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“It doesn’t matter what you do...so long as you change something from the way it was

before you touched it into something that’s like you after you take your hands away.”

Ray Bradbury, Fahrenheit 451



Abstract

Wireless networks are deployed with increasing pace throughout the globe in the last

few years. However, due to the open nature of the wireless medium, they are inherently

more susceptible to attacks than their wired counterparts. From GSM to UMTS and

from WiFi to WiMAX, the security mechanisms implemented by these standards have

all proven to be inadequate in terms of privacy and availability. In this context, alter-

native security mechanisms, such as Intrusion Detection Systems (IDS) have become a

vital component of almost every wireless security infrastructure. Misuse Detection IDS

may be the preferred choice of network administrators at the moment, due to its high

detection, low false positive rate, however Anomaly Detection approaches quickly gain

momentum.

Throughout this work particular effort is put into highlighting that current wireless

technologies share similar traffic profiles and have comparable vulnerabilities, which are

significantly diverse than the wired ones.

Driven by this fact, this doctoral thesis addresses the design of robust IDS, namely

Termid, inspired by the protection processes observed in the natural systems, aiming to

cover the unique requirements of the wireless realm.

In order to have a benchmark to evaluate the efficiency of the proposed approach, we

design and offer publicly the Aegean Wireless Intrusion Detection (AWID) dataset.

AWID is a database comprised of normal and attack traffic from the utilization of a real

wireless network.

Indeed, the experimental results attest that the prototype intrusion detection mechanism

introduced in the context of the current PhD thesis, namely Termid is able to identify

wireless attacks, effectively and in a timely manner, before their disastrous results affect

the network.



Greek Abstract

Ta asÔrmata dÐktua anaptÔssontai me oloèna kai auxanìmenouc rujmoÔc an� thn uf lio

ta teleutaÐa qrìnia. Wstìso, lìgw thc idiaÐterhc fÔshc tou asÔrmatou mèsou, eÐnai eg-

gen¸c perissìtero eu�lwta se epijèseic se sqèsh me ta antÐstoiqa ensÔrmata. Apì to

GSM ¸c to UMTS kai apì to WiFi ewc to WiMAX, oi mhqanismoÐ asf�leiac pou a-

naptÔqjhkan gia to kajèna apì aut� ta prìtupa, apodeÐqjhkan mh eparkeÐc ìson afor�

thn idiwthkìthta kai th diajesimìthta twn prosferìmenwn uphresi¸n. 'Etsi, enallakti-

koÐ mhqanismoÐ asf�leiac, ìpwc ta Sust mata AnÐqneushc Eisbol¸n (IDS) èqoun gÐnei

anapìspasto komm�ti ìlwn sqedìn twn asÔrmatwn upodom¸n. Ta sust mata anÐqneu-

shc eisbol¸n pou basÐzontai thn anÐqneush kak c qr shc (Misuse Detection IDS) eÐnai

Ðswc h protimhtèa epilog  aut  th stigm  lìgw tou sunduasmoÔ uyhl c apìdoshc/qa-

mhl¸n sfalm�twn. Wstìso, oi proseggÐseic pou basÐzontai sthn anÐqneush anwmali¸n

kerdÐzoun suneq¸c èdafoc.

Sthn paroÔsa diatrib  prosp�jeia èqei katablhjeÐ ¸ste na katasteÐ antilhptì oti oi

sÔgqronec asÔrmatec teqnologÐec èqoun koin� qarakthristik� ìson afor� thn kÐnhsh

kaj¸c kai parìmoiec eup�jeiec, qarakthristik� ta opoÐa diaforopoioÔntai shmantik� se

sqèsh me ta antÐstoiqa tou ensÔrmatou mèsou met�doshc.

Me b�sh autèc tic diapist¸seic h paroÔsa didaktorik  diatrib , suneisfèrei to sqediasmì

kai thn ulopoÐhsh enìc katanemhmènou mhqanismoÔ anÐqneushc eisbol¸n, me thn onomasÐa

Termid, to opoÐo èqei empneusteÐ apì mhqanismoÔc pou sunant¸ntai sth fÔsh.

