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Abstract—Similarly to natural language texts, source code 
documents can be distinguished by their style. Source code 
author identification can be viewed as a text classification task 
given that samples of known authorship by a set of candidate 
authors are available. Although very promising results have been 
reported for this task, the evaluation of existing approaches 
avoids focusing on the class imbalance problem and its effect on 
the performance. In this paper, we present a systematic 
experimental study of author identification in skewed training 
sets where the training samples are unequally distributed over 
the candidate authors. Two representative author identification 
methods are examined, one follows the profile-based paradigm 
(where a single representation is produced for all the available 
training samples per author) and the other follows the instance-
based paradigm (where each training sample has its own 
individual representation). We examine the effect of the source 
code representation on the performance of these methods and 
show that the profile-based method is better able to handle cases 
of highly skewed training sets while the instance-based method is 
a better choice in balanced or slightly-skewed training sets. 

Keywords: Source code author identification, class imbalance, 
byte-level n-grams 

I. INTRODUCTION 
Similarly to natural language texts, source code documents 

can be distinguished by their style [1]. Source code author 
identification can be seen as a text classification task given that 
samples of known authorship by a set of candidate authors are 
available [2]. Burrows [3] presents an excellent review of 
software forensics applications associated with this task. These 
include assisting the revealing of academic dishonesty cases, 
resolving disputes and litigation about source code samples, 
tracing the authors of malicious software, and assisting the 
maintenance of large software projects by assigning source 
code samples to contributors. 

So far, existing approaches have focused on the definition 
of features to quantify the style of source code and effective 
classification models [4, 5, 6]. Some very promising results 
have been reported when dealing with short samples of code, 
multiple candidate authors and several programming 
languages, including C, C++, Java, and Lisp [2, 3, 7]. To 
evaluate the proposed models, the published studies use 
custom-built source code collections that include either 
balanced training sets (where the training samples are equally 
distributed over the candidate authors) or imbalanced (skewed) 
training sets (where some candidate authors are over-
represented or under-represented in the training samples). Note 

also that even in case the samples are (almost) evenly 
distributed over the authors, the size of each sample may vary. 
Thus, long samples (multiple lines of code) may be available 
for some authors and short samples for other author. This can 
also be viewed as a case of class imbalance. Therefore, a more 
accurate definition of a skewed training set should also account 
for the lines of code (or KBs) of training samples per author. 
Existing studies avoid focusing on the class imbalance problem 
and its effect on the performance of source code author 
identification methods [3,4,7].  

The software forensics applications associated with this 
task usually provide samples of known authorship that are 
unevenly distributed over the candidate authors. The degree of 
class imbalance (the ratio between the most over-represented 
author and the most under-represented author) may be 
anywhere from very low to very high while the number of 
over(under)-represented authors may also vary. Given the 
nature of these applications it is not easy (or even possible) to 
require additional code samples for some authors. Moreover, in 
forensic applications the availability of many source samples 
for some authors should not increase the probability of 
assigning a sample of unknown authorship to them (in other 
words, the priors should not be taken into account). It is, 
therefore, crucial to examine the performance of existing 
source code author identification methods under different 
scenarios of class imbalance so that to estimate their stability 
and extract conclusions about tuning their parameters 
according to the distribution of the training set.  

In this paper we present a systematic experimental study of 
the effect of the class imbalance problem on source code author 
identification methods. A simple and programming language-
independent code representation technique that is based on 
byte-level n-grams [2] is adopted and tested under a variety of 
scenarios. Two representative author identification methods are 
examined, one follows the profile-based paradigm (where a 
single representation is produced for all the available training 
samples per author) and the other follows the instance-based 
paradigm (where each training sample has its own individual 
representation) [8]. We examine the performance of these 
methods when the degree of class imbalance and the number of 
over(under)-represented authors vary and provide insight for 
choosing the most appropriate source code author identification 
method for a specific case with a certain training set 
distribution over the candidate authors. 

The rest of this paper is organized as follows. The next 
Section discusses relevant work and Section 3 describes the 
source code author identification methods that will be studied. 



Then, Section 4 presents the data and experiments performed 
with skewed training sets while Section 5 summarizes the 
conclusions drawn from this study and discusses future work 
directions. 

