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Abstract: Source code authorship analysis is the particular field that attempts to identify the author of a computer 
program by treating each program as a linguistically analyzable entity. This is usually based on other 
undisputed program samples from the same author. There are several cases where the application of such a 
method could be of a major benefit, such as tracing the source of code left in the system after a cyber attack, 
authorship disputes, proof of authorship in court, etc. In this paper, we present our approach which is based 
on byte-level n-gram profiles and is an extension of a method that has been successfully applied to natural 
language text authorship attribution. We propose a simplified profile and a new similarity measure which is 
less complicated than the algorithm followed in text authorship attribution and it seems more suitable for 
source code identification since is better able to deal with very small training sets. Experiments were 
performed on two different data sets, one with programs written in C++ and the second with programs 
written in Java. Unlike the traditional language-dependent metrics used by previous studies, our approach 
can be applied to any programming language with no additional cost. The presented accuracy rates are much 
better than the best reported results for the same data sets. 

1 INTRODUCTION 

In a wide variety of cases it is important to identify 
the author of a piece of code. Such situations include 
cyber attacks in the form of viruses, trojan horses, 
logic bombs, fraud, and credit card cloning or 
authorship disputes or proof of authorship in court 
etc. But why do we believe it is possible to identify 
the author of a computer program? Humans are 
creatures of habit and habits tend to persist. That is 
why, for example, we have a handwriting style that 
is consistent during periods of our life, although the 
style may vary, as we grow older. Does the same 
apply to programming? Although source code is 
much more formal and restrictive than spoken or 
written languages, there is still a large degree of 
flexibility when writing a program (Krsul, and 
Spafford, 1996).  

Source code authorship analysis could be applied 
to the following application areas (Frantzeskou et al 
2004):  
1. Author identification.  The aim here is to decide 
whether some piece of code was written by a certain 

author. This goal is accomplished by comparing this 
piece of code against other program samples written 
by that author. This type of application area has a lot 
of similarities with the corresponding literature 
where the task is to determine that a piece of work 
has been written by a certain author. 
2. Author characterisation. This application area 
determines some characteristics of the author of a 
piece of code, such as cultural educational 
background and language familiarity, based on their 
programming style.  
3. Plagiarism detection. This method attempts to 
find similarities among multiple sets of source code 
files. It is used to detect plagiarism, which can be 
defined as the use of another person’s work without 
proper acknowledgement. 
4. Author discrimination. This task is the opposite of 
the above and involves deciding whether some 
pieces of code were written by a single author or by 
some number of authors. An example of this would 
be showing that a program was probably written by 
three different authors, without actually identifying 
the authors in question. 



5. Author intent determination. In some cases we 
need to know whether a piece of code, which caused 
a malfunction, was written having this as its goal or 
was the result of an accidental error.  In many cases, 
an error during the software development process 
can cause serious problems. 

The traditional methodology that has been 
followed in this area of research is divided into two 
main steps (Krsul, Spafford 1995; MacDonell et al. 
2001; Ding 2004). The first step is the extraction of 
software metrics and the second step is using these 
metrics to develop models that are capable of 
discriminating between several authors, using a 
machine learning algorithm.  In general, the software 
metrics used are programming - language dependent. 
Moreover, the metrics selection process is a non 
trivial task. 

In this paper we present a new approach, which 
is an extension of a method that has been applied to 
natural language text authorship identification 
(Keselj et al., 2003). In our method, byte-level N-
grams are utilised together with author profiles. We 
propose a new simplified profile and a new 
similarity measure which enables us to achieve a 
high degree of accuracy for authors for whom we 
have a very small training set. Our methodology is 
programming - language independent since it is 
based on low-level information and is tested to data 
sets from two different programming languages. The 
simplified profile and the new similarity measure we 
introduce provide a less complicated algorithm than 
the method used in text authorship attribution and in 
many cases they achieve higher prediction accuracy. 
Special attention is paid to the evaluation 
methodology. Disjoint training and test sets of equal 
size were used in all the experiments in order to 
ensure the reliability of the presented results. Note, 
that in many previous studies the evaluation of the 
proposed methodologies was performed on the 
training set. Our approach is able to deal effectively 
with cases where there are just a few available 
programs per author. Moreover, the accuracy results 
are high even for cases where the available programs 
are of restricted length. 

