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Abstract

Intrusion Detection in IT Security

by

Ioanna Kantzavelou

Doctor of Philosophy in Computer Science

University of the Aegean, Samos, Greece

Our aim is to expand Intrusion Detection to the area of Game Theory, to borrow concepts

required to study the interactions between users and Intrusion Detection Systems (IDSs).

The results offer a better understanding of what directions should be followed by an IDS

and what motivations drive a user towards attacking activity. It is an inter-disciplinary

research work, between Computer Science and Game Theory that falls in the new emerging

area of Algorithmic Game Theory.

We argue that an insider’s behavior might be predicted and when it gives characteristics

of attacking activity, the system can take the analogous countermeasures by deciding proper

strategies to confront the potential attacker. The use of the logit QRE, as a method to

calculate the likelihood an action will be chosen, enhances the effectiveness of a classical IDS.

This is provided through an implementation scheme that proposes a Detection Mechanism,

which operates on an algorithm that combines the output of an IDS with the output of the

QRE algorithm in order to ensure more precise system reactions. In another implementation

scheme, we propose a game-based ID model that will play the games between users and an

IDS in such a way that an IDS will be able to defend the Target System by choosing proper

actions to avoid attacks.
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Περίληψη 

 

 

Σηόρνο καο είλαη ε επέθηαζε ηεο Αλίρλεπζεο Εηζβνιώλ πξνο ηελ πεξηνρή ηεο Θεωξίαο ηωλ 

Παηγλίωλ, κε ζθνπό λα δαλεηζηνύκε ηα ελλνηνινγηθά εθείλα ζηνηρεία πνπ απαηηνύληαη γηα ηε 

κειέηε ηωλ αιιειεπηδξάζεωλ κεηαμύ ρξεζηώλ θαη Σπζηεκάηωλ Αλίρλεπζεο Εηζβνιώλ 

(Intrusion Detection Systems - IDSs). Τα απνηειέζκαηα πξνζθέξνπλ θαιύηεξε θαηαλόεζε 

ωο πξνο ηηο θαηεπζύλζεηο πνπ πξέπεη λα αθνινπζεζνύλ από έλα Σύζηεκα Αλίρλεπζεο 

Εηζβνιώλ θαη ωο πξνο ηα θίλεηξα πνπ νδεγνύλ έλα ρξήζηε πξνο ηελ επηζεηηθή 

δξαζηεξηόηεηα. Πξόθεηηαη  γηα έξεπλα κεηαμύ δύν δηαθνξεηηθώλ επηζηεκνληθώλ θιάδωλ, ηεο 

Επηζηήκεο ηωλ Υπνινγηζηώλ θαη ηεο Θεωξίαο ηωλ Παηγλίωλ, πνπ εκπίπηεη ζηε 

λενεκθαληδόκελε πεξηνρή ηεο Αιγνξηζκηθήο Θεωξίαο ηωλ Παηγλίωλ (Algorithmic Game 

Theory). 

 

Υπνζηεξίδνπκε όηη ε ζπκπεξηθνξά ελόο εζωηεξηθνύ επηηηζέκελνπ κπνξεί λα πξνβιεθζεί θαη 

όηαλ απηή θαλεξώλεη ραξαθηεξηζηηθά επηζεηηθήο δξαζηεξηόηεηαο, ην ζύζηεκα κπνξεί λα 

ιάβεη ηα αλάινγα αληίκεηξα, επηιέγνληαο θαηάιιειεο ζηξαηεγηθέο γηα ηελ αληηκεηώπηζε ηνπ 

δπλεηηθνύ επηηηζέκελνπ. Η ρξήζε ηνπ logit QRE, ωο κέζνδνο γηα ηνλ ππνινγηζκό ηεο 

πηζαλόηεηαο λα επηιεγεί κία ελέξγεηα, εληζρύεη ηελ απνηειεζκαηηθόηεηα ελόο θιαζηθνύ 

Σπζηήκαηνο Αλίρλεπζεο Εηζβνιώλ.  Απηό παξέρεηαη κέζα από έλα ζρήκα πινπνίεζεο πνπ 

πξνηείλεη έλα Μεραληζκό Αλίρλεπζεο, ν νπνίνο ιεηηνπξγεί κε έλαλ αιγόξηζκν πνπ ζπλδπάδεη 

ηελ έμνδν ελόο Σπζηήκαηνο Αλίρλεπζεο Εηζβνιώλ κε ηελ έμνδν ηνπ αιγόξηζκνπ ηνπ QRE, 

έηζη ώζηε λα δηαζθαιηζηνύλ πεξηζζόηεξν αθξηβείο ελέξγεηεο αληίδξαζεο από ηελ πιεπξά ηνπ 

ζπζηήκαηνο. Σε έλα άιιν ζρήκα πινπνίεζεο, πξνηείλνπκε έλα κνληέιν Αλίρλεπζεο 

Εηζβνιώλ βαζηζκέλν ζηα Παίγληα θαη ηε ζεωξία ηνπο, ην νπνίν ζα παίδεη ηα παίγληα κεηαμύ 

ηωλ ρξεζηώλ θαη ελόο Σπζηήκαηνο Αλίρλεπζεο Εηζβνιώλ, κε ηέηνην ηξόπν, ώζηε έλα 

Σύζηεκα Αλίρλεπζεο Εηζβνιώλ ζα είλαη ζε ζέζε λα ακπλζεί γηα ηελ πξνζηαζία ηνπ 

ζπζηήκαηνο ζηόρνπ (Target System), επηιέγνληαο ηηο θαηάιιειεο ελέξγεηεο ώζηε λα 

απνθύγεη επηζέζεηο. 
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and to my husband Stavros
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Chapter 1

Introduction

If we knew what it was we were doing, it

would not be called research, would it?

Albert Einstein (1879 - 1955)

The chapter begins with the required background concepts from the main disciplines this

dissertation engages, the Intrusion Detection in IT Security and the Theory of Games. We

start with a brief summary for the area of Intrusion Detection. We show how Intrusion

Detection Systems (IDSs) classify a system’s events, and we employ Euler diagrams to

illustrate the reasoning that connects the various classes of events an IDS recognizes and

produces as output. In the sequel, we decompose an attack into steps, to clarify terms

useful in subsequent discussions. Limitations and problems in Intrusion Detection are also

described, with emphasis on reliability and accuracy problems.

For the Theory of Games, we answer a series of questions in order to provide a concise

exposition of the subject, necessary for our research work. We describe games, players,

strategies, information, the different types of the Theory of Games, applications, solution

concepts, and some of the problems that limit its successes.

Then, we justify the reasons we decided to merge Intrusion Detection with the Theory

1



of Games, and we present the emerging area of Algorithmic Game Theory, which shares

the same spirit as the present work. We conclude with the motivation of our decisions,

the thesis statement, and finally, we present our results to signify the contributions of this

dissertation.

1.1 Intrusion Detection in IT Security

The area of Intrusion Detection (ID)[118, 98, 82] in Information Technology (IT) Security

includes monitoring and decision. Intrusion Detection is the monitoring of a system’s events

and the decision whether an event is normal or abnormal. The word normal defines ev-

ery event that is consistent with the security policy applied to the system, and the word

abnormal defines any event that threatens the security status of the system. Intrusion

Detection Systems (IDSs)[78, 45, 47] are the practical representation of ID. The system an

IDS monitors and protects is called Target System (TS).

Intrusion Detection Systems (IDSs) have been developed to implement the objectives

designated by the area of ID, as summarized in the following list:

- To keep records of every event that takes place on a Target System.

- To detect and prevent an attack before its completion, in real time.

- To determine the way a Target System was breached or attacked.

- To identify the person who is responsible for a system’s breach or attack.

- To counteract in order to prevent further damage and similar breaches in the future.

Depending on the method used to build the detection part of an IDS, three Intrusion

Detection techniques ([110, 177, 129]) have gained favor to date; the anomaly detection

([145, 36]), the misuse detection ([97, 105, 19]), and the specification-based detection ([91,
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175, 59]) technique. In the sequel, we outline each of the three ID techniques in turn,

discussing also the associated advantages and disadvantages.

Anomaly Detection: Also known as behavior-based detection technique. For every sub-

ject of the system, a profile is created to reflect his behavioral attitudes regarding

the system use. This profile includes several characteristics that give evidence of a

certain behavior, related to the corresponding subject. Any event that deviates from

the expected behavioral attributes, specified for a subject in his profile, indicates an

anomaly and raises an attack alarm. There are a number of reasons this detection

technique raises numerous false positive alarms and fails to detect several known at-

tacks. The IDES [111], the first IDS implemented in 1988 by the SRI International,

which is based on the seminal model proposed in 1987 by Dorothy Denning [50], ini-

tially had employed only the anomaly detection technique. Other IDSs with solely an

anomaly detection engine that followed the IDES are the Wisdom & Sense (W&S)

system [176] and the Computer Watch tool [52].

Misuse Detection: Also known as signature-based detection technique. Attack signatures

are recorded in a base, for those attacks which have a known pattern, also called

signature. A series of events are checked against the stored attack signatures, and if

they match any of them, then an attack alarm is raised. It is an accurate technique

for the included attack signatures, but it fails to detect unknown attacks causing

many false negative alarms. IDSs that use the misuse detection technique are the

State Transition Analysis Toolkit (STAT) [76], the IDIOT that has incorporated the

Colored Petri Automata (CPA) [97], and the Bro [146].

Specification-based Detection: It is the most recent detection technique with the least

implemented systems. For every subject of the system (program, module, the sys-

tem itself) the specifications of its proper and correct functioning are determined.
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While monitoring a subject’s operation, it is checked whether it is consistent with

the corresponding specifications, and if not, then an attack alarm is produced. The

inherent implementation difficulties of this technique have prevented its widespread

use. The most representative IDS that implements this technique, established later

by Ko, Ruschitzka and Levitt [91], is in [90].

Only early implementations of these intrusion detection techniques came along exclu-

sively in IDS products, distinguishing anomaly-based ([161]) from signature-based ([97])

IDSs. Especially for the anomaly detection and the misuse detection techniques, it was

almost the beginning when realized that the disadvantages of the one technique could be

covered by the advantages of the other, and vice versa. Therefore, the large majority of

products are hybrid systems which incorporate both detection techniques. Among the hy-

brid systems, were the Haystack[168], the MIDAS [160], the Network Security Monitor

(NSM) [72], the Next Generation Intrusion Detection System (NIDES) [79] successor of the

IDES, and the EMERALD [149] successor of the NIDES.

An additional categorization derives from the source of an IDS’s audit records. The

host-based IDSs [179] receive data from one host, and the detection aims at attacks against

this host only. The network-based IDSs [178] receive data from the network traffic and

examine packets to detect network attacks, like Network Security Monitor (NSM) [72], or

Bro [146]. Likewise, the distributed-based IDSs ([169, 19]) receive data from different hosts,

and probably, from the network as well that connects them.

In Intrusion Detection several tools, methods, and approaches have been used so far.

Expert systems ([77, 76]), neural networks [46], Colored Petri Nets [97], graphs [172], rule-

based systems ([62, 76, 89, 85]), data mining approaches [99], estimation theory ([17, 18]),

soft computing ([38, 1, 2, 173]), alert correlation [96], etc.

Methods and approaches in the direction of generic intrusion detection models have

been attempted in the past ([131, 130]), or at least endeavors to enable IDSs to exchange
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information, communicate, and cooperate by employing a common architecture, as it is the

Common Intrusion Detection Framework (CIDF) [148].

In the past two decades, a number of surveys have reported on the progress, the trends,

and the limitations in the area of Intrusion Detection ([81, 118, 82, 98]), in the Intrusion

Detection techniques ([110, 177, 129, 36]) and in the Intrusion Detection Systems ([78, 14,

16, 45, 47]) developed on the basis of the proposed approaches and models. They provide

valuable information necessary for future research.

1.1.1 Events Classification

The events that take place on a system are attacks mixed together with non-attacks. A

proportion of these attacks will correctly be detected by an IDS, whereas the rest will be

missed. Likewise, an IDS will characterize some of the non-attacks correctly as discarded,

while for others it will raise false alarms. Figure 1.1 depicts this classification task that an

IDS accomplishes for a system’s events.

Events

Attacks Non-attacks

Detected DiscardedMissed False Alarms

IDS

ü üý ý

Figure 1.1: Events Classification by an Intrusion Detection System

Considering all the events that occur on a system, we distinguish between security
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relevant and security irrelevant events. Another categorization separates security relevant

events into true attacks and normal events. For those events that look as if they were normal

but cause damage to the system - although no attack plan has been used (unintentional

activity including mistakes) - an additional mixture between true attacks and normal events

is necessary.

1.1.2 The output of an IDS

When an IDS makes decisions examining security relevant events only, the output of the

classification task previously described in Fig. 1.1 is the set of events detected as attacks

(Fig. 1.2). It consists of a number of detected true attacks (true positive alarms - TP) and a

number of false positive alarms (FP) for those non-attacks detected as attacks. The number

of false negative alarms (FN), in other words the number of missed real attacks, should be

added to complete the set of all the true attacks occurred on a system. False negative alarms

have been derived from true attacks plus normal events that cause damage. Because the

number of true attacks are not known for a real world system, the false negative alarms are

also unspecified. The detected as attacks events require further classification, perhaps with

human intervention, to distinguish between detected true attacks and false positive alarms.

The following premises summarize what explained in detail above regarding the output

of an IDS.

- Some Events are Security Relevant Events

- Security Relevant Events consist of True Attacks and Normal Events

- All Events that are not Security Relevant Events are Security Irrelevant Events

- Some Normal Events are True Attacks

- Some True Attacks are Detected as Attacks by an IDS (True Positive Alarms)
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True Attacks

Events

Security Irrelevant Events

Normal Events

False Negative Alarms

False Negative

Alarms

Detected as Attacks by an IDS

True Positive

Alarms

True Negative Alarms

True Positive

Alarms

False Positive

Alarms

Normal Events

that cause

damage

Figure 1.2: Euler diagram for the output of an IDS

- Some Normal Events are Detected as Attacks by an IDS (False Positive Alarms)

- Some Normal Events that are True Attacks are Detected as Attacks by an IDS (True

Positive Alarms)

We use the Euler diagrams ([57],[163]) as a visual technique to check the validity of

these arguments[125]. Figure 1.2 illustrates this syllogistic reasoning behind the blend of

events an IDS recognizes and produces as output of its process. Shading has been applied

to the rectangles that represent the true attacks and the normal events, to enhance their

overlapping discussed previously, although shading is not a convention in Euler diagrams,

as it is in Venn diagrams.
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1.1.3 Attack partitioning

It is essential to delineate the meaning of the term true attack. An attack consists of many

steps. Following a similar partitioning that has been applied in penetration testing[20],

we specify that an attack is comprised of three phases. The initial steps of an attack are

considered to be the pre-attack phase. Next, the steps that carry out and complete the

attack form the actual attack phase. Finally, at the end of a successful attack, the post-

attack phase indicates any potential action taken by the attacker, as an attempt to cover

his traces, or to bring back the system to its original state. Figure 1.3 draws the described

phases of an attack in a sketch that shows their sequential timing.

Pre-attack
Phase

Start
t

Stop

Post-attack
Phase

Actual-attack
Phase

Figure 1.3: Partitioning an attack into phases across time

By referring to an attempt of an attack that does not lead to a successful completed

attack, it is implied that only one phase exists, the pre-attack phase. It is the pre-attack

phase that an attacker might intercept information necessary to compromise a system (e.g.

to get a backup password file). Because interception is one of the threats a system faces, we

assume that even attempts of attacks have bad consequences for a system, and therefore,

an IDS must deter them promptly to prevent an attacker from damaging the system. This

initial attacker’s activity has also been established as reconnaissance attack [159].
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1.1.4 Limitations and Problems

Intrusion Detection Systems (IDSs) are the practical representation of Intrusion Detection.

Therefore, limitations and problems appeared in IDSs reflect corresponding limitations and

problems in the area of Intrusion Detection. In the following list, we summarize general

limitations in current Intrusion Detection Systems, as presented in [147]:

- the lack of generic development methodology, which causes significant high costs;

- efficiency, because many IDSs have been designed in a complicated way, in order

to detect as many types of attacks as possible, but this generates complexity and

increases the runtime overhead of the system;

- portability, because most of the IDSs are operating system dependent, and those

which have been designed and implemented as platform independent, might be proved

inefficient with limited capabilities;

- upgradability, because a substantial effort and cost are required to upgrade an existing

IDS, mainly due to the lack of a generic development methodology;

- maintainability, because IDSs require skillful experts in fields other than security, to

configure an IDS, to maintain the rule base of an IDS, or to adjust the statistical

metrics of the corresponding component of an IDS; and

- benchmarking, because testing an IDS using attack scenarios is a difficult phase of its

development, data on IDS benchmarks hardly exist in the literature, and only a few

data on the performance of IDSs have been published.

Axelsson [15] also poses some unanswered questions regarding the problems encountered

in ID. Moreover, the reasoning described in Section 1.1.2 extends the list of limitations with

two significant problems, which derive from the use of Intrusion Detection Systems; the

problem of reliability [84] and the problem of accuracy.
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Reliability An IDS is reliable if the number of detected true attacks is equal to the total

number of attacks that take place against a system. The reliability of an IDS is defined

as the ratio of the number of detected true attacks to the total number of attacks that

occurred, and expresses the detection rate of an IDS:

IDSReliability =
number of detected true attacks

total number of attacks

This ratio should be as close as possible to 1, with a maximum rate of 1. As long

as the ratio departs from 1, the IDS becomes less reliable, because it fails to hit all

the attacks. The missed attacks generate the number of false negative alarms, also

known as false negatives (FN).

It is reported [53] that IDSs are not as reliable as required by the frequency of

attacks, and thus the number of undetected attacks remains extremely high, up to the

96%. This problem is directly connected with the limitation of efficiency. IDSs become

more and more complex to achieve the objective of detecting every attack. Although

this seems impractical and causes additional problems, it is a principal requirement

for the development of an IDS. The larger the ratio, the more reliable an IDS.

The calculation of an IDS detection rate becomes more complicated, because as

mentioned above, the number of true attacks are not known for a real world system.

It means that systems and system administrators know a proportion of attacks that

take place and not all of them. As a result, the reliability of an IDS can be computed

at its testing phase using training data, rather than for real cases.

Accuracy An IDS is accurate if it raises a minimum number of false alarms, if not none.

The accuracy of an IDS may be expressed as the ratio of the number of detected true

attacks to the number of the detected as attacks (see Section 1.1.2):
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IDSAccuracy =
number of detected true attacks

number of detected as attacks

This ratio should be as close as possible to 1, with a maximum rate of 1. The

larger the ratio the more accurate an IDS. At the installation time of an IDS, con-

figuration and tuning are required to keep the number of false alarms at a minimum

level and make the IDS more accurate [152]. Recent IDSs, however, have failed to

minimize this ratio [53], producing significant numbers of alarms for legitimate events

detected as attacks. These are the false positive alarms, also called false positives

(FP). Furthermore, the IDS and consequently the Target System overhead increase

when processing irrelevant activities, detecting falsely attacks, and counteracting nor-

mal events. These wrong decisions make also an IDS less effective. Debar and Morin

[48] state that the accuracy of IDSs is closely related with the success and usability

Intrusion Detection technology can reach.

To quantify the described measures of reliability and accuracy, we consider the following

example (Example 1) for an IDS that monitors a system.

Example 1. Among a number of 100 attacks that reach successfully a system,

its IDS examines an enormous number of events and detects 90 events as at-

tacks. But the detected true attacks are 85, whereas the other 5 are false positive

alarms. According to the measures specified above, this IDS has 85% reliability

(detection rate or True Positive rate - TP ) and 85/90 = 0.9444 that is 94.44%

accuracy. Expanding the calculations to cover the reasoning of the arguments es-

tablished in Section 1.1.2, the False Positive rate is FP = 5/90 = 0.055 = 5.55%

and the False Negative rate is FN = 15/100 = 0.15 = 15%.

Intrusion Detection Systems, however, aim at detecting as many attacks as possible

raising as less false alarms as possible. This is also the requirement of effectiveness [15]

for the IDSs, which is actually comprised of the reliability and the accuracy requirements.
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Unfortunately, the goal of the highest possible detection rate fails to meet simultaneously

the goal of the least possible false alarms. As the IDS design becomes more complex to cover

as many instances as possible, i.e. to detect a greater number of attacks, the false alarm

rates increase rather than decrease, causing worse problems for the Target System. As a

result, an additional problem is appended to the list discussed previously in this section,

regarding the effectiveness of IDSs. Axelsson examined this problem under the label the

base-rate fallacy in Intrusion Detection [15], according to which he tights the goal of a high

detection rate with the goal of the low false alarm rate and requires both to be achieved in

order to have great performance in an IDS. In the next example (Example 2), we reproduce

an analogous scenario to present the base-rate fallacy of Intrusion Detection, as addressed

by Axelsson [15].

Example 2. During the testing phase with training data, an IDS examines

100 attack events and detects 88 of them as attacks, and when it examines

100 normal events it characterizes 88 of them as normal and 12 as attacks.

Consequently, this IDS has 88% confidence (certainty) when it decides whether

an event is attack or normal.

Under real circumstances, the same IDS examines a random event and concludes

that it is an attack. Presuming that the Target System of this case has been

appropriately protected by a number of security mechanisms, only one attack

event appears every 10000 event records, i.e. the attack rate is 1/10000 = 10−4.

Then, what is the probability this positive alarm to be true?

To answer this question, first we denote an attack as A, and a normal event as ¬A

(not A). Let D be a detected event as an attack (alarm) and ¬D an undetected

event (no alarm). Then, given the above information, the probability this IDS

to detect an attack event is P (D | A) = 88% = 0.88, the probability a normal

event to remain undetected is P (¬D | ¬A) = 88% = 0.88, and the probability

an event to be an attack is P (A) = 10−4. To measure the validity of a positive
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alarm, that is, the probability P (A | D) of a detected event to be a true attack,

we will apply the Bayes’ theorem and calculate the following:

P (A | D) =
P (A) · P (D | A)

P (A) · P (D | A) + P (¬A) · P (D | ¬A)
(1.1)

We substitute the values given above and calculate the P (D | ¬A) which is the

1− P (¬D | ¬A) and equals to 1− 88% = 0.12%. Then, Equation (1.1) gives:

P (A | D) =
10−4 · 0.88

10−4 · 0.88 + (1− 10−4) · 0.12
=

0.000088
0.120076

= 0.000732869 ' 0.073%

(1.2)

Therefore, the probability a positive alarm to be true is surprisingly low, only

0.073%, although the IDS’s confidence is 88%. This is caused by the fact that

in this scenario attacks are rare enough, only one attack event appears every

10000 event records. In addition, from Equation (1.2) we conclude that there

is an analogy between the factor that controls the P (D | A) (the detection

rate) with the corresponding that controls the P (D | ¬A) (the false alarm rate).

As a consequence, in order an IDS to be effective, it should have both, a high

detection rate and a low false alarm rate.

In spite of the above shortcomings, the majority of organizations have realized that

Intrusion Detection has a central role in their IT security. Thus, Intrusion Detection should

be on the market. Governments and firms have an interest in computer science and would

like to know how much money to invest and in which area. Is Intrusion Detection an area

that is worth of funds, which will return analogous security solutions? Then, the point-blank

question generated is why Intrusion Detection commercial solutions are limited.

Unfortunately, Intrusion Detection Systems fail to balance to an acceptable level the

ratios between detected real attacks and false positives and false negatives respectively, and
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to overcome the limitations discussed previously. The commercial world is interested in

the reduction of false alarms for a number of reasons, but also because these increase the

system runtime overhead. If IDSs succeed commercially, then they can reduce the recovery

cost of attacked systems in the industry. Therefore, the research question motivated by

these problems is how can we improve Intrusion Detection in IT security, by optimizing

IDSs and making them less problematic commercial systems. Consequently, there is a

need for new types of Intrusion Detection approaches in IT security, which will employ

tools and techniques from other established fields, to address its problems and overcome its

limitations.

In the next section, we investigate the Theory of Games, a discipline that shares many

commonalities with the area of Intrusion Detection, and in Section 1.5 we justify the reasons

we strove our research work towards this discipline.

1.2 The Theory of Games

To be literate in modern age, you need to

have a general understanding of Game

Theory.
Paul Samuelson, 1991

Games are played between persons, or more generally, between organizations or firms con-

trolled by persons, in cases the latter interact. In these interactive situations a participant

of the game, called player, is interested in predicting others’ future actions, and also, in how

others interpret his own actions. Camerer describes a game as a mathematical x-ray of the

crucial features of these situations [33], while others describe it as a set of specifications of

what actions players are able to take, but not what actions players do take [135].

Some games are played once, the so called one-shot games, while most are played repeat-

edly, finite or infinite number of times, specified as repeated games. In repeated games a base
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game, the stage game, is reiterated. Players organize their actions in strategies considering

also other players’ actions, information and beliefs.

Osborne and Rubinstein [135] set three different dimensions on which three divisions of

game theoretic models are based, as described in the sequel:

- The first is the player. If a player is an individual, then the type of game theoretic

model is non-cooperative, whereas, if a player is a group of individuals, the type of

game theoretic model is cooperative.

- The second is the plan of actions a player chooses. It is a two folded dimension that

includes both action and time, because action has also the notion of move. If a player

chooses his plan of actions once at the beginning of the game and he is not aware

of the plan of actions of any other player, then this is a model of a strategic game

and decisions are made simultaneously for all players. At the opposite side of this

model type, an extensive game allows each player to think about his plan of actions

whenever he plays, formulating interactions with sequential moves.

- The third is information. When the players of a game are fully informed about

each others’ moves, then the model of the game is defined as a game with perfect

information. On the contrary, when players are not very well informed, then the

game is characterized as a game with imperfect information.

In the following paragraphs, we provide an overview of the Theory of Games by answer-

ing a series of questions, directly related to most of the game theoretic aspects discussed in

this thesis, which are not familiar to an IT Security specialist reader.

B What is the history of Game Theory?

In order to present the Theory of Games as a very old piece, in 1985 Aumann and

Maschler [13] used an early example by formulating and solving a marriage contract problem,
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which was defined as a coalitional game by the Babylonian Talmud, about 2000 years ago,

anticipating the modern theory of cooperative games. The Theory of Games effectively

serves the Theory of Economics since its start.

A brief but comprehensive historical synopsis of Game Theory is provided in [167]. It

starts with Leibniz1, probably the first who expressed in 1704 the idea that later motivated

the Theory of Games. Again before 1900, philosophers, like Hobbes, Hume, Rousseau,

and Smith, gave game theoretic descriptions when thinking of social interactions. Zermelo

(1913), Borel (1921 and 1934), and von Neumann (1928) at his early attempts, they all gave

mathematical analyses to some problems that fall in the area of Game Theory. Finally, in

1944, the Theory of Games appeared as a new field of study, when John von Neumann

and Oscar Morgenstern published their work in the book Theory of Games and Economic

Behavior [180]. They believed that people have the same reasoning whether they play a

game, like chess, or they get involved in any social interaction.

The contributions in the Theory of Games led to Nobel prizes in Economic Sciences to

be awarded. Among them, the Nobel prize 1994 in Economic Sciences was awarded jointly

to John C. Harsanyi, John F. Nash Jr. and Reinhard Selten for their pioneering analysis

of equilibria in the theory of non-cooperative games [133]. A few years later, the Nobel

prize 2005 in Economic Sciences was awarded jointly to Robert J. Aumann and Thomas C.

Schelling for having enhanced our understanding of conflict and cooperation through game-

theory analysis [134]. Sylvia Nasar has written a biography of John Nash, also a great

reference for the study of the Theory of Games [127].

B What is the Theory of Games?

Under various circumstances, people interact with others in several ways. Each inter-

action implies that while a person is thinking about a situation, another person is also
1Leibniz accepted that people play games and spend time and effort thinking about which strategy to

choose, and therefore he concluded, philosophers should examine players’ reasoning when they play a game.
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thinking about it, and both of them aim at deciding what action to take to deal with this

situation. Dixit and Skeath define that Game Theory is the analysis or science of such in-

teractive decision making [51]. But, because people think carefully before deciding upon an

action, i.e. they are aware of their objectives or preferences, they clearly specify limitations

and constraints, and they set criteria before they choose, it is said that people are behaving

rationally. For that reason, Dixit and Skeath continue that Game Theory is the science of

rational behavior in interactive situations.

According to Skyrms and Vanderschraaf Game Theory is that branch of decision theory

which deals with the case in which decision problems interact [167]. They also argue that

what von Neumann and Morgestern conceived of as a scientific theory for social interactions

is far from what has been formulated until now, because it is a much more general theory

that extends over many other disciplines and expands continuously and rapidly.

B What the Theory of Games is good for?

When asking professionals whether the Theory of Games is able to predict what people

do, or if it is suitable for advice to players, their answer is none of these, but it is a set of

answers to mathematical questions regarding what players with ranging rationality will do

in the future [33].

B What are the types of the Theory of Games?

In Game Theory, the construction of a game is the first step toward answering the follow-

ing question; how the players choose their strategies in real play? There are three different

approaches to address this question, which distinguish three different types of game theory;

normative, descriptive, and prescriptive [42]. In normative game theory, one examines the

consequences of choices made by super-rational players. Descriptive game theory usually

requires experimentation, to examine how players actually play, and the strategies they
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choose in reality. Social science and psychology are involved in this examination. When

one engages in prescriptive game theory, one examines theoretically a constructed game,

to determine how players should play it, and to recommend strategies. As a result, it is

possible to give advice that helps players to make better decisions. A triumph of prescrip-

tive game theory is in the design of auctions. Game theorists have successfully designed

auctions for among other things, radio-wave frequencies [122] and cellular telephony [22].