II. RELEVANT WORK 
Source code author identification can be viewed as a typical 

text categorization task where a set of training samples 
belonging to a set of classes (authors) are given. Based on this 
training set and an appropriate quantification of source code 
samples a classification model is learned and then this is used 
to classify unknown samples to one of the candidate authors. 
Most of the published studies dealing with this task focus on 
the definition of appropriate metrics to quantify the style of 
source code samples.  

To this end, one direction is to use software metrics that fall 
into three main categories: programming layout metrics (e.g., 
indentation measures, whitespace use etc.), programming style 
metrics (e.g., variable length measures, use of capital letters, 
etc.), and programming structure metrics (e.g., function length 
measures, use of complex branching constructs, etc) [1, 4, 5, 6]. 
Other more complicated measures involve subjective 
judgments of human-experts (e.g., degree of match between 
code and comments, use of meaningful identifier names, etc). 
Some of the software metrics are language-dependent, so they 
have to be modified in order to be applied to code in a certain 
programming language [5]. The studies based on such 
measures produce a low dimensional representation of code 
consisting of a few dozen of features.  

A computationally simpler approach is the extraction of n-
gram measures from source code. Byte-level n-grams (i.e., 
overlapping sequences of length n) have been proved to be 
very effective for representing the stylistic properties of code 
[2, 7]. They produce a high dimensional representation with a 
few thousand of features and they are language-independent. 
Another proposed method concerns the extraction of token n-
grams from code, where each token may refer to an operator, a 
keyword, a function etc. [3]. 

In author identification literature there are two main 
paradigms of classification methods [8]. The profile-based 
methods attempt to capture the style of each author and handle 
all the training samples per author collectively. Thus, the 
differences between training samples of the same author are 
disregarded [2, 6]. On the other hand, the instance-based 
methods attempt to capture the style of each sample and handle 
each training sample separately. Even in cases there is only one 
training sample for a certain candidate author, these methods 
require it to be split into multiple sub-samples. The majority of 
published studies in source code author identification follow 
the latter approach. To this end, several classification 
algorithms have been used including discriminant analysis [1, 
5], neural networks [4], nearest-neighbor using the OKAPI 
BM25 similarity measure [3]. 

The class imbalance problem arises when the training set is 
unequally distributed over the classes. To deal with this 
problem, there are two main approaches that attempt to balance 

the training set [9]: down-sampling (reducing the training 
samples of all classes so that to be equal to the most under-
represented class) and over-sampling (increasing the training 
samples of the under-represented classes by repeating some of 
them). Since some classification methods disregard repetitions 
of the same instance, an alternative method produces additional 
synthetic data by adding small random values in some 
instances belonging to the initial training set [10]. In the 
framework of the author identification task, the training set can 
be enriched using synthetic data that can easily be available by 
segmenting texts according to class size or re-sampling training 
texts (i..e, using the same text lines multiple times in different 
training instances) [11]. 

Previous studies on source code author identification have 
only superficially dealt with the class imbalance problem.  In 
some cases the datasets used for evaluating the existing 
approaches were (nearly-)balanced. Lange and Mancoridis [6] 
used a dataset consisting of 3 projects per author while 
Frantzeskou et al. used a collection of 5-8 samples per author 
[2, 7]. In other cases, the datasets are highly imbalanced. 
MacDonell and Gray [4] used a highly imbalanced dataset 
comprising 5-114 samples per author. They split this dataset in 
stratified training and test sets, thus favoring the identification 
of authors with many training samples. To avoid this problem 
Burrows [3] used the leave-one-out cross-validation 
methodology on three datasets comprising 14-26, 5-30, and 3-
26 samples per author. Although this approach is certainly 
fairer and provides a more robust look on the effectiveness of 
the identification method, it fails to focus on the properties of 
the skewed dataset. Hence, it is not possible to extract any 
conclusions about the stability of the identification method 
when the distribution of the training samples over the author 
changes.  

