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Authorship attribution can assist the criminal investigation procedure as well as cybercrime analysis. 
This task can be viewed as a single-label multi-class text categorization problem. Given that the style 
of a text can be represented as mere word frequencies selected in a language-independent method, 
suitable machine learning techniques able to deal with high dimensional feature spaces and sparse 
data can be directly applied to solve this problem. This paper focuses on classifier ensembles based 
on feature set subspacing. It is shown that an effective ensemble can be constructed using, 
exhaustive disjoint subspacing, a simple method producing many poor but diverse base classifiers. 
The simple model can be enhanced by a variation of the technique of cross-validated committees 
applied to the feature set. Experiments on two benchmark text corpora demonstrate the effectiveness 
of the presented method improving previously reported results and compare it to support vector 
machines, an alternative suitable machine learning approach to authorship attribution. 
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1.   Introduction 

Authorship Attribution (AA) is the task of identifying the author of a text given a 
predefined set of candidate authors. Until recently, AA had only limited application 
mainly to literary works of unknown or disputed authorship1 providing, in many cases, 
controversial results2. However, by taking advantage of machine learning techniques to 
exploit high dimensional low-level and language-independent information, the field is 
now mature to handle real-world cases where only short texts by many candidate authors 
are available. Therefore, effective identification of text authorship can now significantly 
assist intelligence and security by providing evidence about the identity of the authors of 
given texts. For instance, existing authorship analysis approaches can be applied to the 
verification of authorship of emails and electronic messages3,4,5, plagiarism detection in 
student essays6, and forensic cases7. 

Research in AA focuses mainly on the extraction of the most appropriate features for 
quantifying the style of an author (the so-called stylometry). Several measures have been 
proposed, including attempts to quantify the diversity of the vocabulary used by the 
author, function word frequencies (like ‘and’, ‘to’, etc.) and syntactic annotation 
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measures. A good review of stylometry techniques is given by Holmes8 while Rudman9 
estimates that nearly 1,000 features have been proposed. The style features used in early 
studies included word and sentence length10, syllable distribution per word and 
punctuation mark counts. Although useful for specific cases, they certainly lack 
generality. However, they can be used in combination with other, stylistically richer 
features. Another family of measures attempts to model the richness of the vocabulary 
used by the author11 (e.g., hapax legomena, type-token ratio etc). The main problem of 
these features is their strong dependency on text length while they are quite unstable for 
short texts. 

More complicated features are based on syntactic information12 (e.g., part-of-speech 
frequencies, use of rewrite rules, etc). In the framework of automatic AA, such features 
require robust Natural Language Processing (NLP) tools able to provide accurate 
measures. The use of NLP tools can also provide useful measures related to the specific 
procedure followed to analyze the text13. Another source of useful information is 
provided by idiosyncratic usage in formatting and spelling14 given that they can be 
detected effectively. However, syntactic annotation features are relatively 
computationally expensive. In addition, so far only a few natural languages are supported 
by reliable NLP tools. Therefore, such measures make the extraction of stylometric 
feature a language-dependent procedure. 

The most straightforward approach to represent a text is by using word frequencies, a 
method widely applied to topic-related text categorization as well. To this end, the most 
appropriate words for AA may be selected in an arbitrary way according to their 
discriminatory potential on a given set of candidate authors. In a famous case of disputed 
authorship, Mosteller and Wallace1 make use of one such hand-crafted word list in order 
to discriminate between Alexander Hamilton and James Madison, both claimed to be the 
true authors of 12 Federalist Papers. Burrows15 first indicated that the most frequent 
words of the texts (like ‘and’, ‘to’, etc.) have the highest discriminative power for 
stylistic purposes. Interestingly, these words are usually excluded from topic-related text 
categorization systems. Additionally, the latter approach for selecting words as features 
for AA is language-independent. 