The rest of this paper is organized as follows. 
Section 2 contains a review on past research efforts 
in the area of source code authorship analysis.  
Section 3 describes our approach and section 4 
includes the experiments we have performed. 
Finally, section 5 contains conclusions and future 
work. 

2 RELATED WORK 

The most extensive and comprehensive application 
of authorship analysis is in literature. One famous 
authorship analysis study is related to Shakespeare’s 
works and is dating back over several centuries. 
Elliot and Valenza (1991) compared the poems of 
Shakespeare and those of Edward de Vere, 7th Earl 
of Oxford, where attempts were made to show that 
Shakespeare was a hoax and that the real author was 
Edward de Vere, the Earl of Oxford. Recently, a 
number of authorship attribution approaches have 
been presented (Stamatatos et. al, 2000; Keselj, et 
al., 2003; Peng et al, 2004) proving that the author of 
a natural language text can be reliably identified. 

Although source code is much more formal and 
restrictive than spoken or written languages, there is 
still a large degree of flexibility when writing a 
program (Krsul, and Spafford, 1996). Spafford and 
Weeber (1993) suggested that it might be feasible to 
analyze the remnants of software after a computer 
attack, such as viruses, worms or trojan horses, and 
identify its author. This technique, called software 
forensics, could be used to examine software in any 
form to obtain evidence about the factors involved. 
They investigated two different cases where code 
remnants might be analyzed: executable code and 
source code. Executable code, even if optimized, 
still contains many features that may be considered 
in the analysis such as data structures and 
algorithms, compiler and system information, 
programming skill and system knowledge, choice of 
system calls, errors, etc. Source code features 
include programming language, use of language 
features, comment style, variable names, spelling 
and grammar, etc.  

Oman and Cook (1989) used “markers” based on 
typographic characteristics to test authorship on 
Pascal programs. The experiment was performed on 
18 programs written by six authors. Each program 
was an implementation of a simple algorithm and it 
was obtained from computer science textbooks. 
They claimed that the results were surprisingly 
accurate. 

Longstaff and Shultz (1993) studied the WANK 
and OILZ worms which in 1989 attacked NASA and 
DOE systems. They have manually analyzed code 
structures and features and have reached a 
conclusion that three distinct authors worked on the 
worms. In addition, they were able to infer certain 
characteristics of the authors, such as their 
educational backgrounds and programming levels. 
Sallis et al (1996) expanded the work of Spafford 
and Weeber by suggesting some additional features, 



such as cyclomatic complexity of the control flow 
and the use of layout conventions. 

An automated approach was taken by Krsul and 
Spafford (1995) to identify the author of a program 
written in C. The study relied on the use of software 
metrics, collected from a variety of sources. They 
were divided into three categories: layout, style and 
structure metrics. These features were extracted 
using a software analyzer program from 88 
programs belonging to 29 authors. A tool was 
developed to visualize the metrics collected and help 
select those metrics that exhibited little within-
author variation, but large between-author variation. 
A statistical approach called discriminant analysis 
(SAS) was applied on the chosen subset of metrics 
to classify the programs by author. The experiment 
achieved 73% overall accuracy.  

Other research groups have examined the 
authorship of computer programs written in C++ 
(Kilgour et al., 1997); (MacDonell et al. 2001), a 
dictionary based system called IDENTIFIED 
(integrated dictionary- based extraction of non-
language-dependent token information for forensic 
identification, examination, and discrimination) was 
developed to extract source code metrics for 
authorship analysis (Gray et al., 1998). Satisfactory 
results were obtained for C++ programs using case-
based reasoning, feed-forward neural network, and 
multiple discriminant analysis (MacDonell et al. 
2001).  The best prediction accuracy has been 
achieved by Case-Based Reasoning and it was 88% 
for 7 different authors. 