III. SOURCE CODE AUTHOR IDENTIFICATION 

A.  Profile-based Paradigm 
The profile-based paradigm attempts to capture the style of 

authors rather than individual samples [8]. It disregards the 
differences between training samples by the same author and 
produces one single representation (i.e., profile) per author. 
Each text of unknown authorship is then compared with the 
profile of each author and is assigned to the most likely one 
according to a similarity function. This procedure is illustrated 
in Figure 1. The profile-based methods are affected by the class 
imbalance problem when there is an uneven distribution of the 
total size (in KBs) of training samples over the authors. On the 
other hand, the number of training samples per author is not 
significant. Since they concatenate all the available training 
samples per author, they are stable in cases there are only very 
short training samples. On the other hand, since the 
discrimination between the authors is decided by a single 
metric (i.e., the similarity function) it is crucial to choose a 
stable and accurate function able to deal with multiple 
candidate authors, imbalanced and limited training sets. 



Common n-grams (CNG) is perhaps the most representative 
approach of the profile-based paradigm in author identification 
literature [12]. Moreover, this method and its variations have 
already produced very good results when applied to authorship 
analysis tasks in source code samples [2, 7] and natural 
language texts [13]. The main idea of this algorithm is 
described in the pseudocode of Figure 2. The profiles of the 
sample of unknown authorship and the concatenated samples 
of each author are extracted and then the similarity between 
these profiles estimates the most likely author. The profile of a 
sample is composed by the L most frequent n-grams found in 
this sample. This method has been proved to be very effective 
when it is combined with byte-level n-gram representations of 
source code [2, 7]. There are three significant parameters that 
should be tuned: n that is the order (length) of n-grams, L that 
is the size of the profile, and d that is the similarity function.  

Previous studies on source code author identification have 
used the Simplified Profile Intersection (SPI) similarity 

measure which simply counts the number of common n-grams 
between two profiles disregarding any frequency information. 
This combination of CNG with the SPI measure is called 
Source Code Author Profile (SCAP) in some studies [2, 7]. 
Given two profiles X and Y, SPI is defined as follows: 

SPI(X, Y) = |X ∩ Y| 

An alternative measure that has been proposed and tested in 
author identification and plagiarism detection of natural 
language texts [13, 14] is the Asymmetric Normalized Relative 
Distance (ANRD) defined below:  
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where fX(g) and fY(g) are the normalized frequencies of the n-
gram g in the profiles X and Y, respectively and |X| is the size of 
profile X. The denominator guarantees that this function takes 
values in [0,1]. The lower it is the more similar are the two 
profiles. Thus, this dissimilarity function can be transformed to 
a similarity function by considering 1-ANRD(X,Y).  

Note that ANRD(X,Y) is not symmetric since the sum of the 
nominator is calculated over the members of profile X that 
should always correspond to the sample of unknown  
authorship while profile Y should correspond to the 
concatenated training samples of a candidate author. In other 
words, it is assumed that X corresponds to a relatively short 
sample while Y corresponds to a relatively long sample. For 
this reason, this measure is very stable in case of skewed 
training sets where the size of the profiles of candidate authors 
may vary significantly. For instance, if we set n=4 and L=5,000 
and for some authors there are just a couple of short samples in 
the training set, the size of the extracted profiles for these 
authors may be well below 5,000. It has already been used 
successfully to author identification and plagiarism detection 
tasks for natural language texts [13, 14]. 

 
Figure 1. Architecture of the profile-based paradigm (for just one candidate author). 

 
Input 
C: set of candidate authors 
D: training set 
U: an unknown sample 
n: n-gram order 
L: profile size 
d: similarity measure 
 
CNG(C,D,U,n,L,d) 
NU=extract_ngrams(n,U); 
NU=sort_by_frequency(NU); 
PU=get_profile(L,NU); 
foreach c ∈ C 
 Dc=concatenate(c,D); 
 Nc=extract_ngrams(n,Dc); 
 Nc=sort_by_frequency(Nc); 
 Pc=get_profile(L,Nc); 
 Sc=similarity(d,PU,Pc); 
endfor 
return argmaxc(Sc); 

Figure 2. The CNG algorithm. 



B. Instance-based Paradigm 
The instance-based paradigm attempts to capture the style 

of individual samples [8]. It produces one separate 
representation per training sample and builds a classification 
model that can estimate the most likely author of a source code 
sample of unknown authorship. This procedure is illustrated in 
Figure 3. The machine learning algorithms usually exploited in 
the framework of this paradigm (e.g. SVM, neural networks, 
etc.) usually require multiple instances per class in order to be 
effective. Thus, in case there is only one long training sample 
for one author it should be appropriately segmented into shorter 
pieces. The instance-based methods can easily combine 
different types of features for representing source code. 
However, the representation of stylistic properties of very short 
samples may not be accurate. These methods are particularly 
affected by the class imbalance problem. Both the number of 
training samples and the size (in KBs) of the training samples 
per author affect the skeweness of the training set. 

