
Author Identification in Imbalanced Sets of Source Code Samples

Evangelos Chatzicharalampous, Georgia Frantzeskou, and Efstathios Stamatatos
Dept. of Information and Communication Systems Eng.

University of the Aegean
Karlovassi, Greece

email: e.chatz@hotmail.com; gfran@aegean.gr; stamatatos@aegean.gr

Abstract—Similarly to natural language texts, source code
documents can be distinguished by their style. Source code
author identification can be viewed as a text classification task
given that samples of known authorship by a set of candidate
authors are available. Although very promising results have been
reported for this task, the evaluation of existing approaches
avoids focusing on the class imbalance problem and its effect on
the performance. In this paper, we present a systematic
experimental study of author identification in skewed training
sets where the training samples are unequally distributed over
the candidate authors. Two representative author identification
methods are examined, one follows the profile-based paradigm
(where a single representation is produced for all the available
training samples per author) and the other follows the instance-
based paradigm (where each training sample has its own
individual representation). We examine the effect of the source
code representation on the performance of these methods and
show that the profile-based method is better able to handle cases
of highly skewed training sets while the instance-based method is
a better choice in balanced or slightly-skewed training sets.

Keywords: Source code author identification, class imbalance,
byte-level n-grams

I. INTRODUCTION
Similarly to natural language texts, source code documents

can be distinguished by their style [1]. Source code author
identification can be seen as a text classification task given that
samples of known authorship by a set of candidate authors are
available [2]. Burrows [3] presents an excellent review of
software forensics applications associated with this task. These
include assisting the revealing of academic dishonesty cases,
resolving disputes and litigation about source code samples,
tracing the authors of malicious software, and assisting the
maintenance of large software projects by assigning source
code samples to contributors.

So far, existing approaches have focused on the definition
of features to quantify the style of source code and effective
classification models [4, 5, 6]. Some very promising results
have been reported when dealing with short samples of code,
multiple candidate authors and several programming
languages, including C, C++, Java, and Lisp [2, 3, 7]. To
evaluate the proposed models, the published studies use
custom-built source code collections that include either
balanced training sets (where the training samples are equally
distributed over the candidate authors) or imbalanced (skewed)
training sets (where some candidate authors are over-
represented or under-represented in the training samples). Note

also that even in case the samples are (almost) evenly
distributed over the authors, the size of each sample may vary.
Thus, long samples (multiple lines of code) may be available
for some authors and short samples for other author. This can
also be viewed as a case of class imbalance. Therefore, a more
accurate definition of a skewed training set should also account
for the lines of code (or KBs) of training samples per author.
Existing studies avoid focusing on the class imbalance problem
and its effect on the performance of source code author
identification methods [3,4,7].

The software forensics applications associated with this
task usually provide samples of known authorship that are
unevenly distributed over the candidate authors. The degree of
class imbalance (the ratio between the most over-represented
author and the most under-represented author) may be
anywhere from very low to very high while the number of
over(under)-represented authors may also vary. Given the
nature of these applications it is not easy (or even possible) to
require additional code samples for some authors. Moreover, in
forensic applications the availability of many source samples
for some authors should not increase the probability of
assigning a sample of unknown authorship to them (in other
words, the priors should not be taken into account). It is,
therefore, crucial to examine the performance of existing
source code author identification methods under different
scenarios of class imbalance so that to estimate their stability
and extract conclusions about tuning their parameters
according to the distribution of the training set.

In this paper we present a systematic experimental study of
the effect of the class imbalance problem on source code author
identification methods. A simple and programming language-
independent code representation technique that is based on
byte-level n-grams [2] is adopted and tested under a variety of
scenarios. Two representative author identification methods are
examined, one follows the profile-based paradigm (where a
single representation is produced for all the available training
samples per author) and the other follows the instance-based
paradigm (where each training sample has its own individual
representation) [8]. We examine the performance of these
methods when the degree of class imbalance and the number of
over(under)-represented authors vary and provide insight for
choosing the most appropriate source code author identification
method for a specific case with a certain training set
distribution over the candidate authors.