Ding (2004), investigated the extraction of a set 
of software metrics of a given Java source code, that 
could be used as a fingerprint to identify the author 
of the Java code. The contributions of the selected 
metrics to authorship identification were measured 
by a statistical process, namely canonical 
discriminant analysis, using the statistical software 
package SAS. A set of 56 metrics of Java programs 
was proposed for authorship analysis. Forty-six 
groups of programs were diversely collected.  
Classification accuracies were 62.7% and 67.2% 
when the metrics were selected manually while 
those values were 62.6% and 66.6% when the 
metrics were chosen by SDA (stepwise discriminant 
analysis). 
The main focus of the previous approaches was the 
definition of the most appropriate measures for 
representing the style of an author.  Quantitative and 
qualitative measurements, referred to as metrics, are 
collected from a set of programs. Ideally, such 
metrics should have low within-author variability, 
and high between-author variability (Krsul and 
Spafford, 1996), (Kilgour et al., 1997).  Such metrics 
include  

- Programming layout metrics: include those 
metrics that deal with the layout of the program. 
For example metrics that measure indentation, 
placement of comments, placement of braces etc.  

- Programming style metrics: Such metrics include 
character preferences, construct preferences, 
statistical distribution of variable lengths and 
function name lengths etc. 

- Programming structure metrics: include metrics 
that we hypothesize are dependent on the 
programming experience and ability of the author. 
For example such metrics include the statistical 
distribution of lines of code per function, ratio of 
keywords per lines of code etc. 

- Fuzzy logic metrics: include variables that they 
allow the capture of concepts that authors can 
identify with, such deliberate versus non 
deliberate spelling errors, the degree to which 
code and comments match, and whether identifiers 
used are meaningful.  

However, there are some disadvantages in this 
traditional approach. The first is that software 
metrics used are programming - language dependant. 
For example metrics used in Java cannot be used in 
C or Pascal. The second is that metrics selection is 
not a trivial process and usually involves setting 
thresholds to eliminate those metrics that contribute 
little to the classification model. As a result, the 
focus in a lot of the previous research efforts, such 
as (Ding 2004) and (Krsul, Spafford 1995) was into 
the metrics selection process rather than into 
improving the effectiveness and the efficiency of the 
proposed models. 

3 OUR APPROACH 

In this paper, we present our approach, which is an 
extension of a method that has been successfully 
applied to text authorship identification (Keselj, et al 
2003). It is based on byte level n-grams and the 
utilization of two different similarity measures used 
to classify a program to an author. Therefore, this 
method does not use any language-dependent 
information.  
An n-gram is an n-contiguous sequence and can be 
defined on the byte, character, or word level. Byte, 
character and word n-grams have been used in a 
variety of applications such as text authorship 
attribution, speech recognition, language modelling, 
context sensitive spelling correction, optical 
character recognition etc. In our approach, the Perl 
package Text::N-grams (Keselj 2003) has been used 
to produce n-gram tables for each file or set of files 
that is required. An example of such a table is given 
in Table 1. The first column contains the n-grams 



found in a source code file and the second column 
the corresponding frequency of occurrence.  
 
Tab1e 1. n-gram frequencies extracted from a source 

code file. 
3-gram Frequency 

sio 28 
_th 28 
f_( 20 
_=_ 17 
usi 16 
_ms 16 
out 15 
ine 15 
\n/* 15 
on_ 14 
_in 14 
fp_ 14 
the 14 
sg_ 14 
_i_ 14 
in_ 14 

 
The algorithm used, computes n-gram based 

profiles that represent each of the author category. 
First, for each author the available training source 
code samples are concatenated to form a big file. 
Then, the set of the L most frequent n-grams of this 
file is extracted. The profile of an author is, then, the 
ordered set of pairs {(x1; f1); (x2; f2),…,(xL; fL)} of 
the L most frequent n-grams xi and their normalized 
frequencies fi. Similarly, a profile is constructed for 
each test case (a simple source code file). In order to 
classify a test case in to an author, the profile of the 
test file is compared with the profiles of all the 
candidate authors based on a similarity measure. The 
most likely author corresponds to the least dissimilar 
profile (in essence, a nearest-neighbour 
classification model). 