SVM is one of the most effective and well-known machine 
learning algorithms for text categorization tasks. In authorship 
attribution, it has been used in combination with character n-
grams providing very good results [11]. Essentially, it is an 
instance-based method that is for each individual training text a 
representation is produced, usually based on the frequencies of 
the most frequent byte-level n-grams of the training corpus. 
The SVM algorithm can be used to learn the boundaries 
between classes (i.e., authors). The learned model is then 
applied to another sample of unknown authorship to guess the 
most likely author. In this paper, we used the LIBSVM 
implementation of this algorithm. Since the dimensionality is 
high (several thousands of features), the linear kernel has been 
used. 

IV. EXPERIMENTS 

A.  Data and Settings 
Since our aim is to study the class imbalance problem, we 

need an initially balanced collection, both in terms of number 
of samples and lines of code (or KBs) per author. By 
modifying the quantity of training set for specific authors of 
such a collection it is possible to produce multiple artificially 

imbalanced training sets. Unfortunately, the datasets used in 
previous studies do not fulfill these requirements since they are 
either too small or (more frequently) for some authors there is a 
very restricted number of samples available [2, 3, 4, 7]. Hence, 
we chose to build a new collection that is more appropriate for 
our experiments. 

The source code samples used in this study come from the 
JNode project 1

• The Apache Subversion (SVN) system provided the 
name of the committer for each file as well as the 
version of the file. 

, a Java platform operating system. A few 
dozens of developers have contributed to this open-source 
project although most of the code was produced by a couple of 
programmers. The total size of this project is more than 
200,000 lines of code. In order to group source code files 
according to the original authors we used the following 
information: 

• The comments inside the file indicate the name of the 
developer. 

In particular, we used source code files where the name of 
the committer and the developer was the same. Moreover, we 
only used the first version of each file to minimize the risk of 
reusing code from other developers. Since all source code files 
are parts of the same project this collection resembles the 
practical application of assigning parts of code to the 
contributors of a project. 

To build a balanced dataset we first anonymized the 
samples by removing all comments that included author names 
and concatenated all samples per author into a single file. Then, 
we only considered authors who contributed at least 40KB of 
code in total. A set of 7 authors fulfilled this criterion while the 
minimum size of the concatenated files per author was 42KB. 
These files were down-sampled to 42KB and split into samples 
of 1KB each. Thus, the balanced collection we built consists of 
7 candidate authors, and 42 source code samples of 1KB per 
author.  

This collection of source code was split into training set (38 
samples per author) and test set (4 samples per author). An 

                                                           
1 http://www.jnode.org/ 

 
Figure 3. Architecture of the instance-based paradigm. 



artificial case of class imbalance can then be produced by 
removing some training texts from some of the candidate 
authors. In other words, each skewed training set used in our 
experiments is a part of the initially balanced training set. 
There are two parameters that define the properties of each 
skewed training set: 

• The number m of authors with reduced training 
samples. We called them minority authors. On the 
other hand, the authors with maximum number of 
training samples are called majority authors. We only 
consider cases where each candidate author may be 
either a minority or a majority author (i.e., there are no 
authors with less training samples than a majority 
author and more training samples than a minority 
author).  

• The ratio r of training samples of a minority author that 
are removed from the training set with respect to the 
maximum number of training samples. This indicates 
the difference (in training samples) between the 
minority and the majority authors. We call this the 
degree of class imbalance. 

For example, the case where m=2 and r=30% means that 
there are 2 minority authors and each one of them has 30% less 
training samples with respect to the full training set (i.e., 38 
samples per author). The rest 5 authors have the maximum 
number of training samples (i.e., majority authors).  

In our experiments, we vary m from 0 (when there is no 
minority author) to 7 (when there is no majority author) with a 
step of 1. Note that the boundary values m=0 and m=7 
correspond to balanced training sets while the latter essentially 
represents the technique of down-sampling. Moreover, we 
examine three values of r: 30% (low degree of class 
imbalance), 60% (medium degree of class imbalance), and 
90% (high degree of class imbalance). In each case, the test set 
remains the same and its distribution over the authors is 
balanced. Note that the test is always balanced and this is in 
accordance to the guideline introduced in [8], namely in author 

identification examined in the framework of forensic 
applications the training and test sets should not follow the 
same distribution. In other words, the availability of many 
training samples for one author should not increase the 
probability of being the author of a sample of unknown 
authorship. 

