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Abstract. In this paper the problem of music performer verification is 
introduced. Given a certain performance of a musical piece and a set of 
candidate pianists the task is to examine whether or not a particular pianist is 
the actual performer. A database of 22 pianists playing pieces by F. Chopin in a 
computer-controlled piano is used in the presented experiments. An appropriate 
set of features that captures the idiosyncrasies of music performers is proposed. 
Well-known machine learning techniques for constructing learning ensembles 
are applied and remarkable results are described in verifying the actual pianist, 
a very difficult task even for human experts. 

1   Introduction 

The printed score of a musical piece provides a representation of music that captures a 
limited spectrum of musical nuance. This means that if the exact information 
represented in the printed score is accurately transformed into music by an ideal 
performer, the result would sound mechanical or unpleasant. The interpretation of the 
printed score by a skilled artist always involve continuous modification of important 
musical parameters, such as tempo and loudness, according to the artist’s 
understanding of the structure of the piece. That way the artist stresses certain notes or 
passages deviating from the printed score. Hence, expressive music performance is 
what distinguishes one performer from another in the interpretation of a certain 
musical piece. 

Because of its central role in our musical culture, expressive performance is a 
central research topic in contemporary musicology. One main direction in empirical 
performance research aims at the development of rules or principles of expressive 
performance either with the help of human experts [5] or by processing large volumes 
of data using machine learning techniques [12,13]. Obviously, this direction attempts 
to explore the similarities between skilled performers in the same musical context. On 
the other hand, the differences in music performance are still expressed generally with 
aesthetic criteria rather than quantitatively. The literature in this topic is quite limited. 
In [8] an exhaustive statistical analysis of temporal commonalities and differences 
among distinguished pianists’ interpretations of a well-known piece is presented and 



the individuality of some famous pianists is demonstrated. A computational model that 
distinguishes two pianists playing the same pieces based on measures that represent 
the deviation of the performer from the score plus measures that indicate the 
properties of the piece is presented in [10]. Results of limited success in the 
identification of famous pianists’ recordings based on their style of playing have been 
reported in [14]. 

This paper is an attempt to quantify the main parameters of expressive performance 
that discriminate between pianists playing the same musical pieces. Specifically, our 
aim is to develop a music performer verification system, that is, given a certain 
performance of a musical piece and a set of candidate pianists the task is to examine 
whether or not a particular pianist is the actual performer. To this end, machine 
learning techniques are used for taking advantage of different expressive performance 
features by combining a number of independent simple ‘experts’ [2]. The dimensions 
of expressive variation that will be taken into account are the three main expressive 
parameters available to a pianist: timing (variations in tempo), dynamics (variations in 
loudness), and articulation (the use of overlaps and pauses between successive notes). 

The data used in this study consist of performances played and recorded on a 
Boesendorfer SE290 computer-monitored concert grand piano, which is able to 
measure every key and pedal movement of the artist with very high precision. 22 
skilled performers, including professional pianists, graduate students and professors of 
the Vienna Music University, played two pieces by F. Chopin: the Etude op. 10/3 
(first 21 bars) and the Ballade op. 38 (initial section, bars 1 to 45). The digital 
recordings were then transcribed into symbolic form and matched against the printed 
score semi-automatically. Thus, for each note in a piece we have precise information 
about how it was notated in the score, and how it was actually played in a 
performance. The parameters of interest are the exact time when a note was played 
(vs. when it ‘should have been played’ according to the score) – this relates to tempo 
and timing –, the dynamic level or loudness of a played note (dynamics), and the exact 
duration of played note, and how the note is connected to the following one 
(articulation). All this can be readily computed from our data. 

In the following, the term Inter-Onset Interval (IOI) will be used to denote the time 
interval between the onsets of two successive notes of the same voice. We define Off-
Time Duration (OTD) as the time interval between the offset time of one note and the 
onset time of the next note of the same voice. The Dynamic Level (DL) corresponds to 
the MIDI velocity of a note. The 22 pianists are referred by their code names (i.e., 
#01, #02, etc.). 

2   Representation of Expressive Music Performance 

If we define (somewhat simplistically) expressive performance as ‘intended deviation 
from the score’, then different performances differ in the way and extent the artist 
‘deviates’ from the score, i.e., from a purely mechanical (‘flat’) rendition of the piece, 
in terms of timing, dynamics, and articulation. In order to be able to compare 
performances of pieces or sections of different length, we need to define features that 



characterize and quantify these deviations at a global level, i.e., without reference to 
individual notes and how these were played. 