The rest of this paper is organized as follows. The next
Section discusses relevant work and Section 3 describes the
source code author identification methods that will be studied.

Then, Section 4 presents the data and experiments performed
with skewed training sets while Section 5 summarizes the
conclusions drawn from this study and discusses future work
directions.

II. RELEVANT WORK
Source code author identification can be viewed as a typical

text categorization task where a set of training samples
belonging to a set of classes (authors) are given. Based on this
training set and an appropriate quantification of source code
samples a classification model is learned and then this is used
to classify unknown samples to one of the candidate authors.
Most of the published studies dealing with this task focus on
the definition of appropriate metrics to quantify the style of
source code samples.

To this end, one direction is to use software metrics that fall
into three main categories: programming layout metrics (e.g.,
indentation measures, whitespace use etc.), programming style
metrics (e.g., variable length measures, use of capital letters,
etc.), and programming structure metrics (e.g., function length
measures, use of complex branching constructs, etc) [1, 4, 5, 6].
Other more complicated measures involve subjective
judgments of human-experts (e.g., degree of match between
code and comments, use of meaningful identifier names, etc).
Some of the software metrics are language-dependent, so they
have to be modified in order to be applied to code in a certain
programming language [5]. The studies based on such
measures produce a low dimensional representation of code
consisting of a few dozen of features.

A computationally simpler approach is the extraction of n-
gram measures from source code. Byte-level n-grams (i.e.,
overlapping sequences of length n) have been proved to be
very effective for representing the stylistic properties of code
[2, 7]. They produce a high dimensional representation with a
few thousand of features and they are language-independent.
Another proposed method concerns the extraction of token n-
grams from code, where each token may refer to an operator, a
keyword, a function etc. [3].

In author identification literature there are two main
paradigms of classification methods [8]. The profile-based
methods attempt to capture the style of each author and handle
all the training samples per author collectively. Thus, the
differences between training samples of the same author are
disregarded [2, 6]. On the other hand, the instance-based
methods attempt to capture the style of each sample and handle
each training sample separately. Even in cases there is only one
training sample for a certain candidate author, these methods
require it to be split into multiple sub-samples. The majority of
published studies in source code author identification follow
the latter approach. To this end, several classification
algorithms have been used including discriminant analysis [1,
5], neural networks [4], nearest-neighbor using the OKAPI
BM25 similarity measure [3].

The class imbalance problem arises when the training set is
unequally distributed over the classes. To deal with this
problem, there are two main approaches that attempt to balance

the training set [9]: down-sampling (reducing the training
samples of all classes so that to be equal to the most under-
represented class) and over-sampling (increasing the training
samples of the under-represented classes by repeating some of
them). Since some classification methods disregard repetitions
of the same instance, an alternative method produces additional
synthetic data by adding small random values in some
instances belonging to the initial training set [10]. In the
framework of the author identification task, the training set can
be enriched using synthetic data that can easily be available by
segmenting texts according to class size or re-sampling training
texts (i..e, using the same text lines multiple times in different
training instances) [11].

Previous studies on source code author identification have
only superficially dealt with the class imbalance problem. In
some cases the datasets used for evaluating the existing
approaches were (nearly-)balanced. Lange and Mancoridis [6]
used a dataset consisting of 3 projects per author while
Frantzeskou et al. used a collection of 5-8 samples per author
[2, 7]. In other cases, the datasets are highly imbalanced.
MacDonell and Gray [4] used a highly imbalanced dataset
comprising 5-114 samples per author. They split this dataset in
stratified training and test sets, thus favoring the identification
of authors with many training samples. To avoid this problem
Burrows [3] used the leave-one-out cross-validation
methodology on three datasets comprising 14-26, 5-30, and 3-
26 samples per author. Although this approach is certainly
fairer and provides a more robust look on the effectiveness of
the identification method, it fails to focus on the properties of
the skewed dataset. Hence, it is not possible to extract any
conclusions about the stability of the identification method
when the distribution of the training samples over the author
changes.