The three approaches overlap, for example when we ask another question: will the players

choose a recommended strategy or not?

B Where the Theory of Games is applicable?

The Theory of Games can be applied in any discipline except those dealing with com-

pletely inactive objects [51]. Many disciplines have incorporated game theoretic techniques,

including Economics, Law, Biology, Psychology and Political Philosophy. It has also been

used in agency models, in models of search, and in studies of price formation under various

institutional circumstances [95]. Recently, Game Theory has been applied in Computer

Science, and the derived results present a promising match between the two disciplines (see

Sections 1.3 and 2.1).

B What is a strategy?

A strategy of a game is a specification of how to play the game taking into account any

event that might occur [101]. It is a player’s option, an alternative among those available

for him to choose.

B What is a game in normal form?

Normal form games are more suitable for two-player games. They are depicted in

matrices, in which rows represent the actions taken by one player and columns represent

18



the actions taken by the other player. For each cell there is a pair of numbers, the payoffs

of the two players. Normal form games are descriptions of games that specify the strategies

and the payoffs, i.e. a map from strategy profiles to payoffs, also called strategic form games

[101]. It is important that in normal form games players choose independently, without

observing each others’ strategies or influence another player’s strategy, and thus, players

play as if they were choosing simultaneously ([167, 95]).

B Is there a difference between a strategic game and a decision problem?

In decision problems each player is only concerned about his own actions, but in strategic

games each player is also concerned about the actions taken by the other players. Osborne

and Rubinstein [135] refer to an action profile a = (aj)jεN , one action for each player, as

an outcome, and denote the set xjεNAj of outcomes by A. Based on this, they clarify that

what distinguishes a decision problem from a strategic game is the requirement that each

player i’s preferences are defined over A instead of Ai.

B What is utility?

The notion of utility has conceptual and practical difficulties, especially when someone

attempts to describe it as a number[180]. When the utility is numerical, then it is the payoff

at every outcome of the game that reflects players’ preferences for the various outcomes of

the game [167].

B What is a game in extensive form?

Extensive form games are more suitable to model dynamic interactions. Kreps [95]

describes that they are depicted in trees with at least an arrow that points out from each

node and at most one arrow that points at each node. In addition, when tracing the tree

using backward induction, the initial node should be reached only once, that is, it should

be the end of the back tracing and should not be included in circles.
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B How can we solve a game?

Solving a game is an old philosophical attempt to answer the question: Why ratio-

nal people choose a specific behavior when interacting with others? Hobbes and Hume are

among those social philosophers who contributed towards an answer. While John Nash pre-

sented the equilibrium as a solution of a game, centuries before Hume simply referred to an

equilibrium play between interacting individuals. He argued that individuals are rational to

follow certain conventions, provided that they expect others to follow these conventions [167].

A Nash equilibrium of a game is a set of players’ decisions that results in an outcome,

such that, no player has any reason to deviate from his choices, given that all the players

do the same. John Nash proved that every noncooperative game has at least one Nash

equilibrium (NE) [128, 74]. In games with more than one NE, the problem of multiple NE

of which one to choose appears (discussed in the subsequent question on the problems of

Game Theory). In noncooperative game theory, the NE is the most commonly used solution

concept.

Other solution concepts are the backward induction, the subgame perfect NE, the

Bayesian NE, the Perfect Bayesian NE, the Trembling hand, the Correlated equilibrium,

the Sequential equilibrium, the Pareto efficient, the Quantal Response Equilibrium (QRE)

(see Chapter 7), etc. In cooperative Game Theory, the Shapley value and the core are the

two most commonly used solution concepts.

B What are the problems of Game Theory?

Studying the Theory of Games as a tool to model economic phenomena, Kreps [95]

summarizes four main problems that unfortunately weaken a number of strengths associated

with them. The first problem is the requirement for clear and distinct rules of a game. The

second is the problem of multiple Nash equilibria. In games with many Nash equilibria,

Game Theory has no systematic method to check whether any one is the actual solution
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of the game, and if so, to indicate which one. The backward induction, although used

for games with multiple NE, is not sufficient to solve this problem. The third problem of

Game Theory is called equilibrium refinements and derives from the second problem. To

address the problem of multiple NE, one of the approaches is to choose among them but

having a more sound notion of equilibrium. According to this, NE that reveal unbelievable

choices should not be selected. Finally, the fourth problem is located in the rules of a game.

As Kreps states, game theoretic analyses take the rules of the game seriously into account

without knowing their origin. Moreover, the rules might be influenced by the outcomes of

the game and this is not under consideration either.

1.3 The Merge: Intrusion Detection and the Theory of Games

The Internet, which deservedly represents our digital world, includes interactions with con-

flicting interests and strategies planned to maximize profits between involved parties. Others

are competitors and others agree on a policy of cooperation. Single users in front of stand

alone workstations have irreversibly passed. To handle the special requirements caused by

these new circumstances, it seems that we need to borrow tools from other disciplines, like

Game Theory that acts as a set of tools for interactive situations, and Economics that

analyzes diverse interests in the product lines of goods or services.

In the past several years, Game Theory, Computer Science, and Economics intersected

to create a new field, Algorithmic Game Theory [132]. But Algorithmic Game Theory has

not only emerged as a simple interdisciplinary application where Computer Science benefits

from the Theory of Games or Economics. It has drawn new directions of thinking and new

fundamental conceptions from different perspectives. The reasons lie in this mixture itself

that generates new questions. Computer Science questions players rationality and makes

Economics to abandon the assumption that people are fully rational and to examine clas-

sical situations under bounded rationality. When Computer Science meets the Theory of
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Games, then new computational problems arise in the presence of algorithmic complexities.

Likewise, classical game theoretic concepts, such as the Nash Equilibrium, are proved infea-

sible to be computed even in two player games [43, 44]. Such considerations establish new

lines of research and reasoning that hopefully will significantly expand the collaborative

areas and their influences.

In a similar way with the one applied in the previous section, we question the area of

Intrusion Detection as if it were a game, to discover the most fundamental aspects that

would direct the construction of such a game.

B Is Intrusion Detection a strategic game or a decision for action situation?

Dixit and Skeath explain that strategic games are interactions between mutually aware

players, whereas, decisions are action situations where each person can choose without con-

cern for reaction or response from others [51]. Intrusion Detection is an interactive situation

in which mutual awareness of the cross-effects of actions is taking place. An Intrusion Detec-

tion System is affected by attackers’ actions directly, and takes the proper countermeasures

to prevent further damage of the Target System. An attacker is also affected by IDSs’ ac-

tions, when his purpose is to carry out a successful undetected attack. Therefore, Intrusion

Detection in IT Security is a strategic game and not a one person decision problem.

B Is the Intrusion Detection game being played once or repeatedly and with the

same or changing opponents?

An Intrusion Detection game has an established IDS player, which operates in a certain

way and starts playing a unique game with each user, at the time the latter enters the

Target System. If a user penetrates the TS and uses it only once, then the game with

the IDS is a one-shot game. At the opposite side, a user who uses the TS often or just

more than once, plays a game repeatedly, and he is worried about the consequences and
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implications on other future games he might have to play with the same IDS. The IDS,

as a constant player, plays different games with changing opponents, probably with some

similarities shared among them.

B Is the Intrusion Detection game a zero-sum game or not?

When the players of a game have interests in total conflict, then the game is a zero-

sum game. But, when the players’ interests have some commonalities, then they might

both benefit from their interactions. Examining the preferences of IDSs and attackers

respectively, one can lead to the conclusion that an Intrusion Detection game is a zero-sum

game, because when an attacker carries out an undetected successful attack, which is the

worst preference for an IDS, then the attacker wins and the IDS loses.

However, there are other instances where both win something while they lose something

else, as when an IDS detects a successful attack. In that case, the attacker has achieved

to attack the Target System successfully, although he has been detected, and the IDS has

detected the attack but after its completion. In such a situation, the game is a constant-sum

game, but the constant is not zero. Since it is possible a game to be zero-sum in the short

run, but have scope for mutual benefit in the long run [51], it seems that the Intrusion

Detection game is a constant-sum game that some times turns to a zero-sum game.

1.4 Motivation

Considering a user who is using a system, the user’s activity is either legitimate or illegal.

We can define the terms legitimate activity and illegal activity as follows.

Definition 1. A legitimate activity is an activity which preserves all the three principles

of Information Technology Security, that is, Confidentiality, Integrity, and Availability.

Definition 2. An illegal activity is an activity which violates at least one of the three
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principles of Information Technology Security, that is, either the Confidentiality, or the

Integrity, or the Availability.

Consequently, it seems reasonable that an IDS, which is able to distinguish between an

illegal and a legitimate activity, is an efficient IDS that can successfully detect attacks. So,

the problem of intrusion detection turns into the problem of characterizing an activity of a

user, either legitimate or illegal in the sense described above. But, this is the problem itself

in the intrusion detection literature. Then, why we should adopt a different approach to

solve the problem, and leave behind the three well known approaches (see Section 1.1), that

have gained favor in recent years? Will a new approach solve the problem more effectively

with a higher detection rate and less false alarms?

Detecting intrusions by characterizing an event as legitimate or illegal respectively is a

posterior (ex post) detection, helpful only to avoid the attack’s consequences and further

damage to the Target System. Unfortunately, detecting this way is not so straightforward,

mainly because a large number of false alarms degrades the IDS’s detection rate (see Section

1.1.4). So, there is a drawback embodied in the traditional approaches.

The answer to the previous questions is that, we do not know the type of user who is

acting illegally or legitimately, to conclude what might happen in the near future inside the

Target System. We care about real-time detection in order to prevent any damage, because

a user who is acting legitimately at a point of time, might act illegally the next moment, if

he is an attacker. Also, a user who is acting legitimately for a while, suddenly acts illegally

by accident, although he is a normal user. We comment on its possible modeling in Chapter

9 as a future research work. These cases are the main sources of false alarms.

To achieve this goal, we are interested in the type of source of any activity, legitimate or

illegal, and not only in distinguishing activities between illegal and legitimate. This objec-

tive differs significantly from the corresponding of the anomaly detection technique, which

is also a user-centric technique, like the proposed one. The anomaly detection technique
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works with user profiles to detect deviations from normal activity, i.e. to detect masquer-

ades, but is not able to infer what is the source of this anomaly, so it detects a normal

user who is acting differently one day as an attacker, raising a false positive alarm. That

is why the anomaly detection technique goes together with the misuse detection technique.

The latter one merely detects attacks based on the corresponding signatures, that is, it

distinguishes between known illegal activity that derives from an attacker and legitimate

activity wherever it derives from.

Concluding, it is not always a normal user who is acting legitimately. A normal user

is also acting illegally when he makes mistakes. Similarly, an attacker is not only acting

illegally. In cases of bluffing, he is acting legitimately to confuse his opponent. As a result,

the IDS does not know for sure the type of user interacting with it, to prevent any future

illegal activity. For this reason, we need to model the user behavior to predict that an

attack might happen in the near future, so that we can counteract to prevent it. Anomaly

and misuse detection techniques detect intrusions as they happen and not just before.

1.5 Thesis Statement

Some of the research questions we initially stated are: Can we entirely solve any of the main

problems of Intrusion Detection? Our discussion in Section 1.1.4 gives a negative answer

because some of them are unsolvable (e.g. detection rate vs false alarms). Then, what can

we do? We can try new approaches to extend and improve the field of Intrusion Detection

and mitigate some of its limitations and problems. Therefore, we have decided to employ

the Theory of Games and we justify our choice as explained below.

As IT is a human-computer interactive situation, Intrusion Detection in IT security is

also an interactive situation. It is an interaction between a user (potential attacker) and the

Intrusion Detection System (IDS) designed and implemented to make a Target System (TS)

secure. The IDS is an active player, whereas the TS is a passive part of the process. The

25



discipline that studies interactive situations is the Theory of Games. Intrusion Detection

in IT Security is a field that has the features of a game.

The similarities between the two fields of Intrusion Detection and Game Theory, deserve

further study and research. In the past several years, interdisciplinary research between

Computer Science, Game Theory, and Economic Theory has given directions to a new

exciting area, Algorithmic Game Theory [132] (see Section 1.3). Our research work belongs

to the field of Algorithmic Game Theory and addresses problems of Intrusion Detection in

IT Security. It is based on answering the research questions stated in the following two

thesis hypotheses:

Hypothesis 1: Suppose there is an IDS that decides whether a user’s activity is malicious

or not, with absolute certainty, i.e. 100% detection rate and 0% false alarms.

Question 1: What are the optimal (best) strategies the IDS should follow to counteract

detected attacks?

Hypothesis 2: Suppose there is an IDS that decides accurately with probability < 1

whether a user’s activity is malicious or not, i.e. with < 100% certainty, < 100%

detection rate and > 0% false alarms.

Question 2: What are the optimal (best) strategies the IDS should follow to counteract

detected attacks?

Our work belongs in the non-cooperative Game Theory and has incorporated the com-

monalities of the two types of Game Theory [141], the descriptive and the prescriptive as

described in Section 1.2, by first constructing and solving a game, and then by proposing

a detection mechanism as an exploitation vehicle of our results. Research reported in the

present thesis is closer to the prescriptive than to the descriptive approach, since it aims at

predicting attacker’s potential deviations from the equilibrium path. Details on our results,

contributions and their significance are given in the next section.
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1.6 Results, Contributions, and Significance

Our first contribution is that we model Intrusion Detection as a generic game. Following

a systematic way, we explore and specify, in a generic form, the players, their actions,

the information each player has when he acts, the expected outcomes, and the players’

preferences over these outcomes. The general formal description of the ID game and its

formal definitions are determined to serve as the underlying foundation for the succeeded

results. The repeated ID game model is constructed as well, in order to study real cases in

which players play the game again and again. The key-concept behind the generic ID game

model is to release ID from any platform, system dependency and detection technique and

focus on the heart of the interactions that take place between players.

We subsequently concentrate in the insider threat, and we specifically model the ID

game for insiders only. In this game, we define players’ preferences, and so the corre-

sponding payoffs, using the von Neumann-Morgenstern utility function, by employing an

established method rather than defining arbitrary payoffs. This gives the flexibility for

important interpretations of players’ actions, responses, and beliefs, when studying various

case scenarios.

We also provide another formulation of the ID game as a signaling game. The construc-

tion of such a game requires the same elements to be specified, but the game has a different

method to be examined and solved. Our results show that the problem od multiple NE

and which one to choose appears and prohibits us from giving clear conclusions on how the

game will be played in the future.

Any attempt to solve the repeated ID game for insiders was also precluded by the known

problem of multiple Nash equilibria (see second problem in Section 1.2). Therefore, it was

difficult, if not impossible, to conclude on the strategy a player would choose, in response

to an opponent’s strategy. This forced our research toward other game theoretic solution

concepts, beyond the classical Nash equilibrium. The Quantal Response Equilibrium (QRE)
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is used in the repeated form of the ID game for insiders, and our results show that this

achieves a behavioral prediction for future players’ actions. The significance of this choice is

stemmed from the fact that we can detect attempts of attacks if we look at users’ intentions,

plans, and possible strategies, instead of detecting nearly finished successful attacks by

examining signals hidden in billions of event records.

This behavioral prediction can act as an assistant in Intrusion Detection. Instead of

trying one more method to detect attempts of attacks, as those that aim at identifying

signals received from a target system, we strive toward different directions outside the

classical intrusion detection techniques discussed in Section 1.1. The main concept of the

behavioral prediction is the intentions that drive a user’s plans when he uses a system, and

the diversity of these intentions, especially when the user is a potential internal attacker.

Finally, we present two implementation schemes suitable for the application of the

proposed model, and we design in detail an algorithm for the one of these schemes. For the

second implementation scheme, a complete Intrusion Detection model with a game-based

detection engine is introduced, to demonstrate a new architectural approach that can be

applied in ID, a game theoretic ID architecture.

1.7 Outline of the Dissertation

In Chapter 2, we review the literature linked with all topics related to our research problem.

We start with a summary for the conjunction of the Theory of Games with the Computer

Science and with the IT Security. The main part of this review follows and is devoted to

others’ work in Intrusion Detection with the use of Game Theory. Because the proposed

approach is based on the intentions a user has, we conclude with a review on intention-based

detection approaches.

In Chapter 3, we construct a generic game model that represents the area of Intrusion

Detection. Therefore, a number of elements are defined, such as, the players and their
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actions, information players possess when they act, outcomes of the game, and players’

preferences over these outcomes. Then, we check whether this ID game is a finite, or a

lose-lose game, and if it includes sequential or simultaneous moves, or both. The general

formal description of the game follows, and then we check if the game adheres to the rules

that define an extensive form game. We close this chapter with the formal definitions of

Intrusion Detection as a game with perfect and imperfect information.

In Chapter 4, we formulate the ID game described in Chapter 3 as a repeated game. We

examine two types of repetition, with perfect monitoring and with imperfect monitoring.

We first establish the stage game, which is played repeatedly, with its players, their pure and

mixed actions, and the action profiles. To cover the different kinds of games an IDS plays

with different users, the preferences are separately discussed for normal users, for attackers,

and for IDSs, and the corresponding utility functions are defined. Then, the repeated ID

game model is explained when players are fully informed about other players’ moves (perfect

monitoring) and when players are not fully informed about other players’ moves (imperfect

monitoring). These two cases match the thesis hypotheses stated in Section 1.5.

In Chapter 5, the ID game is specifically constructed for insiders. For this special class

of users, a part of this chapter is devoted to clarify how they act, what they think or believe

before they act, how risky might be, and what elimination methods have been used in the

past against their attacks. The ID game is reconstructed to be played with an insider, using

four specific actions defined for insiders. The repeated form of the game is also considered

to identify how long and complex it becomes when repeated infinitely. The ID game with an

insider is then defined under perfect and imperfect information. The solution of the stage

game gives answers on how the game can be played and what actions the players might

choose. But the most interesting is the discussion on repeating the ID game with an insider,

the folk theorem, the grim strategies, and different scenarios with their solutions, which aim

at covering most of the cases that can be realized. In closing, the game is played with an
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unconventional insider, who has different unusual preferences, to discover substantial or not

differences with other similar games.

In Chapter 6, we construct the ID game as a signaling game and discuss possible Nash

equilibria that solve the game. In particular, we apply the domination criterion, and we

compute the game equilibria by locating NE in pure and mixed (behavioral) strategies. Our

conclusions include the multiple NE problem that generates uncertainty and the need for

new signals that will give more understanding in playing the ID signaling game.

In Chapter 7, we introduce and justify the use of another solution concept beyond

the common Nash Equilibrium (NE), the Quantal Response Equilibrium (QRE). Solving

the ID game with an insider in its repeated form with the use of QRE, we interpret the

corresponding results in order to predict insider’s future behavior, and we oppose them to

the NE results.

In Chapter 8, two implementation schemes are proposed as appropriate to exploit all

the results derived from our research work. According to the first one, a new game-based

ID model is presented and its architecture is described to a great extent. The functionality

of this model is totally different from other intrusion detection techniques presented in

other approaches in the past. The second implementation scheme includes a Detection

Mechanism that will jointly work with a classical IDS to improve its effectiveness with the

QRE calculations. A detailed algorithm prescribes how this collaboration will be successful.

In Chapter 9, we describe our concluding remarks and related open questions that give

the motivation for new directions of future works.

Part of the results of Chapters 3, 5, 7, and 8 have been published in joint works with

Sokratis Katsikas [86, 87, 88].

Finally, the bibliography list has adopted the citation conventions described in the 2009-

2010 citation guide ([71]), which is based on The Chicago Manual of Style, 15th ed.
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1.8 Summary

Intrusion Detection has unsolvable problems when addressed by signal identification ap-

proaches. Nevertheless, the commonalities that shares with the Theory of Games, which is

suitable for interactive situations, allows research directions for ID in the new area of Algo-

rithmic Game Theory. Therefore, we decided to improve Intrusion Detection by examining

attackers’ intentions for future actions when playing with IDSs.
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Chapter 2

Literature Review

There is only one good, knowledge, and one

evil, ignorance.

Socrates (469 BC - 399 BC), from Diogenes

Laertius, Lives of Eminent Philosophers

In this chapter we describe what we studied for the Theory of Games and its gradual in-

clusion first in Computer Science, then in IT Security, and finally in Intrusion Detection.

In Section 2.1 we cover issues originated when Game Theory met Theoretical Computer

Science. In Section 2.2 we specifically examine game theoretic approaches that have been

applied in IT Security. The heart of the chapter is Section 2.3, where we present results

derived from the survey we have carried out to reveal all related works that fall in the

intersection between Game Theory and Intrusion Detection. Because our approach points

towards behavioral detection of intruders and especially users’ intentions for future actions,

in the last section, Section 2.4, we examine research works that use intention-based ap-

proaches in ID.
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2.1 Game Theory in Computer Science

Or, Computer Science in Game Theory. Which discipline did actually first need the other?

Our study has identified both directions of reach, and surveys are conducted by game the-

orists and by computer scientists as well. Computer Science includes interactive situations

and requires Game Theory to model them and solve related problems. Likewise, Game The-

ory faces an increasing number of computational problems in the digital world and expects

Computer Science to provide solutions.

Nathan Linial [104] attempted in 1994 the first systematic study in the interface between

Game Theory and Theoretical Computer Science. He mainly focused on protocols and he

considered a number of outstanding issues and problems generated when the two disciplines

come together.

Two years later, Ehud Kalai [83] recognized that Computer Science, Game Theory,

and Operations Research have scientific interactions with significant implications in several

fields of applications. In order to open new lines of research, he described a few examples,

as the graphs in games, the multi-person operations research, the complexity of playing a

game, the complexity of solving a game, and the modeling of bounded rational players.

Christos Papadimitriou [142], among the pioneers of Algorithmic Game Theory, came

early across with the challenges and opportunities that Game Theory and Mathematical

Economics can provide in Theoretical Computer Science and especially in the Internet, as

tools. Yoav Shoham [165] found also that the Internet is another reason to merge Computer

Science and Game Theory, because in its present form requires special system design for

multiple different entities with conflicting interests that continuously interact to cover a

large number of economic activities.

Joseph Halpern [64] had focused on the overlap between Computer Science and Game

Theory at an early stage, from the standpoint of a computer scientist, although he is a

mathematician. In a work for distributed computing, he concluded that a set of issues,
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as part of the commonalities between the two disciplines, has to be really addressed by

game theorists, including fault tolerance, the representation of knowledge and uncertainty,

and the difficulty in designing large mechanisms and games. In that way, Game Theory

can be expanded. But also suggests computer scientists to change the concept they design

distributed protocols, to cover the game theoretic aspects involved, for example, when

designing Internet agents. In closing, he underlines another significant area of commonality

in which game theorists and computer scientists have to be concentrated; to change the way

games are represented and find a more compact representation mode.

The first book that established the area of Algorithmic Game Theory (presented in

Section 1.3) was published in 2007 [132], as an edited collection of the most representative

survey works, which justify this scientific r -evolution. The book includes three main parts

that cover computing in games, Algorithmic Mechanism Design, and quantifying of the

inefficiency of equilibria.

In another textbook [166], Shoham and Leyton-Brown consider multiagent systems

and address issues of algorithmic, game-theoretic, and logical fundamental aspects. But

the most recent is again an edited collection [12] that serves as a complete introduction to

game theory, discussing those areas relevant for application in computer science, as program

design, synthesis, verification, testing and design of multi-agent or distributed systems.

In a subsequent survey work, Joseph Halpern [66] considers complexity in the intersec-

tion between Computer Science and the Theory of Games. His survey includes bounded

rationality, problems in computing Nash Equilibrium, and Algorithmic Mechanism Design.

But his main interest is on a game-theoretic problem caused by Computer Science, the

price of anarchy [94]. It is the ratio between the optimal centralized solution and the worst

equilibrium, and measures the inefficiency of equilibria.

Recent findings show that new computational problems arise in the presence of algo-

rithmic complexities. Daskalakis [43], Goldberg, and Papadimitriou [44] concentrated on
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classical game theoretic concepts, such as the Nash Equilibrium that have been proved in-

feasible to be computed even in two player games. In their research work, they examined

the computational complexity of the Nash equilibrium and they classified the problem of

computing a Nash equilibrium into the PPAD complete class, that is, it belongs to the Poly-

nomial Parity Argument in Directed graphs complexity class. Following this, they studied

the complexity of computing approximate Nash equilibria in the anonymous games, in which

players are unaware regarding other players’ identity, and they proposed a polynomial time

approximation scheme for these games, when the number of strategies is bounded.

The specific topic of computing equilibria that belongs to the area of computational com-

plexity is thoroughly reviewed in [154] from the view of a game theorist. Tim Roughgarden

first distinguishes easy from hard problems, then examines several equilibrium computation

problems and the efficiency of their algorithms, and finally discusses the implications of the

under consideration work for computation, games, and behavior.

In another brief and biased survey, as Tim Roughgarden [153] himself characterizes,

there are interesting findings and conclusions that summarize the past, the present, and the

future of work carried out in fields where Game Theory and Theoretical Computer Science

meet. His major concentrations are again problems in Algorithmic Mechanism Design, the

price of anarchy, and the complexity in computing Equilibria.

2.2 Game Theory in IT Security

In an interview to Sergiu Hart [70], the 2005 nobelist in Economics Robert Aumann, who has

played an important role in developing the Theory of Games, emphasized the application of

Game Theory in protecting computers against hackers. He characterized it as a very grim

game analogous to war.

Five years later, in a plenary talk at GameSec 2010 [75], Jean-Pierre Hubaux, a distin-

guished researcher at EPFL, enumerated at least five IT security problems that have been
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addressed using Game Theoretic tools: Security of physical and MAC layers, anonymity and

privacy, intrusion detection systems, security mechanisms, and cryptography. The scope of

the talk was to reveal the ways Game Theory can help in designing security mechanisms. In

conclusion, Hubaux argued that game theoretic modeling of security mechanisms can assist

predicting the behavior of the interacting parties and influencing them when mechanism

design is used.

One of the earlier papers is by Lye and Wing [112], who constructed a general-sum

stochastic game between an attacker and the administrator of a Target System. The pre-

sented game-theoretic method aims at examining the security of computer networks. It

models attackers’ and defenders’ interactions with game theory and locates strategies to

enhance the network security. One of the players in the game is the administrator in the

role of the defender. The game is an imperfect information game in extensive form and

Bayesian updating is used to calculate transition probabilities when moving from one state

to another. Three significant aspects are discussed regarding this approach. First, the dif-

ficulty in computing solutions in stochastic models. Second, the model is extremely large

when all possible states are included and this causes difficulties in handling it. Third, further

difficulties are met in the construction of the game model and the corresponding numerical

representation of outcomes. This work has been completely presented in [113]. Its main

drawback is the absence of sound justification for the applicability of the proposed model.

At the same time, a work on MANETs [123] employed Game Theory to model the

interactions between nodes in mobile ad hoc networks. The authors designed a security

mechanism, called CORE, based on reputation to enforce cooperation and avoid selfish

behavior. They showed that when the network takes no countermeasures against non-

cooperative nodes, then the whole network malfunctions. Among the conclusions was that

the CORE mechanism was able to ensure that at least half of the nodes behave cooperatively.

Another major research concern continues to be the growing complexity caused by sys-
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tem infrastructure, bugs and security flaws. Ho et al. develop in [73] the Fundamental

matrix, a framework for examining the qualitative nature of decision making. Using this

matrix, they explain in a qualitative way many theorems and known results about optimiza-

tion, complexity, and security. In their view, two are the most significant results derived

from the development of their matrix; the first is that, as long as complexity increases, the

things that have the potential of planning decrease, and therefore, things that have not been

subject to planning are likely to produce negative payoffs. The second result is important

for security and states that, if we cannot foresee all conceivable attacks, then there may

exist an attack that will defeat the Target System.

A two player adversary game has also been constructed in [11] to model the interactions

between spam senders and e-mail users. The authors explore the game strategies when

players repeat the game and conclude that predicting the strategies, which will be adopted,

might be of some help in tuning anti-spam filters. Another model suitable for spam detection

has formalized the problem of adversaries, who manipulate the data of classifiers, to generate

false negative alarms in [41]. The authors extend the naive Bayes classifier to produce an

optimal classifier and construct a game between a classifier and an adversary, who uses

optimal strategies too. In a similar way, other works address specific types of attacks, like

[93] for backoff attack by Jerzy Konorski. Similarly, Mehran Fallah [56] has modeled several

sophisticated flooding-defense scenarios as two player infinitely repeated games.

The problem of evaluating the resilience of computer networks is addressed in [31]

by Bursztein et al. The authors propose a framework based on model and temporal logic,

which uses two layers to represent incidents and dynamic responses with their corresponding

delays. The first layer is the dependencies between files and services, and the second layer

is the timed automaton games. A variant of TATL has been used, the TATL¦ (Timed

Alternating-time Temporal Logic), and an example with a simple redundant Web service

has been presented to illustrate an anticipation game. The complete implementation of this
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anticipation game is the NetQi tool, presented in [32].

In 1999, David Burke designed a game theory model to represent Information Warfare

[30]. His model was based on the class of repeated games of incomplete information. He

described that the game has two players, the attacker and the defender, and that is a non-

zero sum game. Likewise, the role of the Theory of Games and application issues in the

information warfare are discussed in [67] and [68]. A survey that summarizes the game

theoretic contributions in Network Security and Privacy is provided in [116]. Another one

for the application of Game Theory only to Network Security can be found in [155]. In

a different study [80], Game Theory has been used to assess an IT security specialist’s

expertise and quantify how much it affects the overall network security. The results reverse

the assumption that skillful users with special security knowledge ensure a more secure

network, because they might act as traitors or free-riders. Furthermore, a Game Theory

Inspired Defense Architecture (GIDA) is proposed in [164] according to which a game model

is considered between attackers who use methods of attacks and the system administrator

who uses defense mechanisms.