Figure 1 depicts the performances of the first 30 soprano notes of Ballade by the 
pianists #01-#05 in terms of timing (expressed as the inter-onset interval on the 
sixteenth-note level) and dynamics. The default tempo and dynamic level according to 
a pre-specified fixed interpretation of the score correspond to straight lines. As can be 
seen, the music performers tend to deviate from the default interpretation in a similar 
way in certain notes or passages. In the timing dimension, the last note of the first bar 
is considerably lengthened (last note of the introductory part) while in the dynamics 
dimension the first two bars are played with increasing intensity (introductory part) 
and the 2nd soprano note of the 5th bar is played rather softly (a phrase boundary). 

Figure 1. Timing and dynamics variations for the first 30 soprano notes of the Ballade
(score above) as performed by pianists #01-#05. Default tempo and dynamic level, and 
performance norm derived by pianists #06-#10 are depicted as well. 

 

130

180

230

280

330

T
im

in
g 

(m
se

c)

default tempo

10

20

30

40

50

60

70

80

D
yn

am
ic

s 
(M

ID
I 

ve
l.)

#01 #02 #03 #04 #05 norm

default dynamic level



Although the deviation of the real performances from the score can capture some 
general stylistic properties of the performer, it seems likely that it would heavily 
depend on the structure of the piece (i.e., similar form of deviations for all the 
performers, presenting peaks and dips in the same notes or passages). 

For discriminating successfully between different performers, we need a reference 
point able to focus on the differences between them rather than on common expressive 
performance principles shared by the majority of the performers. This role can be 
played by the performance norm, i.e. the average performance of the same piece 
calculated using a different group of performers. Figure 1 depicts the performance 
norm, in terms of timing and dynamics, calculated by the performances of pianists 
#06-#10. As can be seen, the norm follows the basic form of the individual 
performances. Therefore, the deviation of a given performance from the norm is not 
dramatically affected by structural characteristics of the piece. Consequently, the 
deviations of different performers from the norm are not necessarily of similar form 
(peaks and dips in different notes or passages) and the differences between them are 
more likely to be highlighted. Norm-based features have been compared to score-
based features and proved to be more reliable and stable especially in intra-piece 
conditions, i.e., training and test cases taken from the same musical piece [11]. 

Another valuable source of information comes from the exploitation of the so-
called melody lead phenomenon, that is, notes that should be played simultaneously 
according to the printed score (chords) are usually slightly spread out over time. A 
voice that is to be emphasized precedes the other voices and is played louder. Studies 
of this phenomenon [7] showed that melody lead increases with expressiveness and 
skill level. Therefore, deviations between the notes of the same chord in terms of 
timing and dynamics can provide useful features that capture an aspect of the stylistic 
characteristics of the music performer. 

We propose the following global features for representing a music performance, 
given the printed score and a performance norm derived from a given set of different 
performers: 

Score deviation features: 
D(IOIs, IOIm) timing 
D(IOIs, OTDm) articulation 
D(DLs, DLm) dynamics 

Norm deviation features: 
D(IOIn, IOIm) timing 
D(OTDn, OTDm) articulation 
D(DLn, DLm) dynamics 

Melody lead features: 
D(ONxy, ONzy) timing 
D(DLxy, DLzy) dynamics 

where D(x, y) (a scalar) denotes the deviation of a vector of numeric values x from a 
reference vector y, IOIs and DLs are the nominal inter-onset interval and dynamic-
level, respectively, according to the printed score, IOIn, OTDn, and DLn are the inter-



onset interval, the off-time duration, and the dynamic-level, respectively, of the 
performance norm, IOIm, OTDm, and DLm are the inter-onset interval, the off-time 
duration, and the dynamic-level, respectively, of the actual performance, and ONxy, 
and DLxy are the on-time and the dynamic-level, respectively, of a note of the x-th 
voice within the chord y. 

3   The Learning Model 

The presented problem is characterized by the extremely limited size of training data 
as well as the instability of some of the proposed features (i.e., score deviation 
measures). These characteristics suggest the use of an ensemble of classifiers rather 
than a unique classifier. Research in machine learning [1] has thoroughly studied the 
construction of meta-classifiers, or learning ensembles. In this study, we take 
advantage of such techniques, constructing an ensemble of classifiers derived from 
two basic strategies:  

� Subsampling the input features. This technique is usually applied when multiple 
redundant features are available. In our case, the input features cannot be used 
concurrently due to the limited size of the training set (i.e., only a few training 
examples per class are available) and the consequent danger of overfitting the 
training set. 

� Subsampling the training set. This technique is usually applied when unstable 
learning algorithms are used for constructing the base classifiers. In our case, a 
subset of the input features (i.e., the score deviation measures) is unstable – their 
values can change drastically given a slight change in the selected training 
segments. 