In the presented experiments, the examination of each 
artificially imbalanced case (a combination of m and r values) 
was repeated 10 times, each time the specific minority authors 
and the removed training samples were selected randomly. In 
the experiments carried out in this study, the byte-level n-gram 
representation was used for quantifying the style of source code 
samples. For the CNG method the profile consists of the 5,000 
most frequent n-grams (L=5,000). For the SVM model, any n-
gram with frequency more than 3 (in the training samples) is 
included in the feature set. Preliminary experiments with 
different profile sizes and frequency thresholds did not affect 
the results drastically. 

B. The Effect of Source Code Representation 
First, we consider how the order of the byte-level n-gram 

representation affects the performance of the examined 
methods. We examined n-gram representations with n=4, 5, 6, 
7, and 8 for both the CNG (with SPI similarity measure) and 
the SVM models in skewed training sets produced as explained 
in the previous section. Figure 4 shows the performance (i.e., 
classification accuracy averaged over 10 runs) of these models 
for r=30%. As can be seen, in general the performance of CNG 
improves when the order of the n-gram representation 
increases. This has also been noticed by [3]. Interestingly, the 
SVM model follows exactly the opposite pattern. Its 
performance drops when the order of the n-gram representation 
increases. The same patterns are obtained when examining 
other values of r (60% and 90%), not shown here for the sake 
of brevity.  

This experiment indicates that CNG is better able to handle 
sparse features, namely long byte-level n-grams that may 
correspond to strings that include sequences of identifiers, 

 
Figure 4. Comparison of the profile-based method (left, CNG with SPI) and the instance-based method (right, SVM) for low degree of class imbalance in the 

training set (r=30%) for different byte-level n-gram representations. 
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operators, function names, etc. On the other hand, the SVM 
model can better handle short byte-level n-grams that may 
capture single identifier names, keywords, etc. or parts of that 
information. Note that short n-grams are more flexible and can 
capture the similarity of almost identical lines of code. For 

example, “int a[N];” and “int b[N];” have 2 common 4-grams 
while there is not any common 6-gram. 

C. The Effect of Similarity Measure 
In the next experiment, we examined the CNG model in 

combination with two similarity measures: SPI and ANRD. 
Figure 5 depicts the performance of these models in skewed 
datasets for byte-level n-gram representations with n=4 and 
n=8 while the degree of class imbalance is 30%, 60%, or 90%. 
As shown in the previous experiment, the performance of the 
models based on 4-gram and 8-gram representations can be 
considered as indicative lower and upper boundaries, 
respectively, of the performance of the CNG models. For low 
degree of class imbalance (r=30%), the SPI measure clearly 
outperforms ANRD. For medium degree of class imbalance 
(r=60%) the performance of SPI and ANRD models is 
comparable although SPI seems to be significantly better in 
balanced (m=0 and m=7) and near-balanced datasets (when 
there is just one minority author or just one majority author). 
For high degree of class imbalance (r=90%) the ANRD models 
are more stable and outperform SPI models when there are at 
least 2 minority authors.  

SPI seems particularly vulnerable when there are just a few 
majority authors. In those cases the majority of the unseen 
samples tend to be classified under the majority authors 
because they have considerably larger profiles than the rest of 
the authors. Hence it is more probable to find common n-grams 
in the profiles of a majority author and an unknown sample. 
The use of ANRD avoids this problem. 

D. Profile-based vs. Instance-based Author Identification 
Finally, we compared the performance of CNG (with 

ANRD similarity measure) and SVM models for varying 
degrees of class imbalance and different byte-level n-gram 
representations. Again, the models with n=4 and n=8 can be 
considered as indicative lower and upper boundaries, 
respectively, for the performance of the CNG models and the 
opposite, that is lower and upper boundaries for the 
performance of the SVM models. The results shown in Figure 
6 demonstrate that for low degree of class imbalance SVM is 
clearly the best performing method. Both CNG and SVM 
remain practically stable despite the reduction of the training 
set for some candidate authors. The under-sampling technique 
(i.e., it corresponds to the case where m=7) seems to be a good 
solution when half or more of the candidate authors are under-
represented (minority authors). 