Machado et al. have reviewed the game theoretic approaches used in wireless sensor

networks [114]. As for the Quantal Response Equilibrium (QRE) chosen as a solution con-

cept for the proposed model, it has been used in [103] to update the sequential equilibrium

strategies in signalling games for online phishing classification.

2.3 Game Theory in Intrusion Detection

The problem of detecting an intruding packet in a communication network has been consid-

ered by Kodialam and Lakshman in [92]. The described game theoretic framework has been

formulated in such a way that, the intruder picks paths to minimize chances of detection,

whereas the network operator chooses a sampling strategy - among the developed sampling

schemes - to maximize the chances of detection. The results derive from the solution of this
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minmax problem. The same problem is addressed in [138] by Otrok et. al using a similar

approach.

An attempt to infer the Attacker’s Intent, Objectives, and Strategies (AIOS) with a

game theoretic approach has been presented by Liu P. and Zang in [107]. Specifically, a

general intensive-based method is introduced to model AIOS. But, the authors explicitly

distinguish AIOS modeling and inference from Intrusion Detection, as two different areas.

They establish this over the aspect that Intrusion Detection is based on the characteristics

of attacks, while AIOS modeling is based on the characteristics of attackers. An extended

version with this model is presented in [108]. This work shares the same motivation with

our proposed model, because we formulate a game for Intrusion Detection and we use QRE

to predict players’ behavior.

The problems of reliability and accuracy in ID have been addressed by Cavusoglu et al.

in [35]. The authors attempt to compare decision theory and game theory results, over a

model framework for the configuration of IDSs, when firms are faced with strategic hackers.

The goal of this configuration is to achieve the optimal balance between detection rate and

false positive and false negative rates, in order to minimize the firm’s cost. Based on the fact

that IDSs are not perfect, the use of manual configuration techniques, by a human expert, is

required to support the optimization scenarios. But although game theoretic findings have

not fully been incorporated in ID, this work gives credible and valuable results in support

of this new merged area.

Alpcan and Başar suggest the use of game theoretic tools for the development of practical

schemes that can be incorporated in existing IDSs [8]. Their work investigates the potential

of using game theory in developing a formal decision and control framework in ID. To achieve

these goals, they develop a generic model for distributed IDSs applied on a network of

sensors. In particular, two different schemes are proposed. The one is based on cooperative

game theory and the other one on non-cooperative game theory. In both proposed schemes,
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the authors assume that a classical IDS is working and detects intrusions, using the anomaly

and the misuse detection techniques. The use of game theory does not aim at solving

detection problems, or directly detect intrusions, but to optimize some general network

security tradeoffs.

An extension of this work, but specific to access control systems, is presented in [9]. In a

similar vein, they formulate a security game between an attacker and an IDS using the two

different branches of Game Theory, a finite strategic game and a coalitional game solved

using the kernel solution concept. But it is not clear, how the proposed game theoretic

approaches of ID will be applied in an access control system. Finally, a 2-player zero-

sum stochastic (Markov) security game between attackers and IDSs has been formulated in

[10]. It is actually another extension of [9] to a stochastic and dynamic game. In all these

approaches players’ preferences have not been considered and payoffs have been arbitrarily

assigned to outcomes.

Patcha and Park have modeled the interactions between the nodes of an ad hoc network

as an incomplete information game in [143] and [144]. From this standpoint, they formulate

a signaling game between an attacker and a node, where an IDS is present to defend attacks.

They use a different perspective in their approach, by assuming that a node might be either

a regular node or a malicious node/attacker, and that’s how they build a signaling game.

Although their approach is interesting, the authors do not utilize repeated games, and thus

it is not possible to get insights from the structure of players’ behavior.

Another game-theoretic attempt that focuses in computing the expected behavior of

attackers is presented by Sallhammar et al. in [157] . This work is an extension of others’

related work, Lye and Wing in [113] and Liu P. and Zang in [107]. The authors examine the

attackers rewards and costs before acting, and assume that an attacker weighs up his benefit

vs his loss. A game model for the interactions between attackers and IDSs is constructed

to predict attackers’ behavior. The solution of the game is limited to the computation and
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use of NE in a stochastic game.

The problem of reducing false positives in MANETs when IDSs cooperate is addressed

by Otrok et al. in [137]. The Shapley value is used for the cooperation of nodes. In a

different work [139], Otrok et al. use mechanism design, sometimes called reverse Game

Theory, to increase the effectiveness of an IDS for a cluster of nodes in ad hoc networks.

The mechanism employs the Vickrey, Clarke, and Groves (VCG) mechanism1, to balance

the resource consumption of the nodes. The framework combines cooperative and non-

cooperative game theory with a catch and punish method, which considers that the leader is

either honest or dishonest in a black and white approach. In an extension of this work [126],

the authors present leader election algorithms and propose two application schemes the

Cluster Dependent Leader Election (CDLE) and the Cluster Independent Leader Election

(CILE), in order to receive optimal election results in low cost.

Yu Liu et al. model the interactions between potential malicious nodes and defending

nodes within a game theoretic framework for wireless ad hoc networks in [109]. The authors

examine static and dynamic interactions in complete and incomplete information games

using Baysian updating regarding the belief whether a node is malicious or not. As for the

defender, the use of a lightweight IDS for nodes and of a heavyweight IDS are proposed to

update his belief on attackers’ types.

Agah et al. worked on non-cooperative game theoretic models of Intrusion Detection for

sensor networks ([6], [5], [3]) and in [4] they describe a repeated game for preventing DoS

attacks in wireless sensor networks. This paper addresses the problem of security in sensor

networks in a different way than the one for ad hoc networks. In particular, a game has

been formulated to prevent DoS attacks, targeted to wireless sensor networks. To achieve

this goal, a game theoretic protocol is proposed, to operate in between an intrusion detector

and the nodes of a sensor network.
1The Vickrey, Clarke, and Groves Mechanism is discussed by Noam Nisan in Chapter 9 of ”Algorithmic

Game Theory” [132], and by Paul Milgrom in Chapter 2 of ”Putting Auction Theory to Work” [124]
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To the best of our knowledge, the only game-theoretic approach in ID for insiders has

been carried out by Liu D. et al. in [106]. They model an insider game as a stochastic game

between an insider and an administrator. The insider threat is recognized as a problem to

be addressed. The accurate prediction of insider’s moves is the motivation of this work.

But, only equilibrium analysis has been used to capture insider’s future actions, in order to

respond in an appropriate manner. The game is a one-shot game, no discussion on repeated

games has been given, and instead of an IDS, the role of defender is played by the system

administrator.

In 2009, Otrok et al. revert to the problem of reducing false positives in MANETs

[140]. They use a combination of a Bayesian approach and the Dempster-Shafer theory to

determine the belief value whether a sender is misbehaving or not. Their approach is a

hybrid model, which focuses on lowering the uncertainty in detecting attackers and thus

decreasing false positives.

To conclude, most of the presented related works are on one-shot games instead of

repeated games. Most games are between an attacker and an administrator, instead of

an attacker and an IDS. The NE solution is the only one used in non-cooperative game

theoretic approaches in ID. The Shapley value has been used, but it belongs in cooperative

game theory, which is outside the scope of the present work. The QRE has not been

employed in ID. Insiders are the subject of research only in [106] using a one-shot game.

In our approach, we construct a novel repeated game model, between an insider and

an IDS, to determine how an insider will interact in the future, and how an IDS would

react to protect the system. For that reason, we solve the game and we extend the NE

notion to the Quantal Response Equilibrium (QRE), to capture players’ bounded rationality.

This work has incorporated the results of our previous works that showed the potential of

implementing a framework within which an IDS and a user will safely interact, preserving

their own interests. A generic ID game model introduced in [86] was examined to discover
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some essential features as its repeated divisions, and it was validated by solving and trying

out the game with an insider. Following this, the insider threat was presented in [87], and

preliminary results of calculating the QRE, when playing games with insiders repeatedly,

were given. To exploit QRE results in ID, we proposed the use of a detection mechanism

in [88]. To present a possible implementation scheme of this detection mechanism, we have

created an application model and a detailed game-based detection algorithm.

Game theoretic solutions in Intrusion Detection Systems are discussed in an early survey

[7] when only a few works had appeared. Among the problems presented as limitations

of Game Theory is the unrealistic assumption that players are rational, and the authors

conclude that human behavior is still unpredictable. However, the intentions that triggered

a human’s behavior have been modeled in the past, as reviewed in the next section.

2.4 Intention-based and Behavioral Detection in ID

David Levine was among the first who attempted to justify human’s altruistic behavior and

spite in games of standard economic models, using a model of signaling of intentions [100].

In a late research work jointed with Charness, they find evidences that market players are

not only motivated by monetary reward, but social preferences play significant roles in these

types of interactions, such as altruism and reciprocity [37]. It is therefore the intentions

rather than the outputs that under certain circumstances concern market players more.

An early attempt to introduce intention modeling for intrusion detection appeared in

[171]. The authors described a theoretical approach, by employing Task Knowledge Struc-

tures (TKS) and Cognitive Task Modeling (CTM), to construct a User Intention Identifi-

cation system, the UII. The UII is an anomaly-based intrusion detection system that was

developed as an autonomous module within the SECURENET EU funded project ([49],

[170]). It aims at detecting deviations from normal behavior based on reasoning of users’

intentions. The module is an expert system that integrates an advanced intelligent mod-
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ule, an Intent Specification Language (ISL), to further increase the effectiveness of an IDS.

Known intention patterns specified as authorized user intentions are maintained. The SE-

CURENET ISL is used to identify the intentions of a user by trying to match his behavior

with any of the authorized patterns of intentions. In the case of a mismatch, an alarm is

raised.

The motivation of this approach are malicious actions that derive from legitimate activ-

ity, as we have realized in our approach and described in Section 1.1.1 that normal events

might cause damage. But because intention profiles are used, the use of an ISL to detect

user’s intention is tight to the traditional anomaly detection technique.

Recently, Burgoon et al. [29] focused on the role of deception in order to determine

intention from behavior. The authors recognize the difficulty in detecting human intentions

and link deception to observable behaviors and psychological reactions. By studying decep-

tion, they argue that it is possible to identify intentions which might cause damage. Among

their conclusions is that future research directions will obvert from the psychological cues of

deception to the investigation of strategic interactions revealed in human behaviors. This

is a preamble of the use of Game Theory in Intrusion Detection and, more widely, in IT

Security.

McCabe et al. [117] discuss an interesting point for intentional detection using Game

Theory, regarding the representation form of the game. They argue that players behave

differently in normal forms than in extensive forms (see Section 1.2 for the related descrip-

tions). As even little children are able to infer other people’s intentions by ”reading” what

they say or what they do, in the Theory of Games we make assumptions about what players

believe, expect or know for each other, as an attempt to read opponent’s intentions. In their

observations, they found that players cooperate more frequently in extensive forms, and they

conclude in that the game form matters when we attempt detection of intentionality.
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2.5 Summary

Reviewing the literature to discover how Computer Science incorporated game theoretic

aspects and how Game Theory has been influenced by Computer Science, we realize that

IT Security has accepted a large part of this merge. Moreover, Intrusion Detection is a

field with a significant number of research works that aim at addressing old problems with

completely new approaches. It is also remarkable that no research work in the area of

ID with the use of a game theoretic approach is based on any of the classical intrusion

detection techniques. It seems that game theoretic models in ID abandon anomaly, misuse,

and specification-based detection techniques and convert to completely different methods.
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Chapter 3

A Generic Intrusion Detection

Game Model

The sciences do not try to explain, they

hardly even try to interpret, they mainly

make models. By a model is meant a

mathematical construct which, with the

addition of certain verbal interpretations,

describes observed phenomena. The

justification of such a mathematical

construct is solely and precisely that it is

expected to work.

John von Neumann (1903 - 1957)

In Chapter 3, we construct a generic Intrusion Detection game model, to present how an

Intrusion Detection System (IDS) interacts with a user. To represent Intrusion Detection as

a game, we define the players and their actions, what players know when they act, possible

outcomes, and players’ preferences over these outcomes. We identify that such a game is a

finite, lose-lose game, with sequential and simultaneous moves. We give the general formal
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description of the game and we check its extensive form if it complies with the rules that

ensures it. We close the description of this generic model with the formal definitions of

Intrusion Detection as a game with perfect and imperfect information.

3.1 Representing Intrusion Detection as a Game

Von Neumann and Morgenstern [180] point out that in order to use mathematics (e.g. Game

Theory) in a certain field, the problems in this field must be formulated and stated clearly.

Consequently, what follows in the rest of this chapter provides an analytical representation

of Intrusion Detection as a game.

As mentioned in the introduction, Intrusion Detection (ID) is an interactive situation,

adopting the interactive characteristics that hold in IT. Interactions occur between a user

and an IDS in a dynamic way. Game theory models dynamic interactions using the extensive

form representation [95]. To capture this dynamic nature of the ID interactions, we present

the generic game model of Intrusion Detection as an extensive form game. Among the

different ways a game can be described, we have chosen the one suggested by Watson [181].

According to this representation, we have to specify the following formal elements:

- the list of players,

- their possible actions,

- what the players know when they act,

- the outcomes of the players’ actions, and

- the players’ preferences over these outcomes.

Identifying these elements for the Intrusion Detection game, we establish the following:
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Players The interactions in ID are between two players; a user (potential attacker) and an

Intrusion Detection System (IDS). Because a user can be one of several different types,

the game that is being played also differs. Accordingly, the IDS adjusts its operation

to the user’s type. An IDS plays many games at a time, each with a different user.

Games between an IDS and a group of attackers that attacks a Target System (TS)

is outside the scope of this research work.

Actions Players’ possible actions are numerous. Generally speaking, if the user is an attacker,

then he chooses a method of attack to harm the TS, or attacks the TS just to gain

information for his own purposes (benefit). When an IDS detects an attack, it selects

the proper counteraction to prevent damage.

Information At the beginning, no player has enough information, and thus they act under great

uncertainty. As for the case of an attacker, he might observe a TS in order to gain the

necessary information to perform an attack (reconnaissance attack [159]). Similarly,

an IDS observes the protecting TS to detect attacks (logs).

Outcomes In an ID game, the winner is an attacker who successfully attacks a TS and remains

undetected, at least until he achieves his goals. On the other side, the IDS of a TS,

which detects an attempt of an attack and prevents attacker’s further actions before

any threat has been realized, is the winner of the game over this attacker.

Preferences In most cases, an attacker prefers achieving his goals over not achieving them, but

without being detected. On the other side, an IDS prefers detecting an attempt

of an attack over detecting a successful attack. Moreover, an IDS prefers detecting

real attacks over causing false alarms. Table 3.1 shows these general preferences of

attackers and IDSs.

Figure 3.1 illustrates the described formal elements in a player-centric diagram. In the

subsequent subsections, we examine in detail these formal elements, in order to describe the
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General Preferences

Successful Attack

Detection YES NO

YES IDS wins

NO Attacker wins

Table 3.1: General preferences of attackers and IDSs

ID game in a systematic way, to cover most of its aspects, and prepare the construction of

the generic ID game model.

attacker
+

IDS

Detected or undetected
successful attack,

or attempt of attack
+

detection of a non attack

Undetected attack
+

Detection of attack

Information gained
+

logs

Information Actions

Preferences Outcomes

Attacks
+

counteractions

Figure 3.1: The formal elements of the ID game
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3.1.1 Players and Actions

The game has two players, an IDS indicated by I and a user indicated by U. Player U might

be a normal user or an attacker. But, even if he is a normal user, he might unintention-

ally harm the TS. Consequently, player U is considered as a general user, and no further

categorization is needed before he acts.

Each player has a number of possible actions to choose from. Player I, examining player

U ’s actions, allow player U to continue using the TS by choosing C, if player I comes to

the conclusion that player U acts legitimately. Conversely, player I chooses P to prevent

additional damage to the TS, if it decides that player U is committing illegal actions. In

short, in this game player I has two choices; choice C to allow player U to continue using the

TS, and choice P to prevent player U to attack or to further damage the TS. In real cases,

this binary approach reflects that player U requests a service or a resource from the TS,

and player I either accepts to fulfil the request (choice C ) or refuses (choice P). Although

other approaches might appear to include more than two choices, the interpretation is the

same.

Similarly, player U has three possible actions; L when acting legitimately, A when

acting illegally generating attacks, and E when he decides to exit the TS and he logs out.

Comparing to player I ’s actions, player U has one more action to choose, that is, he has

three actions. Regarding player U ’s activity, it is either legitimate or illegal, as defined in

Section 1.4.

3.1.2 Information

What players know when they act is significant, because it implies the type of the game

that will be played. Fully informed players play complete information games, while partially

informed players play incomplete information games. In the game of ID, player U might

know the existence of an IDS behind the TS. If he has this information and he is a common
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user, then his actions are adjusted to normal behavior avoiding mistakes. But if he is an

attacker, then he tries to cover his attack traces, in order to avoid detection by the IDS.

As for player I, the first time it monitors the actions of a new user, it has no information if

he is a potential attacker. Besides, whenever it decides upon the actions of a user, whether

they are normal or attacking, it is not 100% sure. It is the measured accuracy of an

IDS discussed in Sec. 1.1.4, which gives the percentage of detected true attacks and the

corresponding false alarms.

3.1.3 Outcomes

The outcome of the ID game might be one of the following listed below:

- an attempt of an attack is an unsuccessful attack at the real TS. Such an attack could

be detected or left undetected by an IDS,

- an attempt of an attack at a fake TS (e.g. honeypots). Such an attack could be

detected or left undetected by an IDS,

- a successful attack, which could be detected or undetected,

- a successful attack which is not detected in real time by an IDS, and the damage

cannot be confirmed ex post (e.g. disclosure of information), and

- detection of a non attack (i.e. false positive alarm).

3.1.4 Preferences

In Intrusion Detection, the specification of players’ preferences is not clearly implied by the

rules of the game that is being played between a user and an IDS. It is well known that

user’s preferences depend on user’s type. When a user is normal with no intentions to act

illegally, then he has reverse preferences from a user with malicious plans to damage a TS.

In addition, an attacker’s preferences significantly differ from an IDS’s preferences, because
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his possible actions and their corresponding outcomes diverge and conflict. As the type of

an attacker is our major interest, we specify preferences for an attacker rather than for a

normal user. The preferences must satisfy the transitivity condition [135]. Generally, one

can assume the following preferences for an attacker and an IDS.

Attacker’s Preferences

An attacker prefers carrying out a successful attack avoiding detection over carrying out a

successful attack and being detected by an IDS. Moreover, an attacker prefers an unsuc-

cessful attack that left undetected over a detected unsuccessful attack.

Finally, an attacker might prefer a successful detected attack over failing to successfully

attack the TS without being detected. Although this seems to be reasonable, in some cases

an attacker might prefer exactly the opposite. Table 3.2 summarizes attacker’s preferences

arranged from the most preferred (A) to the least one (D).

Attacker’s Preferences

Attack

Detection Successful Unsuccessful

YES B D

NO A C

Table 3.2: Attacker’s preferences in ID in IT Security

IDS’s Preferences

An IDS prefers detecting an attempt of an attack, i.e. an unsuccessful attack, over detecting

a successful attack. Similarly, an IDS prefers detecting over no detecting a successful attack

that usually gives information of the Target System loopholes, its threats, etc.
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Finally, an IDS prefers characterizing a normal action as an attack and causing a false

alarm over no detecting a successful attack, which seems to be the worst case scenario.

Table 4.4 summarizes IDS’s preferences arranged from the most preferred (A) to the least

one (D).

IDS’s Preferences

Attack

Detection Successful Unsuccessful

YES B A

NO D C

Table 3.3: IDS’s preferences in ID in IT Security

Identifying the game as a win-win or a lose-lose game

Examining attacker’s and IDS’s preferences on the above tables to identify whether such a

game is potentially a lose-lose game or a win-win game, it is noticeable that D preferences

conflict and cannot be accomplished simultaneously, but C and B preferences, which are

awful but not the worst case preferences, are common to both players. Therefore, a game

between an attacker and an IDS may well be characterized as a lose-lose game and definitely

not as a win-win game.

3.2 Sequential and Simultaneous Moves

Next, the key question to be addressed is how this game is being played, with simultaneous

or with sequential moves. The crucial criterion to answer this question is to take into

account first, that using a TS and requesting a service from it, the user waits for a response,
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although he does not usually even realize it, and afterwards, the user makes another request

to which the TS replies too, and so on. Thus, the kind of interaction formulated here is a

sequential-move interaction, like the one taking place between two players in a chess game.

However, when the TS is protected by an IDS, the user is not only interacting with

the TS, but he is also interacting with the IDS. In the latter kind of interaction, the user

is acting and at the same time the IDS collects data related to this action, filters it and

decides to counteract in the case of an attack. The IDS performs a counteraction ignoring

the user’s current action.

Elaborating the described interaction into the game theoretical approach [51], in Intru-

sion Detection an attacker plans his moves before he acts and calculates the future conse-

quences. Up to this point, the game is a sequential-move game. But when the attacker

starts applying this plan and confronts the existence of an IDS protecting the TS of his

attack, then he is trying to discover what this IDS is going to do right now. This argument

indicates that the game includes also simultaneous moves.

On the contrary, an IDS has been designed and implemented to incorporate one or

more ID techniques, which lead to a predefined plan of its moves, and to calculate the future

consequences to the TS that protects. Up to this point, the game again is a sequential-move

game. But when a user enters the system, the IDS observes his moves to decide whether he

is an attacker or not, and according to its design, to figure out what the attacker is going to

do right now. The conclusion once more is that the game includes also simultaneous moves.

Consequently, Intrusion Detection in IT Security is a game that combines both sequential

and simultaneous moves.

3.3 General Formal Description of the Game

Consider the extensive form of the Intrusion Detection game depicted in Fig. 3.2. A

user (player U ) attempts to enter a TS protected by an IDS (player I ). The user might
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successfully login to the TS or not (e.g. typing in a wrong password). Even if he gains

access to the TS, he might already be a member of a black list. Therefore, player I moves

first at the initial node (the root) of this game denoted by an open circle, when player U

attempts to enter the TS. Then, examining this attempt, player I has two choices; to allow

the user continuing (choice C ) or to prevent the user from using the TS (choice P) which

ends the game. In the latter case, it is assumed that player I has achieved to detect a real

potential attacker and has not caused a false alarm. Hence, the outcome at this point of the

game is the vector (detection, attempt of an attack) for player I and player U respectively.

If choice C has been selected by player I, then player U has three choices; to perform

legal actions (choice L), to attack the TS (choice A), or to exit from the TS (choice E ).

If player U exits the TS, then the game ends with outcomes (no detection, attempt of an

attack). The reason for these payoffs is first that the user has achieved to enter the TS

and the IDS did not detect an attack even if he was a masquerade, so this is counted as

penetration, and second that the user did not attack the TS although he might got the keys

(the pair username and password) and checked them against the TS, to attack it another

time in the future.

The game continues with player U selecting a legal action over the TS or attacking

the TS. In both instances, player I analyzes afterwards the opponent’s move, and decides

whether he is acting legally or not. If player I chooses P, then the payoffs of the game

totally diverge. In particular, if player U has committed an attack (choice A) then the

payoffs are (detection, successful attack), otherwise (choice L), the payoffs are (detection,

no attack) which constitutes a false alarm.

Alternatively, when player I allows player U continuing working with the TS (choice

C ), while player U is acting legally, then player U might either proceed with legal actions

(choice L), or with an attack (choice A), or he decides to exit the TS (choice E ) terminating

the game. This outcome of the game results in the payoffs (no detection, no attack). The
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Figure 3.2: Intrusion Detection as an extensive form game
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described stage of the game surrounded by a dashed line rectangle as shown in Fig. 3.2, is

a repeated division of the game, which leads to the end of the game when player U chooses

E.

Exploring further the extensive form of the ID game for repeated divisions, we locate two

parts; the one is related to legal actions and the other one to attacks. Figure 3.3 represents

the extensive form game explained in detail above, displaying two separate divisions and

their iterations. Although the form of the ID game looks as never ending, each of the

repeated divisions definitely has a branch where the game ends, and thus the game under

study is a finite game.

3.4 Checking the Extensive Form

Extensive form games should give a picture of a tree. There are two rules that ensure this

form [95]; first, the number of arrows pointing out from a node must be at least one, and

the number of arrows pointing at a node must be at most one, and second, retracing the

tree in a backward fashion from a node towards the initial node, the starting node should

not be reached again drawing a cycle, but actually the initial node should be the end of

this backtracking.

The first rule implies that a player has at least one action to perform when it is his turn

to play, and that after an action of a player, either another player is next, or the game ends

to a payoff vector of a specific outcome. The second rule aims at solving games in extensive

form using backward induction, since they have the form of a tree.

The Intrusion Detection game described above has been modeled in the form of a tree.

Checking the game against the first rule, it is apparent that the number of arrows pointing

in any node, as well as the number of arrows pointing out from any node, satisfy this rule.

Similarly, examining the plausibility of backtracking from any node towards the initial node

of the game, no circle would be drawn and the initial node would be reached.
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Figure 3.3: Intrusion Detection and the repeated divisions of the game
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3.5 Formal Definitions

With the use of the definitions given for extensive form games with perfect and imperfect

information in [135], we formulate the corresponding definitions in the next two sections for

the game of ID.

3.5.1 The ID Game with Perfect Information

Definition 3. Let Gp = 〈N,H, P, (%i)〉 be an extensive game with perfect information that

models Intrusion Detection, where

• N = {I, U} is the set of players;

• H is the infinite set of sequences that consists of the histories ∅, C, P , (C, L), (C, E),

(C, A), (C, L, C), (C, L, P ), (C, L,C, L), (C, L, C,E), (C, L,C, A), (C, L,C, L,C),

(C, L,C, L, P ), (C,L, C, L,C, L), (C, L, C, L, C, E), (C,L, C, L,C, A),. . .,

(C, L,C, A, C), (C, L, C,A, P ), (C, L, C,A, C, L), (C, L,C, A, C, E), (C, L,C, A, C,A),. . .,

(C, A,C), (C,A, P ), (C, A, C,L), (C, A,C, E), (C,A, C, A),. . .;

• P is the player function that indicates the player who takes an action after a history

(P (h)), i.e. P (∅) = I, P (I) = U , and P (U) = I for every h 6= ∅, that is to say for

every nonterminal history;

• %i is the preference relation on Z for player i ∈ N , that is, the preference relation of

player I is (detection, unsuccessful attack) ÂI (detection, successful attack) ÂI (no

detection, unsuccessful attack)ÂI (no detection, successful attack), and the preference

relation of player U is (no detection, successful attack) ÂU (detection, successful

attack) ÂU (no detection, unsuccessful attack) ÂU (detection, unsuccessful attack).
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3.5.2 The ID Game with Imperfect Information

Definition 4. Let Gi = 〈N, H, P, fc, (Ii)i∈N , (%i)〉 be an extensive game with imperfect

information that models Intrusion Detection, where

• N = {I, U} is the finite set of players;

• H is the infinite set of sequences that consists of the histories ∅, C, P , (C, L), (C, E),

(C, A), (C, L, C), (C, L, P ), (C, L,C, L), (C, L, C,E), (C, L,C, A), (C, L,C, L,C),

(C, L,C, L, P ), (C,L, C, L,C, L), (C, L, C, L, C, E), (C,L, C, L,C, A),. . .,

(C, L,C, A, C), (C, L, C,A, P ), (C, L, C,A, C, L), (C, L,C, A, C, E), (C, L,C, A, C,A),. . .,

(C, A,C), (C,A, P ), (C, A, C,L), (C, A,C, E), (C,A, C, A),. . .;

• P is the player function that indicates the player who takes an action after a history

(P (h)) (a member of N ∪ c, where c is the chance player), i.e. P (∅) = I, P (I) = U ,

and P (U) = I for every h 6= ∅, that is to say for every nonterminal history;

• fc is the function that associates with every history h for which P (h) = c a probability

measure fc(·|h) on A(h), each independent of every other such measure, e.g. (fc(a|h))

is the probability that a occurs after the history h;

• Ii is the information partition of player i, i ∈ N and a set Ii ∈ Ii is an information

set of player i;

• %i is the preference relation on Z for player i ∈ N , that is, the preference relation of

player I is (detection, unsuccessful attack) ÂI (detection, successful attack) ÂI (no

detection, unsuccessful attack)ÂI (no detection, successful attack), and the preference

relation of player U is (no detection, successful attack) ÂU (detection, successful

attack) ÂU (no detection, unsuccessful attack) ÂU (detection, unsuccessful attack).
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3.6 Summary

Constructing a generic game in extensive form to model Intrusion Detection, we specified

first the formal elements of the game; players, actions, information, outcomes, and pref-

erences. The general formal description of the ID game reveals the dynamic interactions

between a user and an IDS, which make sense when examining players’ preferences. By

interpreting the functionality of the ID game model, we conclude that it is a lose-lose game

with sequential and simultaneous moves. Two repeated divisions of the game have been

located that correspond to legal and attacking actions respectively. The formal definitions

of the ID game model with perfect and imperfect information formulate a mathematical

construction of Intrusion Detection using the Theory of Games.

62



Chapter 4

Playing Repeatedly the ID Game

All movements go too far.