The original similarity measure (i.e. dissimilarity 
more precisely) used by Keselj et al (2003) in text 
authorship attribution is a form of relative distance:   
 
 
 
 
where f1(n) and f2(n) are the normalized frequencies 
of an n-gram n in the author and the program profile, 
respectively, or 0 if the n-gram does not exist in the 
profile. A program is classified to the author, whose 
profile has the minimal distance from the program 
profile, using this measure. Hereafter, this distance 
measure will be called Relative Distance (RD). 

One of the inherent advantages of this approach 
is that it is language independent since it is based on 
low-level information. As a result, it can be applied 
with no additional cost to data sets where programs 

are written in C++, Java, perl etc. Moreover, it does 
not require multiple training examples from each 
author, since it is based on one profile per author. 
The more source code programs available for each 
author, the more reliable the author profile. On the 
other hand, this similarity measure is not suitable for 
cases where only a limited training set is available 
for each author. In that case, for low values of n, the 
possible profile length for some authors is also 
limited, and as a consequence, these authors have an 
advantage over the others. Note that this is 
especially the case in many source code author 
identification problems, where only a few short 
source code samples are available for each author. 

In order to handle this situation, we propose a 
new similarity measure that does not use the 
normalized differences fi of the n-grams. Hence the 
profile we propose is a Simplified Profile (SP) and is 
the set of the L most frequent n-grams {x1, x2,…,xL}. 
If SPA and SPP are the author and program simplified 
profiles, respectively, then the similarity distance is 
given by the size of the intersection of the two 
profiles: 

)2(PA SPSP ∩  
where |X| is the size of X. In other words, the similarity 
measure we propose is just the amount of common n-
grams in the profiles of the test case and the author. The 
program is classified to the author with whom we 
achieved the biggest size of intersection. Hereafter, 
this similarity measure will be called Simplified 
Profile Intersection (SPI). We have developed a 
number of perl scripts in order to create the sets of n-
gram tables for the different values of n (i.e., n-gram 
length), L (i.e., profile length) and for the 
classification of the program file to the author with 
the smallest distance. 

4 EXPERIMENTS 

4.1 Comparison with a Previous 
Approach 

Our purpose during this phase was to check that the 
presented approach works at least equally well as the 
previous methodologies for source code author 
identification.  For this reason, we run this 
experiment with a data set that has been initially 
used by Mac Donell et al (2001) for evaluating a 
system for automatic discrimination of source code 
author based on more complicated, language-
dependent measures. All programs were written in 
C++. The source code for the first three authors was 
taken from programming books while the last three 
authors were expert professional programmers. The 
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data set was split (as equally as possible) into the 
training set 50% (134 programs) and the test set 50% 
(133 programs). The best result reported by Mac 
Donell et al (2001) on the test set was 88% using the 
case-based reasoning (that is, a memory-based 
learning) algorithm. Detailed information for the 
C++ data set is given in Table 2. Moreover, the 
distribution of the programs per author is given in 
Table 3. 
 

Table 2. The data sets used in this study. ‘Programs per 
author’ is expressed by the minimum and maximum 

number of programs per author in the data set.  Program 
length is expressed by means of Lines Of Code (LOC). 