Gia thn axiolìghsh thc apodotikìthtac thc proteinìmenhc lÔshc sqedi�same kai diajètoume

gia dhmìsia qr sh to Aegean Wireless Intrusion Detection (AWID) dataset, èna sÔnolo

dedomènwn epal jeushc apoteloÔmeno tìso apì fusiologik  kÐnhsh diktÔou ìso kai apì

kÐnhsh proðìn epijèsewn, pou proèkuye apì th qr sh enìc pragmatikoÔ diktÔou 802.11.

Ta apotelèsmata epibebai¸noun ìti to prìtupo sÔsthma anÐqneushc eisbol¸n, Termid,

eÐnai ikanì na anagnwrÐsei epijèseic se asÔrmata dÐktua, me apodotikì kai �meso trìpo

prin akìmh ta apotelesmat� touc apodeiqjoÔn katastrofik�.
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Chapter 1

Introduction

Wireless networks have prevailed in the last few years, managing to unsettle the reign

of the once almighty wired ecosystem [1]. Today, end-users demand high quality, om-

nipresent connectivity, for work, education or entertainment purposes. Wireless net-

works fulfil these needs as they provide reasonable cost/low effort, wireless connected-

ness. The proliferation of ultra portable and handheld devices along with the combined

coverage radius of multiple wireless technologies, such as Bluetooth, Wireless Fidelity

(WiFi), Universal Mobile Telecommunications System (UMTS), and Long-Term Evolu-

tion (LTE) finally enable the users to roam from their room to a highway, and constantly

be on-line.

However, the high mobility and high flexibility that these settings offer, comes with

the price of questionable security. The wireless medium is by nature, unquestionably

more open than the wired one. Even thought, all wireless technologies incorporate

some sort of embedded security mechanism to protect the communication of their peers,

to date not a single case of wireless technology has been reported to be immune to

security inefficiencies, in either a theoretical or practical level. A characteristic example

is that of Wired Equivalent Privacy (WEP), the security mechanism supporting the

first version of 802.11, which soon after its exposure to the public, was found to be

vulnerable to numerous attacks, including the efficient calculation of its key. Usually,

amendments applied as patches, have increased the security of these systems, at least

temporarily. However, with the non-stopping increase of computational resources the

attackers quickly gain ground.

Due to the above reasons, the necessity of external mechanisms of protection quickly

became apparent. In this context, Intrusion Detection Systems (IDS) such as [2], [3], [4]

and [5] provide means of identifying as well as responding to a threat in a timely fashion.

Such systems recognize intrusions based on predetermined signatures of known attacks.

1
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However, Machine Learning (ML) based wireless IDSs are always within the scope of

researchers since they do not require pre-compiled (static) signatures of attacks like the

misuse detection based ones [6] rather, they deduce them automatically. An even more

desirable aspect of such systems is their capability of recognizing new, undocumented

(zero-day)attacks as suspicious events.

Actually, the concept of intrusion detection is not new. The research in this field was

ignited in the 80’s with Anderson’s paper namely, “Computer Security Threat Mon-

itoring and Surveillance” [7]. Generally speaking, intrusion detection is the scientific

field that involves all the mechanisms and methodologies which lead to identification of

actions of assault against a system originating from a malicious entity outside or inside

it. While there has been a great deal of research concerning the intrusion detection on

wired networks, the wireless ones seem heavily neglected.

However, the extraordinary behaviour of wireless communications and the idiosyncrasies

of mobile devices generates special requirements which the conventional detection tech-

niques fail to fulfil. While seeking for an elegant solution one may rely on unconventional

methods, e.g., the ones the nature follows for complex problem solving. It is true that

so far nature-inspired models have been applied into various scientific fields with great

success. Yet, it was only until recently that these algorithmic emulations of natural

processes have been applied to intrusion detection. Motivated by this fact, as further

explained in the next section, the PhD thesis at hand aims in proving the applicability

of natural inspired algorithms to the problem of wireless intrusion detection.

1.1 Motivation

From the days of the first premature attempts to develop intrusion detection algorithms

until now, the vast majority of techniques and integrated systems has been focused

either on protocols for the wired realm or operating systems for desktops. Recognizing

the emergence of wireless era, it was only until recently that several researches started

exhibiting special interest for intrusion detection in the wireless networks or the mobile

platforms [8], [9]. Actually, the related research on the field is surprisingly limited, and

has put several problems in abeyance.

