

Krsul, I., and Spafford, E. H., 1996, Authorship analysis:
Identifying the author of a program, Technical Report
TR-96-052, 1996

Longstaff, T. A., and Schultz, E. E., Beyond Preliminary
Analysis of the WANK and OILZ Worms: A Case
Study of Malicious Code, Computers and Security,
12:61-77, 1993.

MacDonell, S.G, and Gray, A.R. Software forensics
applied to the task of discriminating between program
authors. Journal of Systems Research and Information
Systems 10: 113-127 (2001)

Oman, P., and Cook, C., Programming style authorship
analysis. In Seventeenth Annual ACM Science
Conference Proceedings, pages 320–326. ACM, 1989.

Peng, F., D., Shuurmans, and S., Wang., Augmenting
naive bayes classifiers with statistical language
models, Information Retrieval Journal, 7(1): 317-
345, 2004.

Sallis P., Aakjaer, A., and MacDonell, S., Software
Forensics: Old Methods for a New Science.
Proceedings of SE:E&P’96 (Software Engineering:
Education and Practice). Dunedin, New Zealand, IEEE
Computer Society Press, 367-371, 1996

Spafford, E. H., The Internet Worm Program: An
Analysis,” Computer Communications Review, 19(1):
17-49, 1989.

Spafford, E. H., and Weeber, S. A., Software forensics:
tracking code to its authors, Computers and Security,
12:585-595, 1993

Stamatatos, E., N., Fakotakis, and G. Kokkinakis.
Automatic text categorisation in terms of genre and
author. Computational Linguistics, 26(4): 471-495,
2000.