III. SOURCE CODE AUTHOR IDENTIFICATION

A. Profile-based Paradigm
The profile-based paradigm attempts to capture the style of

authors rather than individual samples [8]. It disregards the
differences between training samples by the same author and
produces one single representation (i.e., profile) per author.
Each text of unknown authorship is then compared with the
profile of each author and is assigned to the most likely one
according to a similarity function. This procedure is illustrated
in Figure 1. The profile-based methods are affected by the class
imbalance problem when there is an uneven distribution of the
total size (in KBs) of training samples over the authors. On the
other hand, the number of training samples per author is not
significant. Since they concatenate all the available training
samples per author, they are stable in cases there are only very
short training samples. On the other hand, since the
discrimination between the authors is decided by a single
metric (i.e., the similarity function) it is crucial to choose a
stable and accurate function able to deal with multiple
candidate authors, imbalanced and limited training sets.

Common n-grams (CNG) is perhaps the most representative
approach of the profile-based paradigm in author identification
literature [12]. Moreover, this method and its variations have
already produced very good results when applied to authorship
analysis tasks in source code samples [2, 7] and natural
language texts [13]. The main idea of this algorithm is
described in the pseudocode of Figure 2. The profiles of the
sample of unknown authorship and the concatenated samples
of each author are extracted and then the similarity between
these profiles estimates the most likely author. The profile of a
sample is composed by the L most frequent n-grams found in
this sample. This method has been proved to be very effective
when it is combined with byte-level n-gram representations of
source code [2, 7]. There are three significant parameters that
should be tuned: n that is the order (length) of n-grams, L that
is the size of the profile, and d that is the similarity function.

Previous studies on source code author identification have
used the Simplified Profile Intersection (SPI) similarity

measure which simply counts the number of common n-grams
between two profiles disregarding any frequency information.
This combination of CNG with the SPI measure is called
Source Code Author Profile (SCAP) in some studies [2, 7].
Given two profiles X and Y, SPI is defined as follows:

SPI(X, Y) = |X ∩ Y|

An alternative measure that has been proposed and tested in
author identification and plagiarism detection of natural
language texts [13, 14] is the Asymmetric Normalized Relative
Distance (ANRD) defined below:

X
gfgf
gfgf

YXANRD Xg YX

YX

4
)()(
))()((2

),(

2

∑
∈









+
−

=

where fX(g) and fY(g) are the normalized frequencies of the n-
gram g in the profiles X and Y, respectively and |X| is the size of
profile X. The denominator guarantees that this function takes
values in [0,1]. The lower it is the more similar are the two
profiles. Thus, this dissimilarity function can be transformed to
a similarity function by considering 1-ANRD(X,Y).

Note that ANRD(X,Y) is not symmetric since the sum of the
nominator is calculated over the members of profile X that
should always correspond to the sample of unknown
authorship while profile Y should correspond to the
concatenated training samples of a candidate author. In other
words, it is assumed that X corresponds to a relatively short
sample while Y corresponds to a relatively long sample. For
this reason, this measure is very stable in case of skewed
training sets where the size of the profiles of candidate authors
may vary significantly. For instance, if we set n=4 and L=5,000
and for some authors there are just a couple of short samples in
the training set, the size of the extracted profiles for these
authors may be well below 5,000. It has already been used
successfully to author identification and plagiarism detection
tasks for natural language texts [13, 14].

Figure 1. Architecture of the profile-based paradigm (for just one candidate author).

Input
C: set of candidate authors
D: training set
U: an unknown sample
n: n-gram order
L: profile size
d: similarity measure

CNG(C,D,U,n,L,d)
NU=extract_ngrams(n,U);
NU=sort_by_frequency(NU);
PU=get_profile(L,NU);
foreach c ∈ C
 Dc=concatenate(c,D);
 Nc=extract_ngrams(n,Dc);
 Nc=sort_by_frequency(Nc);
 Pc=get_profile(L,Nc);
 Sc=similarity(d,PU,Pc);
endfor
return argmaxc(Sc);

Figure 2. The CNG algorithm.