From the machine learning point of view, AA can be viewed as a single-label multi-
class text categorization problem where the candidate authors play the role of the 
classes16. Provided a set of texts of undisputed authorship is available for each candidate 
author, a learning algorithm can be trained using these texts as training set. In this study, 
we use the most frequent words of the training corpus (the collection of all texts of 
known authorship by the candidate authors) as style markers. Hence, each text of either 
the training or test set can be represented as a vector of word frequencies. The obvious 
question is how many frequent words to use? If the feature set is small (50 to 100 words), 
the style of the authors is not adequately represented. On the other hand, if the size of the 
feature set is arbitrarily long (let’s say 1,000 words), the problem of overfitting arises, 
that is, the learning algorithm loses its generalization ability trying to perfectly fit on the 
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training data. To handle the high dimensional feature space, the following solutions can 
be applied: 

 
• Feature subset selection: The feature set is reduced to a smaller subset of the most 

valuable features for the given problem17. Alternatively, a reduced set of new 
synthetic features can be generated from the initial feature set (feature extraction). 
This approach presumes unavoidable loss of information since many of the available 
features should be discarded from the classification procedure. Previous studies have 
shown that every word can contribute to the classification model18. 

• Using a learning algorithm robust to overfitting: Some kernel learning algorithms, 
especially Support Vector Machines18,19 (SVM), can scale up to considerable 
dimensionalities. This method depends on the credibility of the learning algorithm to 
deal with a large number of features given certain limitations in the training data. 
Moreover, SVM is conceived only for binary classification, hence this method has to 
be adapted somehow to multi-class classification problems. 

• Constructing an ensemble of classifiers based on feature set subspacing: The feature 
set is divided into smaller parts and multiple classifiers are constructed based on 
these parts using the same learning algorithm and the same training set20. The 
resulting base classifiers are, then, combined to guess the most likely author. 

 
In this paper, we discuss the latter two approaches that better suit the AA task. Since 

SVMs is a well-studied learning algorithm19 the focus will be on the ensemble approach. 
Constructing classifier ensembles is one of the most active areas in machine learning. 
However, in order to construct multiple base classifiers, emphasis is given mainly to the 
manipulation of the training set (e.g., bagging, boosting) or the combination of training 
and feature set manipulation21. This is due to the fact that in most problems a limited 
number of valuable features is available. A classifier ensemble entirely based on feature 
set subspacing fits perfectly to AA (and text categorization in general) since there are few 
irrelevant features. In this study, a series of approaches for constructing an effective 
ensemble for AA will be explored. 

The rest of this paper is organized as follows: Section 2 describes the ensemble-based 
approach for AA. Section 3 includes the AA experiments for evaluating the proposed 
approach and Section 4 summarizes the main conclusions drawn by this study and 
proposes future work directions. 

2.   Feature Set Subspacing 

In order to construct an ensemble based on the feature set subspacing approach it is 
necessary for the following issues to be addressed: 
 
• The number of feature subsets (and consequently base classifiers) extracted from the 

available feature set. 
• The number of features included in each feature subset. 
• The selection procedure for choosing the features that group together in a subset.  
• Will the feature subsets be disjoint or not? 
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• The most appropriate learning algorithm for the base classifiers of this kind of 
ensemble. 

• The most appropriate combination method of the base classifiers. 
 
For the sake of simplicity, we assume equally-sized feature subsets drawn at random. 

The base learning algorithm will be linear discriminant analysis, a standard technique 
from multivariate statistics. This is a stable classification algorithm proven to be a good 
compromise between classification accuracy and training time cost22. Moreover, this 
algorithm is able to provide posterior probabilities for each class, which is essential for 
the presented approach.  

2.1.   Building the Model  

Each text is represented as a vector of word frequencies. Let Wn={w1, w2, …, wn} be the 
ordered set of the most frequent word-tokens of the training set (in decreasing frequency 
of occurrence). A conversion to lower case is assumed and no stemming procedure is 
performed. Consider fij as the normalized (by the text size) frequency of the j-th word of 
Wn in the i-th text. Then, a text xi is represented as the ordered vector <fi1, fi2, …, fin>. 
Recall that no stemming or lemmatization is involved in preprocessing the word tokens. 
Therefore, this text representation is language-independent. 