Data Set C++ Java 
Number of authors 6 8 
Programs per author 5-114 5-8 
Total number of programs 268 54 
Training set programs 134 28 
Testing set programs 133 26 
Size of smallest program ( LOC) 19 36 
Size of biggest program ( LOC) 1449 258 
Mean LOC per program 210 129 
Mean LOC in training set 206.4 131.7 
Mean LOC in  testing set 213 127.2 
 
Table 3. Program distribution per author for the C++ data 

set. 
 Training Set Test Set 
Author 1 34 34 
Author 2 57 57 
Author 3 13 13 
Author 4 6 6 
Author 5 3 2 
Author 6 21 21 

We used byte-level n-grams extracted from the 
programs in order to create the author and program 
profiles as well as the author and program simplified 
profiles. Table 4 includes the classification accuracy 
results for various combinations of n (n-gram size) 
and L (profile size). In many cases, classification 
accuracy reaches 100%, much better than the best 
reported (MacDonell et al, 2001) accuracy for this 
data set (88% on the test set). This proves that the 
presented methodology can cope with effectively 
with the source code author identification problem. 
For n<4 and L<1000 accuracy drops. The same 
(although to a lower extent) stands for n>6. 

More importantly, RD performs much worse 
than SPI in all cases where at least one author profile 
is shorter than L. For example for L=1000 and n=2, 
L is greater than the size of the profile of Author 
No5 (the maximum L of the profile of Author No 5 
is 769) and the accuracy rate declines to 51%. This 
occurs because the RD similarity measure (1) that 
calculates similarity is affected by the size of the 
author profile. When the size of an author profile is 
lower than L, some programs are wrongly classified 
to that author. In summary, we can conclude that the 
RD similarity measure is not as accurate for those n, 
L combinations where L exceeds the size of even 
one author profile in the dataset. In all cases, the 
accuracy using the SPI similarity measure is better 
than (or equal to) that of RD. This proves that this 
new and simpler similarity measure is not affected 
by cases where L is greater than the smaller author 
profile. 

 
 
 

 
Table 4. Classification accuracy (%) on the C++ data set for different values of n-gram size and profile size using two 

similarity measures: Relative Distance and Simplified Profile Intersection. 
Profile 
Size L n-gram Size  

  2 3 4 5 6 7 8 
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 

200 98.4 98.4 97.7 97.7 97 97 95.5 95.5 94.7 95.5 92.5 92.5 92.5 94.7 
500 100 100 100 100 100 100 99.2 100 98.4 98.4 97.7 97.7 97.7 97.7 

1000 51 99.2 100 100 100 100 100 100 100 100 100 100 99.2 99.2 
1500 5.3 98.4 100 100 100 100 100 100 100 100 99.2 99.2 99.2 100 
2000 1.5 97.7 98.4 100 100 100 100 100 100 100 100 100 100 100 
2500 1.5 95.5 99.2 100 100 100 100 100 100 100 100 100 100 100 
3000 1.5 95.5 55.6 100 100 100 100 100 100 100 100 100 100 100 

 



4.2 Application to a Different 
Programming Language 

The next experiment was performed on a different 
data set from a different programming language. In 
more detail the new data set consists of student 
programs (assignments from a programming 
language course) written in Java. Detailed 
information for this data set is given in Table 2. We 
used 8 authors. From each author 6-8 programs were 
chosen. Table 5 shows the distribution of programs 
per author. The size of programs was between 36 
and 258 lines of code. The data set was split in 
training and test set of approximately equal size. 
This data set has been chosen in order to evaluate 
our approach when the available training data per 
author are limited (6-7 short programs per author).  
Note that the programs written by students usually 
have no comments, their programming style is 
influenced by the instructor, they can be plagiarised, 
circumstances that create some extra difficulties in 
the analysis.  

 
Table 5. Program distribution per author of the Java data 

set. 
 

 Training Set Test Set 
Author 1 3 3 
Author 2 4 4 
Author 3 3 2 
Author 4 3 3 
Author 5 4 4 
Author 6 3 3 
Author 7 4 3 
Author 8 4 4 

 
 

The results of the proposed method to this data 
set are given in Table 6. The best accuracy rate 
achieved with similarity measure RD was 84.6%. 
Again, when the profile size of at least one author is 
shorter than the selected profile size L, the accuracy 
of RD drops significantly. Using the similarity 
measure SPI, the best result was 88.5%. In generally 
SPI performed better than RD. Moreover, it seems 
that 4<n<7 and 1000<L<3000 provide the best 
accuracy results. 