B. Instance-based Paradigm
The instance-based paradigm attempts to capture the style

of individual samples [8]. It produces one separate
representation per training sample and builds a classification
model that can estimate the most likely author of a source code
sample of unknown authorship. This procedure is illustrated in
Figure 3. The machine learning algorithms usually exploited in
the framework of this paradigm (e.g. SVM, neural networks,
etc.) usually require multiple instances per class in order to be
effective. Thus, in case there is only one long training sample
for one author it should be appropriately segmented into shorter
pieces. The instance-based methods can easily combine
different types of features for representing source code.
However, the representation of stylistic properties of very short
samples may not be accurate. These methods are particularly
affected by the class imbalance problem. Both the number of
training samples and the size (in KBs) of the training samples
per author affect the skeweness of the training set.

SVM is one of the most effective and well-known machine
learning algorithms for text categorization tasks. In authorship
attribution, it has been used in combination with character n-
grams providing very good results [11]. Essentially, it is an
instance-based method that is for each individual training text a
representation is produced, usually based on the frequencies of
the most frequent byte-level n-grams of the training corpus.
The SVM algorithm can be used to learn the boundaries
between classes (i.e., authors). The learned model is then
applied to another sample of unknown authorship to guess the
most likely author. In this paper, we used the LIBSVM
implementation of this algorithm. Since the dimensionality is
high (several thousands of features), the linear kernel has been
used.

IV. EXPERIMENTS

A. Data and Settings
Since our aim is to study the class imbalance problem, we

need an initially balanced collection, both in terms of number
of samples and lines of code (or KBs) per author. By
modifying the quantity of training set for specific authors of
such a collection it is possible to produce multiple artificially

imbalanced training sets. Unfortunately, the datasets used in
previous studies do not fulfill these requirements since they are
either too small or (more frequently) for some authors there is a
very restricted number of samples available [2, 3, 4, 7]. Hence,
we chose to build a new collection that is more appropriate for
our experiments.

The source code samples used in this study come from the
JNode project 1

• The Apache Subversion (SVN) system provided the
name of the committer for each file as well as the
version of the file.

, a Java platform operating system. A few
dozens of developers have contributed to this open-source
project although most of the code was produced by a couple of
programmers. The total size of this project is more than
200,000 lines of code. In order to group source code files
according to the original authors we used the following
information:

• The comments inside the file indicate the name of the
developer.

In particular, we used source code files where the name of
the committer and the developer was the same. Moreover, we
only used the first version of each file to minimize the risk of
reusing code from other developers. Since all source code files
are parts of the same project this collection resembles the
practical application of assigning parts of code to the
contributors of a project.

To build a balanced dataset we first anonymized the
samples by removing all comments that included author names
and concatenated all samples per author into a single file. Then,
we only considered authors who contributed at least 40KB of
code in total. A set of 7 authors fulfilled this criterion while the
minimum size of the concatenated files per author was 42KB.
These files were down-sampled to 42KB and split into samples
of 1KB each. Thus, the balanced collection we built consists of
7 candidate authors, and 42 source code samples of 1KB per
author.

This collection of source code was split into training set (38
samples per author) and test set (4 samples per author). An

1 http://www.jnode.org/

Figure 3. Architecture of the instance-based paradigm.

artificial case of class imbalance can then be produced by
removing some training texts from some of the candidate
authors. In other words, each skewed training set used in our
experiments is a part of the initially balanced training set.
There are two parameters that define the properties of each
skewed training set:

• The number m of authors with reduced training
samples. We called them minority authors. On the
other hand, the authors with maximum number of
training samples are called majority authors. We only
consider cases where each candidate author may be
either a minority or a majority author (i.e., there are no
authors with less training samples than a majority
author and more training samples than a minority
author).

• The ratio r of training samples of a minority author that
are removed from the training set with respect to the
maximum number of training samples. This indicates
the difference (in training samples) between the
minority and the majority authors. We call this the
degree of class imbalance.

For example, the case where m=2 and r=30% means that
there are 2 minority authors and each one of them has 30% less
training samples with respect to the full training set (i.e., 38
samples per author). The rest 5 authors have the maximum
number of training samples (i.e., majority authors).