Indeed, the wireless and wired domains present drastically contrasting characteristics.

On the one hand, the diversity introduced with the new hardware and software archi-

tecture has had an impact on the user behaviour and the profile of the information

exchanged. On the other hand, the differences go even deeper, involving the transmis-

sion speeds and signalling overhead of the protocols themselves. The basic difference
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however, has its roots in the very nature of the air medium. Wireless technologies are

inherently open to eavesdropping.

Unfortunately, the existence of trustworthy datasets that will not only act as a type

of guide for the IDS in their training phase, but also a reliable benchmark in their

testing phase, is considered of paramount importance. The research in wireless intrusion

detection is stalled partially due to the absence of a well-tailored benchmark. Actually,

in practise, the available choices seem to be of poor quality even for the wired realm.

As for the publicly available ones, in some cases, their contents are heavily tampered

by their creators (e.g., in order to become anonymized), while in other cases, they are

outdated or may even contain data that do not correspond to realistic conditions.

The essential differences between the wired and wireless networks make it near-impossible

for IDS designed for the one to be applied directly to the other. Interestingly, biology

inspired models and other approaches that emulate the nature’s behaviour on solving

complex problems, have been applied with success to a wide range of research fields,

such as engineering, economics, biology, social science and lately intrusion detection.

We argue that besides the positive feedback from traditional intrusion detection, these

approaches have qualitative characteristics (e.g., high level of adaptability and paral-

lelism) that theoretically make them remarkable candidates in the wireless intrusion

detection domain.

The pivotal motivators of this work can be summarized as follows:

• The problem of intrusion detection in wireless networks has been explored sparsely

despite the increasing interest of both academia and industry.

• Wireless network characteristics are drastically different from the wired ones.

• Wireless technologies seem to be similar and interconnected. Intrusion detection

designed for a single type of wireless network may apply to several others with

little modification.

• The lack of benchmark tools may deterrent further research on the field.

• The fact that traditional detection approaches behave poorly in the wireless realm.

1.2 Contributions

The main ambition of this PhD research is to verify the suitability of biology inspired

algorithms, for the construction of IDS in the wireless realm. To this end, this research
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contributes a novel prototype implementation of a nature inspired classifier, optimized

for identifying MAC layer threats on 802.11 networks.

Also, a major contribution of this thesis is the development and public offering of a

dataset containing traffic extracted from a real life wireless network, namely the AWID

dataset. While this contains traffic extracted from an 802.11 WEP protected network,

by generalisation, we anticipate that it will be proven an invaluable resource in the field

of wireless intrusion detection in general.

The initial contribution of this work is a comprehensive survey of the known attacks

against three different wireless technologies namely, the 802.11, 802.16 as well as UMTS

networks.

A theoretical and empirical evaluation of the impact and feasibility of the most critical

of these attacks is also included.

An important part of this doctoral thesis is the formulation of simple signatures of

known attacks against 802.11 networks. Their characteristics and possible variations

are analysed in detail. Their study, will lead to a better understanding of the nature of

wireless attacks and inductively, to proper methods to effectively counter them.

The final offering of the thesis is an exhaustive review of anomaly detection with partic-

ular interest in nature inspired algorithms for intrusion detection. Genetic algorithms,

evolutionary computation, artificial immune systems and swarm intelligence approaches

found in literature were reviewed and compared with a goal of exploring their efficiency

in IDS field.

More specifically, the contribution of this work with respect to publications in scientific

journals and conference proceedings is as follows:

• Examination of signalling oriented attacks that can affect both UMTS and UMT-

S/WLAN integrated systems with special focus on DoS attacks12. Precisely, this

examination includes:

– A comprehensive overview of the existing attacks against UMTS networks.

– A formulation of numerous undocumented theoretical attacks of this class

plus protocol vulnerabilities that can be exploited to unleash such situations.

1Kambourakis, Georgios and Kolias, Constantinos and Gritzalis, Stefanos and Hyuk-Park, Jong.
Signaling-oriented DoS attacks in UMTS networks. In Advances in Information Security and Assurance,
pages 280-289. Springer, 2009.