Let Wm:n be a subset of m words drawn (without replacement) at random from the set 
Wn of the most frequent words of the training corpus (m ≤ n). Consider C(Wm:n) as a 
single linear discriminant classifier trained on the frequencies of these m words in the 
training set texts. Then, E(C(Wm:n), combination) is an ensemble of such base classifiers 
according to the combination method. 

Consider L as the set of all possible classes (authors), then the i-th classifier assigns a 
posterior probability Pi(Ci(Wm:n), x, c) to an input text x for each c ∈ L, so that  
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where |L| is the size of L. In case of learning algorithms that provide only crisp 
predictions, the posterior probabilities can take only binary values (0 or 1). Provided the 
posterior probabilities of the constituent classifiers, an ensemble assigns a posterior 
probability to an input text for each class according to the combination method. For 
example, the posterior probabilities of the base classifiers can be combined by summation 
(a combination scheme we call mean) or by multiplication (a combination scheme we call 
product), that is: 
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where k is the number of the base classifiers. Comparison of these two combination rules 
has shown that under the assumption of independence the product rule should be used. 
However, in case of poor posterior probability estimates, the mean rule is proved to be 
more fault tolerant23. 

Considering these two combination methods, a slightly more complicated 
combination scheme, we call mp, which is just the average of mean and product will be 
used. Note that mean is affected by high values of posterior probabilities, therefore it is 
favorable for cases where a few base classifiers have assigned a high posterior probability 
to a class. On the other hand, product is affected by low values of posterior probabilities, 
therefore it is favorable for cases where none of the base classifiers have assigned very 
low posterior probability to a class. Hence, mp is a good compromise of these two. In 
other words, mp selects the author to whom the base classifiers have assigned the best 
combination of many high scores and few low scores. 

To complete the classification model, let label(classifier, text) be the class assigned 
by a classifier to an input text. Then, a classifier ensemble chooses the class that 
maximizes the posterior probability for an input text x, that is: 
 )),,((maxarg),( cxensemblePxensemblelabel

Lc∈
=  (4) 

2.2.   Effectiveness Measures 

The performance of a classifier ensemble is directly measured by the classification 
accuracy on the test set. Moreover, the effectiveness of an ensemble is indirectly 
indicated by the diversity among the predictions of the base classifiers as well as the 
accuracy of the individual base classifiers. In particular, many measures have been 
proposed to represent the diversity of an ensemble in machine learning literature24. In this 
study, we will use a common measure, the entropy, that is: 
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where k is the number of base classifiers, |T| is the total number of test texts and Ni
c is the 

number of base classifiers that assign instance (text) i to class (author) c. Notice that log 
is taken in base |L| to keep the entropy within the range [0,1]. The higher the entropy of 
an ensemble, the more diverse the answers of the individual constituent classifiers. In 
addition, the higher the entropy, the more likely the ensemble to be accurate. 

The accuracy of a classifier is the percentage of the correctly classified instances of 
the test set. However, a more detailed insight into the credibility of a learner is provided 
by considering the posterior probabilities assigned to each class for a particular test case. 
More specifically, Mean Reciprocal Rank (MRR) is based on the ordered list of classes 
(from most likely to least likely) predicted by a classifier. The MRR of a classifier is: 
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where R(classifier, xi) is the rank of the true class of test text xi in the prediction produced 
by the classifier. The higher the MRR, the better the ranking of the true author in the 
ordered list of the classifier answers (for 10 authors, MRR would range from 0.1 to 1). 

3.   Authorship Attribution Experiments 

3.1.   Text Corpora 

The text corpora used in the following experiments are two benchmark corpora for AA. 
In particular, the texts were published within 1998 in the Modern Greek weekly 
newspaper TO BHMA, (the tribune) and were downloaded from the WWW site of the 
newspaper. The texts are divided into two groups of authors: 
 
• Group A (hereafter GA): It consists of ten randomly selected authors whose writings 

are frequently found in the section A of the newspaper. This section comprises texts 
written mainly by journalists on a variety of current affairs. Moreover, for a certain 
author there may be texts from different text genres (e.g., editorial, reportage, etc.). 
Note that in many cases such texts are highly edited in order to conform to a 
predefined style, thus washing out specific characteristics of the authors which 
complicate the task of attributing authorship. 