In our experiments, we vary m from 0 (when there is no
minority author) to 7 (when there is no majority author) with a
step of 1. Note that the boundary values m=0 and m=7
correspond to balanced training sets while the latter essentially
represents the technique of down-sampling. Moreover, we
examine three values of r: 30% (low degree of class
imbalance), 60% (medium degree of class imbalance), and
90% (high degree of class imbalance). In each case, the test set
remains the same and its distribution over the authors is
balanced. Note that the test is always balanced and this is in
accordance to the guideline introduced in [8], namely in author

identification examined in the framework of forensic
applications the training and test sets should not follow the
same distribution. In other words, the availability of many
training samples for one author should not increase the
probability of being the author of a sample of unknown
authorship.

In the presented experiments, the examination of each
artificially imbalanced case (a combination of m and r values)
was repeated 10 times, each time the specific minority authors
and the removed training samples were selected randomly. In
the experiments carried out in this study, the byte-level n-gram
representation was used for quantifying the style of source code
samples. For the CNG method the profile consists of the 5,000
most frequent n-grams (L=5,000). For the SVM model, any n-
gram with frequency more than 3 (in the training samples) is
included in the feature set. Preliminary experiments with
different profile sizes and frequency thresholds did not affect
the results drastically.

B. The Effect of Source Code Representation
First, we consider how the order of the byte-level n-gram

representation affects the performance of the examined
methods. We examined n-gram representations with n=4, 5, 6,
7, and 8 for both the CNG (with SPI similarity measure) and
the SVM models in skewed training sets produced as explained
in the previous section. Figure 4 shows the performance (i.e.,
classification accuracy averaged over 10 runs) of these models
for r=30%. As can be seen, in general the performance of CNG
improves when the order of the n-gram representation
increases. This has also been noticed by [3]. Interestingly, the
SVM model follows exactly the opposite pattern. Its
performance drops when the order of the n-gram representation
increases. The same patterns are obtained when examining
other values of r (60% and 90%), not shown here for the sake
of brevity.

This experiment indicates that CNG is better able to handle
sparse features, namely long byte-level n-grams that may
correspond to strings that include sequences of identifiers,

Figure 4. Comparison of the profile-based method (left, CNG with SPI) and the instance-based method (right, SVM) for low degree of class imbalance in the

training set (r=30%) for different byte-level n-gram representations.

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

n=4

n=5

n=6

n=7

n=8

operators, function names, etc. On the other hand, the SVM
model can better handle short byte-level n-grams that may
capture single identifier names, keywords, etc. or parts of that
information. Note that short n-grams are more flexible and can
capture the similarity of almost identical lines of code. For

example, “int a[N];” and “int b[N];” have 2 common 4-grams
while there is not any common 6-gram.

C. The Effect of Similarity Measure
In the next experiment, we examined the CNG model in

combination with two similarity measures: SPI and ANRD.
Figure 5 depicts the performance of these models in skewed
datasets for byte-level n-gram representations with n=4 and
n=8 while the degree of class imbalance is 30%, 60%, or 90%.
As shown in the previous experiment, the performance of the
models based on 4-gram and 8-gram representations can be
considered as indicative lower and upper boundaries,
respectively, of the performance of the CNG models. For low
degree of class imbalance (r=30%), the SPI measure clearly
outperforms ANRD. For medium degree of class imbalance
(r=60%) the performance of SPI and ANRD models is
comparable although SPI seems to be significantly better in
balanced (m=0 and m=7) and near-balanced datasets (when
there is just one minority author or just one majority author).
For high degree of class imbalance (r=90%) the ANRD models
are more stable and outperform SPI models when there are at
least 2 minority authors.

SPI seems particularly vulnerable when there are just a few
majority authors. In those cases the majority of the unseen
samples tend to be classified under the majority authors
because they have considerably larger profiles than the rest of
the authors. Hence it is more probable to find common n-grams
in the profiles of a majority author and an unknown sample.
The use of ANRD avoids this problem.