Bertrand Russell (1872 - 1970)

In Chapter 4, we examine the repeated form of the ID game with perfect and imperfect

monitoring, following the generic ID game model established in Chapter 3. We first con-

struct a static version of it, when the game is played once, known as the stage game [115],

which constitutes the building block of the repeated game. Subsequently, we specify the

players, the pure actions, the action profiles, the preferences of a normal user, an attacker,

and an IDS, and the mixed actions of the game. The repeated game with perfect monitoring

follows as the stage game that is being played again and again in every period. Then, the

repeated ID game with imperfect public monitoring is formulated and discussed based on

the specifications of the game with perfect monitoring.

4.1 Repeating with Perfect Monitoring

In perfect monitoring the players of the game are fully informed about each others’ moves.

A user is fully informed if he knows the existence of an IDS and what the IDS does at every

move. On the other side, an IDS is fully informed if it identifies accurately a user’s move.
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The latter imposes that an IDS has 100% detection rate, which means that it is reliable,

and it raises no false alarms at all, because it is accurate. Although such an IDS does not

really exist, it is of great interest to study the situation of an IDS with 100% detection rate

as the simplest case, which provides us with a clear benchmark. That is why it has been

considered as the first thesis hypothesis stated in Section 1.5.

4.1.1 The Stage Game Model

In order to formulate the stage game appropriately for the construction of the repeated

game, we look into the players, their pure and mixed actions, the action profiles, and

players’ preferences, as described in the subsequent paragraphs. The dynamic structure

of the game restricts the use of an extensive form stage game, which is repeated in every

period.

Players

Each of the users of the Target System plays a game with the IDS which protects it. Every

such a game is independent from the other games, but, a user might take into account

other users and their actions, and the IDS has to play with all of them. Therefore, the

game has a set of n− 1 user players and an IDS, that is, there are n players in this game,

N = {U1, U2, . . . , Un−1, IDS}. Each user plays separately and isolated with the IDS, in some

cases ignoring even the existence of other players. Thus, there is no cooperation between the

user players U1, U2, . . . , Un−1. From this standpoint, we assume the game as a two player

game, between a user U and an Intrusion Detection System IDS, forming N = {U, IDS}.
Because an IDS plays such a game with each user, this is a representative form of a n-

player game between an IDS and n− 1 noncooperative users. The IDS is expected to play

each game as effectively as possible and it has been designed, implemented, and configured

appropriately for this purpose.
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Pure Actions

A user U has a number of choices, called actions in the stage game, denoted by AU . An

element of this non empty set, indicated with aUk
, is the k available action of player U . So,

the set of pure actions for player U is given by,

AU = {aU1 , aU2 , . . . , aUk
}, k = 1, 2, . . .

Player U ’s action set is a finite set. Similarly, the IDS has a number of available actions

indicated as,

AIDS = {aIDS1 , aIDS2 , . . . , aIDSm}, m = 1, 2, . . .

In particular, player IDS, examining player U ’s actions, allows player U to continue

using the TS by choosing C, if player IDS comes to the conclusion that player U acts

legitimately. Conversely, player IDS chooses P to prevent additional damage to the TS, if

it decides that player U is engaging in illegal actions. In short, in this game player IDS has

two choices; choice C to allow player U to continue using the TS and choice P to prevent

player U to attack or to further damage the TS.

In real cases, this binary approach reflects that player U requests a service or a resource

from the TS, and player IDS either accepts to fulfil the request (choice C ) or refuses it

(choice P). Although other approaches might appear to include more than two choices (see

Chapter 5), the interpretation is the same.

Similarly, player U has three possible actions; L when acting legitimately, A when

acting illegally generating attacks, and E when he decides to exit the TS and so he logs

out. Comparing to player IDS ’s actions, player U has one more action to choose, that is,

he has three actions.

The third action, the choice of exiting the game, has been selected to balance the ends

of the game. So, player IDS ends the game by deciding to prevent (choice P) player U to
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continue using the TS, when the user acts illegally, and similarly, player U ends the game

by exiting (choice E ) the TS, when he has a reason to do so.

To conclude, the set of pure actions for player U is

AU = {aU1 , aU2 , aU3} = {L,A,E},

and the set of pure actions for player IDS is

AIDS = {aIDS1 , aIDS2} = {C, P}.

Action Profiles

The set of actions for every player is a compact subset of the Euclidean space R2, and

because it is finite, the game is a finite game. The set of profiles, corresponding to the set

of pure actions, is the combination of actions, one action for each player, defined as the

Cartesian product,

A ≡ ∏
iεN Ai.

Specifically for this two-player game, the set of pure action profiles is defined by

A ≡ AU ×AIDS = {(L,C), (A,C), (E, C), (L,P ), (A,P ), (E, P )}.

The number of profiles that are elements of this set is k ×m = 3× 2 = 6. We indicate

a member of a profile with (xi)iεN or simply (xi).

Preferences

Next we specify players’ preference rankings over the action profiles. Each player iεN

ranges the action profiles from the most preferred to the least one. A preference relation

ºi on the set A = xiεNAi for player i specifies a binary relation, represented by a payoff
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function ui : A → R. The function u is a continuous function, known also as von Neumann-

Morgenstern utility function. For two pure actions ai1 and ai2 of player i, ui(ai1) ≥ ui(ai2),

whenever ai1 º ai2 . The values of this function are called payoffs or utilities [135].

Well, the fact is, preferences vary between different types of user players. Different user

players have different motivations for doing something, and thus their intentions diverge.

Besides, not all user players have the same skills to complete an activity.

For example, an internal user of a system decides one day to harm it. He is quite

concerned in hiding his traces rather than successfully achieving his goals, because if caught

he might lose his job. Moreover, he is patient enough in completing his goals, since he has

plenty of time as an internal user.

On the contrary, suppose a user player gains access in a system. He is only concerned

in causing damage for his own purposes, paying no attention in situations where he is being

caught and stopped by an IDS. Under most circumstances, he is impatient, because he does

not have time to lose.

In both cases, the user player might be skillful enough and fully informed to commit

his actions. This happens either because of his original job (employee), or as a result of the

work he has done so far towards this direction. For example, he might be fully informed

because he has accomplished another attack before, usually named as reconnaissance attack.

Nevertheless, the action profile is ranked in a different way if an internal user is considered

in the place of an outsider attacker.

Just as user players’ preferences depend on user types, the IDS’s preferences are being

adjusted, whenever a certain type of user is identified. Specifically, the IDS is concerned in

not allowing an attacker to damage the system, but it is also concerned in allowing a normal

user to continue his work as it should be. Interestingly, the IDS’s preferences disagree if

the opponent player has been identified as a normal user, or as an attacker, or if it is not

identified yet.
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Because when playing repeatedly the ID game the user type matters, in the sequel,

we consider the preferences of two different types of user players, a normal user and an

attacker, and the preferences of the IDS when playing with different user players. Then, we

construct the corresponding utility functions following Binmore’s method [21], to quantify

the outcomes of the proposed game in a variety of instances.

Normal User’s Preferences

Interpreting the action profiles when the user player is a normal user of a system, we

consider the corresponding set of a Normal User’s preferences, denoted by N . This set

includes the following four items:

N = {N1,N2,N3,N4},

where,

N1 : A Normal User is acting legitimately and the IDS allows him to continue.

N2 : A Normal User is being prevented by the IDS although he is acting legitimately.

N3 : A Normal User is acting illegally but the IDS allows him to continue.

N4 : A Normal User is being prevented by the IDS because he is acting illegally.

Although the action profiles for this game enumerates six items, as described before,

the actual preferences of a normal user player are only four. The reason for this is the

third action of a user player, the exit (E ) action, which ends the game. In cases where the

game ends at an exit action on behalf of the user player, the outcome is equivalent to the

corresponding previous continue action on behalf of the IDS. As a result, the normal user’s

preferences are consistent with the action profiles of the game, as specified in the following:

N1 → (L,C), (E, C)
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N2 → (L,P ), (E, P )

N3 → (A,C), (E,C)

N4 → (A,P ), (E,P )

For a Normal User it is most desirable to act legitimately without preventions and his

next choice is to act illegally with no stops, because illegal actions are not intentional.

Similarly, he prefers the IDS to prevent his actions when these are illegal rather than

legitimate. Based on these lines of reasoning, the ranking of these preferences from the less

preferred to the most one gives the following:

N3 ≺ N1 and N2 ≺ N4.

In order to get Normal User’s preferences fully ordered, there is a need for connection

between these two relations. A Normal User most prefers N1 and his worst choice is N2.

Additionally, examining his preferences between N3 and N4, a Normal User prefers N3

because he has no intention to harm the TS, so he wants an uninterruptible use of it. This

interpretation results into the following chain of preferences:

N2 ≺ N4 ≺ N3 ≺ N1 (4.1)

From this set of preferences and the defined relations that reflect the ranking, we

will define the corresponding utility function for the Normal User. Suppose that UN :

{N1,N2,N3,N4} → R is the utility function of the Normal User. With regard to his prefer-

ences, the worst action profile is N2. So, UN (N2) = 0. At the other end, he mostly prefers

N1. Therefore, UN (N1) = 1. Selecting anyone between the other two preferences in the

middle of the rank, we assign 1
2 utility to the preference N4, that is, UN (N4) = 1

2 . Finally,

because N3 is the intermediate between N4 and N1, we define UN (N3) = 3
4 , by dividing the

distance between UN (N1) and UN (N4) with 2, that is,
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UN (N3) = UN (N4) + UN (N1)−UN (N4)
2 = 1

2 + 1− 1
2

2 = 1
2 +

1
2
2 = 1

2 + 1
4 = 3

4 .

In this way, instead of having a ranking of encoded preferences as presented in expression

(4.1), we have real numbers to represent preference relations, very handy for calculations.

This is a more convenient representation when making choices, where the criterion is the

maximization of the utility function UN . Table 4.1 below summarizes in the second row the

specified utilities for the Normal User. The third row describes the corresponding utilities

free of fractions, after multiplying them by 4.

x N2 N4 N3 N1

UN (x) 0 1
2

3
4 1

4 · UN (x) 0 2 3 4

Table 4.1: Normal User’s Utility Function

Attacker’s Preferences

When the user player is an attacker, we consider in a similar way the set of an Attacker’s

preferences, denoted by A.

A = {A1,A2,A3,A4},

where,

A1 : An Attacker does not achieve his goals and he is not being detected.

A2 : An Attacker does not achieve his goals and he is being detected and stopped by the

IDS.

A3 : An Attacker achieves his goals without being detected.

A4 : An Attacker achieves his goals and is being detected and stopped by the IDS.
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The attacker’s preferences are consistent with the action profiles of the game. We assume

that when an attacker does not achieve his goals, he acts legitimately, as specified below:

A1 → (L,C), (E, C)

A2 → (L,P ), (E, P )

A3 → (A,C), (E,C)

A4 → (A,P ), (E,P )

As for an Attacker, the most preferable outcomes of the game might be those where he

is achieving his goals. Between being detected or not, he prefers the second. In addition,

he does not prefer to be prevented when acting legitimately, but he prefers to continue.

Ranking these preferences from the less preferred to the most one, we get:

A2 ≺ A1 and A4 ≺ A3

To connect the above relations and find an ordered ranking of Attacker’s preferences,

we examine further his profile. Taking into account that because he mostly prefers to

achieve his goals no matter whether he will be detected or not, he is dedicated to his goals.

Therefore, the other two preferences will eventually follow. This explanation results into

the following ordered attacker’s preferences:

A2 ≺ A1 ≺ A4 ≺ A3 (4.2)

Similarly, we will define the corresponding utility function for the Attacker, based

on the set of preferences A and the defined preference relations. Suppose that UA :

{A1,A2,A3,A4} → R is the utility function of the Attacker. With regard to his pref-

erences, an Attacker dislikes action profile A2 and prefers mostly A3. For this reason, we

define UA(A2) = 0 and UA(A3) = 1, respectively. If we select A1 as one intermediate

between A1 and A4 which are left, we define its utility as UA(A1) = 1
2 . Finally, we calcu-
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late UA(A4), following the same reasoning as we did before for the Normal User, and we

define UA(A4) = 3
4 . In Table 4.2 below, the second row summarizes the defined utilities

for the Attacker. The third row describes the corresponding utilities free of fractions, after

multiplying them by 4.

x A2 A1 A4 A3

UA(x) 0 1
2

3
4 1

4 · UA(x) 0 2 3 4

Table 4.2: Attacker’s Utility Function

In a case where an Attacker has another profile, the preference ranking would be totally

different. For example, if an Attacker is an internal attacker, an insider of the Target

System, then he mostly prefers not to be detected rather than attacking. His preferences

derive from the double role he plays, the mixture between a Normal user and an Attacker

too. In such a situation, the ranking of his preferences might be as below:

A2 ≺ A4 ≺ A1 ≺ A3 (4.3)

In Chapter 5, we examine thoroughly insiders’ preferences, when they play the ID game

in a form especially constructed for them.

IDS’s Preferences

The set of an IDS’s preferences is denoted by IDS and includes four items, as described

in the sequel:

IDS = {IDS1, IDS2, IDS3, IDS4},
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where,

IDS1 : The IDS does not detect any illegal action and allows the user to continue.

IDS2 : The IDS detects a legitimate action as an attack and stops it (false positive alarm).

IDS3 : The IDS does not detect an attempt of an attack and the user successfully completes

it (false negative alarm).

IDS4 : The IDS detects an attempt of an attack and stops it.

The IDS’s preferences match the action profiles of the game, as specified below:

IDS1 → (L,C), (E, C)

IDS2 → (L,P ), (E, P )

IDS3 → (A,C), (E, C)

IDS4 → (A,P ), (E, P )

An IDS has been designed and implemented to detect attempts of attacks in real time.

Therefore, the most preferable outcome of the game must be to detect attempts of attacks

and stop them. The next preferable is to allow legitimate users to continue their work.

Regarding the other two preferences, the IDS prefers stopping incorrectly a legitimate action

rather than allowing an attack to be accomplished. The ranking of these preferences is

presented in the ordered list below:

IDS3 ≺ IDS2 ≺ IDS1 ≺ IDS4 (4.4)

We will define the utility function for the IDS, based on the set of preferences IDS and

the defined preference relations. Suppose that UIDS : {IDS1, IDS2, IDS3, IDS4} → R

is the utility function of the IDS. With regard to its preferences, an IDS dislikes prefer-

ence IDS3 and prefers mostly IDS4. For this reason, we define UIDS(IDS3) = 0 and
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UIDS(IDS4) = 1, respectively. If we select IDS2 as one intermediate between IDS2

and IDS1 which are left, we define its utility as UIDS(IDS2) = 1
2 . Finally, we calculate

UIDS(IDS1), following the same reasoning as we did before for the Normal User and for the

Attacker, and we define UIDS(IDS1) = 3
4 . In Table 4.3 below, the second row summarizes

the defined utilities for the IDS. The third row describes the corresponding utilities free of

fractions, after multiplying them by 4.

x IDS3 IDS2 IDS1 IDS4

UIDS(x) 0 1
2

3
4 1

4 · UIDS(x) 0 2 3 4

Table 4.3: IDS’s Utility Function

An IDS with different configuration, which has been tuned in order to reduce, for exam-

ple, the large number of false positive alarms it generates, might have another preference

ranking to reflect its settings and operation. In another example, for a Target System with

many internal attackers, the IDS should be tuned appropriately to detect them. The IDS’s

preferences then change its second and third choice to be detection of a legitimate action

as an attack (IDS2) and then no detection for normal activity (IDS1), respectively. This

alternative ranking of the IDS will have the form below:

IDS3 ≺ IDS1 ≺ IDS2 ≺ IDS4 (4.5)

Mixed Actions

Besides the pure actions, there are also mixed actions available to players. Players use

mixed actions when they want to introduce randomness into their behavior [135]. The set
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of probability distributions on the action set Ai of player i is denoted by ∆(Ai). In general,

αj indicates a mixed action. For player U , the set of mixed actions is

∆(AU ) = {αU1 , αU2 , . . . , αUk
}, k = 1, 2, . . .

and for the three available actions discussed above it turns into

∆(AU ) = {αU1 , αU2 , αU3}, αUj ε [0, 1] s.t. αU1 + αU2 + αU3 = 1.

An example would be the set ∆(AU ) = {1
3 , 1

5 , 7
15}, which indicates that player U will

choose the action L with probability 1
3 , the action A with probability 1

5 , and the action E

with probability 7
15 .

Likewise, the mixed actions for the IDS is indicated as,

∆(AIDS) = {αIDS1 , αIDS2 , . . . , αIDSm}, m = 1, 2, . . .

and for the two corresponding actions it is defined as,

∆(AIDS) = {αIDS1 , αIDS2}, αIDSj ε [0, 1] s.t. αIDS1 + αIDS2 = 1.

As an example we consider the set ∆(AIDS) = {3
4 , 1

4}, which indicates that player IDS

will choose the action C with probability 3
4 , and the action P with probability 1

4 .

The set of mixed profiles is the combination of mixed actions, defined as the Cartesian

product of the probability distributions,

M ≡ ∏
iεN ∆(Ai).

In this game, the set of mixed profiles is defined as ∆(AU )×∆(AIDS). In addition, the

utility function includes expectations, to incorporate the mixed actions. The set of payoffs,

generated by the utility function for the pure action profiles of A, is given as in [115] to be,

F ≡ {v ε R2 : ∃ a ε A s.t. v = u(a)}.
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Among these payoffs, there are some feasible payoffs, the payoffs currently available. In

particular, the set of feasible payoffs is the convex hull of the set of payoffs,

F† ≡ coF .

A set is convex if it contains the line segment joining two points whenever it contains

them. The convex hull is the smallest convex set that contains the initial set [21].

4.1.2 The Repeated Game Model

The game model described above is being repeatedly played again and again in periods of

time t ε {0, 1, 2, . . .}. The time period tx, x = 0, 1, 2, . . . denotes the time when the x turn

of the play has been finished, that is, the t1 period indicates the time the game has been

already played once. The number of times a game will be played depends on the players as

well as on the type of user. If the user violates the security policy of the TS, then the IDS

will prevent further usage of the TS and the game will end unexpectedly. If the user is an

internal user, then the game lasts for a long time, as long as the user is an employee of the

organization holding the TS. Such a game is a finite repeated game, but no player knows

how many times they will play it, if the current play is the last one, or when it will stop in

the future; it is an indefinitely repeated game.

In a repeated game, the choices made by the players are called strategies to distinguish

them from the options in the stage game called actions. According to the IDS’s view, at

the end of a time period tx, the IDS is able to monitor the action profile played before in

periods t0, t1, t2, . . . , tx−1. In particular, via a security auditing module that logs events and

filters audit data, it is informed about the history of the play to this point. Therefore, the

IDS perfectly monitors the actions of the other players, i.e. the user. Quite the opposite,

at the end of a time period tx, the user is hardly informed about what the IDS has chosen

so far, or even if such a mechanism is operating. In closing, we consider this repeated game

as a perfect monitoring game, because we take into account the IDS’s point of view.
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In a period of time tx, x = 0, 1, 2, . . ., the history of action profiles is a set containing

all actions previously played, denoted as

Htx ≡ Atx , x = 0, 1, 2, . . ..

As explained above, at period t0 the game has not yet played at all. Consequently,

the history at period t0 is the initial history of the repeated game Ht0 ≡ At0 ≡ {∅}.
Correspondingly, the infinite sequences of action profiles (at)∞t=1 is denoted by A∞. At any

time period tx, there is a list of x action profiles that assemble a history htx ε Htx , that is

to say, the history contains the actions played before, in periods t0, t1, . . . , tx−1. Likewise,

the next time period, tx+1, the history htx+1 will contain x + 1 actions and the history set

will be Htx+1 = Htx × A. Then, all possible histories of the infinitely repeated game is the

union of the histories Htx at each time period t0, t1, . . . , tx, denoted as the set

H ≡
∞⋃

x=0

Htx . (4.6)

In repeated games, we call strategies the actions played in each period, to indicate the

strategic planning the players adopt, because they repeat the stage game choosing from its

actions’ set. As the pure and the mixed actions have been explained and defined in Section

4.1.1, a pure strategy for a player of the ID game is a mapping from all possible histories

H defined in (4.6), into the corresponding set of pure actions Ai = {ai1 , ai2 , . . . , aik}, i =

{U, IDS}, k = 1, 2, . . . of this player, whereas, a mixed strategy is a mapping to the set of

mixed actions ∆(Ai) = {αi1 , αi2 , . . . , αik}, i = {U, IDS}, k = 1, 2, . . .. The same notation

σ is used for a mixed strategy, which is equivalent to a behavioral strategy, and a pure

strategy because it is a case of a behavioral strategy. The pure strategies and the mixed

strategies are defined as follows:

σi : H → Ai, i = {U, IDS}. (4.7)
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σi : H → ∆(Ai), i = {U, IDS}. (4.8)

Then, we denote by a(σ) the outcome of a pure strategy profile σ ≡ (at0(σ), at1(σ),

at2(σ), . . .) as the infinite sequence of action profiles with atx(σ), x = 0, 1, 2, . . . to be the

action profile played in period tx. Since in a period tx the corresponding payoff for the

pure action profile atx(σ) is ui(atx(σ)), where i = {U, IDS}, then an outcome a(σ) for a

player i is an infinite stream of the payoffs determined in the stage game, and is given by

(ui(at0(σ)), ui(at1(σ)), ui(at2(σ)), . . .). At every period, a payoff to a player i is discounted

by a discounted factor δ ∈ [0, 1). To calculate the average discounted payoff for this player

from the infinite stream of payoffs (ut0
i , ut1

i , ut2
i , . . .), we use the following formula

(1− δ)
∞∑

t=0

δtut
i. (4.9)

Likewise, to calculate the average discounted payoff from a pure strategy profile σ, we

use the next formula

Ui(σ) = (1− δ)
∞∑

t=0

δtui(αt(σ)). (4.10)

In the following discussions we will use formula (4.10) for mixed and behavioral strategies

as well.

4.2 Repeating with Imperfect Monitoring

In imperfect monitoring, the players of the game are not very well informed about each

others’ moves. Even if a user knows the existence of an IDS, he might not know what the

IDS does at every move. Likewise, an IDS is not well informed when it does not identify

a user’s move, which means that the IDS is not reliable and has a detection rate less than
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100%. Therefore, it raises a number of false alarms, because it is not accurate, as discussed

in Section 1.1.4.

In repeated games with imperfect monitoring we examine signals from the actual actions

that have been played in the previous period. When these signals are observable by all the

players of the game, then the game is repeated with imperfect public monitoring, otherwise,

the game is repeated with imperfect private monitoring.

We consider the ID game as a repeated game with imperfect public monitoring with the

specifications of Section 4.1 of the perfect monitoring. In addition, there is a space Y of

signals, and at the end of a period tx, x = 0, 1, 2, . . ., players observe a public signal y that

derives from space Y . Consequently, the history htx of the public signals (yt0 , yt1 , . . . , ytx−1)

is the only public information available in a period tx, and the set of these public histories

can be defined as

H ≡
∞⋃

x=0

Y tx . (4.11)

Player IDS is the long-run player of the ID game, and therefore, the history of the IDS

is given by

HIDS ≡
∞⋃

x=0

(AIDS × Y )tx . (4.12)

The ID game with imperfect public monitoring is a situation related to the second thesis

hypothesis stated in Section 1.5. On the other hand, the ID game with imperfect private

monitoring is outside the study of this research work, because games with imperfect private

monitoring require different techniques and raise a significant number of questions.
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4.3 Summary

Following the generic ID game model of Chapter 3, we examined the ID game when playing

repeatedly. In compliance with the two thesis hypotheses of Section 1.5, we formulated

the ID game as a perfect monitoring repeated game for an IDS that has 100% detection

rate (Hypothesis 1), and as an imperfect monitoring repeated game for an IDS with less

than 100% detection rate (Hypothesis 2). The specifications, the definitions, the notation,

and the discussions constitute the basis for game constructions and their solutions in the

following chapters.
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Chapter 5

Insiders and their Games

Life is nothing but a competition to be the

criminal rather than the victim.

Bertrand Russell (1872 - 1970)

In this chapter, we examine a special class of users, the internal attackers, also known as

insiders. We clarify this class by specifying what an insider is, what an insider does, how

risky is an insider’s activity, and how we can reduce this risk. We define four specific actions

for an insider and we discuss the reasons his activity is grouped in this action set.

Then, we construct a specific game between an insider and an IDS, to validate the

functioning of the generic ID game model presented in Chapter 3. For the IDS, we define

another set of four actions. Both action sets correspond to those of the generic model. The

strategies and outcomes, the preferences and payoffs are all defined and examined systemat-

ically, following specific methodologies to get valuable results. Next, we consider the infinite

rounds, and we provide the game definitions with perfect and imperfect information.

Based on the repeated game presented in Chapter 4, we solve the stage and the infinitely

repeated game, in a step-by-step approach, and we explore scenarios in two different cases.

Finally, we construct another game to be played with an unconventional insider, and we

compare it with the first one.
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5.1 Introducing the Insider Threat

In between 214-212 BC, Archimedes achieved to protect Syracuse for several months from

being conquered by the Romans. His novel inventions defended effectively Syracuse, until

a Syracusan traitor opened a gate, allowing Romans to seige the city. The insider threat

is as old as any dispute in this world. Between two conflicting parties, there might appear

someone in one of the parties, who will turn traitor, pursuing his own interests. Under these

circumstances, any defending mechanism might proved inadequate to protect an establish-

ment.

The 2007 E-Crime Watch Survey [54], which was conducted by the CSO magazine in

cooperation with the U.S. Secret Service, the Carnegie Mellon University Software Engi-

neering Institute”s CERTr Program and the Microsoft Corp., reported that the pie of

damage caused by attacks is divided more or less equally between insiders (34%), outsiders

(37%), and unknown (29%). Moreover, in 31% of the organizations the insiders have used

special tools (password crackers, sniffers, etc.), whereas in the previous year it was only 17%.

Unfortunately, the problem is likely to increase due to the great recession that generated

thousands of fired employees, and put at risk others’ jobs too.

5.1.1 Specifying an insider

The user of a system might have intentions and objectives that are opposed to those of the

belonged organization. Such a user is a potential internal attacker of the system, also called

an insider. Salem et al. [156] define an insider to be a malfeasant user that falls in one of two

categories; traitors or masqueraders. Traitors are authorized users with specific privileges to

use a system that belongs to an establishment; they exploit their accorded rights to achieve

their goals and violate the security of the system, by affecting the confidentiality, integrity,

and availability of its resources. Masqueraders are those who steal another user’s identity,

and by pretending that a legitimate user acts, they harm the system.

82



It is generally accepted that, an employee can become an insider because he is dishonest,

or disgraceful, or dissatisfied, or disappointed, or following a conflict with the employer.

Other settings include a fired employee or a retired one. But the list expands when the

organization employs also part timers, some of them for short periods, and afterwards

it sends them home; their frustration for being unemployed can turn them against the

organization.

Depending on the size, the structure and the regulation state of the organization, audi-

tors, consultants, customers, suppliers, and business partners might also have access rights

to the information and communication systems owned by the organization. The reason

is that they have to participate, interact, and accomplish their goals as external entities

related to the organization. But, many of them might have conflicting interests with the

organization, mainly because they also interact with other organizations at the same time,

which may be competitors.

Although the list of the mentioned involved parties is long, there is a small number of

common features between them; for example, the intention to harm the system, to cause

damage, to increase individual profit, and in some cases just revenge. Apparently, it is hard

to detect insiders, primarily because of their privileges that partially protect them from

being caught. Such an endeavor usually generates a great number of false positive alarms,

and a significant number of false negative alarms. Nevertheless, it is feasible to monitor

their actions and whenever one violates the security policy of the system, then the system

itself should react to prohibit such deviations.

The most up-to-date guide for the prevention and detection of insider threats was re-

ported in January 2009 [34]. It includes sixteen practices, all based on real cases examined

by CERTr that would assist early detection and prevention of insider incidents. Among

them, it is practice 12 that suggests logging and monitoring of employee online actions.
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5.1.2 Insider activity and actions

Randazzo et al. [151] report the findings of a study conducted in the banking and finance

sector, regarding insider activity. Each of the 26 cases was examined from both behavioral

and technical perspectives simultaneously. The findings of this study revealed that a) most

incidents required little technical sophistication, b) the insiders planned their actions in

advance, c) their motivation was mostly financial gain, d) they did not share a common

profile, e) they were detected by several manual and automated methods and by a range of

people, not just by security staff, f) the organization’s loss was financial, and g) the insiders

acted while working during normal business hours. In addition, Brackney and Anderson [28]

provide a useful insider actions taxonomy, cross-referenced with vulnerabilities and exploits

list.

Examining the ways an internal attacker of an organization might act, we define a set of

four distinct actions. Normally, he acts in accordance with his commitments and duties, but

occasionally he makes mistakes. If he is a naive user, then these mistakes might threaten the

system as much as the actions of a real attacker. But, any user mistake is closely connected

with the design and implementation of the system where problems can be located. Program

bugs, incomplete program tests, luck of field validation are a few symptoms that usually

lead to security relevant incidents.

The intentions of an insider however are malicious, and therefore, he plans the ways

he can attack the system for his own purposes. So, he also acts systematically to prepare

attacks. These actions can be characterized as actions of a pre-attack phase. Finally,

an insider’s actions can be included in the phase where real attack actions are executed

following a plan. Summarizing these four actions, an insider either acts normally (N ), or

makes mistakes (M ), or acts at a pre-attack phase (P), or attacks the system (A). The

construction of the ID game for an insider in Section 5.2 is based on the definition of these

four actions.
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5.1.3 Measuring the insider risk

Considering the amount of threat each of the four insider action categories endangers a

system, the (N ) actions might severely threaten a system, especially when the insider is

a high privileged user. For example, an insider that holds administrative permissions over

some system resources might harm the system by acting ’normally’, if he wishes.