• Group B (hereafter GB): It consists of ten randomly selected authors whose writings 
are frequently found in section B of the newspaper. This supplement comprises 
essays on science, culture, history, etc. in other words, texts in which the 
idiosyncratic style of the author is not overshadowed by functional objectives. In 
general, the texts included in the supplement B are written by scholars, writers, etc., 
rather than journalists. 

Table 1. The text corpora used in the experiments.  

 GA GB 

Average words per text 866.8 1148.2 
Authors 10 10 
Texts per author 20 20 
Texts per author in training set 10 10 
Texts per author in test set 10 10 

 
Each corpus is divided into disjoint training and test parts of equal size in terms of 

texts per author (i.e., ten texts per author in the training set and ten texts per author in the 
test set for each group). Some brief information about these data sets is summarized in 
Table 1. More detailed information is given by Stamatatos et al.13 Intuitively, for the GB 
it is easier to discriminate between the authors, since the texts are more stylistically 
homogenous. In addition, GB texts are significantly longer than GA texts.  



 Authorship Attribution Based on Feature Set Subspacing Ensembles 
 

7

3.2.   Setting the Baseline 

These text corpora were used to test several AA approaches and the best reported results 
are shown in Table 2. As can be seen, the above considerations are reflected in the 
reported results since the classification accuracy for GB is much higher in comparison to 
GA. Although these studies were tested on the same text corpora, they were based on 
different features to represent the style of the authors: Stamatatos et al.13 exclude any 
lexical measure and use a natural language processing tool in order to extract 22 
structural and syntax-related style markers. Peng et al.25 apply language modeling 
technology in character-level n-grams. Keselj et al.26 represent an author’s style by 
profiles as long as 5,000 character-level n-grams. Finally, Peng, et al.27 uses n-gram 
language models (best results for GB are reported for n-grams on the word level). 
Therefore, the exact data sets previous studies extracted from the corpora cannot be 
directly compared to the ones used in this paper.  

To set a fairer baseline for evaluating the ensemble model, a SVM classifier was 
trained based on the frequencies of occurrence of the 1,000 most frequent words of the 
training corpus. To that end, the popular Weka toolbox of machine learning algorithms28 
was used with default parameter values. A similar approach based on word-form 
frequencies and a SVM classifier was followed by Diederich et al.29 and tested to a 
German corpus with remarkable results. Actually, the performance of the SVM model is 
competitive in comparison with the best reported results for these text corpora, since it 
achieved accuracy of 86% and 96% for GA and GB, respectively. First, this indicates that 
the word frequency vector is quite effective for representing an author’s style. Second, 
this constitutes another supporting case that SVMs are indeed a suitable algorithm for 
dealing with a high dimensional feature space and sparse data. 

3.3.   Two Simple Ensembles 

Let’s first examine two simple models for constructing ensembles by feature set 
subspacing: 
 
• k-Random Classifiers (kRC): One subset Wm:n of Wn is randomly selected without 

replacement and a new base learner is constructed. This process is repeated k times. 
The k resulting base classifiers are combined according to a predefined combination 

Table 2. Best reported accuracy results so far for the GA and GB text corpora. 

Approach Features GA GB 

Stamatatos et al. 2000 NLP-based 72% 70% 
Peng et al. 2003 Character n-grams 74% 90% 
Keselj et al. 2003 Character n-grams 85% 97% 
Peng et al. 2004 Word n-grams - 96% 
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method. In this model, each individual feature is used at random (it may be included 
either in many subsets or none). 

• Exhaustive Disjoint Subspacing (EDS): The feature set Wn is randomly divided into 
equally-sized disjoint subsets of size m. Each subset is used to build a base learner. 
The base classifiers are combined according to a predefined combination method. In 
this model, each individual feature is used exactly once and n/m (integer division) 
distinct base classifiers are built. 