2Kambourakis, Georgios and Kolias, Constantinos and Gritzalis, Stefanos and Park, Jong Hyuk. DoS
attacks exploiting signaling in UMTS and IMS. Computer Communications, 34(3):226-235, 2011.
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– An overview of DoS attacks launched combinatorially against the core UMTS

and IP Multimedia Subsystem (IMS) components.

• A holistic view of attacks and countermeasures found in the literature against the

IEEE 802.16 family of standards3. The main pillars of contribution of this part of

the thesis are:

– An organization and classification of these attacks based on several criteria.

– An evaluation of the presented attacks with respect to their threat level

– An extensive assessment of the various remedies found in literature.

• A comprehensive analysis of the internal mechanisms of Swarm Intelligence-based

(SI-based) IDS4.

• A survey of attacks against several versions of the 802.11 standards5.

• The construction of AWID, that is a dataset containing traffic extracted from

a real-life wireless network, specifically designed to support the early stages of

wireless IDS development5.

• The formulation of signatures of known attacks against 802.11 networks based on

the findings of the AWID dataset5.

• The design and implementation of a classification algorithm, inspired from natu-

ral protection mechanisms, optimized for the detection of threats in the wireless

realm6.

1.3 Outline

In the next chapter we singled out three major wireless technologies, namely 802.11,

802.16, UMTS and presents their characteristics with special emphasis on the security

infrastructure incorporated in each one.

For each one of these three use cases, the third, fourth and fifth chapter comprehensively

surveys their vulnerabilities as well as the documented attacks.

3Kolias, Constantinos and Kambourakis, Georgios and Gritzalis, Stefanos. Attacks and countermea-
sures on 802.16: Analysis and assessment. Communications Surveys & Tutorials, IEEE, 15(1):487-514,
2013.

4Kolias, Constantinos and Kambourakis, Georgios and Maragoudakis, M. Swarm intelligence in in-
trusion detection: A survey. Computers & Security, 30(8):625-642, 2011.

5Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Stefanos Gritzalis. Intrusion
Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset. Submitted in
Communications Surveys & Tutorials

6Kolias, Constantinos and Kambourakis, Georgios. “Termid: A Distributed Ant Colony Based IDS”.
Under Submision
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Chapter 6 conducts a theoretical and empirical evaluation on some of the surveyed at-

tacks presented in chapter 3, 4, and 5. In several cases, the respective tools for launching

attacks described only in theoretical level to that date, have been be implemented. The

aim of this part of the study was to extract a common denominator and highlight the

possible similarities with respect to their methodologies and execution strategy.

Chapter 7 begins with an overview of anomaly detection in general, and moves on to

describing the most important approaches of each kind.

Chapter 8 carries on with a focalised survey of nature inspired approaches in the field

of intrusion detection. Moreover, several aspects of these approaches are discussed,

including the possible challenges involved, their inefficiencies as well as their strong

points. This chapter concludes by enumerating the theoretic advantages, the natural

inspired approaches have over alternatives.

Chapter 9 begins by discussing the lack of a well-taylored dataset, to be used as a liable

benchmark in the field of wireless intrusion detection. In the process, AWID, a dataset

specifically designed to meet the special needs of the wireless terrain is presented. Its

characteristics are provided in full detail along with the evaluation results of several

experiments conducted upon it.

Based on the data contained in AWID, chapter 10 attempts to extract signatures of

known attacks (specifically targeting the 802.11 standard). This contribution is expected

to lead to a better understanding of the hidden characteristics of certain classes of

wireless attacks, thus aiding the construction of more sophisticated signature based and

anomaly based IDS.

Chapter 11 details on the structural characteristics of a novel, nature inspired algorithm

to be used as the heart of an IDS targeting the wireless realm. Several experiments are

conducted which prove that the proposed system is not only faster than the traditional

ML approaches, but in the majority of the cases more accurate.

The final chapter completes this PhD thesis by commenting on the results of the con-

ducted research. Additionally, it enumerates the available options on improving the

speed and the reliability of nature inspired IDS. Directions for future work are also

presented in the end of the chapter.