An analogous amount of threat put at risk a system’s security, when an insider performs

(M ) actions. For instance, an inexperienced user might cause resource exhaustion, by

sending a mail message with an outsized attached file, to a lengthy recipients list. Recent

reports identify the problem of mistakes caused by naive users as a security problem. It is

the first time, the SANS Institute included human errors in its list [158], under the title

“H1. Excessive User Rights and Unauthorized Devices”. In 2003, a survey conducted by

CompTIA showed that human errors cause many security breaches [40].

The problem becomes worse when the real identity of the naive user is an insider. In

this case, if he realizes the harm of his (M ) action, he would put no effort to reverse his

mistake or to stop the expansion of the damage, as this is compliant with his intentions.

Besides, such a mistake gives him excuses and good reasons to explain future (P) and (A)

actions.

Pre-attack actions are special because they feed insiders with valuable information (e.g.

phishing). As a (P) action might reveal private information, one of the three IT security

principles, the confidentiality, would be affected. But an insider might already have legit-

imate access rights to several pieces of information, also classified information. For this

reason, he might disclose private information of his organization, in order to obtain other

pieces of information, necessary for him to complete an attack. In the literature, (P) actions

are also known as reconnaissance attacks and are considered as critical for the security of a

system and difficult to be detected. Moreover, social engineering attacks might be included

in this category, when for example, an employee achieves to obtain valuable information
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from an unsuspicious coworker of him.

Finally, (A) actions weights depend on the consequences created and the extent of the

problem generated by them. Taking into account a number of other preceding actions, (N ),

(M ), or (P) actions, with the effects and their significance described above, (A) actions

are without doubt the most threatening actions among all. It is also the type of attacker,

the internal attacker, that increases and strengthens the severity of the problem and the

extend of the unexpected results. Therefore, detecting insiders becomes a demanding task,

sometimes without findings.

For instance, in 2005 in Greece, a serious scandal revealed that at least 100 state cell-

phones were being bugged and their conversations were probably being recorded for a long

time. Among them it was the phones of the prime minister, the minister of national defense,

and the minister of foreign affairs that were compromised. Although thorough investiga-

tions took place, no one has been accused for this crime until today. Only the company,

one of the leading mobile telecommunications companies in the world, has been penalized

with � 76 million, because of its fatal errors, oversights, bad handling, and faulty reactions

when the interception was realized. Perhaps it was a great inside job [150].

Recently, the growing interest in studying insiders showed that a consistent definition is

required [27]. Matt Bishop et al. have devoted an entire chapter in [24] to define “insider”

precisely, to assess the associated threats, and to examine the classification of the involved

entities (subjects and resources), in order to determine the risk of insider attacks and the

consequences that derive when they happen. They use an access-model, the Attribute-

Based Group Access Control Model (ABGAC) [25, 26], a generalization of Role-Based

Access Control (RBAC). In the ABGAC model subjects and resources are both grouped

into sets defined by attributes of interest. An organization can keep an ordered list of users

who can severely damage it, by using the ABGAC model that identifies those users with

access to resources with high value and significant information.
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5.1.4 Reducing the risk

Although the insider threat has been recognized as a widespread problem, the lack of specific

solutions to prevent, detect, and deter insiders is apparent. Only post attack actions, using

forensics analysis, seem to be the most favor counteraction to confront the problem. These

are some of the findings of a recent professional survey on insider attack detection that can

be found in [156].

In particular, the survey shows that the insider attack detection research has been di-

vided in two parts, the host-based user profiling and the network-based sensors. In the

first part, the focus of research is mainly the command sequence analysis. The majority

uses a UNIXr1 system for implementation and testing, whereas few only have been ap-

plied to Windowsr2 environments. Most approaches utilize data collected either from user

commands, with or without arguments, or from system calls. The target group of detec-

tion is masqueraders that make use of a UNIXr system commands. User profiling in web

environments and program profiling approaches have been widely modeled in the literature.

Likewise, network based-sensors approaches have been used for traitor detection, and

there is also a small number of honeypot-based detection methods. It is assumed that

network-level audit sources are more suitable in detecting violations of need-to-know poli-

cies. Early attempts to integrate both divisions in a hybrid approach have insufficient

documentation and reporting, to show the pros and cons of such an effort.

As a final point of this survey, it is acknowledged that, the most significant prospect,

in the area of insider threat detection, is the modeling of user profiles that uncovers user’s

intention. Nevertheless, to distinguish a harmful action from a benign one relies on the

security policy of the system and any violation that affects it. Besides, the lack of real data

to effectively test the proposed solutions, in accordance with the uncertain utilization of

1UNIXr is a registered trademark of The Open Group.
2Windowsr is a registered trademark of Microsoft Corporation in the United States and

other countries.

87



them, is evidence for the need of new methods, in this open field of intrusion detection.

5.2 Constructing the ID Game with an Insider

We formulate the interactions between a user and an IDS as a 2-player non-cooperative

game. We assume that the user, player I, is an internal attacker, as given by the insider’s

description above. His action set includes four action types, N for normal actions, M for

mistaken actions, P for actions at a pre-attack phase, and A for attack actions, as already

defined in Section 5.1.2. Following the notation given in Chapter 4 for the generic ID game

model, the set of pure actions for player I is

AI = {aI1 , aI2 , aI3,aI4
} = {N, M, P, A}.

The second player of the game, player D, is an Intrusion Detection System (IDS), also

called Detector, installed in the Target System (TS) that player I is using. Assuming

that the IDS is a nice machine, in a sense that it makes the first move with the intention to

cooperate, it decides among four alternatives. First, it allows the user to continue if nothing

suspicious has been noticed; second it makes a recommendation whenever slight deviations

are encountered; third it raises a warning to remind the user to be consistent with their

agreement on the regulations of using the TS; and fourth it stops the user when a violation

is detected.

Summarizing, player D has four actions too, C for allowing the user to continue, R for

making recommendations, W for raising warnings, and S for stopping the user. Likewise,

the set of pure actions for player D is

AD = {aD1 , aD2 , aD3 , aD4} = {C,R, W, S}.

Although for purposes of simplicity and appearance the generic ID game model implies a

black and white representation, one of the things we examined in the ID game with an insider
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was the action set of each player. For player I the first action N apparently corresponds to

a legal action, while the rest of the actions are equivalent to an illegal action, as presented

schematically below.

Normal︸ ︷︷ ︸, Mistake, Pre− attack, Attack︸ ︷︷ ︸

↓ ↓
Legal Illegal

Likewise, for player D the first three actions correspond to a permission to continue,

whereas the latter one, the S is equivalent to prevent, as depicted in the following schema.

Continue, Recommendation, Warning,︸ ︷︷ ︸ Stop︸︷︷︸

↓ ↓
Continue Prevent

Depending on the type of player I’s action, the IDS might remove privileges, decrease

the amounts of certain allocated recourses, consider the insider as a user under supervision,

or add him in a black list. We assume that a recommendation is linked with less severe

counteractions than a warning. Nevertheless, player D monitors player I as a user under

supervision when it makes a recommendation and places him in a black list. In the same

way, when player D raises a warning, then it might remove privileges and decrease amounts

of recourses allocated to player I.

Another thing we have examined is the different severity when this is assigned to the

same counteraction, but against different actions. According to this, a warning varies from

lenient to more strict, depending on which action it is raised, i.e. a mistake raises a relaxed

warning, whereas a pre-attack action raises a more strict one. So, the amount of resources

to be decreased and the privileges to be removed are adjusted to the corresponding action.
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This has been taken into account when specifying the preferences in Section 5.2.2 and is

quantified using discrete payoffs (see Figure 5.1).

We also assume that player I is perfectly informed of player D ’s past moves, because of

the nature of his opponent’s actions (recommend, warning, stop). Consequently, player D ’s

actions are perfectly observable by player I. On the contrary, past choices of player I are

imperfectly observed by player D, because player D classifies its opponent’s actions under

uncertainty. Situations with one-sided imperfect information are referred to as imperfect

monitoring, as discussed in Section 4.2.

Following the dynamic nature of the generic ID game model clarified in Chapter 3, and

due to the dynamic interactions that take place also between an insider and an IDS, we also

model this game in an extensive form. Figure 5.1 depicts the one-shot game, also called the

stage game, using the Gambit’s [119] tool illustration style.

5.2.1 Strategies and outcomes

Extensive form games are portrayed by trees (see Figure 5.1). Player I moves first at the

initial node (the root) of the game, denoted by a red circle. The player’s name is displayed

above the node. Below the node, the default labeling is the information set’s number. It

is a unique identifier of the information set, in the form player number : information set

number (e.g. 1:1 means the first move of the first player, i.e. the first move of player I ).

Von Neumann defined information sets to model the progressive learning of which decisions

will actually be made [21].

Similarly, player D ’s moves start at blue circles, above which there is a D standing

for its name, and below, a corresponding pair, labeling its information set’s number (2:1

means that the second player, player D, moves for the first time). Zeros and ones below

each branch indicate the solution of the game, as will be described in Section 5.4. Zero

means that an action will not be chosen (probability 0), and one means that an action will
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Figure 5.1: An extensive form game between an insider and an IDS.
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be selected with certainty (probability 1).

We have assumed player D is not totally certain that player I has chosen one of the

actions included in his action set. This is consistent with the hypothesis that there is no

detection engine with 100% detection rate. Thus, player D ’s sub-trees belong to the same

information set, connected with a dotted line to indicate this. In short, the dotted line

connects player D ’s nodes to indicate the IDS accuracy, and thus, the degree of uncertainty

whether player I has chosen an (N ), (M ), (P), or (A) action.

Looking at the ends of the branches, 16 outcomes are identified. The number of outcomes

derives from all the possible combinations between the insider’s actions and the IDS’s actions

(4∗4). Following the corresponding descriptions of Chapter 4, it is the set of action profiles

of player I and player D defined as the Cartesian product,

A ≡
∏

iεN

Ai ≡ AI ×AD (5.1)

which is

A ≡ {(N, C), (N, R), (N,W ), (N,S), (M, C), (M, R), (M,W ), (M, S), (P, C),

(P,R), (P, W ), (P, S), (A,C), (A, R), (A,W ), (A,S)}
(5.2)

There is a pair of capital letters at the end of each branch and above the node that

denotes player I ’s and player D ’s choices, respectively. This is an action profile. For

example, (N,R) means that player I has chosen an (N ) action while player D made a

recommendation.

Finally, the pair of numbers next to each end node is the pair of players’ payoffs, that is

to say, the outcome a player receives when a certain action has been chosen, represented as

a number (the red number belongs to player I and the blue number belongs to player D).

In Section 5.2.2, we explain step by step the procedure employed to quantify the outcomes

of this game.
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The players play the game repeatedly an infinite number of times. The reason is that,

the user is not a random attacker, but an internal user of the system, who spends a long

time every day. We assume he is a traitor than a masquerader. As explained in Chapter

4, in repeated games, we call the actions strategies to distinguish them from the actions in

the stage game.

The following list describes the meaning of the outcomes and gives the notation of all

the possible strategy profiles, one strategy for each player:

1. The insider acts normally, and the IDS allows him to continue, (N,C).

2. The insider acts normally, but the IDS makes wrongly a recommendation to him about

his actions (false positive alarm), (N,R).

3. The insider acts normally, but the IDS sends incorrectly a warning to him about his

actions (false positive alarm), (N,W).

4. The insider acts normally, but the IDS stops him from using the system, because, it

erroneously classified his actions as attacking (false positive alarm), (N,S).

5. The insider makes mistakes, but the IDS allows him to continue (false negative alarm),

(M,C).

6. The insider makes mistakes, and the IDS recommends him to avoid errors, (M,R).

7. The insider makes mistakes, and the IDS sends a warning to him about his actions,

(M,W).

8. The insider makes mistakes, and the IDS stops him from using the system, because

it classified his actions as threatening, (M,S).

9. The insider acts at a pre-attack phase, but the IDS allows him to continue (false

negative alarm), (P,C).
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10. The insider acts at a pre-attack phase, and the IDS recommends him to stop doing

so, (P,R).

11. The insider acts at a pre-attack phase, and the IDS sends a severe warning to him

about his actions, (P,W).

12. The insider acts at a pre-attack phase, and the IDS stops him from using the system,

because it classified his actions as the preparation of an attack, (P,S).

13. The insider uses attacking actions, but the IDS allows him to continue (false negative

alarm), (A,C).

14. The insider uses attacking actions, and the IDS recommends him to stop doing so,

(A,R).

15. The insider uses attacking actions, and the IDS sends a severe warning to him about

his actions, (A,W).

16. The insider uses attacking actions, and the IDS stops him from using the system,

because it classified his actions as an attack, (A,S).

5.2.2 Preferences and payoffs

To quantify the outcomes of the game, we first specify preferences over outcomes, and then

we use the von Neumann-Morgenstern utility function. We use the same method [21] as

in Chapter 4. A player prefers a strategy over another, because he gains more or he loses

less. We use the symbol ≺ to denote preference and the symbol ∼ to denote no interest,

i.e. indifference. For instance, if a ≺ b then it is said that b is preferred to a.

For an insider, the most desirable is to successfully attack the system without being

stopped, or even caught. His second best is to act normally without being stopped. Sim-

ilarly, the pre-attack actions follow, both without any deterrence, and attack actions that
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get a recommendation is his next preference. Mistake actions that are not prevented are

also indifferent, and more attractive than attack actions that raise a warning. These are

indifferent too from normal actions that cause a recommendation. Attack actions that get

stopped follow insider’s favorites.

On the other hand, his worst choice is a pre-attack action followed by a stop action, then

a mistake followed by a stop action too, which is also indifferent from a pre-attack action

followed by a warning. A mistake that raises a warning is indifferent from a pre-attack

action, followed by a recommendation. Likewise, a mistake that causes a recommendation

is less preferable than a normal action that is being stopped, and than a normal action that

raises a warning. Based on these lines of reasoning, we have assumed that the ranking of

player I ’s preferences over outcomes, from the least preferable (PS) to the most preferable

one (AC), gives the preference structure described below. We have dropped parentheses and

commas from the pairs of choices, not to clutter the notation in the preference structures.

PS ≺I MS ∼I PW ≺I MW ∼I PR ≺I MR ≺I NS ≺I NW ∼I AS ≺I

NR ∼I AW ≺I MC ∼I AR ≺I PC ≺I NC ≺I AC.
(5.3)

For example, PW ≺I PR means that an insider prefers to get a recommendation for a

(P) action than a warning. This is reasonable, because we have assumed that a warning

might decrease allocated resources or remove privileges, whereas, a recommendation is a

weaker reaction on behalf of player D. By removing privileges and resources, the insider

might not be able to complete his plan and attack the system.

As already explained in Chapter 4, a preference relation ¹ on the action set A of a player

i specifies a binary relation, represented by a payoff function ui : A → R, the von Neumann-

Morgenstern utility function. For two pure actions a1 and a2, u(a1) ≤ u(a2), whenever

a1 ¹ a2 [135]. We define the utility functions for the insider and the IDS respectively, and

we use the values of these functions as the payoffs of the game.
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We assume that player I ’s preference is described by the utility function uI : A → R,

where A is the set of action profiles defined earlier in Equation (5.2). Following Binmore’s

method [21], we assigned numbers to reflect these preferences, and we constructed player

I ’s utility function uI , as described in Chapter 4. We set 0 to strategy PS because it is

the least preferable, and 1 to strategy AC as insider’s best choice. So, uI(PS) = 0 and

uI(AC) = 1. Using rational numbers, we assigned a value to every strategy, according to

the ranking described in expression (5.3). Then, we got the values free of fractions, after

multiplying with their least common factor. The utility values for an insider, as defined by

the function uI , are finally displayed in Table 5.1.

x PS MS PW MW PR MR NS NW AS NR AW MC AR PC NC AC

uI(x) 0 2 2 4 4 5 6 8 8 10 10 12 12 14 15 16

Table 5.1: Insider’s Utility Function

Regarding player D ’s preferences, the ranking is ordinary. There are three general lines

of reasoning, the first to stop any non legitimate action, the second to raise a warning or to

make a recommendation in attack, pre-attack, mistake or normal actions in that order, and

the third to allow mistakes, pre-attack actions, and attack actions. But, the most preferable

strategy for player D is the normal action followed by a continue action, whereas, the least

preferable is an attack action followed by a continue action.

Following then the same steps to rank player D ’s preferences, we have established player

D ’s preferences over outcomes, from the least preferable (AC) to the most preferable one

(NC), as in the subsequent preference structure:

AC ≺D PC ≺D NS ≺D MC ≺D NW ≺D NR ≺D MR ≺D MW ≺D PR ≺D

PW ≺D AR ≺D AW ≺D MS ≺D PS ≺D AS ≺D NC.
(5.4)
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Likewise, we assume that player D ’s preference is described by the utility function

uD : A → R, where A is the set of action profiles defined earlier in Equation (5.2). Using

Binmore’s method [21] and assigning numbers to reflect the preferences, we constructed

player D ’s utility function uD, to quantify its preferences. Therefore, we set 0 to strategy

AC because it is the worst choice, and 1 to strategy NC as the best choice. So, uD(AC) = 0

and uD(NC) = 1. Using rational numbers, we assigned a value to every strategy, according

to the ranking described in expression (5.4). Then, we got the values free of fractions, after

multiplying with their least common factor. The utility values for an IDS, as defined by

the function uD, are finally displayed in Table 5.2.

x AC PC NS MC NW NR MR MW PR PW AR AW MS PS AS NC

uD(x) 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16

Table 5.2: IDS’s Utility Function

In Figure 5.1, at the end of each branch, there is a pair of numbers attached. It is the

payoffs pairs. In each pair, the first number is player I ’s payoff, and the second is player

D ’s payoff, as established above.

5.2.3 Infinite rounds

In reality, the stage game is being played again and again, one round every period t ε {0, 1, 2, . . .}.
The time period ti, i = 0, 1, 2, . . . denotes the time when the i turn of the play has been

finished, that is, the t1 period indicates the time the game has been already played once.

This endless iteration forms the infinitely repeated game. The continuous play of the game

causes the rapid grow of the tree that represents it. The number of terminal nodes where

payoffs are attached is determined by the number of strategies that have been played to

this point.
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As specified in Chapter 4, in an infinitely repeated game, the total number of strategy

profiles in a period ti, i = 0, 1, 2, . . ., is the product of the history of action profiles played

at all periods 0, 1, 2, . . . , ti−1, Hti−1 , and the actions to be played at this period ti, Ati . That

is,

Hti ≡ Hti−1 ×Ati , i = 0, 1, 2, . . ..

Because in our game there is an action, player D ’s action S, where the game ends, the

number of strategy profiles, i.e. the number of terminal nodes at a n round, cannot be

calculated using the common formula for infinitely repeated games.

Therefore, at any period ti, i = 1, 2, 3, . . . in our game, the number of strategy profiles

is calculated, by multiplying the number of strategies of the previous period with the com-

bination of actions of the two players, excluding the terminal action S, i.e. 4×3 = 12. This

yields the recurrence defined next that specifies the number of strategies S, at time period

ti, i = 1, 2, 3, . . ., as derived from the previous time period ti−1.

Definition 5. The number of strategies S at time period ti, i = 1, 2, 3, . . . is given by the

formula

Sti = 12× Sti−1 , i = 1, 2, 3 . . . . (5.5)

As (5.5) expresses S in terms of itself, we strived to another solution. We develop a

formula, as described in Sorite 1, to calculate the number of terminal nodes of the repeated

game tree, at any period t ε {0, 1, 2, . . .}. The new formula is not in closed form, but it is

not recursive.

Sorite 1. At period ti, i = 0, 1, 2, . . ., the total number of strategy profiles Sti of the repeated

game is

Sti = (AI ×AD) · (AI ×AD − 4)i, i = 0, 1, 2 . . . . (5.6)

Proof. In the stage game, at period t0, the total number of action profiles is the combination

of actions defined in Equation (5.1) as the Cartesian product,
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A ≡ ∏
iεN Ai ≡ AI ×AD,

where AI is the set of pure actions for player I, and AD is the set of pure actions for

player D.

The number of strategies at a period is calculated by multiplying the number of strategy

profiles of the previous period with the combination of actions of the two players. Given

that there is an action that ends the game, excluding this terminal action, the total number

of strategy profiles at the second period t1 is

St1 = St0 × 12.

Following this reasoning, the total number of strategy profiles at the third period t2 is

St2 = St1 × 12 = St0 × 12× 12 = St0 × 122.

Assuming that St0 = AI ×AD and AI ×AD− 4 = 12 hold, then by induction, we define

Sorite 1.

Both formulae (5.5) and (5.6) start at the second stage of the game, and give identical

results. The first stage has 16 strategies. Consequently, calculating the number of terminal

nodes using formulae (5.6), we get the following figures for the first five periods:

St0 = 16

St1 = 192

St2 = 2304

St3 = 27648

St4 = 331776.
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It is apparent that the game grows rapidly as the periods increase. When repeating

the game many times, the above formulae would assist the estimation of the generated

complexity. It is important to determine whether predicting insider’s behavior, as described

in the following chapters, is an NP-complete problem, and examine alternatives to reduce

its computational complexity.

5.3 Defining the ID Game with an Insider

By completing the construction and the formal description of the ID game with an insider,

we define the game in the sequel as an infinitely repeated game with perfect and imperfect

information. The definitions follow the notation of [135] and derive from the corresponding

definitions introduced in Chapters 3 and 4 for the generic ID game.

5.3.1 The ID Game with an Insider of Perfect Information

Definition 6. Let GIp = 〈N,H, P, (%i)〉 be an extensive game with perfect information

that models the ID game with an Insider, where

• N = {I, D} is the set of players;

• H is the infinite set of sequences that consists of the histories ∅, N , M , P , A,

(N,C), (N, R), (N, W ), (N,S), (M, C), (M, R), (M,W ), (M,S), (P, C), (P,R),

(P, W ), (P, S), (A,C), (A, R), (A, W ), (A,S), . . .,

(N,C, N), (N, R,N), (N, W,N), (M,C, N), (M, R, N), (M, W,N),

(P, C,N), (P,R, N), (P, W,N), (A,C, N), (A, R, N),

(A,W,N), . . .,

(N,C, M), (N, R,M), (N, W,M), (M,C, M), . . .,

(N,C, P ), (N, R, P ), (N, W,P ), (M, C,P ), . . .,

(N,C, A), (N, R,A), (N, W,A), (M, C,A), . . .,

100



(N,R, M), . . .,

. . .,

(N,C, N, C), (N, R, N,C), (N, W,N, C), (M, C, N, C), (M,R, N, C), (M, W,N, C),

(P, C,N,C), (P, R,N,C), (P, W,N, C), (A,C, N, C), (A,R,N, C),

(A,W,N, C), . . .,;

• P is the player function that indicates the player who takes an action after a history

(P (h)), i.e. P (∅) = I, P (I) = D, and P (D) = I for every h 6= ∅, that is to say for

every nonterminal history;

• %i is the preference relation on Z for player i ∈ N , that is, the preference relation of

player I is PS ≺I MS ∼I PW ≺I MW ∼I PR ≺I MR ≺I NS ≺I NW ∼I AS ≺I

NR ∼I AW ≺I MC ∼I AR ≺I PC ≺I NC ≺I AC, and the preference relation of

player D is AC ≺D PC ≺D NS ≺D MC ≺D NW ≺D NR ≺D MR ≺D MW ≺D

PR ≺D PW ≺D AR ≺D AW ≺D MS ≺D PS ≺D AS ≺D NC.

5.3.2 The ID Game with an Insider of Imperfect Information

Definition 7. Let GIi = 〈N, H, P, fc, (Ii)i∈N , (%i)〉 be an extensive game with imperfect

information that models the ID game with an Insider, where

• N = {I, D} is the finite set of players;

• H is the infinite set of sequences that consists of the histories ∅, N , M , P , A,

(N,C), (N, R), (N, W ), (N,S), (M, C), (M, R), (M,W ), (M,S), (P, C), (P,R),

(P, W ), (P, S), (A,C), (A, R), (A, W ), (A,S), . . .,

(N,C, N), (N, R,N), (N, W,N), (M,C, N), (M, R, N), (M, W,N),

(P, C,N), (P,R, N), (P, W,N), (A,C, N), (A, R, N),

(A,W,N), . . .,

(N,C, M), (N, R,M), (N, W,M), (M,C, M), . . .,
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(N,C, P ), (N, R, P ), (N, W,P ), (M, C,P ), . . .,

(N,C, A), (N, R,A), (N, W,A), (M, C,A), . . .,

(N,R, M), . . .,

. . .,

(N,C, N, C), (N, R, N,C), (N, W,N, C), (M, C, N, C), (M,R, N, C), (M, W,N, C),

(P, C,N,C), (P, R,N,C), (P, W,N, C), (A,C, N, C), (A,R,N, C),

(A,W,N, C), . . .,;

• P is the player function that indicates the player who takes an action after a history

(P (h)) (a member of N ∪ c, where c is the chance player), i.e. P (∅) = I, P (I) = D,

and P (D) = I for every h 6= ∅, that is to say for every nonterminal history;

• fc is the function that associates with every history h for which P (h) = c a probability

measure fc(·|h) on A(h), each independent of every other such measure, e.g. (fc(a|h))

is the probability that a occurs after the history h;

• Ii is the information partition of player i, i ∈ N and a set Ii ∈ Ii is an information

set of player i;

• %i is the preference relation on Z for player i ∈ N , that is, the preference relation of

player I is PS ≺I MS ∼I PW ≺I MW ∼I PR ≺I MR ≺I NS ≺I NW ∼I AS ≺I

NR ∼I AW ≺I MC ∼I AR ≺I PC ≺I NC ≺I AC, and the preference relation of

player D is AC ≺D PC ≺D NS ≺D MC ≺D NW ≺D NR ≺D MR ≺D MW ≺D

PR ≺D PW ≺D AR ≺D AW ≺D MS ≺D PS ≺D AS ≺D NC.

5.4 Solving the ID Game when Playing with an Insider

We proceed to solve the game using equilibrium analysis. Transferring this game from

the extensive form of Figure 5.1 to a strategic form, we get the following 4x4 matrix, as
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presented in Table 5.3. It is also called the normal form of the game (see Section 1.2 for

details). The row player is the insider I and the column player is the detector D, that is,

an Intrusion Detection System, which protects a Target System.

D

C R W S

N (15,16•) (10,5) (8,4) (7,2)

I M (12,3) (5,6) (4,7) (2,12•)

P (14,1) (4,8) (2,9) (0,14•)

A (16•,0) (12•,10) (10•,11) (8•,15•)

Table 5.3: A game between an insider and an IDS in normal form

We located the solution of this game by examining players’ best responses. According

to this, we examine what a player chooses as a best response to the other player’s choice.

Therefore, if player I chooses N, then player D chooses C, because this is its best response

in the row of the N action. By choosing C it gets 16, which is the maximum payoff when

comparing to 5, 4, or 2. Similarly, we locate player D ’s best responses for all possible

choices of player I, and we mark them with blue circles. Likewise, we locate player I ’s best

responses and we mark them with red circles.

This procedure leads us to locate a unique Nash Equilibrium (NE) that corresponds to

the strategy profile (combination) AS with payoffs (8,15). In other words, the static NE

is (A,S) and the static NE payoff is (8,15). It is a perfect NE that reveals the intention of

player I to attack the system, and the reaction of player D to stop him doing so.

Interestingly, there is another pair of strategies, the NC strategy profile with payoffs

(15,16), which are both greater than the corresponding of the NE. Besides, payoffs (15,16)

are absolutely the highest each player can get in this game. In fact, strategy NC Pareto
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dominates3 the NE, and because the corresponding payoffs are the highest, the NC strategy

is Pareto efficient4. In other words, any player between the two can increase his outcome

by deviating from the equilibrium path, which is the strategy AS, and choose the Pareto

efficient dominant strategy NC, even for a while. Some time in the future, he might turn

back to the NE path.

In a one shot game, real circumstances cannot be depicted nor examined in depth, to

find realistic solutions. Especially in this game, the players play the game repeatedly infinite

number of times, as examined thoroughly before in Section 5.2.3. The reason is that the

user is not a random attacker, but an internal user of the system, who spends a long time

every day using it. In the generic game model described in Section 3.3, parts of the repeated

divisions have already been located. Repeated games usually have multiple NE, and then

NE selection becomes a problem. Solution to this problem originated in 1988 by Harsanyi

and Selten [69] and continued with the Refinements literature and the Evolutionary Game

Theory.

In addition, the presence of Pareto efficient strategies in this game shows that the NE

would not definitely be players’ choice for ever. Considering a case where player I plays

a certain strategy at every period repeatedly, there must be certain circumstances under

which he would deviate from this equilibrium path, and he would decide to play another

strategy.

In a real case with a patient insider, player I would follow the NC strategy first for a

number of periods, and then he would choose the AS strategy. It is the time a user of the

system will turn traitor. In a future round, player I would go back to the NC strategy again,

deviating from the equilibrium path. This shows that player I in some periods follows, and

in some others deviates from the equilibrium path. But, player D should react by choosing a

’punishment’ strategy, to keep player I attached with the NC strategy. When a punishment
3A strategy Pareto dominates another strategy, if the outcome of the first is higher than the outcome of

the latter one (Vilfredo Pareto, 1848-1923).
4A strategy is Pareto efficient if no other strategy yields all players higher payoffs [136].
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strategy is being followed for ever, it is known as grim strategy.