These two models were tested on both GA and GB for n=1,000 (i.e., using 1,000 
most frequent words of the training corpus to represent the texts) and different feature 
subset sizes (m=2,3,5,10,15,20,25, and 30). In each case, equal number of base classifiers 
was used for the two methods (i.e., k=n/m). Figure 1 shows the average ensemble 

GA

75

80

85

90

95

100

0 10 20 30

m

A
cc

ur
ac

y 
(%

)

EDS
kRC
SVM

GB

85

90

95

100

0 10 20 30

m

A
cc

ur
ac

y 
(%

)

EDS
kRC
SVM

 

Figure 1. Classification accuracy results on GA (up) and GB (down) for EDS and kRC ensembles 
(n=1000) with different values of feature subset size (m). All measures averaged over 50 tries with 
standard error bars. SVM performance is also indicated for comparison purposes. 
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classification accuracy (% of correctly classified test texts) of kRC and EDS ensembles 
over 50 tries on GA and GB. Standard error bars are also depicted. Surprisingly, 
ensembles based on small feature subsets (i.e., low m) achieve the best performance for 
both data sets. Indeed, the performance of the ensembles with m=2 (GA: 90 and GB: 
99%, on average) is better from the best reported results for these text corpora (see Table 
2) and the SVM baseline. Moreover, the lower the m values, the lower the standard error 
for EDS. The difference in performance between EDS and kRC is statistical significant 
(p=0.01) in all cases. 

A more detailed look at the produced ensembles is given in Table 3, where the 
average accuracy and MRR of the base classifiers and the diversity among their 
predictions for the EDS and kRC ensembles (on GB) are shown. As can been seen, there 
is a trade-off between base classifier accuracy and ensemble diversity. Ensembles based 
on low m have base classifiers of very low accuracy (recall that random guessing 
provides accuracy of 10%). However, their diversity is quite high (actually, for m=2 or 3 
entropy reaches 1, which means almost randomized error), hence the combination of 
these poor individual classifiers leads to an accurate ensemble. Notice that the MRR is 
also reduced with m but to a lower extent in comparison with accuracy. In other words, 
the true class is ranked in good positions by the base classifiers when they fail to guess it. 
A significant remark, therefore, is that best ensemble accuracy results are achieved when 
a large feature set is divided into many small disjoint subsets rather than a few bigger 
subsets that correspond to better individual base classifiers.  

Clearly, EDS outperforms SVM for small feature subset size (m<20) and kRC in all 
cases. The latter is not adequately explained by the results of Table 3. The base classifiers 
used to construct both EDS and kRC seem to have the same properties. There is no 
statistically significant difference in the diversity of the two methods (although EDS 
diversity tends to be slightly higher). Therefore, the key factor is that EDS ensembles are 
based on all available features and kRC on a subset of the entire feature set (with random 
selection). Actually, kRC ensembles are based on 64% (on average) of the entire feature 

Table 3. Classification effectiveness measures for GB (n=1,000). Accuracy (%) and 
Mean Reciprocal Ratio of the base classifiers, diversity (entropy) and accuracy (%) 
of the kRC and EDS ensembles (all measures averaged over 50 tries). 

m Base classifiers kRC Ensemble EDS Ensemble 

 Acc. MRR Div. Acc. Div. Acc. 
2 16 0.38 0.97 94 0.97 99 
3 18 0.38 0.98 95 0.98 99 
5 22 0.39 0.96 94 0.97 98 
10 29 0.45 0.93 94 0.93 97 
15 34 0.49 0.89 94 0.89 96 
20 38 0.52 0.85 94 0.86 96 
25 41 0.54 0.82 93 0.83 95 
30 43 0.56 0.78 93 0.80 94 
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set. In other words, 1 out of 3 features is not used at all in a kRC ensemble (recall that the 
number of base learners was set equal for both methods). Therefore, the richer the feature 
set, the more accurate the AA ensemble. This confirms the conclusion drawn by other 
researchers that all words are important for text categorization tasks18. 