D. Profile-based vs. Instance-based Author Identification
Finally, we compared the performance of CNG (with

ANRD similarity measure) and SVM models for varying
degrees of class imbalance and different byte-level n-gram
representations. Again, the models with n=4 and n=8 can be
considered as indicative lower and upper boundaries,
respectively, for the performance of the CNG models and the
opposite, that is lower and upper boundaries for the
performance of the SVM models. The results shown in Figure
6 demonstrate that for low degree of class imbalance SVM is
clearly the best performing method. Both CNG and SVM
remain practically stable despite the reduction of the training
set for some candidate authors. The under-sampling technique
(i.e., it corresponds to the case where m=7) seems to be a good
solution when half or more of the candidate authors are under-
represented (minority authors).

In the case of medium degree of class imbalance, CNG is
more stable but SVM still provides the best performing model.
When there are enough minority authors (m>2) the under-
sampling technique seems to be a good choice for SVM but it
is not effective for CNG.

For high degree of class imbalance CNG clearly
outperforms SVM. In that case, the under-sampling technique
provides very poor results for the SVM models. It is not a good
option for CNG either since the performance of CNG drops
quasi-linearly by increasing the number of minority authors.
The classification accuracy of CNG drops from 92% (m=0) to
67% (m=7) despite the fact that the training set has been
drastically reduced from 38 samples per author to just 4
samples per author. On the other hand, the performance of
SVM drastically drops below 40%.

Figure 5. Comparison of the profile-based method (CNG) with the SPI and
ANRD similarity measures for low degree (top), medium degree (middle),
and high degree (bottom) of class imbalance in the training set.

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

ANRD with n=4 ANRD with n=8

SPI with n=4 SPI with n=8

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

0

20

40

60

80

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

This experiment indicates that the profile-based methods
are better able to handle both balanced datasets of limited size
(i.e., with just a few training samples per author) as well as
highly skewed datasets in comparison to instance-based
methods. On the other hand, instance-based methods are more
appropriate when the training set is slightly-skewed.

V. CONCLUSIONS
In this paper, we presented a detailed experimental study of

the class imbalance problem in the source code author
identification task. We examined two different methods of
author identification representing the two basic paradigms, that
is the profile-based paradigm and the instance-based paradigm.
Based on a collection of source code samples and different
degrees of class imbalance as well as different number of
minority authors we demonstrated the performance of these
author identification methods under a variety of cases of
skewed training sets.

Byte-level n-grams offer a computationally simple and
programming language-independent approach to represent the
stylistic properties of code and have already been used by
previous studies with very promising results. We examined the
author identification methods with different orders of byte-
level n-grams and an interesting conclusion is that although the
profile-based method performs better with long n-grams
(something already indicated by previous studies), the instance-
based method is more effective with short n-grams. This
pattern is not affected by the degree of class imbalance in the
training set.

One main conclusion of this study is that the instance-based
method (SVM) is more accurate in balanced or nearly-balanced
cases (when the degree of class imbalance is low). In the latter
case, both methods are quite stable since their performance is
not heavily affected by increasing the number of minority
authors. For medium degree of class imbalance, the instance-
based method continues to be superior but its stability is now
considerably decreased. Hence, when the training samples of
the most under-represented authors are at least a half of the
most over-represented authors, the SVM model seems to be the
better option. On the other hand, in cases with high degree of
class imbalance, the profile-based method (CNG) is more
accurate and more stable in comparison to SVM. Thus, when
there are some very under-represented authors in the training
set, the profile-based method seems to be the best solution. In
addition, the under-sampling technique seems to be a good
option for both SVM and CNG when at least half of the
candidate authors are under-represented in the training set and
the degree of class imbalance is low or medium. However, for
highly-skewed datasets, it is not appropriate for both methods.