4.3 The Significance of Training Set 
Size 

The purpose of this experiment was to examine the 
degree in which the training set size affects the 
classification accuracy. For this reason we used the 
C++ data set for which we reached classification 
accuracy of 100% for many n, L combinations with 
both similarity measures. This result has been 
achieved by using a training set of 134 programs in 
total. For the purposes of this experiment we used 
the same test set as in the experiment of section 4.1 
but now we used training sets of different, smaller 
size. The smallest training set was comprised by 
only one program from each author and the biggest 
by 5 programs from each one (with the exception of 
one author for whom the available training programs 
were only 3). The presented source code author 
identification approach was applied to these new 
training sets using n=6 and L=1500 and similarity 
measure SPI. Note that the training size of authors 
was smaller than L in many of these experiments 
and as already explained, in such cases the 
classification accuracy decreases dramatically when 
using the similarity measure RD. 

 
Table 6. Classification accuracy (%) on the Java data set for different values of n-gram size and profile size using two 

similarity measures: Relative Distance and Simplified Profile Intersection. 
 

Profile 
Size L n-gram Size  

  3 4 5 6 7 8 
  RD SPI RD SPI RD SPI RD SPI RD SPI RD SPI 

1000 80.8 80.8 84.6 84.6 84.6 84.6 80.8 80.8 80.8 80.8 84.6 84.6 
1500 84.6 84.6 76.9 76.9 80.8 80.8 84.6 84.6 80.8 80.8 80.8 80.8 

2000 53.8 80.8 65.4 80.8 76.9 80.8 84.6 88.5 84.6 84.6 84.6 84.6 
2500 53.8 73.1 53.8 76.9 53,8 80.8 84.6 88.5 84.6 88.5 84.6 84.6 
3000 53.8 73.1 53.8 80.8 50 76.9 53.8 84.6 69,2 84.6 84.6 84.6 

 
 
 



The accuracy results achieved are shown in 
Table 7. As can be seen, even with just one program 
per author available in the training set, high 
classification accuracy was achieved. By adding a 
second program per author the accuracy increased 
significantly above 96%. Note that the second 
programs added in the training set were in average 
longer than the first programs (see second column in 
table 7). We reached 100% of accuracy for training 
set based on five programs per author. This is a 
strong indication that our approach is quite effective 
even when very limited size of training set is 
available; a condition usually met in source code 
author identification problems. 
 
Table 7. Classification Accuracy (%) on the C++ data set 
using different training set size (in programs per author). 

 
Training 
Set Size 

Mean LOC  
in Training Set 

Accuracy 
(%) 

1 52 63.9 
2 212 96.2 
3 171 97 
4 170  99.2 
5 197 100 

5 CONCLUSIONS 

In this paper, an approach to source code authorship 
analysis has been presented. It is based on byte-level 
n-gram profiles, a technique successfully applied to 
natural language author identification problems. The 
accuracy achieved for two data sets from different 
programming languages were 88.5% and 100% on 
test sets disjoint from training set, improving the 
best reported results for this task so far. Moreover 
the proposed method is able to deal with very 
limited training data, a condition usually met in 
source code authorship analysis problems (e.g., 
cyber attacks, source code authorship disputes, etc.) 
with no significant compromise in performance.  

We introduced a new simplified profile and a 
new similarity measure. The advantage of the new 
measure over the original similarity measure is that 
it is not dramatically affected in cases where there is 
extremely limited training data for some authors. 
Moreover, the proposed method is less complicated 
than the original approach followed in text 
authorship attribution. 

More experiments have to be performed on 
various data sets in order to be able to define the 
most appropriate combination of n-gram size and 
profile size for a given problem. The role of 
comments has also to be examined. In addition, 
cases where all the available source code programs 

are dealing with the same task should be tested as 
well. Another useful direction would be the 
discrimination of different programming styles in 
collaborative projects. 
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