To further illustrate the difference between kRC and EDS, let’s increase the number 
of base classifiers that constitute the kRC ensemble for m=2 while maintaining the same 
for the EDS ensemble. In particular, if we use double base classifiers for kRC (that is, k = 
2n/m) and check the performance over 50 tries, the classification accuracy is 86% for GA 
and 98% for GB, that is, still lower than that of the corresponding EDS model (90% and 
99%, respectively). Despite doubling k in the kRC ensemble, 87% (in average) of the 
features were used at least once in the base classifiers. That is, a significant (but smaller 
than before) part of the feature set was not taken into account. 
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Figure 2. Classification accuracy for the EDS ensemble (m=2) and the SVM classifier for various feature 
set sizes on GA (up) and GB (down).  
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So far, the size of the feature set was selected arbitrarily at 1,000 words. What 
happens in case we use more (or less) words to represent the style of the authors? This is 
depicted in Figure 2. Here, the performance of the SVM and the EDS model is shown for 
different values of n (m=2). As can be seen, for both models, the performance is not 
notably improved when more words are added to the feature set. It seems that 1,000 
words are adequate to capture the differences between the authors. 

3.4.   Enhancing the Model 

The simple EDS ensemble can be easily enhanced by building a stacked model. In this 
section the following methods will be examined: 
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Figure 3. Classification accuracy (averaged over 50 tries plus standard error bars) of the enhanced models 
REDS and FSCVC on GA (up) and GB (down) for different feature subset size (m) and n=1,000. For 
comparison purposes, the performance of the simple EDS model as well as the SVM classifier are also 
depicted.  
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• Repeated Exhaustive Disjoint Subspacing (REDS): A random subspacing of the 
entire feature set is conducted and a new EDS ensemble is constructed. This process 
is repeated k times. At the end of the iterations, the resulting EDS ensembles are 
combined (by mp) to provide the most likely class. All the features are used exactly k 
times and k(n/m) different base classifiers are constructed in total. 

• Feature Set Cross-Validated Committees (FSCVC): Cross-validated committees is 
an ensemble construction method based on manipulating the training set30. However, 
here we apply the main idea of this method to the manipulation of the feature set. In 
particular, the feature set (the n most frequent words of the training set) is randomly 
divided into k disjoint subsets and k overlapping feature subsets are constructed by 
dropping out a different one of these k subsets. Then, each feature subset, containing 
n(k-1)/k features, is used to construct a simple EDS ensemble. Finally, the k resulting 
EDS ensembles are combined (by mp) to provide the most likely class. Using this 
method, all the features are used exactly k-1 times. 

 
Essentially, the enhanced models are stacked classifiers, where the first level consists 

of individual EDS ensembles. Comparative results for REDS and FSCVC (for n=1,000) 
on GA and GB are given in Figure 3. In more detail, in both cases k was set to 10 (i.e., 10 
EDS ensembles constitute each enhanced model) and 50 different tries were conducted. 
To illustrate the differences, the performance of the simple EDS model and the SVM 
approach are also depicted. Clearly, the enhanced models outperform simple EDS and 
SVM in all cases. The improvement is more remarkable for high values of feature subset 
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Figure 4. Diversity (in terms of entropy) of the enhanced models REDS and FSCVC on GA and GB. 
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size (m). However, as with the simple models, the best results are given by using low 
values of m (i.e, yielding the highest possible number of base classifiers).  

Although FSCVC tends to outperform REDS in most cases, the difference between 
these models is not statistically significant (p=0.01). However, a more detailed look can 
confirm the superiority of FSCVC. Figure 4 depicts the diversity of the enhanced models 
(in terms of entropy between the predictions of the constituent EDS ensembles) for both 
GA and GB. At first, notice that the diversity is much more lower than that of Table 3, 
since now we deal with much more accurate constituent base learners (i.e., EDS 
ensembles). In addition, the difference in diversity between GA and GB can also be 
explained since more accurate classifiers are constructed for GB, therefore less diversity 
will exist among their predictions. The most important point is that there is a considerable 
difference in diversity between REDS and FSCVC for each data set. Recall that FSCVC 
uses a different subset of the initial feature set to construct each constituent EDS 
ensemble ensuring the diversity among their predictions. Since FSCVC is based on a 
more diverse set of classifiers is more likely to provide a better classification model in 
comparison with REDS. 