5.5 Repeating the ID Game with an Insider

To solve this game as a repeated game we followed David Levine’s step-by-step procedure, as

described in [102]. First, we decided to use the average present value method to aggregate

payoffs obtained among different periods. Alternatives would have been to add payoffs

together, to average them, or to take the present value. Second, we clarified that this game

can be repeated infinite number of times, as mentioned in Section 5.2.3. Finally, regarding

the discount factor δ (see Section 4.1.2) that shows how much impatient a player is, we

examined two different cases. In the one case, Case A, we defined a common discount

factor δ for both players. The discount factor δ varies between zero and one, with zero

to match an impatient player and one a patient one. In this case, the internal attacker

is a patient player, because he has plenty of time to organize and execute an attack. In

addition, the IDS is inherently a patient player, because it plays infinitely with a user of

the TS, although it does not know that he is an internal attacker. But in the other case,

Case B, assuming that player I is about to be fired, we distinguished two different discount

factors, δ1 for the short-run player I of the game, and δ2 for the long-run player D.

Following Levine’s method, we start with the assumption that a repeated game is the

iteration of the stage game (see Section 4.1.1), known also as the static game. We use

the stage game between an insider and an IDS in normal form depicted in Table 5.3, and

the best responses located previously for player I (red circles) and player D (blue circles),

respectively. As solved in Section 5.4, there is a unique NE in the stage game, in the strategy

profile (A,S) with static NE payoffs (8,15).

Next, we examine the Stackelberg equilibria when each of the players is the leader player

of the game. Thus, we locate the Stackelberg strategy, and the corresponding payoff as a

player’s choice, in order to get the highest possible profit when the opponent will play his

105



best response. Table 5.4 displays for every strategy chosen first by player I (column 1),

player D ’s best response (column 2) and the corresponding payoff for player I (column 3).

The Stackelberg payoff is the most player I can get when player D plays a best response,

that is, the maximum player I can get from Table 5.4, which is payoff 15, indicated with a

red circle. Then, the Stackelberg strategy for player I is to play N.

Strategy of I Best response of D Payoff to I

N C 15•

M S 2

P S 0

A S 8

Table 5.4: Stackelberg equilibrium with player I leader

Likewise, Table 5.5 displays for every strategy chosen first by player D (column 1),

player I ’s best response (column 2), and the corresponding payoff for player D (column 3).

The Stackelberg payoff is the most player D can get when player I plays a best response,

that is, the maximum player D can get from Table 5.5, which is payoff 15, indicated with

a blue circle. Then, the Stackelberg strategy for player D is to play S. We summarize our

findings on Stackelberg equilibria for both players in the following:

Stackelberg equilibrium with player I leader: The Stackelberg strategy for player

I is to play N. The most that player I can get when player D plays a best response is the

Stackelberg payoff, which is 15.
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Strategy of D Best response of I Payoff to D

C A 0

R A 10

W A 11

S A 15•

Table 5.5: Stackelberg equilibrium with player D leader

Stackelberg equilibrium with player D leader: The Stackelberg strategy for player

D is to play S. The most that player D can get when player I plays a best response is the

Stackelberg payoff, which is 15.

Then, for each player, we find the least amount he receives when he plays a best response,

which is called the minmax payoff. We construct Table 5.6 for player I, and we examine

for each action of player D (column 1), player I ’s best response (column 2), and player I ’s

payoff (column 3). The minimum of player I ’s payoffs listed in column 3 is the minmax

payoff to player I, which is 8, indicated with a red circle.

Similarly, we construct Table 5.7 for player D, and we examine for each action of player

I (column 1), player D ’s best response (column 2), and player D ’s payoff (column 3). The

minimum of player D ’s payoffs listed in column 3 is the minmax payoff to player D, which

is 12, indicated with a blue circle.

Summarizing the minmax payoffs for both players we have:

Minmax for player I : The least amount player I gets when he plays a best response is

the minmax payoff 8.
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Strategy of D Best response of I Payoff to I

C A 16

R A 12

W A 10

S A 8•

Table 5.6: Minmax for player I

Strategy of I Best response of D Payoff to D

N C 16

M S 12•

P S 14

A S 15

Table 5.7: Minmax for player D

Minmax for player D: The least amount player D gets when he plays a best response

is the minmax payoff 12.

Then, we find the strategies that strictly Pareto dominate the static NE with payoffs

(8,15). In strict Pareto dominance both players receive higher payoffs than the static NE

payoffs (see Section 5.4 for details). In our game with an insider, only strategy (N,C)

with payoffs (15, 16) strictly Pareto dominates the static NE, and because there is no other
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strategy with higher payoffs, i.e. there is only one such strategy, (N,C) is the Pareto efficient

strategy.

The Folk Theorem: To carry this discussion further and understand more the repeated

ID game with an insider, we need to talk about the Folk theorem. According to the Folk

theorem, any payoff in a repeated game can be an equilibrium [115]. Given that the game is

being played repeatedly and both players are sufficiently patient, then we can exclude those

payoffs that are obviously uninteresting. The remaining payoffs are the feasible payoffs for

each player (see Section 4.1.1), which offer more than his corresponding minmax payoff.

The feasible payoffs for a player are the payoffs that Pareto dominate his minmax and they

are the subgame perfect equilibrium payoffs.

For our game, we start plotting the set of payoffs from the normal form of the game

(Table 5.3), which are illustrated in Figure 5.2 with blue diamonds. Then, we locate the

minmax payoffs for both players, which is 8 for player I as derived from Table 5.6, and 12

for player D as derived from Table 5.7. The minmax (8,12) is depicted with a big red circle.

Finally, we bound the area with the folk theorem outcomes by drawing an horizontal

line and a vertical line in parallel with axis x and axis y respectively, and isolate the shaded

area above the minmax (8,12). The Folk theorem ensures that any payoff profile included

in the shaded green area, can be achieved as a subgame perfect payoff profile, if players’

discount factors are sufficiently close to 1. These are the (8,15) and the (15,16) payoff

profiles, which are the static NE and the Pareto efficient respectively.

Grim Strategies: Another interesting point we examined is the grim strategies equilibria.

Considering a case where the internal attacker plays a certain strategy at every period, we

examined the circumstances under which he would deviate from this equilibrium path,

and he would decide to play another strategy. But the IDS should react by choosing a

’punishment’ strategy against such a deviation, known as grim strategy.
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Figure 5.2: The Folk Theorem for the ID game with an insider

In our game, we have constructed a grim strategy equilibrium, which keeps players with

the equilibrium path. It is the strategy profile (N,C) with payoffs (15,16) which strictly

Pareto dominates the static NE (A,S) with payoffs (8,15). If player I deviates from this

equilibrium path, then player D will punish him for this deviation with the static NE.

After this, player I will get only 8 instead of 15 for ever then. We looked specifically at

grim strategies in three different scenarios with both players patient (Case A), to define the

discount factor δ above which an insider will deviate from the equilibrium path and attack

the Target System, and one scenario with a patient and an impatient player (Case B), to

examine how player D will react, as described in the sequel.

[Case A] Assuming that both players are patient, we use a common discount factor δ

for both players, and the average present value to accumulate the payoffs among the time
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periods of repetition. For such a case, we examine three different scenarios. We calculate

the average present value (APV) for a player on the equilibrium path using Equation (4.9)

of Section 4.1.1, which has the following simpler form

(1− δ) · (u1 + δu2 + δ2u3 + δ3u4 + . . .
)
. (5.7)

where ui, i = 1, 2, 3..., is the payoff a player receives at period i and δ is the common discount

factor. In addition, the identity below has been also used because it is related with Formula

(6.2),

1 + δ + δ2 + δ3 + . . . =
1

1− δ
(5.8)

[Scenario 1] When players play (N,C) for ever, that is, they stick with the Pereto efficient

strategy, then the average present values for players I and D respectively are:

APVI = (1− δ) · (u1 + δ · u2 + δ2 · u3 + δ3 · u4 + . . .) =

(1− δ) · (15 + δ · 15 + δ2 · 15 + δ3 · 15 + . . .) =

(1− δ) · 15 · (1 + δ + δ2 + δ3 + . . .) =

(1− δ) · 15 · 1
(1−δ) = 15.

APVD = (1− δ) · (u1 + δ · u2 + δ2 · u3 + δ3 · u4 + . . .) =

(1− δ) · (16 + δ · 16 + δ2 · 16 + δ3 · 16 + . . .) =

(1− δ) · 16 · (1 + δ + δ2 + δ3 + . . .) =

(1− δ) · 16 · 1
(1−δ) = 16.

It is important to note that if the same strategy is being played at every period of the

game, then the average present value is equal to the fixed payoff that corresponds to this

strategy. The above calculations confirm this statement.
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[Scenario 2] Suppose players play (N,C) in the first period and continue with the same

strategies in the next periods, until one of the players plays something else. The strategy

profile (N,C) is an equilibrium path of the game, with an average present value (15,16).

But the insider, player I, will attempt a deviation from this equilibrium path, by choosing

action A to attack the Target System, for his own purposes. In order to prevent such a

game subversion, player D will punish him by playing (A,S), which is the static NE, and

will stick with it for ever. So, players play repeatedly (N,C) until period t− 1, when player

I decides to play A in period t, considering that he will increase his payoff from 15 to 16,

if player D continues playing C, as listed in the following:

period 1: (N,C)

period 2: (N,C)

period 3: (N,C)

. . .

period t− 1: (N,C)

period t: (A,S)

period t + 1: (A,S)

. . .

for ever.

The strategy profile (N,C) will be the equilibrium path if the value of the common

discount factor δ is so high to deter a deviation. We proceeded to determine δ, that is, to

describe how patient player I must be to avoid an attack. The procedure is comprised of

the following four steps.

Step 1 As calculated in the first scenario, on the equilibrium path players play (N,C) and get

(15, 16) each period. Then, the average present value on the equilibrium path is just

(15, 16).
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Step 2 As presented before on Table 5.6, on the equilibrium path player D plays C, so the

most that player I can get is 16, by playing A. Likewise, as shown on Table 5.7, on

the equilibrium path player I plays N, so the most that player D can get is 16, by

playing C. Therefore, we located that player I ’s best response is A and player D ’s

best response is C, each time the other player chooses to continue on the equilibrium

path.

Step 3 To calculate the average present value for player I for deviating from the equilibrium

path, we consider that he receives 16 just for one period, the period t of deviation, and

because player D punishes him for this, he gains 8 for ever then. Then, the average

present values for players I and D respectively are:

APVI = (1− δ) · (u1 + δ · u2 + δ2 · u3 + δ3 · u4 + . . .) =

(1− δ) · (16 + δ · 8 + δ2 · 8 + δ3 · 8 + δ4 · 8 + . . .) =

(1− δ) · (16 + δ · 8 · (1 + δ + δ2 + δ3 + . . .)) =

(1− δ) · 16 + (1− δ) · δ · 8 · 1
1−δ =

(1− δ) · 16 + δ · 8 =

16− δ · 16 + δ · 8 =

16− δ · 8.

APVD = (1− δ) · (u1 + δ · u2 + δ2 · u3 + δ3 · u4 + . . .) =

(1− δ) · (16 + δ · 15 + δ2 · 15 + δ3 · 15 + δ4 · 15 + . . .) =

(1− δ) · (16 + δ · 15 · (1 + δ + δ2 + δ3 + . . .)) =

(1− δ) · 16 + (1− δ) · δ · 15 · 1
1−δ =

(1− δ) · 16 + δ · 15 =

16− δ · 16 + δ · 15 =
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16− δ.

Step 4 In the final step, we compare the average present value of sticking to the equilibrium

path (calculated in step 1) with that of deviating (calculated in step 3). To determine

the value of δ above which a deviation will make no sense, we construct and solve the

following inequality:

15 ≥ 16− δ · 8 ⇒ δ · 8 ≥ 1 ⇒ δ ≥ 1
8 .

The fraction 1
8 is the critical discount factor for player I, that is to say, player I will

deviate from the equilibrium path (N,C) if his payoffs are discounted with a factor less

than 1
8 . Otherwise, player I will prefer to stick with this equilibrium path, because

he will gain more than deviating.

As for player D, because in the equilibrium path the payoff is the maximum (see

Table 5.7), there is no point for deviation. Besides, our main interest is how we will

predict player I ’s future attacking actions and the circumstances under which this

might happen.

Closing scenario 2, a patient player I will attempt to attack the Target System, if the

common discount factor δ is less than 1
8 . Given that the maximum patience a player can

have is 1 and the least is 0, it is remarkable that in our result player I is not that patient.

It is his preferences (see Section 5.2.2) that have constructed such a profile of an insider.

In the next section, we examine another insider, an unconventional internal attacker, and

we calculate his δ, which reveals a more patient player.

[Scenario 3] We assume the same as in scenario 2, except that, players play the equilib-

rium path in the first and the second period only, and then, player I deviates by choosing A.

To calculate the common discount factor δ for player I, steps 3 and 4 change, as described

in the sequel:
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Step 3 To calculate the average present value for player I for deviating from the equilibrium

path, we consider that he receives 16 for two periods, and because player D punishes

him for this, he gains 8 for ever then. Then, the average present value for player I is:

APVI = (1− δ) · (u1 + δ · u2 + δ2 · u3 + δ3 · u4 + . . .) =

(1− δ) · (16 + δ · 16 + δ2 · 8 + δ3 · 8 + δ4 · 8 + . . .) =

(1− δ) · (16 + δ · 16 + δ2 · 8 · (1 + δ + δ2 + δ3 + . . .)) =

(1− δ) · 16 + (1− δ) · δ · 16 + (1− δ) · δ2 · 8 · 1
1−δ =

(1− δ) · 16 + (1− δ) · δ · 16 + δ2 · 8 =

16− δ · 16 + δ · 16− δ2 · 16 + δ2 · 8 =

16− δ2 · 8.

Step 4 In the final step, we compare the average present value of sticking to the equilibrium

path (calculated in step 1) with that of deviating (calculated in step 3). To determine

the value of δ above which a deviation will make no sense, we construct and solve the

following inequality:

15 ≥ 16− δ2 · 8 ⇒ δ2 · 8 ≥ 1 ⇒ δ2 · 8− 1 ≥ 0 ⇒ 8 · (δ +
√

2
4 ) · (δ −

√
2

4 ) ≥ 0.

Solving the inequality derived from factoring, we exclude the negative values of δ and

we keep only that δ ≥
√

2
4 . The fraction

√
2

4 is the critical discount factor for player I,

that is to say, player I will deviate from the equilibrium path (N,C) if his payoffs are

discounted with a factor less than
√

2
4 . Otherwise, player I will prefer to stick with

this equilibrium path, because he will gain more than deviating.

Comparing the value of δ in the second scenario with the corresponding in the third

scenario, we conclude that the results are reasonable. This is because playing the equilibrium

path (N,C) twice (scenario 3) instead of once (scenario 2), we determined δ ≥
√

2
4 which

reveals a more patient player than the one that has δ ≥ 1
8 , given that

√
2

4 > 1
8 .
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[Case B] Assuming that player I is about to be fired, he becomes the short-run player

of the game with a discount factor δ1 = 0. Player D is the long-run player of the game,

with a discount factor δ2, which is closer to 1. Therefore, in this case we use two different

discount factors.

It is expected for player I to play a best response whenever player D plays. This is called

rational expectations, because, the short-run player tries to get as much as possible before

the game ends for him. Therefore, the best the long-run player D can get is Stackelberg

payoff, as defined in Table 5.5.

In this case, we are more interested in what player D can get, or better, what is the least

player D can lose. Since the repeated static NE is always a subgame perfect equilibrium,

player D can earn 15 at each period it plays the static NE. In this scenario, δ2 is very

close to 1, and therefore player D can get an equivalent amount as the Stackelberg payoff,

because the corresponding Stackelberg subgame perfect equilibrium matches with the static

NE, which is the (A,S) strategy profile. This happens because player I ’s best response in

all player D ’s strategies is A.

The results of this case show that player D will stick with choice S in order to stop any

attacking attempts on behalf of player I, as expected before he leaves. In this way, player

D will avoid a great loss and will protect the system from being compromised and crushed.

In days of economic crisis, there are cases in which employers inform an employee that their

cooperation discontinues exactly in the day of leaving, to evade bad consequences in their

business.

5.6 Playing with an Unconventional Insider

To evaluate the effectiveness of the ID game model, we constructed another game also to

be played between an insider and an IDS. In this second game, the insider has a different

inexplicable preference list, and thus we call him unconventional. The game has two players,
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the internal attacker, player I
′
, and the IDS, player D. We assume that player I has four

strategies, N ormal, M istake, Pre-Attack, Attack, and player D has another set of four

strategies, Continue, Recommend, W arning, S top, as it has been described in Section 5.2.

As for the preferences, player D has exactly the same as in the previous game constructed

in Section 5.2. But, player I
′
’s preferences are ranked over the game outcomes differently,

as described in the structure below.

PSI
′ ≺ MSI

′ ∼ PWI
′ ≺ PRI

′ ∼ MWI
′ ≺ MRI

′ ∼ ARI
′ ≺ AWI

′ ∼ NSI
′ ≺

ASI
′ ∼ NWI

′ ≺ NRI
′ ≺ MCI

′ ≺ PCI
′ ≺ NCI

′ ≺ ACI
′ .

(5.9)

Notice that preferences (A,W) and (A,R) have been repositioned in between (M,R)

and (N,S) because this type of insider prefers less to get a warning or a recommendation

when attacking than e.g. preparing an attack without being stopped. Moreover, player I
′

places in between (N,W) and (N,R) his preference on outcome (A,S), because he prefers to

complete an attack and being stopped than receiving a warning for a normal action.

These preferences are described by the utility function uI
′ : A → R, where A is the set

of action profiles defined in Equation 5.2. We assigned numbers to reflect these preferences,

following again Binmore’s method, and we constructed player I
′
’s utility function uI′ . The

normal form of this game is presented in the 4x4 matrix of Table 5.8. The row player is

player I
′
and the column player is player D.

Examining players’ best responses, we conclude that the game has the same strategy

profile (A,S) with payoffs (8,16) as the unique NE. Moreover, the (N,C) strategy profile,

with the absolutely highest payoffs each player can get in this game, is again the Pareto

efficient strategy, which dominates the NE, but with payoffs (13,17). Then, how different

is this game with the unconventional player I
′
comparing to the game with player I ? The

answer is given in the next simple example.
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D

C R W S

N (13,17•) (9•,5) (8•,4) (7,2)

I
′

M (10,3) (6,6) (5,7) (4,14•)

P (12,1) (5,8) (4,9) (3,15•)

A (19•,0) (6,10) (7,11) (8•,16•)

Table 5.8: A game between an unconventional insider and an IDS in normal form

A Simple Example

The internal attacker starts playing the game acting legitimately, by choosing strategy N.

The IDS reacts by playing strategy C. This goes on at every period as long as NC strategies

are being played. But then, under which circumstances the internal attacker will commit

an attack, i.e. deviate from this equilibrium path? We are looking for the discount factor

δ that will motivate the internal attacker to do so because his benefit will be higher.

Solution: We calculate the average present value (APV) for each player on the equilibrium

path using Equation (6.2) and the related identity (6.3). We found APVU = 13 and

APVI = 17 respectively as expected, because the same strategies are being played at every

period. Following this, we examined players’ best responses when the opponent follows

the selected equilibrium path. When the internal attacker follows the strategy N, then

the IDS’s best response is strategy C. But when the IDS follows the strategy C, then the

internal attacker’s best response is strategy A, because his highest payoff is 19. Next, we

calculated the APV for each player if each follows the equilibrium path at the first period

but then they both deviate and continue playing the static NE as calculated. The results

are APVI = 17− δ and APVU = 19− 11 · δ.
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Finally, we compared the average present value to remaining on the equilibrium path

with that to deviating. In other words, we determined the discount factor δ for which a

player will stick with his first choice and will not change afterwards by attacking the TS.

The δ discount factor must be greater or equal to 6
11 , which is reasonable for this type of

attacker. The fact is that, the internal attacker behaves as a patient player when he takes

his time to complete an attack, but he is impatient enough when time pushes him to finish

with his illegal activities. The result can be verified by calculating the limit of the derived

average present values when δ is close to 1, that is to say, when players are patient.

lim
δ→1

(17− δ) = 16 (5.10)

lim
δ→1

(19− 11 · δ) = 8 (5.11)

Apparently from (6.4) and (6.13), the derived formulas for the average present values

for both players give the payoffs of the static NE, when δ is close to 1.

Comparing the discount factor of this game δ ≥ 6
11 with δ ≥ 1

8 (Scenario 2) or δ ≥
√

2
4

(Scenario 3) calculated for the game solved in Section 5.5, we come to the conclusion that

although both games have the same unique NE and the same Pareto efficient strategy

profile, because in their preference lists the game outcomes have been ranked in such ways

to reflect the distinct types of insiders, the solutions show that the type of attacker differs

by how much patient each insider is. Besides, the unconventional insider has a patience at

the midpoint (δ ≥ 6
11 ≈ 1

2), so that, one cannot clearly categorize him as a patient or an

impatient player.

The game with the unconventional insider revealed a relation between a player’s pref-

erences and his patience. The slight changes in the ranking of the preference structure did

not affect the NE or its uniqueness, nor the Pareto efficient strategy profile that dominated

the NE. But the calculations of δ showed that these changes actually affected the degree
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of patience for players I and I
′

respectively, and thus how two different types of insiders

formulated two different games.

5.7 Summary

Insiders might threaten organizations’ systems any time. By interacting with a system, an

insider plays games with the security mechanisms employed to protect it. Therefore, we

decided to give special attention to insiders when they interact with an Intrusion Detection

System. In order to ascertain the insider threat, we elucidated who is an insider and the

different ways he might act. In addition, we ranked the corresponding risk of an insider’s

actions, and we briefly reviewed existing solutions that address the problem of insiders.

Subsequently, we constructed a game with two players, an insider and an IDS, following

the interpretation of the generic game model presented in Chapter 3, and its repeated

formal description given in Chapter 4. The use of preference lists for both players and the

construction of their utility functions, quantified players’ preferences in a realistic way.

Solving the repeated game, we determined the discount factor that formulates this

game differently at each turn of the play, at the end of a time period tx, x = 0, 1, 2, . . .. We

concentrated our work in determining the critical discount factor above which an insider

has no incentive to attack the TS. To study further these cases, we constructed another

game with an unconventional insider, the solution of which, comparing to the first game,

resulted in some valuable conclusions.

Unfortunately, determining the discount factor of a repeated game does not solve other

complexity problems the increased number of repetitions generates, as the multiple NE.

Although NE has been largely accepted as a solution concept in Game Theory, other solution

concepts that generalize the NE have been proposed (see Section 1.2), to cover weaknesses

and overcome limitations. The Quantal Response Equilibrium (QRE) discussed in Chapter

7 is such an alternative.

120



Chapter 6

Uncertainty in ID Signaling Games

I have always thought the actions of men the

best interpreters of their thoughts.

John Locke (1632 - 1704)

Doubt is not a pleasant condition, but

certainty is absurd.

Voltaire (1694 - 1778)

Not to be absolutely certain is, I think, one

of the essential things in rationality.

Bertrand Russell (1872 - 1970),

”Am I An Atheist Or An Agnostic?”, 1947

The current chapter examines the ID game model established in Chapters 3 and 4 as a

signaling game. In signaling games players have no complete information and therefore

they exchange signals to play the game. A signal reflects private information a player holds

and its recipient encodes it in order to take an action. First, we construct the ID signaling
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game in an extensive form by defining the corresponding payoffs. Next, we represent it

in a payoff matrix as a normal form game. We examine then the solution of the game

by removing the dominated strategies. Finally, we compute all the equilibria of the ID

signaling game in pure and behavioral strategies.

Attempting to model ID as a signaling game, we assume a User who has already gained

access to a Target System (TS) and starts using it, regardless whether he is a legitimate

user, a masquerade, a hacker, or a cracker. The method used to get into the system, in

cases where the User is not authorized, are not considered here because it is covered by

the area of Access Control in IT Security. In our case, we care about users of the system

we do not know whether they are going to behave legitimately or illegally, accidentally or

intentionally.

6.1 Constructing the ID Signaling Game

The User will move in two ways, acting Legitimately (L) or acting Illegally (I). The Target

System is equipped with an Intrusion Detection System (IDS) ready to play with this User.

The IDS will decide to Prevent (P) the User from further using the TS or to allow the User

to Continue (C). To make this decision, the IDS should conclude if the User is an enemy

of the TS, i.e. an Attacker no matter whether he is an insider or an outsider.

The IDS does not know for sure if the User is a Normal User or an Attacker. This

means that there is a simple probability distribution. Assuming that the number of reported

attacks is for example the 25% of the occurring events in a Target System, then the IDS

knows with probability 1
4 that the User is an Attacker and with probability 3

4 that the

User is a Normal User. Later on, this number will be refined to reflect the actual number

of attacks that take place in this specific Target System. This means that the proposed

system will be self tuning and adjustable to current data related to the Target System itself.

Examining the set of alternative circumstances, the IDS will prevent the User if he is
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an Attacker and the Attacker will run off because he was caught by the IDS. But if the

IDS prevent a Normal User from using the Target System, then this Normal User might

request justice, because a false positive alarm has been raised against him unfairly. The

IDS receives signals from the User, and the decision whether he is a Normal User or an

Attacker derives from the examination of these signals.

6.1.1 Defining the Payoffs

The utility functions UN and UA defined in Chapter 4 determine the corresponding payoffs at

each node of the extensive form game and at each cell of the normal form game respectively.

As for the utility function UIDS , we adjust it to reflect all the preferences, when the opponent

is either a Normal User or an Attacker in a signaling game, as described in the sequel.

IDS’s Preferences

The set of an IDS’s preferences is denoted by IDS and includes eight items in a signaling

game, as described in the sequel:

IDS = {IDS1, IDS2, IDS3, IDS4, IDS5, IDS6, IDS7, IDS8},

where,

IDS1 : The IDS allows a Normal User who is acting legitimately to continue.

IDS2 : The IDS prevents a Normal User who is acting legitimately to continue.

IDS3 : The IDS allows a Normal User who is acting illegally to continue.

IDS4 : The IDS prevents a Normal User who is acting illegally to continue.

IDS5 : The IDS allows an Attacker who is acting legitimately to continue.

IDS6 : The IDS prevents an Attacker who is acting legitimately to continue.
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IDS7 : The IDS allows an Attacker who is acting illegally to continue.

IDS8 : The IDS prevents an Attacker who is acting illegally to continue.

Ranking these preferences from the most disliked to the most preferred one, we get:

IDS7 ≺ IDS5 ≺ IDS2 ≺ IDS3 ≺ IDS1 ≺ IDS4 ≺ IDS6 ≺ IDS8 (6.1)

Next, we will define another utility function for the player IDS. Suppose that UIDS :

{IDS1, IDS2, IDS3, IDS4, IDS5, IDS6, IDS7, IDS8} → R is the utility function for the

IDS. The IDS has an aversion to preference IDS7, because this is the worst case scenario for

it that raises a false negative alarm. For this reason, we define UIDS(IDS7) = 0. Further-

more, because it mostly prefers IDS8, we define UIDS(IDS8) = 1. Selecting between IDS3

and IDS1, which are intermediate preferences, we decide to define UIDS(IDS3) = 1
2 . Next,

because IDS4 is the intermediate between IDS3 and IDS8, we define UIDS(IDS4) = 3
4 ,

by calculating the value of UIDS(IDS4) which is the middle between IDS3 and IDS8, that

is:

UIDS(IDS4) = UIDS(IDS3)+ UIDS(IDS8)−UIDS(IDS3)
2 = 1

2 + 1− 1
2

2 = 1
2 +

1
2
2 = 1

2 + 1
4 = 3

4 .

Calculating the utilities for IDS1 and IDS6 respectively, we get:

UIDS(IDS1) = UIDS(IDS3)+
UIDS(IDS4)−UIDS(IDS3)

2 = 1
2 +

3
4
− 1

2
2 = 1

2 +
1
4
2 = 1

2 + 1
8 = 5

8 .

UIDS(IDS6) = UIDS(IDS4)+ UIDS(IDS8)−UIDS(IDS4)
2 = 3

4 + 1− 3
4

2 = 3
4 +

1
4
2 = 3

4 + 1
8 = 7

8 .

Finally, we calculate in a similar way the utilities for IDS5 and IDS2 as described in

the sequence:
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UIDS(IDS5) = UIDS(IDS7) + UIDS(IDS3)−UIDS(IDS7)
3 = 0 +

1
2
−0

3 =
1
2
3 = 1

6 .

UIDS(IDS2) = UIDS(IDS5) + UIDS(IDS3)−UIDS(IDS5)
2 = 1

6 +
1
2
− 1

6
2 = 1

6 +
2
6
2 = 1

6 + 1
6 =

2
6 = 1

3 .

In Table 6.1, we summarize the utilities defined for the IDS, in the second row. The

third row contains the corresponding utilities transformed into integer numbers instead of

fractions.

x IDS7 IDS5 IDS2 IDS3 IDS1 IDS4 IDS6 IDS8

UIDS(x) 0 1
6

1
3

1
2

5
8

3
4

7
8 1

24× UIDS(x) 0 4 8 12 15 18 21 24

Table 6.1: IDS’s Utility Function in a Signaling Game

Concerning the payoffs of this game on behalf of the User, if the IDS permits a Normal

User to Continue, then the Normal User gains 4 points when he is acting Legitimately, and

1 point less, i.e. he gets 3 points when he is acting Illegally. Moreover, if the IDS permits

an Attacker to Continue, then the Attacker gains 2 points if he acts Legitimately so he

doesn’t achieve his goals, and 4 points if he acts Illegally so he achieves his goals.