Given the scarcity of training data and the multitude of possible features, we 
propose the use of a relatively large number of rather simple individual base 
classifiers or ‘experts’, in the terminology of [2]. Each expert is trained using a 
different set of features and/or parts of the training data. The features and sections of 
the training performances used for the individual experts are listed in table 1. C11 is 
based on the deviation of the performer from the norm. C21, C22, C23, and C24 are 
based on the deviation of the performer from the score and are trained using slightly 
changed training sets (because the norm features are known to be unstable relative to 
changes in the data). The training set (see next section) was divided into four disjoint 
subsets and then four different overlapping training sets were constructed by dropping 
one of these four subsets (i.e., cross-validated committees). Finally, C31, C32, C33, C34, 
and C35 are based on melody lead features. The last column in table 1 shows the 
accuracy of each individual expert on the training data (estimated via leave-one-out 
cross-validation). As can be seen, the classifier based on norm deviation features is by 
far the most accurate. 



The classification method used for constructing the base classifiers is discriminant 
analysis, a standard technique of multivariate statistics. The mathematical objective of 
this method is to weight and linearly combine the input variables in such a way so that 
the classes are as statistically distinct as possible [3]. A set of linear functions (equal 
to the input variables and ordered according to their importance) is extracted on the 
basis of maximizing between-class variance while minimizing within-class variance 
using a training set. Then, class membership of unseen cases can be predicted 
according to the Mahalonobis distance from the classes’ centroids (the points that 
represent the means of all the training examples of each class). The Mahalanobis 
distance d of a vector x from a mean vector m is as follows: 

)()( 12 mxCmxd x −′−= −  

where Cx is the covariance matrix of x. This classification method also supports the 
calculation of posterior probabilities (the probability that an unseen case belongs to a 
particular group) which are proportional to the Mahalanobis distance from the classes 
centroids. In a recent study [6], discriminant analysis is compared with many 
classification methods (coming from statistics, decision trees, and neural networks). 
The results reveal that discriminant analysis is one of the best compromises taking into 
account the classification accuracy and the training time cost. This old and easy-to-
implement statistical algorithm performs better than many modern versions of 
statistical algorithms in a variety of problems. 

The combination of the resulting simple classifiers or experts is realized via a 
weighted majority scheme. The prediction of each individual classifier is weighted 
according to its accuracy on the training set. Both the first and the second choice of a 
classifier are taken into account. Specifically, the weight wij of the classifier Cij is as 
follows: 

∑
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Table 1. Description of the proposed base classifiers. The third column indicates the number of 
training examples (and their length in soprano notes) per class. The last column refers to their 
accuracy on the training data. 

Code Input features Training 
examples 

Accuracy  
(%) 

C11 D(IOIn, IOIm), D(OTDn, OTDm), D(DLn, DLm) 4x40 82.5 
C21 D(IOIs, IOIm), D(IOIs, OTDm), D(DLs, DLm) 12x10 50.8 
C22 D(IOIs, IOIm), D(IOIs, OTDm), D(DLs, DLm) 12x10 44.8 
C23 D(IOIs, IOIm), D(IOIs, OTDm), D(DLs, DLm) 12x10 46.7 
C24 D(IOIs, IOIm), D(IOIs, OTDm), D(DLs, DLm) 12x10 48.3 
C31 D(ON1m, ON2m), D(ON1m, ON3m), D(ON1m, ON4m) 4x40 57.5 
C32 D(DL1m, DL2m), D(DL1m, DL3m), D(DL1m, DL4m) 4x40 42.5 
C33 D(ON1m, ON2m), D(DL1m, DL2m) 4x40 25.0 
C34 D(ON1m, ON3m), D(DL1m, DL3m) 4x40 35.0 
C35 D(ON1m, ON4m), D(DL1m, DL4m) 4x40 47.5 

 



where aij is the accuracy of the classifier Cij on the training set (see table 3). aij/2 is 
used to compute the weight for the second choice of a classifier. The classes can be 
ordered according to the votes they collect. Specifically, if cij(x) is the prediction of 
the classifier Cij for the case x and P is the set of possible classes (i.e., pianists) then 
the score for a class p is calculated as follows: 

∑ ==
ij

ijijp pxcwxs )()(    p∈ P 

where ||a=b|| is 1 if a is equal to b and 0 otherwise. The greater the score the more 
probable the pianist as the actual performer. Since both the first and second choices of 
each base classifier are taken into account, the highest possible score is 0.66 (first 
choice of all the classifiers) and the lowest is 0 (no first nor second choice of any 
classifier). 

4   Music Performer Verification 

In the following experiments, pianists #01-#12 will be used as the set of reference 
pianists to compute the ‘norm performance’, that is the average performance. The task 
will be to learn to distinguish pianists #13-#22. Chopin's Ballade op. 38 will be used 
as the training material, and the Etude op.10/3 as the test piece. Specifically, the 
training piece was divided into four non-overlapping segments, each including 40 
soprano notes providing four training examples per class for the norm-based and the 
melody lead classifiers. As concerns the score-based classifiers, the training piece was 
divided into 16 non-overlapping segments, each including 10 soprano notes. These 
segments were grouped into four overlapping sets of training examples, leaving out 
four different segments each time (see table 1).  