Chapter 2

Wireless Technologies and

Security

In this chapter we analyse the basic structure and security mechanism of three of the

most popular wireless technologies. The well established IEEE 802.11 commonly known

as Wi-Fi, the IEEE 802.16 often referred to as WiMAX for wide area connectivity, and

UMTS the standard technology for 3G wireless services in Europe. The goal was not to

provide an exhaustive overview of the internal mechanisms of these protocols, rather to

give the basic information required for understanding their possible vulnerabilities and

documented attacks. The last two aspects will be discussed in detail in next chapters.

2.1 802.11 Architecture

The 802.11 family of networks are arguably the most popular choice for local area con-

nectivity, as they provide low cost, low effort wireless connectedness. Such networks can

be found virtually everywhere, in Small Office and Home Office (SOHO) settings, en-

terprise environments or even in ad-hoc situations where users simply want to establish

“quick-and-dirty” connectivity for data exchange.

Since the first version of the 802.11 standard [10], dedicated security mechanisms have

been incorporated to guarantee safe communication of all the peers in the Wireless Lo-

cal Area Network (WLAN). Wired Equivalent Protection (WEP) was quickly found to

be vulnerable not only to numerous availability attacks, but also to attacks that threat

the secrecy of its key, thus quickly became deprecated. Posterior security additions

such as WiFi Protected Access (WPA) and WPA2 proved to be more robust in mat-

ters of confidentiality, but with the ever-increasing computational power available to

7
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anyone, even these security amendments, are expected to render themselves incapable

of protecting even against brute force attacks. In any case, WPA/WPA2 share almost

the same vulnerabilities as the early WEP versions as far as availability is concerned.

Even the newest amendment, 802.11w [11], which concentrates in patching availability

related shortcomings (leading to Deauthentication, Disassociation and Authentication

Request attacks for example) has been proved impotent and is still unable to tackle the

documented DoS attacks in its entirety [12], [13], [14], [15], [16].

2.1.1 Network Structure

The IEEE 802.11 family networks can be organised in either Infrastructure mode or

Ad-Hoc mode. In the first paradigm, the basic organisational unit is a special piece

of hardware, namely the Access Point (AP) to which the stations (STA) connect and

through which the generated packets are transferred. The AP, in essence, is a transceiver

and it connects to the wired counterpart of the network via an Ethernet cable.

On the contrary, in Ad-Hoc mode the STAs communicate with other STAs within their

range in a direct way without the requirement for an AP. In this organisational paradigm

the nodes of the network also play the role of the router. Generally, security and lack of

infrastructure are two opposing forces in WLAN. By definition, Ad-Hoc WiFi networks

are less secure than the Infrastructure based ones, but in such scenarios security is

typically of secondary concern. These two areas of study have diverse vulnerabilities

and the traffic behaviour is significantly dissimilar even under normal conditions.

(a) Infrastructure Mode (b) Ad-Hoc Mode

Figure 2.1: Typical Networks in Different Architecture Modes

2.1.2 Frame Types

Data exchange and network management in 802.11 is conducted with the transmission

of frames. IEEE 802.11 defines three different types of frames namely, management
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frames, control frame, and data frames. Each of them has different structure length and

fields.

2.1.2.1 Management Frames

802.11 management frames allow STAs to establish communication with an AP and

preserve connectivity with it. The structure of such frames varies depending on its

purpose. Such frames can have one of the following subtypes:

• Authentication - Frames exchanged in rounds between the STA and the AP, with

the purpose of identifying that the client (and the AP) is the claimed one. If

successful, the client will enter the authenticated state but will not be granted full

connectivity yet.

• Deauthentication - A frame sent from the AP to an STA when the network decides

to terminate communication with that STA. Such frames may also be broadcasted

to force all clients in the network, drop connectivity with the AP (this happens

when an AP reboots or shuts down). Moreover, it is possible that the Deauthenti-

cation frames are sent from clients to the AP simply to notify about their intention

to drop communication. Note that Deauthentication frames are not to be treated

as requests and must always be accepted and acted upon.

• Association Request - A frame sent by an STA to an AP after successful authenti-

cation to request to move on to the associated state, i.e., obtain full connectivity.

In this frame the STA reveals information about itself (e.g., supported data rates).