In the case of medium degree of class imbalance, CNG is 
more stable but SVM still provides the best performing model. 
When there are enough minority authors (m>2) the under-
sampling technique seems to be a good choice for SVM but it 
is not effective for CNG.  

For high degree of class imbalance CNG clearly 
outperforms SVM. In that case, the under-sampling technique 
provides very poor results for the SVM models. It is not a good 
option for CNG either since the performance of CNG drops 
quasi-linearly by increasing the number of minority authors. 
The classification accuracy of CNG drops from 92% (m=0) to 
67% (m=7) despite the fact that the training set has been 
drastically reduced from 38 samples per author to just 4 
samples per author. On the other hand, the performance of 
SVM drastically drops below 40%.  

 

 

 
Figure 5. Comparison of the profile-based method (CNG) with the SPI and 
ANRD similarity measures for low degree (top), medium degree (middle), 
and high degree (bottom) of class imbalance in the training set. 
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This experiment indicates that the profile-based methods 
are better able to handle both balanced datasets of limited size 
(i.e., with just a few training samples per author) as well as 
highly skewed datasets in comparison to instance-based 
methods. On the other hand, instance-based methods are more 
appropriate when the training set is slightly-skewed. 

V. CONCLUSIONS 
In this paper, we presented a detailed experimental study of 

the class imbalance problem in the source code author 
identification task. We examined two different methods of 
author identification representing the two basic paradigms, that 
is the profile-based paradigm and the instance-based paradigm. 
Based on a collection of source code samples and different 
degrees of class imbalance as well as different number of 
minority authors we demonstrated the performance of these 
author identification methods under a variety of cases of 
skewed training sets. 

Byte-level n-grams offer a computationally simple and 
programming language-independent approach to represent the 
stylistic properties of code and have already been used by 
previous studies with very promising results. We examined the 
author identification methods with different orders of byte-
level n-grams and an interesting conclusion is that although the 
profile-based method performs better with long n-grams 
(something already indicated by previous studies), the instance-
based method is more effective with short n-grams. This 
pattern is not affected by the degree of class imbalance in the 
training set.  

One main conclusion of this study is that the instance-based 
method (SVM) is more accurate in balanced or nearly-balanced 
cases (when the degree of class imbalance is low). In the latter 
case, both methods are quite stable since their performance is 
not heavily affected by increasing the number of minority 
authors. For medium degree of class imbalance, the instance-
based method continues to be superior but its stability is now 
considerably decreased. Hence, when the training samples of 
the most under-represented authors are at least a half of the 
most over-represented authors, the SVM model seems to be the 
better option. On the other hand, in cases with high degree of 
class imbalance, the profile-based method (CNG) is more 
accurate and more stable in comparison to SVM. Thus, when 
there are some very under-represented authors in the training 
set, the profile-based method seems to be the best solution. In 
addition, the under-sampling technique seems to be a good 
option for both SVM and CNG when at least half of the 
candidate authors are under-represented in the training set and 
the degree of class imbalance is low or medium. However, for 
highly-skewed datasets, it is not appropriate for both methods. 

The comparison of two similarity measures (SPI and 
ANRD), proposed in previous author identification studies to 
be used with the CNG method, demonstrated that SPI is better 
in cases of low degree of class imbalance while ANRD is better 
in cases of high degree of class imbalance. For medium degree 
of class imbalance the two approaches are practically equally 
effective. It should be noted that SPI is particularly vulnerable 
when there are just a few majority authors and the degree 
ofclass imbalance is high. In those cases the unknown samples 
tend to be classified under the majority authors simply because 
they have larger profiles than the rest of the authors. However, 
CNG with SPI is still more accurate than SVM in those cases. 

An interesting future work dimension is to explore the 
usefulness of methods that produce synthetic data to re-balance 
the training set [10, 11]. Moreover, alternative code 
representation methods [3] could be tested. 

 

 

 
  

Figure 6. Comparison of the profile-based method (CNG with ANRD) and 
the instance-based method (SVM) for low degree (top), medium degree 
(middle), and high degree (bottom) of class imbalance in the training set. 
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