The task of music performer verification can be viewed as a two-class classification 
problem. Given a certain performance of the test piece (Etude) and a particular pianist 
(of the set #13-#22) the output of the proposed system will be either 1, i.e., the pianist 
in question is the actual performer, or 0, i.e., the pianist in question is not the actual 
performer. The implementation of a music performer verification system requires: 

� The definition of a response function for a given pianist. For a given performance, 
this function should provide an indication of the degree at which the pianist is the 
actual performer. In this study, the output of the ensemble of classifiers, defined in 
the previous section is used as response function. 

� The definition of a threshold value for this function. For a given performance, any 
pianist with score lower than the threshold is rejected. 



Additionally, for measuring the accuracy of a music performer verification method 
as regards a certain pianist, False Rejection (FR) and False Acceptance (FA) can be 
used. These measures have been defined in and applied to areas of similar 
characteristics, such as speaker verification [4] and author verification [9] and are 
defined as follows: 

FR = rejected performances of the pianist / total performances of the pianist 
FA = accepted performances of other pianists / total performances of other pianists 

For the appropriate selection of the threshold value, the mean error, i.e., 
(FR+FA)/2, is used. Figure 2 depicts the variation of the average FR, FA, and the 
mean error values for the performances of the test piece by pianists #13-#22 using 
threshold values ranging from 0 to 0.6. Since these pianists were taken into account 
for calculating the discriminant functions and consequently the score function, this 
evaluation is considered to be a closed-set one. As can be seen, low values of 
threshold correspond to minimal FR while high values of threshold correspond to 
minimal FA. The minimal mean error corresponds to the threshold value 0.1 
corresponding to FR and FA values of 0.1 and 0.23, respectively. 

The results of the method based on the ensemble of classifiers can be compared to 
the results of the individual base classifiers. In that case, each base classifier is used 
alone and the response function is the Mahalanobis distance from the centroids of 
each class. Table 2 shows the FR and FA values for each individual base classifier for 
a threshold value that minimizes the mean error. As can be seen, the model coming 
from the learning ensemble is much better as concerns both FR and FA. 
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Figure 2. FR, FA, and Mean error of the ensemble model for different threshold values. 



5   Conclusion 

We have proposed a computational approach to the problem of distinguishing music 
performers playing the same pieces focusing on the music performer verification task. 
A set of features that capture some aspects of the individual style of each performer is 
presented. Due to the limited available data and certain characteristics of the 
discriminating features, we proposed a classification model that takes advantage of 
machine learning techniques for constructing meta-classifiers. 

The results show that the proposed learning model performs much better than any 
of the constituent base classifiers and provides another supporting case for the utility 
of ensemble learning methods, specifically, the combination of a large number of 
independent simple ‘experts’. Moreover, it is demonstrated that the differences 
between music performers can be objectively quantified. While human experts use 
mostly aesthetic criteria for distinguishing different performers, it is shown that the 
individuality of each performer can be captured using machine-interpretable features.  

The proposed system copes with a difficult musical task, displaying a remarkable 
level of accuracy. Imagine you first hear 10 different pianists performing one 
particular piece (and that is all you know about the pianists), and then you have to 
verify the hypothesis that a particular pianist is (or is not) the actual performer of a 
certain performance of another (and quite different) piece1. The comparison with 
human experts performing the same task is not straightforward. This is because it is 
very difficult to define what the similar conditions would be. How many times would 
the human-expert be allowed to listen to each of the training/test recordings? What 
would be the level of expertise of the listener? What would be the human-expert’s 
prior knowledge of the piece? Would such a procedure be meaningful? 
                                                           
1 The interested reader can attempt to follow this procedure. The digital recordings used in this 

study can be accessed at: http://www.ai.univie.ac.at/~wernerg/mp3.htm 

Table 2. Average FA and FR values of the base classifiers and the ensemble model. In each 
model, a threshold value that minimizes mean error is used. 

Classifier FR FA 
Ensemble 0.10 0.23 

C11 0.30 0.31 
C21 0.40 0.34 
C22 0.60 0.40 
C23 0.40 0.33 
C24 0.50 0.37 
C31 0.40 0.31 
C32 0.30 0.33 
C33 0.40 0.38 
C34 0.50 0.36 
C35 0.50 0.32 



The reliability of our current results is still severely compromised by the very small 
set of available data. Substantial effort is required in order to collect and precisely 
measure a larger and more diverse set of performances by several pianists (on a 
computer-controlled piano). Studying famous pianists with this approach would 
require us to be able to precisely measure timing, dynamics, and articulation from 
sound recordings, which unfortunately still is an unsolved signal-processing problem. 
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