Similarly, if the IDS Prevents a Normal User to use the Target System, then the Normal

User gets no points (0 points) if he acts Legitimately and he gets 2 points if he acts Illegally,

because he does not act by purpose. Likewise, if the IDS Prevents an Attacker to use the

Target System, then the Attacker gets nothing if he acts Legitimately and 3 points if he

acts Illegally.
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As the User ’s payoffs start from 0 and goes to 4 (see Chapter 4), the IDS ’s payoffs vary

between 0 and 24. There is a difference between the two payoffs’ scales, because a Normal

User has 4 payoffs, an Attacker another 4, whereas the IDS has 8 payoffs, since he plays

the game with both, either the Normal User or the Attacker.

Specifically, the IDS gains 15 points if it permits a Normal User who acts Legitimately

to Continue, and 12 points if it permits a Normal User to Continue although he acts

Illegally. In the case it permits an Attacker to Continue because he acts Legitimately, the

IDS gains only 4 points because this is a false negative alarm. If it Prevents a Normal User

to Continue although he acts Legitimately, the IDS gets 8.

In addition, the IDS loses by getting no points at all, when it permits an Attacker with

Illegal actions to Continue. On the contrary, the IDS gains 18 points if it Prevents a Normal

User from acting Illegally, 21 points if it Prevents an Attacker from acting Legitimately,

and finally, 24 points if it Prevents an Attacker from acting Illegally.

Apparently, the ID game as a signaling game is not a zero-sum game, neither a constant-

sum game. An Attacker is pretty happy if he commits an attack without being caught by

the IDS (4 points), but he is a loser if the IDS detects his intentions correctly and stops

him before he achieves his goals (0 points).

In the same way, a Normal User is satisfied by using the Target System in a Legitimate

manner and nobody disturbs or stops him. But when the IDS Prevents him unfairly from

doing so, he is one hundred per cent a loser of the game.

Conversely, the IDS maximum payoff is when it detects accurately an Attacker who acts

Illegally and stops him (24 points), that is, when the User too gets some payoff (3 points)

because he has already acted Illegally. Finally, the IDS gets no payoff (0 points) when it

leaves undetected an Attacker who acts Illegally and permits him to Continue using the

TS.

Figure 6.1 shows the extensive form of the ID game as a signaling game, drawn by the
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GAMBIT tool.

Figure 6.1: Intrusion Detection as a signaling game

Since the ID game starts with a Chance node, where there is a probability p with which

a User is a Normal User, and a probability 1− p with which the User is an Attacker, the

game is an incomplete information game, because the IDS does not know for sure what is

the type of User. This is the private information the User holds.

Incomplete information games were formulated and studied by John Harshanyi in 19671.

They are amongst the most challenging games to be solved. They model strategic problems

in which the players have no complete information about each other’s preferences. They

also have the potential to model irrationality as was shown in the famous ”gang of four”

paper in 1982 (Kreps, Milgrom, Roberts, and Wilson).

6.2 Constructing the Normal Form of the ID Signaling Game

In the ID game there are two players, the IDS which protects the Target System and a

User who uses the Target System. In reality, there are a number of users who act on the
1Harshanyi shares the 1994 Nobel Prize in Economics, together with John Nash and Reihard Selten,

mainly because of this formulation.
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Target System, but this is a more complicated setting, as it has already been considered in

Chapter 4. We assume that player User has a binary choice between two actions: he can

either act Legitimately (L) or he can act Illegally (I ). These actions are the signals sent to

the IDS from the User. The IDS has also two actions, to Prevent (P) the User to continue

using the Target System or to permit him to Continue (C ), because it decided that the

signals come from an Attacker or from a Normal User respectively.

The possible actions described above lead to the sets of strategies that correspond to

each player. Two capital letters are assigned to each strategy, the first corresponds to an

action when the User is a Normal User, and the second corresponds to an action when

the User is an Attacker. So, the User has four strategies. First, he can act Legitimately

regardless he is a Normal User or he is an Attacker (LL). He can act Legitimately if he is

a Normal User and Illegally if he is an Attacker (LI ). He can act Illegally if he is a Normal

User (accidentally) and Legitimately if he is an Attacker (bluffing) (IL). Ultimately, he can

act Illegally no matter what he is (II ).

The IDS has four strategies too. It can Prevent the User whatever he is (including false

positives) (PP). It can Prevent the User if he is an Attacker and allow him to Continue

if he is a Normal User (CP). It can allow the User to Continue if he is an Attacker (false

negatives) and Prevent the User if he is a Normal User (false positives) (PC ). Finally, it can

allow the User to Continue regardless he is a Normal User or an Attacker (including false

negative) (CC ). It is remarkable that all these strategies encompass false alarms except the

second one which is the optimal case, to allow a Normal User to Continue and to Prevent

an Attacker. Besides, strategy PC seems irrational, but in fact, in this case the IDS does

not trust the signals it gets from the User.

The payoffs assigned to each strategy are summarized in Table 6.3 below, where both

cases of a Normal User or an Attacker are included. Rows correspond to User ’s strategies

and columns to the IDS ’s strategies.
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PP CP PC CC

LL (0,8)/(0,21) (4,15)/(0,21) (0,8)/(2,4) (4,15)/(2,4)

LI (0,8)/(3,24) (4,15)/(3,24) (0,8)/(4,0) (4,15)/(4,0)

IL (2,18)/(0,21) (3,12)/(0,21) (2,18)/(2,4) (3,12)/(2,4)

II (2,18)/(3,24) (3,12)/(3,24) (2,18)/(4,0) (3,12)/(4,0)

Table 6.2: IDS’s Utility Function in a Signaling Game

Each cell includes a couple of payoffs pairs. The first pair corresponds to the case of a

Normal User and the second pair corresponds to the case of an Attacker. The first number

in each pair is User ’s payoff and the second is IDS ’s payoff. In Figure 6.2 we zoom at the

matrix for details.

Figure 6.2: Details of the notation used in a cell of the payoffs matrix

Because the IDS knows with probability 1
4 that the User is an Attacker and with

probability 3
4 that he is a Normal User, the expected return to the players should be

calculated by adding the first half of the matrix multiplied by 3
4 and the second half of the

matrix multiplied by 1
4 . The calculations are given in the sequence:
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3
4
·




(0, 8) (4, 15) (0, 8) (4, 15)

(0, 8) (4, 15) (0, 8) (4, 15)

(2, 18) (3, 12) (2, 18) (3, 12)

(2, 18) (3, 12) (2, 18) (3, 12)




+

1
4
·




(0, 21) (0, 21) (2, 4) (2, 4)

(3, 24) (3, 24) (4, 0) (4, 0)

(0, 21) (0, 21) (2, 4) (2, 4)

(3, 24) (3, 24) (4, 0) (4, 0)




=




(0, 6) (3, 111
4) (0, 6) (3, 111

4)

(0, 6) (3, 111
4) (0, 6) (3, 111

4)

(11
2 , 131

2) (21
4 , 9) (11

2 , 131
2) (21

4 , 9)

(11
2 , 131

2) (21
4 , 9) (11

2 , 131
2) (21

4 , 9)




+




(0, 51
4) (0, 51

4) (1
2 , 1) (1

2 , 1)

(3
4 , 6) (3

4 , 6) (1, 0) (1, 0)

(0, 51
4) (0, 51

4) (1
2 , 1) (1

2 , 1)

(3
4 , 6) (3

4 , 6) (1, 0) (1, 0)




=
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To avoid having payoffs in a fraction format, we multiply the above matrix by 4, and

we get the following final payoff matrix:
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PP CP PC CC

LL 0,45 12,66 2,28 14,49

LI 3,48 15,69 4,24 16,45

IL 6,75 9,57 8,58 11,40

II 9,78 12,60 10,54 13,36

Table 6.3: Payoff Matrix for the ID Signaling Game

6.3 Removing Dominated Strategies

We first solve the ID signaling game by applying the domination criterion, which says that a

rational player should not use a dominated strategy. Binmore [22] expresses the domination

criterion by assuming two strategies s1 and s2 of a player I and three strategies t1, t2, and

t3 of a player II. Then we decide that for player I, strategy s2 strongly dominates strategy

s1 when

π1(s2, t) > π1(s1, t) (6.2)

for all three values of player II ’s strategy t. Moreover, if the relation between two

strategies is ≥, then the one strategy weakly dominates the other. In our game we express

in algebraic terms the above criterion to check if it holds. First, we consider that IL is

dominated by II because:

[6,9,8,11] > [9,12,10,13]

Using this domination argument, we remove strategy IL from the payoff matrix and the

matrix changes to the following:

Second, PC is dominated by PP because:

[45,48,78] > [28,24,54]
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PP CP PC CC

LL 0,45 12,66 2,28 14,49

LI 3,48 15,69 4,24 16,45

II 9,78 12,60 10,54 13,36

and thus we reduce the payoff matrix again by removing strategy PC. The payoff matrix

now has the following form:

PP CP CC

LL 0,45 12,66 14,49

LI 3,48 15,69 16,45

II 9,78 12,60 13,36

Third, LL is dominated by LI which can be expressed in algebraic terms as

[3,15,16] > [0,12,14]

So, the strategy LL is also out of the matrix and the payoff matrix turns into the

following:

PP CP CC

LI 3,48 15,69 16,45

II 9,78 12,60 13,36

Finally, strategy CC is dominated by strategy CP as
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[69,60] > [45,36]

Consequently, the above deletions lead to a smaller 2x2 matrix as shown in Table 6.4.

PP CP

LI 3,48 15,69

II 9,78 12,60

Table 6.4: Reduced Payoff Matrix for the ID Signaling Game

Studying the resulting matrix, it makes sense that a Normal User can either act Le-

gitimately or Illegally, while an Attacker acts only Illegally. In addition, we should check

if there is a mixed strategy equilibrium. Consider that the probability for player User of

playing strategy LI is p, and the probability of playing strategy II is 1− p. Then, because

the IDS ’s payoffs in strategies PP and CP are 48 points in the LI strategy, 78 points in the

II strategy, and 69 points in the LI strategy and 60 points in the II strategy respectively,

we get the following equation:

48p + 78(1− p) = 69p + 60(1− p) (6.3)

Solving Equation 6.3 to determine p, we get p = 18
39 which is very close to 0.5 ('

0.461538). The inference is that there is no Nash equilibrium for which the player User

will decide to play the LI strategy. It sounds reasonable that an Attacker will think about

acting Illegally all the time and that a Normal User makes mistakes2.

Similarly, consider that p′ is the probability the player IDS will choose strategy PP, and

1 − p′ is the probability player IDS will choose strategy CP. Then the following equation

must hold:
2A Normal User who is acting legitimately for a while, but at the next point of time accidentally acts

illegally, could be modeled with Selten’s ”Trembling-Hand Equilibrium”.
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3p′ + 15(1− p′) = 9p′ + 12(1− p′) (6.4)

Solving Equation 6.4 to determine p′, we get p′ = 1
3 . Therefore, player IDS will Prevent

the User to Continue with probability 1
3 regardless he is a Normal User or an Attacker.

Furthermore, the IDS will let a Normal User to Continue and Prevent an Attacker with

probability 2
3 which is the most rational strategy.

It seems that the User is indifferent between the strategy LI and the strategy II.

Therefore, the results lead our reasoning to different approaches, as those described in

the following section.

6.4 Computing Equilibria in the ID Signaling Game

In a signaling game with two players, the one player knows something the other doesn’t,

that is, the one player holds information the other doesn’t, but he sends signals to give hints

of this private information to the second player. When the other player picks up the signal,

then he decides upon this what action to take as a response. The corresponding (assigned)

payoffs show the winner and the loser of the game. A signaling game usually admits more

than one Nash equilibria.

The Intrusion Detection game described previously is an example of a signaling game,

because the player User knows if he is a Normal User or an Attacker whereas the Intrusion

Detection System doesn’t. In addition, the User sends signals to the IDS by using the

Target System, the IDS collects the events generated by this activity and decides whether

to prevent or to allow the User to continue using the TS, by judging if this activity belongs

to a Normal User or to an Attacker. In the Intrusion Detection game, Chance should start

the game by deciding if the player User is a Normal User or an Attacker. Then, the player

IDS is at the opposite side of the User and it might either Prevent the User or it might

allow the User to Continue using the TS. The IDS would Prevent the User if it were aware
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that the User would damage the system, i.e. he is an Attacker, and it would allow the User

to Continue if it were aware that no damage would be caused, i.e. he is a Normal User.

Unfortunately, only the User knows for sure that he is a Normal User or an Attacker. In

other words, only the User knows his type.

However, by using the TS, the User is sending a signal of Legitimate activity when he

is a Normal User, and a signal of Illegal activity when he is an Attacker. To determine the

type of signal that corresponds to each activity, i.e. to decode a signal, we assume that

the event reception module hosted by the IDS, collects the lowest level functions of the

operating system (e.g. system calls) and examines their return values. If the return value of

a function indicates that the User has attempted a system violation, or a security relevant

event has successfully taken place, then an illegal activity is assigned with this. Otherwise,

a legitimate action has taken place.

On average, a Normal User will act Legitimately and an Attacker Illegally. Nevertheless,

a Normal User might act accidentally Illegally, because for instance he is a novice and as

such he makes mistakes (Selten’s trembling hand perfect equilibrium). Likewise, an Attacker

might act Legitimately as an attempt to bluff so he can avoid detection, or because he is

an insider as examined in Chapter 5, so he is authorized for a number of activities, but

he takes advantage of them to cause damage. In conclusion, the User who sends a signal

might confuse the IDS on purpose or unintentionally.

In the next subsections, we follow Binmore’s reasoning for the quiche game [21] and

Gintis’s concepts [60], to solve the ID game by locating any Nash equilibria, first in pure

strategies and afterwards in behavioral strategies.

6.4.1 Locating Nash Equilibria in Pure Strategies

First, we examine the ID signaling game for Nash equilibria in pure strategies. Assume that

player IDS chooses the strategy PP. Then, the best response for player User is strategy IL,
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because it is reasonable to play with Legitimate actions if he is a Normal User and to act

Illegally if he is an Attacker, not bluffing since he will be caught anyway. Besides, the payoff

matrix shows that he is loosing less by playing IL than in any other choice. Considering

the other way, if player User chooses IL, then the best response for player IDS is again PP.

Therefore, the pair of strategies IL and PP is a Nash equilibrium.

Next, assuming that player IDS plays strategy PC, then player User plays II as his

best response. But reversing the argument, shows that, if player User plays II, then player

IDS plays PP and not PC, because his payoff is maximized with PP (6 points instead of

1). So, there are no Nash equilibria in which player IDS chooses strategy PC.

Similarly, if player User uses strategy LL, then player IDS ’s best reply is strategy CP,

whereas, if player IDS plays strategy CP, then player User will choose either strategy

LL or strategy IL as best reply, because their payoffs are equal (5 points). Namely, it is

undetermined what player User will do; he will act Illegally or Legitimately in the case he is

a Normal User? Still, player IDS should counteract if player User acts Illegally and Prevent

him from damaging the TS. There is a point here that requires further consideration.

In certain environments, we care not only about information related to the knowledge

of the players, but also about information related to their beliefs. In our case, we examine

player IDS ’s beliefs after receiving a signal from player User, i.e. collects an event from

the TS generated by the User. It is coherent for player IDS to allow the User to Continue

using the TS, if it gets a signal of Normal User, and to Prevent him if it gets a signal of

Attacker from him. So, the fact that player IDS chooses CP adds no more information. If

the initial probability that player User is a Normal User is p, and that he is an Attacker is

1 − p, this remains unchanged. However, the payoffs lead player User to act Legitimately

when the probability of being a Normal User is higher. For that reason, it is XL (i.e. IL or

LL) the best reply to strategy CP. As a result, there are no Nash equilibria in which player

IDS chooses strategy CP.
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Following the same reasoning, consider that player IDS uses strategy CC. Consequently,

player User will use one of the strategies LI or II, that is, it is undetermined if a Normal

User will act Illegally or Legitimately, whereas an Attacker will definitely act Illegally

because he will evade detection. Reversing the case, if player User chooses LI, then the

best response for player IDS is not strategy CC but strategy CP (3 points instead of -2).

The conclusion is that there are no Nash equilibria when player IDS chooses strategy CC.

To end with the pure strategies, there is only one Nash equilibrium in pure strategy IL

for player User and strategy PP for player IDS. Verifying this finding, the IDS Prevents a

Normal User when he is acting Illegally either by purpose or unintentionally, but it prefers

also to Prevent an Attacker to continue using the TS when he is acting Legitimately, because

this legal activity might form the first steps of a complete attack scenario (see Section 1.1.3

for details).

Although a Nash equilibrium has been located in pure strategies, it is necessary to look

for other Nash equilibria in mixed strategies. Such a task is quite difficult and complicated,

but Nash has proved that every finite game has at least one Nash equilibria if mixed strategies

are allowed [21]. In any case, we will achieve valuable results upon completion.

In order to facilitate this work, one can replace mixed strategies by behavioral strategies,

as mentioned in Section 4.1.2. In the next section, there is an explanation why this can be

done, and a description of the behavioral strategies search for Nash equilibria.

6.4.2 Locating Nash Equilibria in Behavioral Strategies

Perfect recall games are those where no player ever forgets any piece of information that

was once in his knowledge. Thus, the ID game is a perfect recall game. In addition, Kuhn

has proved the following theorem for perfect recall games [21]:

Kuhn’s theorem

Whatever mixed or behavioral strategy s that player i may choose in a game
of perfect recall, he or she has a strategy t of the other type with the property
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that, however the opponents play, the resulting lottery over the outcomes of the
game is the same for both s and t.

With this theorem, Kuhn has proved that in perfect recall games, mixed strategies and

behavioral strategies are identical. Therefore, instead of searching for Nash equilibria in

mixed strategies, we will examine the behavioral strategies of the ID game.

A behavioral strategy is a decentralized mixed strategy, that is, like a pure strategy, it is

clear for a player what action to take at each information set, but, a probability is assigned

to each action [21]. Based on this probability, a player decides how to proceed the game.

In our game, for player User, a behavioral strategy must assign a probability p with

which the User will act Legitimately at the information set Normal User, and a probability

q with which player User will act Legitimately at the information set Attacker. Corre-

spondingly, the probability with which player User will act Illegally at the information set

Normal User is 1 − p, and the probability with which player User will act Illegally at the

information set Attacker is 1− q.

Similarly, considering player IDS ’s behavioral strategies, a probability r must be as-

signed to the action Prevent at the information set Illegal Activity, and a probability s to

the action Prevent at the information set Legitimate Activity. The probabilities 1 − r and

1− s must be assigned to the action Continue, at the information sets Illegal Activity and

Legitimate Activity, respectively.

The established probabilities affect the initial probabilities with which the game starts.

In particular, we mentioned before that at the beginning of the game, player IDS knows

with probability 1
4 that player User is an Attacker, and with probability 3

4 that he is a

Normal User. This is said to be the player’s prior probabilities for the events that the User

is an Attacker or a Normal User, respectively. Now, another piece of information is added to

the IDS ’s knowledge. It is the behavioral strategy (p, q), which represents the case of acting

Legitimately, whatever player User is (Normal User or Attacker). If player IDS knows the
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probabilities p and q, because someone wrote them in a game theory book as Binmore says,

it should update its beliefs about what player User is. These new probabilities are called

posterior probabilities, and the process we follow from prior to posterior probabilities is

called Bayesian updating.

Assuming that player User chooses to play strategy (p, q), the probability that the up-

per branch will be followed and node (a) will be reached is 3
4 ∗ p whereas the probability to

reach the corresponding node (b) is 1
4 ∗ q. Thus, at the information set Legitimate Activity,

the posterior probability for player IDS when the User is a Normal User, is

prob(User is Normal|User acts Legitimately) = prob(a)
prob(a)+prob(b) =

3
4
∗p

3
4
∗p+ 1

4
∗q

and when the User is an Attacker, is

prob(User is Attacker|User acts Legitimately) = prob(b)
prob(a)+prob(b) =

1
4
∗q

3
4
∗p+ 1

4
∗q

Analyzing player IDS ’s behavior first at the information set Legitimate Activity, we take

into account that player IDS prefers to Prevent player User, when the latter is an Attacker.

Since the probability at the information set Legitimate Activity is 3
4 ∗ p for a Normal User

and 1
4 ∗ q for an Attacker, the IDS will Prevent the User at this node of the game, if the

following inequality holds:

1
4
q >

3
4
p ⇒ q > 3p (6.5)

On the other hand, player IDS will allow the User to Continue at the information set

Legitimate Activity, if the reverse inequality holds, that is,

q < 3p (6.6)
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Finally, player IDS has no interest in choosing either to Prevent or to allow the User

to Continue, if the probabilities are equal, that is,

q = 3p (6.7)

Regarding the IDS ’s behavior at the information set Illegal Activity, the player IDS will

choose to Prevent the User from using the TS if the following inequality holds:

1
4
(1− q) >

3
4
(1− p) (6.8)

Simplifying the inequality (6.8) we get

q > 3p− 2 (6.9)

Similarly, player IDS will allow the User to Continue at the information set Illegal

Activity, if the reverse inequality holds, that is,

q < 3p− 2 (6.10)

Finally, player IDS has no interest in choosing either to Prevent or to allow the User

to Continue when his signals indicate Illegal Activity, if the probabilities are equal, that is,

q = 3p− 2 (6.11)

When we examined the existence of Nash equilibria in pure strategies, we faced the

case of undetermined choices. In particular, we found that if player IDS plays strategy CP,

then player User will choose either strategy LL or strategy IL as best reply, because their

payoffs are equal (5 points). That is to say, we do not know what player User will do at

this node of the game. As a Normal User, he will either act Illegally or Legitimately, and he

is apathetic in choosing whichever strategy. This was the reason we switched to behavioral
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strategies, in order to determine all Nash equilibria. The equations (6.7) and (6.11) reveal

such cases.

Assuming that the hypothesis (6.11) is true, then it is also true that

q < 3p (6.12)

So, the conclusion that derives from (6.12) is that, player IDS will allow the User to

Continue at the information set Legitimate Activity. Consequently, there is no point for

player User to act Legitimately when he is an Attacker, so he will better decide to act

Illegally. Besides, this might be closer to his aims and temperament. Therefore, it should

be 1 − q = 1, which results in q = 0. But then probability p can be calculated by (6.11),

that is p = 2
3 . As a result, there is a Nash equilibrium with q = 3p − 2, when q = 0 and

p = 2
3 .

To make it meaningful, player User will decide to act Legitimately with probability 2
3

if he is a Normal User, while he will definitely decide to act Illegally with probability 1 if

he is an Attacker. Moreover, player User will play Illegally with probability 1
3 if he is a

Normal User.

Furthermore, the following equation must hold when examining player IDS ’s behavior

at the information set Attacker :

(−2)r + 4(1− r) = 3− 2 (6.13)

Solving Equation 6.13 we get r = 1
2 . Consequently, the next equation must also hold:

(−1)s + 3(1− s) = 2− 1 (6.14)

Solving also Equation 6.14 we get s = 1
2 .

Likewise, at the information set Normal User, the following equation must hold:
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0r + 2(1− r) = 1− 1 (6.15)

Solving Equation 6.15 we get r = 1. Consequently, the next equation must also hold:

(−1)s + 2(1− s) = −1 + 0 (6.16)

Solving also Equation 6.16 we get s = 1.

Decoding these findings, we realize that the IDS ’s behavior is indifferent between Pre-

venting an Attacker from acting either Illegally or Legitimately (r = s = 1
2). In addition,

it sounds strange that the IDS will Prevent a Normal User to continue using the TS for

sure, when acting either Illegally or Legitimately. All these happen when assuming that

initially player User is a Normal User with probability 3
4 or an Attacker with probability

1
4 . If the initial probabilities change, then the above results will be affected significantly.

Specifically the probability with which a Normal User acts Illegally (1
3) will be decreased,

if we decrease the initial probability 1
4 with which a User is an Attacker. This is really high

to be true.

Next, if the hypothesis (6.7) is true, then the inference is that player IDS has no interest

in deciding either to Prevent or to allow the User to Continue, if the probabilities are equal.

But from Inequality 6.12 we know that there is a Nash equilibrium when q < 3p. Therefore,

there is no way to have another Nash equilibrium when q = 3p.

6.4.3 Solving with Gambit

Solving the game illustrated in Figure 6.1 with the Gambit tool, we get six profiles from

which two are not Nash equilibria. The profiles and the corresponding calculated probabil-

ities are presented in Figure 6.3.
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Figure 6.3: The Gambit’s solution of the ID signaling game
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6.5 Summary

In the ID signaling game we met again, as in Chapter 5, the problem of multiple NE.

Therefore, there is a need for Nash equilibrium refinements, in order to choose one that

might be selected. But also, the ID signaling game shows the need for defining new signals,

which will support its formulation and will give us a better understanding in the interactions

that take place between attackers and IDSs. This is discussed as future work in Chapter 9.
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Chapter 7

Calculating QRE: Beyond the NE

Solution Concept

It has been said that man is a rational

animal. All my life I have been searching for

evidence which could support this.

Bertrand Russell (1872 - 1970)

In Chapter 7, we explain first the reasons we employed another solution concept of the

Theory Games, the Quantal Response Equilibrium (QRE). We briefly describe the QRE

and then we calculate it for the ID game with an insider, to predict insider’s future be-

havior, as an extension of the work presented in Chapter 5. The results are discussed and

illustrated graphically to interpret the efficiency of QRE. Finally, we summarize the results

obtained in two different periods of the game repetition, and we compare the results with

the corresponding when the NE solution concept is used.
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7.1 Quantal Response Equilibria - QRE vs. NE

Solving the ID game with an insider we located a unique NE in the stage game (see Section

5.4). But, trying to solve the repeated form of this game, we located 11 NE when the game

repeats only for two periods. Considering the rate this game expands as the time periods

proceed (see Section 5.2.3), we realize that the problem of multiple NE and which one to

select is the most important we face when using the NE solution concept. As mentioned

in Section 1.2, the Theory of Games has not a method to systematically check whether

any one of these NE is the actual solution of our game, and if so, to indicate which one.

Moreover, the backward induction, which is used in extensive form games with multiple NE,

unfortunately is not sufficient to solve this problem, especially when the tree is extremely

expanded.

Furthermore, according to the motivation of our work (see Section 1.4), we have been

focused in predicting the behavior of a user for future actions, in order to prevent an

incoming attack. This has been incorporated in the construction of the ID game, the

generic one and that with an insider. The way the players play the game, the outcomes

of the game, their preferences over these outcomes, they are all carefully examined in such

a way to allow behavioral prediction. Besides, the Theory of Games have been especially

chosen to serve as a tool for behavioral prediction. But, is the most commonly used solution

concept, the well known NE, sufficient for such a requirement?

We recall Halpern and his work in [65] referred in Section 2.1, who enumerates and

discusses the problems of NE and the problems that can be observed from a Computer

Science point of view. Among them is that NE does not handle unexpected behavior or any

erroneous behavior. In our approach, we have concluded that an insider has the intention

to attack the TS, but we do not know when and how (see Section 5.4). Even by determining

the discount factor δ (see Section 5.5) we solve the same game with different payoffs that

might lead to the same problems of NE. In addition, we have defined in insider’s action set
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the M action for mistakes, to characterize his erroneous behavior.

Selten and Chmura also compared experimentally five stationary concepts for 2x2 games

[162]. Among them were the Nash equilibrium and the quantal response equilibrium. Exper-

imental findings indicated the insufficiency of mixed Nash equilibrium in predicting players’

behavior. This verifies a ten years older conclusion stated in [55] that characterizes the

Nash equilibrium prediction very bad in some games. Consequently, we directed our work

towards QRE, beyond the classical computation of NE, where the bulk of the literature has

focused.

McKelvey and Palfrey defined the Quantal Response Equilibria (QRE) for normal form

games [120] and for extensive form games [121], as a probabilistic way to model games

and evaluate them, to capture players’ bounded rationality. The QRE is analogous to the

logit function1. It is a generalization of Nash equilibrium, which has also been used to

give reasons why players deviate from the equilibrium path. In particular, QRE has been

used in signaling games, centipede games, two-stage bargaining games, and overbidding in

auctions to explain the irrational players’ behavior [61]. The Gambit [119] tool provides

methods for computing the logit quantal response equilibrium correspondence for games in

both extensive and strategic form, using the tracing method of Turocy [174].

7.2 Computing the QRE for the ID Game with an Insider

We first calculated the QRE in the one shot game depicted in Figure 5.1, and the results

verify the NE located previously. That is to say, there is no interest when calculating the

QRE of this one shot game. Taken into account that the number of outcomes in the second

period of the game is really big (192 outcomes as calculated in Section 5.2.3), and that

we are only interested in predicting the insider’s behavior and not the IDS’s, we decided
1The logit function of a number that ranges between 0 and 1, as probability does, facilitates the binary

interpretation of an outcome, and is given by the formula: logit(p) = log( p
1−p

) = log(p)− log(1− p).

147



to study the extensive form of the game, in which player I moves twice, before and after

player D. Osborne and Rubinstein illustrate and examine an analogous example in [135].

Because the Gambit tool, used to create the game and calculate the QRE, requires manual

data input, it is not possible to extend the game to next periods, given the large outcome

spaces calculated in Section 5.2.3.