4.   Conclusions 

Machine learning techniques can be directly applied to AA, producing effective systems 
that can assist criminal identification and cybercrime analysis. To that end, both feature 
set subspacing ensembles and SVMs provide reliable solutions able to deal with high-
dimensional feature spaces and sparse data. Low-level information, such as word 
frequencies can adequately represent an author’s style. Recall that the method of using 
the most frequent words of the training corpus as style markers is based on a language-
independent procedure. Comparative results with previous work based on NLP-based 
features13 indicate that a high dimensional word-based feature set in combination with an 
appropriate classification scheme is a more effective approach to AA. As indicated by the 
performance of the simple word-based SVM model, the contribution of the lexical 
measures plays the most important role while the ensemble-based approach optimizes the 
results. However, by definition, the NLP-based features capture different type of stylistic 
information and could be used as additional features to a word-based feature set31. 

An alternative solution, already examined by some researchers25, 26 make use of sub-
word information, such as character-level n-gram frequencies. Although n-grams are able 
to capture subtle information on the lexical, syntactical, and structural level, they 
considerably increase the dimensionality of the problem in comparison with the word-
based approach. However, recent remarkable results of a character n-gram-based method 
in a competition of AA approaches32 indicate that this representation is suitable for the 
AA task. Note also that a preliminary version of the presented approach was entered in 
this competition (a REDS ensemble with feature set size=200, combination= product, and 
m=2). 

Simple but effective ensembles based on feature set subspacing can be constructed 
using the exhaustive disjoint subspacing technique. Although such ensembles are based 
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on poor constituent classifiers, their combination provides a diverse set of answers in 
which the true class is more likely to outperform the others. Previous studies have also 
shown that diversity alone can be used as a guide for constructing good ensembles33. The 
approach followed in this study ensures an extremely high level of diversity. To that end, 
the combination method of the base classifiers plays an important role. Moreover, a 
stacked model enhances significantly the simple EDS ensemble. 

A basic assumption considered in the construction of the tested ensemble models was 
that feature subsets should be of equal size. However, this consideration has no 
significant impact in the generality of the presented approach. Recall that minimal sized 
feature subsets proved to be the most effective solution. Additionally, this method can be 
applied to any number of candidate classes. Another basic assumption is that features are 
grouped at random. An alternative approach would require a search procedure through 
the space of all the possible feature groupings based on an evaluation function, e.g., 
taking account of base classifier accuracy and diversity of the resulting ensemble. 
However, such measures indicate indirectly the effectiveness of an ensemble (i.e., the 
ensemble maximizing the evaluation function is not the best solution necessarily). To this 
end, random subspacing could serve as the initial state, an approach followed by Opitz 
and Shavlik20. More significantly, for large values of feature set size and feature subset 
size the set of possible feature groupings grow exponentially. Training time cost would 
increase significantly as well. 

As concerns the task of attributing authorship, there are still open questions. In 
particular, limited text length can affect the performance of the model. Many researchers 
indicate that 1,000 words is a good lower limit for text length in order to obtain reliable 
results. However, this restriction does not hold for many practical applications (e.g., 
email messages). In fact, many of the texts used in the presented experiments were pretty 
shorter than that, especially for the GA corpus. Another problem may arise in case of an 
imbalanced training set, that is, when the training set is unequally distributed over the 
authors. Moreover, open-class problems, that is, the true author is not included in the 
candidate authors, should be thoroughly tested as well. Last but not least, it would be 
useful to transform the quantified differences between the authors into human readable 
terms. From a literary point of view, this could assist the procedure of objectively 
defining the style of an author. 
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