The comparison of two similarity measures (SPI and
ANRD), proposed in previous author identification studies to
be used with the CNG method, demonstrated that SPI is better
in cases of low degree of class imbalance while ANRD is better
in cases of high degree of class imbalance. For medium degree
of class imbalance the two approaches are practically equally
effective. It should be noted that SPI is particularly vulnerable
when there are just a few majority authors and the degree
ofclass imbalance is high. In those cases the unknown samples
tend to be classified under the majority authors simply because
they have larger profiles than the rest of the authors. However,
CNG with SPI is still more accurate than SVM in those cases.

An interesting future work dimension is to explore the
usefulness of methods that produce synthetic data to re-balance
the training set [10, 11]. Moreover, alternative code
representation methods [3] could be tested.

Figure 6. Comparison of the profile-based method (CNG with ANRD) and
the instance-based method (SVM) for low degree (top), medium degree
(middle), and high degree (bottom) of class imbalance in the training set.

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
 (%

)

Minority authors (m)

CNG with n=4 CNG with n=8

SVM with n=4 SVM with n=8

75

80

85

90

95

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

20

40

60

80

100

0 2 4 6 8

A
cc

ur
ac

y
(%

)

Minority authors (m)

REFERENCES
[1] I. Krsul and E.H. Spafford, “Authorship analysis: Identifying the author

of a program”, Computers and Security, 16(3), pp. 233-257, 1997.
[2] G. Frantzeskou, E. Stamatatos, S. Gritzalis, and S. Katsikas, “Effective

identification of source code authors using byte-level information”, in
Proc. of the 28th International Conference on Software Engineering,
2006, pp. 893-896.

[3] S.D. Burrows, Source Code Authorship Attribution, Ph.D. Thesis, RMIT
University, 2011.

[4] S.G. MacDonell and A.R. Gray, “Software forensics applied to the task
of discriminating between program authors”, Journal of Systems
Research and Information Systems, 10, pp. 113-127, 2001.

[5] H. Ding and M.H. Samadzadeh, “Extraction of Java program
fingerprints for software authorship identification”, The Journal of
Systems and Software, 72(1), pp. 49-57, 2004.

[6] R.C. Lange and S. Mancoridis, “Using code metric histograms and
genetic algorithms to perform author identification for software
forensics”, in Proceedings of the Ninth Annual Conference on Genetic
and Evolutionary Computation, 2007, pp. 2082-2089.

[7] G. Frantzeskou, S.G. MacDonell, and E. Stamatatos, “Source code
authorship analysis for supporting the cybercrime investigation process”,
In Chang-Tsun Li (ed.) Hndbook of Research on Computational

Forensics, Digital Crime, and Investigation: Methods and Solutions, pp.
470-495, 2010.

[8] E. Stamatatos, “A survey of modern authorship attribution methods”,
Journal of the American Society for information Science and
Technology, 60(3), pp. 538-556, 2009.

[9] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study”, Intelligent Data Analysis, 6(5), pp. 429-450, 2002.

[10] N. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer, “SMOTE:
Synthetic minority over-sampling technique”, Journal of Artificial
Intelligence Research, 16, pp. 321-357, 2002.

[11] E. Stamatatos, “Author identification: using text sampling to handle the
class imbalance problem”, Information Processing & Management,
44(2), pp. 790--799, 2008.

[12] V. Keselj, F. Peng, N. Cercone, and C. Thomas, “N-gram-based author
profiles for authorship attribution”, in Proc. of the Pacific Association
for Computational Linguistics, 2003, pp. 255-264.

[13] E. Stamatatos, “Author identification using imbalanced and limited
training texts”, in Proc. of the 4th International Workshop on Text-based
Information Retrieval, 2007, pp. 237-241.

[14] E. Stamatatos, “Intrinsic plagiarism detection using character n-gram
profiles”, in Proc. of the 3rd Int. Workshop on Uncovering Plagiarism,
Authorship, and Social Software Misuse, 2009.

	I. Introduction
	II. Relevant Work
	III. Source Code Author Identification
	A. Profile-based Paradigm
	B. Instance-based Paradigm

	IV. Experiments
	A. Data and Settings
	B. The Effect of Source Code Representation
	C. The Effect of Similarity Measure
	D. Profile-based vs. Instance-based Author Identification

	V. Conclusions
	References