Consequently, we extended the game to include another action, i.e. player I moves first,

player D acts next as a response to his action, and player I moves again. The number of

outcomes is significantly less, i.e. only 52. Then, we adjusted the payoffs of the extended

game to reflect the preferences over the outcomes, following the same method as in the

stage game, and we constructed the corresponding utility function.

The new game has the features of a repeated game. Locating all possible NE with the

Gambit tool, we get four NE; in all of them, player I ’s first move is an A action, whereas

his second move is either a N, a M, a P, or an A action. Then, which one will be the actual

set of moves chosen by the insider, and how the IDS will react? This is the equilibrium

selection problem, which remains an open question in Game Theory. The QRE solution

concept is an attempt to address this problem [121], by computing the probability with

which each action would be selected.

Consequently, we calculate the QRE that will show us how this game would actually

be played. Calculations start with equal probabilities for each strategy. Because there is a

set of four strategies for each player, every strategy has a probability of 0.25 to be selected.

This is the starting point of calculations with λ = 0 at step 1. The λ is a logit precision

parameter, in reliability theory also known as the hazard rate. This method assigns equal

probabilities to every strategy to be selected, just the contrary of what the best responses

method does when calculating NE.

In appendix 9, Table 9.1 presents the data from selected steps of these long calculations.

The first column counts the steps of the QRE calculations; the second column gives the λ
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value at each step, and three sets of four columns follow, each for a player’s information

set. The first information set is player I ’s first move, the second is player I ’s second move,

and the IDS information set is player D ’s single move.

7.3 Interpreting QRE

There are several interpretations of QRE [63]. We consider QRE as a generalization of Nash

equilibrium to capture players’ bounded rationality. It is remarkable that, up to step 10,

no probability has changed significantly to show any preference, except the slight growing

of the A action at the first move (col.6). Continuing the calculations, it is step 57 when the

selection by player D of an S action becomes certain (p = 1 for λ = 3.317). Interestingly, the

probabilities of M and P actions, which belong to player I ’s 1st information set, have been

already eliminated at this step. The same holds for M actions of the 2nd information set.

This reveals that an insider will avoid mistakes as a first or a second move, and pre-attack

actions as a first move.

Looking at the 2nd information set, in step 57 (λ = 3.317) the probability of a P action

has reached its highest value, 0.384, higher than the final it gets at the end of calculations

(0.33). Similarly, at the same information set, the probability of an A action is 0.343, while

it also ends at the value of 0.33. These slight differences show the intention of player I to

choose between a P and an A action, rather than an M action that continuously decreases

from the first step of calculations, or a N action that shortly increases from the 4th to the

6th step.

Next, at step 67, an A action at the 1st information set is for sure the best choice of

player I (p = 1 for λ = 7.985). In addition, the probabilities that correspond to the 2nd

information set have been split almost equally into N, P, and A actions. This result will

not change until the last step, step 191, where λ exceeds the value of 1,000,000, which is

the end point of the QRE calculations. The Gambit tool has set a threshold and stops the

149



calculations, when λ reaches the value of 1,000,000 and just above it.

The following two figures present the growth of parameter λ in accordance with the

actions probabilities for the 1st and the 2nd information set correspondingly. The x axis

measures the λ logit precision parameter. λ ranges between 0 and ∞. The y axis represents

the probability a player will choose a certain strategy. It ranges between 0 and 1. On the

line diagram, each of the four actions for player I, is colored differently.

Reconsidering the results, Figure 7.1 depicts diagrammatically the probabilities calcu-

lated for the 1st information set, revealing player I ’s intention to harm the system from the

first action, if this is also the last one. N, M, and P actions have the lowest probabilities to

be selected at the 1st information set.

Figure 7.1: QRE - Information Set 1
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But because the game is not a one shot game, Figure 7.2 illustrates player I ’s intentions

when playing for second time. According to these, player I will choose between a N, a P,

and an A action with nearly equal probabilities, and will avoid mistakes. Notice that the

QRE is not the same as the calculated NE.

Figure 7.2: QRE - Information Set 2

Concluding, the QRE calculations present an insider’s intention to deviate from the

calculated equilibrium path at his second move. In other words, although player I moves

first by selecting an A action, if player D responds with an action other than an S action,

then player I has equal probabilities to choose between an N, a P, or an A action as a second

move. Even though the IDS has left an attack undetected (false negative alarm) at real

time, there is another chance to predict future behavior and intentions of an insider, and

prevent subsequent attack attempts and further system damage. But because the user is an
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insider, it is unlikely to choose to attack the TS from his first move. Therefore, the results

obtained for the 2st information set, where the M action receives no probability at all,

expose very valuable conclusions regarding this type of insider with the certain preferences

described in Section 5.2.2.

Figure 7.3 summarizes the QRE calculations for player I. On the x axis the λ logit

precision parameter changes in three time periods.

Figure 7.3: QRE calculations for player I in three moves repeated game.

Period t0 is the start point of QRE calculations with equal probabilities for each strategy,

before any player’s move. Period t1 is QRE calculated probabilities for player I ’s first move,

where the A action is the most likely selection with probability 1. Accordingly, period t2 is

QRE calculated probabilities for player I ’s second move, where N, P, and A actions share
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the same amount of likelihood to be selected, p = 0.33. As a final point, this diagram

depicts briefly the estimations of the insider’s intentions to move, which derive from the

QRE calculations.

7.4 Summary

We have extended the NE notion to the logit Quantal Response Equilibrium (QRE), to

capture players’ bounded rationality and model insider’s behavior. For this, we considered

the ID game with an insider for two periods and calculated the QRE. The results are more

realistic, and show that the solution of the game might be significantly different than the

corresponding NE solution. Thus, we determine how an insider will interact in the future,

and how an IDS will react to protect the system.
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Chapter 8

Game-based ID Application

Models to Ensure Trust and

Reputation

One can survive everything, nowadays,

except death, and live down everything

except a good reputation.

Oscar Wilde (1854 - 1900)

In this chapter, we propose two possible implementation schemes to apply the findings of

our research work in Intrusion Detection in IT Security. The first is a game-based Intrusion

Detection model constructed appropriately to incorporate the results obtained by the use

of the Theory of Games. This model represents a game-based architecture for the field of

Intrusion Detection. The second is a Detection Mechanism to easily exploit QRE results

in Intrusion Detection. For the Detection Mechanism we give the application model and

detailed game-based detection algorithms to verify its operation.
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8.1 1st Implementation Scheme: A Game-based ID Model

In the first implementation scheme, we consider the development of a new Intrusion Detec-

tion System that will consist of an entire game-based detection engine, without excluding

other anomaly or misuse detection engines that might be combined with it. In the sequel,

we present the components of this model and we discuss how they cooperate to make the

IDS operate properly.

8.1.1 The Architecture

The model performs four main functions. It records events, it correlates events, it detects

attacks, and it takes countermeasures as a defense when an attack is detected. Therefore, it

was decided that the model consists of ten components: seven modules, two databases, and

a ”library”. The model’s architecture is consistent with Bishop’s general architecture of an

Intrusion Detection System [23]. In Particular, the model components are the following:

1. Move Recorders (MR)

2. Moves Data Base (MDB)

3. Correlator (C)

4. Correlated Moves Data Base (CMDB)

5. Maintenance Procedures (MP)

6. Detection Engine (DE)

7. Game Library (GL)

8. Game Creator (GC)

9. Configuration Mechanism (CM)
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10. Defense Mechanism (DM)

In the sequel, each component is described in detail to reveal the features and functioning

of the model. Figure 8.1 depicts an overview of the proposed model design and identifies

the links that connect its components.

1. Move Recorders (MR)

A Move Recorder (MR) is a module that resides in the Target System (TS). It is

designed as an event collector from any source of the TS, that is, from a host, a

network, or both. It records any event as it happens and stores it in the Moves

Data Base (MDB), in two different standard format, one that serves as a node of an

extensive form game (tree format), and another one that serves as a cell in normal form

game (tabular format). Each record format is appropriate to keep all the necessary

information of an event as a move of a game. For this reason, the operation of this

module justifies its name. There are many Move Recorders in a Target System that

operate as Agents in accordance with Bishop’s architecture.

2. Moves Data Base (MDB)

The model maintains a special database for all the recorded events, the Moves Data

Base (MDB). This database accumulates a large number of records, each of them

represents a move (an action) of an extensive form game. To ensure the integrity of

the whole database, the integrity of every record, and the integrity of every piece of

information stored in this database, strong cryptographic schemes are used.

3. Correlator (C)

Today, most if not all the attacks that take place are multi-step attacks instead of

single-step attacks. Therefore, to successfully detect such attacks, the individual steps

should be correlated to form the complete attack scenario. The Correlator module
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Figure 8.1: The Architecture of the Game-based Intrusion Detection Model
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aims at associating different events, that is single moves of a game, by grouping

together records stored in the Moves Data Base. Once a correlated record is formed

by the Correlator, it is stored in the Correlated Moves Data Base.

4. Correlated Moves Data Base (CMDB)

In addition to the Moves Data Base, another database is necessary to keep all the

combined records that form multi-step attacks. The Correlated Moves Data Base has

a smaller amount of stored records than the Moves Data Base. Its record format

is similar to a tree data structure, to keep information related to a chain of moves,

instead of a stand alone move. The need for granular integrity from the whole database

to one bit of it, drives towards the use of special security mechanisms for the database

protection.

5. Maintenance Procedures (MP)

Both databases require a set of procedures for their maintenance. Procedures for

record backup and record deletion are minimum requirements to reduce the bulks

of the databases used in the model. In addition, any security mechanisms used to

protect these databases involve the use of additional procedures for them, to provide

their installation, use, configuration, and maintenance.

6. Detection Engine (DE)

The Detection Engine is the main module of the proposed model. As long as the

Intrusion Detection Model exists and works on a Target System, the Detection Engine

should perform its tasks in an optimum way, achieving the highest detection rates with

the lowest generation of false alarms.

In this model, the Detection Engine is a bi-functional module. Simultaneously, it

carries out two processes. The first process is similar to a matching problem. The

difference is that we do not seek a game that corresponds to an attack and as such it
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would give us an answer to the decision problem. We are trying to discover the exact

game that is in progress, by changing between games stored in the Game Library. This

is a game refinement or better a strategy refinement. Games are handled in normal

or strategic form, that is their information is in tabular format. Whenever a user

player acts, the Detection Engine checks if a game from the Game Library matches

the current one. If so, it examines subsequently the solution to a minmax problem

which is already set. If the player’s action is different from the one expected according

to the selected game, then the engine changes to another game that matches the new

action, etc. One of the benefits in this approach is that when a game has been chosen

as the matching game with the current one, the solution is known, so the engine can

proceed to the detection immediately, to be precise, in real-time.

The second process is the online construction of the game played at a point of time

modeling and solving the minimax problem. Once a player starts using the Target

System, a play is initiated. Each action performed by this player, makes a node in an

extensive form game, that is, it is a new move that carries additional information for

the type of game it is played. This information is recorded in a tree data structure

form. Given this amount of information, the Detection Engine examines if the player is

a maximizer, that is, if the player has already followed a path from the tree maximizing

his payoffs, or as his line of direction shows, he has decided a route from the tree

that leads to payoff maximization. In any of these cases, the player is suspicious

and the engine should signal an alarm. To decide whether the player is maximizing

or he is intending to maximize, the tree must be searched. Searching big trees is

time consuming and difficult to produce real-time answers. Besides, exhaustive tree

search looking for max payoffs degrade significantly the IDS performance and the TS’s

operation and performance. Therefore, special methods should be used to overcome

such problems.
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These two processes are complementary in the sense that when the one gives first

a solution, then detection is completed and this is considered as the output of the

detection procedure. When the other process gives a solution too, then the Detection

Engine examines both results and gets feedback for its configuration and tuning.

7. Game Library (GL)

The Game Library (GL) is a special component of the proposed model. It is a collec-

tion of games that serves as a repository of all possible games that might be played

between a player or a group of players and an Intrusion Detection System. It does not

have the structure and the usage of a database, and that is why it has been clearly

distinguished from the two databases described above. Once it is created, no one

modifies it because there is no need for adjustments. In case of destruction, there is a

special module that recreates it, the Game Creator (GC). Every game in this model

is considered to be in a normal form so that an array data structure can easily imple-

ment it. The whole library has a great number of information kept in tables which

correspond to the payoff matrices of normal form games, each of which represents

a single game. There is a clear distinction between a base constructed with attack

signatures used in an anomaly-based IDS and the Game Library.

8. Game Creator (GC)

The Game Creator (GC) is a game constructor that sets up the Game Library (GL).

Normally it works once and in cases of library destruction it regenerates the library.

The Gambit toolkit includes a specific language for the generation, modification and

the solution of games. This language can be used for a simple program development

that will create games for the Game Library, at a level of model prototyping. Con-

sequently, a Game Creator should be developed as a special tool that will work with

certain method, for the construction of every possible game that will compose a com-
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plete Game Library. The Monte Carlo algorithm shows the potential and feasibility

of being incorporated into the Game Creator module.

9. Configuration Mechanism (CM)

Upon completion, an Intrusion Detection Model needs configuration and tuning. Its

operation shows the pros and cons of every individual component and of the whole

model as a system. A separate component, the Configuration Mechanism (CM),

provides a wide range of capabilities and options for fine tuning, aiming at optimal

results by increasing the detection rate and eliminating all the false alarms. In order

to operate this powerful mechanism for the model configuration, there is a need for

special metrics setup that would give essential figures related to the IDS performance.

These figures would underline the whole configuration process.

10. Defense Mechanism (DM)

When a suspicious player has been detected, the Detection Engine will raise an alarm.

The Defense Mechanism (DM) module will rate the severity of the event and the grade

of urgency, based on the information related to the game payoffs. The produced

ranking will offer the starting point for the selection of the proper countermeasure

among a short list of available defense actions. Next, the selected countermeasure

will be carried out as a first and immediate action to protect the Target System from

further damage.

8.2 2nd Implementation Scheme: A Detection Mechanism

An IDS, as the open source Snortr1, could be installed and configured to cooperate within

the detection mechanism. Then the detection mechanism will receive its output as input

and go through an algorithm to predict the user’s intent. Depending on the result, the

1Snortr is a Registered Trademark owned by Sourcefire, Inc.
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detection mechanism must have an option to adjust players’ preferences, and reassign num-

bers that represent payoffs. Such an adjustment will optimize its operation and eventually

will perform better in the interactions with the insiders of the system. Detecting insiders is

not only connected with punishment, but also systematically aims at pointing in the right

direction every user of the system. This implementation scheme has been designed towards

this direction.

Moreover, because an IDS has already been integrated in the kernel of an operating

system (the Linux Intrusion Detection System (LIDS) as a patch to the Linuxr2 kernel),

the feasibility of including such a detection mechanism in the kernel of an operating system

that will cooperate with an IDS should be considered as an alternative.

8.2.1 The Application Model

Figure 8.2 gives a picture of the data flow application model of the proposed scheme. The

model consists of six processes, an interface, and a data source. The data flow starts with

the Target System (TS) that is being monitored by an IDS. The IDS captures the events

of the TS and uses a detection engine to decide whether an event is normal or abnormal.

The detection engine might incorporate two or more of the three well known detection

techniques, an anomaly, a misuse, or a specification-based detection technique (see Section

1.1 for details). Upon completion, the IDS characterizes the event as normal or abnormal,

and sends a message to the Security Officer ’s interface to inform him. Depending on the

IDS design and operation, the result might be more concrete and might include the cases

of mistakes and of pre-attack actions. The IDS result is also transferred to the Connector

that will combine it with the result obtained by the QRE Calculator.

Existing IDSs feature a configuration option, allowing a Security Officer his intervention

to adjust their operation, and make them more reliable and accurate. In the present model,

2Linuxr is the registered trademark of Linus Torvalds in the U.S. and other countries.
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Figure 8.2: The Application Model of the proposed implementation scheme.

the IDS Configuration process implements this feature. On the other hand, the Game

Constructor is the process that builds up a game, based on the actions that have been

played so far. It receives the output of the IDS process and formulates the tree path, as

it has been defined by the players’ moves. The preferences and the payoffs are defined

manually first by the Security Officer, and the Payoff Adjustment process allows him to

continuously alter players’ preferences and reassign payoffs to them, in order to optimize

the detection mechanism’s operation.

The heart of the model is the QRE Calculator process that receives input from the Game

Constructor and implements an algorithm to calculate the QRE probabilities, following

Turocy’s method [174]. The QRE calculations require the definition of the maximum value

of the logit precision parameter λ, to ensure the end of the calculations. When the QRE

Calculator terminates, the output of the process, the calculated probabilities, will be sent

to the Connector. The Connector will combine the results obtained by the IDS and by the
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QRE Calculator. The overall aggregated result will be used for immediate counteraction to

prevent further damage.

The output of the QRE Calculator will also be displayed on the SO ’s interface, to inform

him about the intention of the user to play normally or abnormally in the next move. The

SO on his turn, taking into account the output of the QRE Calculator, is able to choose

between two options, to configure appropriately the IDS, through the IDS Configuration

process, and avoid a forthcoming attack, or adjust the payoffs of the game, through the

Payoff Adjustment process, in cases where the QRE results conflict significantly with those

derived from the IDS. Generally, QRE is used for payoff adjustment and correction when

considering real data.

As presented in Section 7.3, it is feasible to calculate the QRE probabilities for the

current and also for the next stage of a game. Taking advantage of this, we have drawn two

ways the QRE modeling affects the IDS. First, by combining the probabilities derived from

the IDS and from the QRE Calculator, within the Connector process. The overall aggre-

gated result will be taken into account for immediate counteraction, if necessary. Second,

by informing the SO with the probabilities calculated for a user’s next move that might

prompt the SO to trigger the Payoff Adjustment process, or the IDS Configuration process,

or both, in order to avoid a forthcoming attack. Especially if the two results are conflicting

or deviate significantly, then it is essential to configure the IDS and adjust the payoffs of

the constructed game.

8.2.2 The Game-based Detection Algorithm

For every event that is being logged, a game-based detection algorithm has been drawn in

Figure 8.3, to illustrate the functionality of the proposed implementation scheme. Consider-

ing that the joint IDS includes a module for event capturing, filtering and storing in a data

store, the algorithm starts with the Intrusion Detection Engine process, which gets a record
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from the Filtered Data store. The records in the Filtered Data store contain information of

the security relevant events only, in a predefined standard format.

The Intrusion Detection Engine examines the obtained record according to the im-

plemented detection algorithm, which might encompass any combination of the known

intrusion detection techniques. For example, Snort incorporates both the anomaly and the

misuse detection technique. Eventually, the output of this process will be either an intrusion

alert, or information related to the event classified as normal. This output is reported to

the Security Officer’s monitor in real time, to notify him about the IDS operation and the

Target System’s state.

Every IDS result is combined with history results, to calculate important detection

parameters. The SO assesses the detection parameters and decides to configure the IDS or

not. The IDS Configuration process is a feature that allows the SO to reduce or increase

thresholds, to alter rules, to change or add attack signatures, etc. At the end of this process,

the core of the IDS has been modified, and the SO continues supervising its operation to

ensure improvement.

In the next step, the Game Construction process will first check whether this is the

initial event triggered by the corresponding user, or his actions have already created a game

that is being played to this point. If the game has already been created, then the Game

Construction process retrieves the corresponding game from the Stored Games. Otherwise,

it constructs a new game and associates it with the specific user. The new game will consist

only of two moves, whereas the retrieved game will be updated to include the last actions.

The game data, which comes out of the Game Construction process, is the actions

played at each period of the repeated game and the calculated payoffs. Then, the game

data enters the Quantal Response Equilibrium Calculations process and following Turocy’s

method [174], the probabilities for the current and for the next actions are determined to

reveal the intention of the user for his future actions. The action probabilities are being
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displayed onto the Security Officer’s monitor in real time, and the SO examines the findings.

Then, the previous QRE result is compared with the current IDS result, through the

Comparison with History Results process. The derived evaluation results will be judged by

the SO, to adjust or not the game with the specific user. In practice, this denotes that

players’ preferences are under review, and that payoffs will be altered accordingly, through

the Payoff Adjustment process. The last output will enter the Game Construction process

to modify the stored game.

Both the IDS result and the QRE result are transferred to the Combining Probabilities

from IDS and QRE process, in order to aggregate a final decision result. Assuming that

the IDS result is the probability an event to be normal or not, and as the QRE result is

the probability distributions over the players’ actions, a method of aggregating an overall

decision is used in this process, to resolve any conflicting information and improve the IDS

effectiveness. The simplest method to combine probabilities is to average them. Another

one is Winkler’s normal model [182]. A study on combining probability distributions in risk

analysis is provided by Clemen and Winkler [39].

Then, the aggregated result will be sent to the Counteraction process, so that, the

proposed detection mechanism will counteract against a forthcoming attack. There are two

general counteraction types, continue and prevent. The first one allows the user to continue

working with the TS. The second one includes all the counteractions that gradually remove

privileges from the user, reduce the amounts of his allocated resources, and place him at

the proper position of a black list. The last line of defense is the stop counteraction that

ends the user session, and adds him in the worst place of the black list. The counteraction

information will also be displayed on the SO ’s monitor, to inform him properly.

The algorithm starts again when a new event is recorded in the Filtered Data store. For

better results, it is preferable for the SO to have also special knowledge on game theoretic

aspects, to manage effectively all the components of the proposed detection mechanism.
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8.3 Summary

To facilitate the incorporation of the Theory of Games and the exploitation of QRE results

in Intrusion Detection, we proposed two possible implementation schemes. The first is to

develop a new IDS that will consist of an entire game-based detection engine. The second

is to use an existing IDS and develop only the Detection Mechanism that will cooperate

with it. Because the second implementation scheme keeps the application model too simple,

and because we wanted to concentrate on the operability of the Detection Mechanism, we

described the entire Game-based Detection Algorithm to some extend.

Both schemes operate in a two-folded way. The Intrusion Detection System follows a

trust line in order to avoid false positive alarms. On the other side, a user player of the

Target System estimates its reputation and because he does not prefer to be in a black list or

to work with less privileges, services, or resources, he tries to be a ”right” user who follows

the security policy of the system. In a long time, he will be benefited by this attitude.
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Chapter 9

Conclusions and Open Questions

The point of philosophy is to start with

something so simple as not to seem worth

stating, and to end with something so

paradoxical that no one will believe it.

Bertrand Russell (1872 - 1970),

The Philosophy of Logical Atomism, 1918

Studying the area of Intrusion Detection we realized that the trends have turned IDSs

from host-based to network-based, from centralized to distributed, and that IDSs need to

be platform independent in order to expand their success. Moreover, among the standards

that specify the area are the hybrid IDSs, the real time detection, the active counteractions,

and the problem of imbalance between true positive, false positive, and false negative alarms.

But their flexibility is too limited to allow effective responses to dynamically evolving events.

Therefore, there is a need for an evolutionary framework that will assist Intrusion Detection

to be more effective and fulfil current requirements.

To overcome the existing ID techniques and make IDSs work with a complete different

approach, e.g. a game theoretic one, new signs must be identified and new methods must

be developed to read these signs. Then, a game-based detection engine will be efficient to
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predict users’ future actions, recognize their behavioral intentions, and thus detect attempts

of attacks rather than completed successful attacks. Consequently, false alarms would be

reduced, positive and negative, which are an important problem to be solved in ID.

The problem in ID is practically unsolvable, but approximate solutions can always

give satisfactory results. There is no IDS with 100% detection rate, no false alarms, and

no tremendous system overhead, and cannot be developed (see Section 1.1). Considering

such a dead end, we were directed our focus on how we can improve the field of Intrusion

Detection, rather than trying again to solve the problem of signal identification. In this

regard, we have chosen an approach for behavioral detection given that an IDS identifies

with a certain accuracy a user’s actions.

The proposed model addresses the problem of predicting an insider’s behavior, so that,

the appropriate strategies would be chosen to avoid a forthcoming attack. To extend and

direct future work from this focal point and forward, mechanism design should be used.

Then, the game theoretic approach will be able not only to predict a user’s future action

but also to influence his future behavior in such a way that will ensure the Target System’s

security. In the view of the cooperative nature of security, users and systems should safely

interact to keep their own interests.

As Camerer explains, the Theory of Games is simply analytical. Even when players

choose different strategies from those the theory suggests they should play, their behavior has

not proved the mathematics wrong [33]. Game model reconsideration and reconstruction,

preference alteration, and payoff adjustment are a few practices to handle these situations,

and they all have been considered and included in our model.

Similarly, Dixit and Skeath[51] accept that the Theory of Games provide some general

principles for thinking about strategic interactions, but it cannot hope to offer surefire recipes

for action. This justifies the use of Game Theory in the area of Intrusion Detection so far,

and the corresponding deficiency of a game theoretic mechanism able to detect intrusions
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in the sense the well known established intrusion detection techniques have been applied in

the past. In the view of this drawback, only research work on signaling games might give

results satisfactory enough to reverse this conclusion.

In traditional intrusion detection techniques attackers try to deceive the detection en-

gine in order to hide their clues and the committed crime. Because valuable information

are stored and special mechanisms to alter them are included in detection engines, attack-

ers focus on steeling or modifying appropriately this information to evade detection. In

our approach there is no stored information such as user profiles, or program and system

specifications or attack signatures, as in all anomaly-based, specification-based and misuse

approaches are used. This adds an advantage to the proposed model regarding the prob-

lem of evading detection. An insider, who not only wants to benefit from an attack but

also aims at evading detection, will confront one more difficulty in the presence of such a

detector. Game Theory itself is eventually another problem to attackers, especially because

of its complexity that discourages unaware attackers to discover the algorithm used in the

detector.

As for the area of Algorithmic Game Theory, it is not a coincidence that the same

person, John von Neumann, who established the Computer Science with the well known

von Neumann architecture, pioneered also a new theory, the Theory of Games [132]. It

was actually the same time and the same place, in 1944 at Princeton University, when he

designed EDVAC and published also the joint work with Oscar Morgenstern for the Theory

of Games. This is probably a strong reason why these two disciplines can go together, fit well

in several areas, and justify the new era of the Algorithmic Game Theory that commenced

with their merge.

Future research directions in this interdisciplinary area include the establishment of the

credibility of game theoretic approaches adopted in IT security problems. Before extending

the Algorithmic Game Theory we must convince the IT security experts of the advantages
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of these approaches. Then, the foundation of a new scientific prospect for IT Security will

derive.

As Robert Frank describes in [58], in Darwin’s model the selection unit is the individual

and not the group or the species. It is said that, in front of a choice between an action,

which will benefit the others, and another action, which will only serve his own interest,

every being has been programmed by the evolutionary powers to follow the second path,

the selfish one. This also holds in cases of deception. But, consciousness conveys signals

of risk when someone acts illegally. Unfortunately, they are ignored in deceptive situations

totally concealed, although there are perfect crimes that went absolutely wrong. Therefore,

it is supposed honesty to be the best policy. An attacker, who has been caught once for

illegal actions, is placed in a black list, as someone able to repeat an analogous action in

the future. Even a less ”right” person, is better to overcome any prospects for deception,

in order to obtain the reputation of an honest person. This reputation will be beneficial to

him in the future.
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Appendix A

Table 9.1 in the sequel refers to the detailed information derived from the calculations

of the QRE algorithm. Only the significant steps of these calculations have been included,

because the total number of steps is 191.
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Appendix B

We present in pseudo-code the main parts of the Game-based Detection Algorithm,

illustrated in Figure 8.3 in Section 8.2.2. We have chosen this flexible way, to describe it in

lower level and supplement its picture.
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Algorithm 1 The Game-based Detection Algorithm.

Require: This algorithm is triggered by a new event, event(i), stored in Filtered Data.

Ensure: At the end of this algorithm, a counteraction will be activated if necessary.

1: intrusion alert ← 0

2: Get event(i) from the Filtered Data store

3: intrusion alert ← Intrusion Detection Engine(event(i))

4: if intrusion alert == 0 then

5: print ”INTRUSION ALARM is OFF”

6: else

7: print ”INTRUSION ALARM is ON”

8: return Counteraction(IDS result)

9: Send counteraction information to SO

10: end if

11: Send event information to SO

12: configuration assessement ← Check Configuration(Detection Parameters)

13: if configuration assessement == ’YES’ then

14: return Configuration(Detection Parameters)

15: end if

16: game(u) ← Game Construction(Game Data)

17: action probabilities(u) ← QRE Calculations(game(u))

18: if QRE alert == 0 then

19: print ”QRE ALARM is OFF”

20: else

21: print ”QRE ALARM is ON”

22: return Counteraction(Prevent)

23: Send counteraction information to SO

24: end if

25: Send action probabilities(u) to SO 202



Algorithm 2 The Game Construction Algorithm.

Require: Game Data, u, event(i).

Ensure: An existing game or a new game (game).

1: if Check Game Existence(Game Data, event(i)) == 0 then

2: game ← Create New Game(event(i))

3: else

4: Get Game Data(u) from the Stored Games store

5: game ← Update(Game Data(u))

6: end if

7: return game

Algorithm 3 The QRE Calculations Algorithm.

Require: game.

Ensure: QRE action probabilities.

1: Calculate the QRE for the current time period

2: print ”QRE probabilities for the current time period”

3: Calculate the QRE for the next time period

4: print ”QRE probabilities for the next time period”

Algorithm 4 The Combining Probabilities Algorithm.

Require: IDS result and QRE action probabilities.

Ensure: Final decision result.

1: Calculate the average between the IDS result and the QRE action probabilities

2: print ”Final Decision result”

3: Send Final decision result to SO

4: Counteraction() ← Final decision result
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