• Association Response - A frame sent by an AP to an STA as a response to an

Association Request, containing the result of that attempt.

• Reassociation Request - A frame sent from an STA to an AP to request transition

to full association state if previously had been degraded to the authenticated state.

Such situations occur when an authenticated and associated STA roams from the

serving AP to another AP of the same network.

• Reassociation Response - A frame sent by an AP to an STA as a response to a

Reassociation Request frame.

• Disassociation - A frame transmitted either by an STA to the AP or by the AP to

the STA with the purpose to terminate the association of the STA with the AP.

Note that while the client may be disassociated with the AP, it still remains in

authenticated state. Typically, such messages are sent when STAs are about to

terminate all communication with the AP but wish to accomplish this gracefully.
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• Beacon - A frame periodically broadcasted by an AP to announce its presence in

the neighbourhood and advertise its capabilities. STAs continually scan all radio

channels, in a quest for discovery of nearby APs and choose the appropriate AP

after consulting its capabilities.

• Probe Request - A frame broadcasted by an unauthenticated client in search for

a specific AP. If such messages don’t specify an AP, they can immediately obtain

information about all APs within that STA’s range.

• Probe Response - After an AP receives a Probe Request frame it is obligated to

immediately respond with a Probe Response frame containing details of the AP

such as capability information, supported data rates, etc.

2.1.2.2 Control Frames

In 802.11 control frames coordinate access to the wireless medium and play a role in

the delivery of data frames from an STA to the AP and vice-versa. A Control frame is

constrained in one of the following subtypes:

• Request to Send - The RTS/CTS handshake mechanism is an optional element

of 802.11 which aims in reducing frame collisions caused by the hidden terminal

phenomenon. A Request to Send frame (RTS) is the first message of the handshake.

If that mechanism is active the STA is required to send RTS frame to request

permission to occupy the channel before transmitting an actual data frame.

• Clear to Send - A Clear to Send (CTS) is the second message of the RTS/CTS

mechanism and it is send from the AP back to the requesting client as a response

to a RTS frame. It specifies a time window during which only the requesting

STA is permitted to occupy the channel and all other STAs must back off their

transmission.

• Acknowledgement - A frame sent by an STA or AP to notify that a specific frame

has been received successfully and without errors. If such frame is not received

within a specific amount of time then the STA will have to retransmit the corre-

sponding frame.

• Power Save(PS) Poll - A frame sent by an STA when it wakens from its power-

saving mode to retrieve any frames buffered while in slumber.
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2.1.2.3 Data Frames

Data frames are used for transmitting the actual information produced in the higher

layers. Different types of data frames exist, based on whether they are sent on a con-

tention based service, they carry additional information, or it has Quality of Service

(QoS) enhancements. The basic data frame types are:

• Data - The basic frame type for sending and receiving data. These frames are

transmitted during the contention-based period.

• Null Data - A special kind of data frame that carries no data payload. These

frames are transmitted only from an STA towards the AP to state a change in its

sleep state. This is accomplished simply by altering the value of the respective

power management bit in the frame control field.

• QoS Data - An alternative data frame type for relaying data with higher priority.

2.1.3 Frame Structure

In 802.11 all data frames have the same structure which consists of a header, the frame

body, and a Frame Check Sequence (FCS). The frame body consists of data which is

usually encrypted. This field is the only one of variable length and can take up from 0

to 2,312 bytes. The FCS has length of 4 bytes. It is based on Cyclic Redundancy Check

of 32 bit (CRC-32) algorithm and it is applied to bytes of both the header and the body.

The header is the most complicated of the fields. It is 30 bytes long and on its own it is

comprised of 7 fields: the composite 2 byte Control Frame, the 2 byte Duration, the 6

byte Address 1, Address 2 and Address 3 fields, the 2 byte Sequence Number field, and

finally an additional Address field.

The structure of the typical Management frame is very similar to that of a data frame

with the exception that frame body may only be comprised by fixed or variable length

tagged parameters.

Control frames do not have a body or other variable length fields. Their header is

smaller than the corresponding data or management frame headers, since besides the

receiver and transmitter address fields it doesn’t have any additional address fields (i.e.

BSSID address). Moreover, it is deprived of the Sequence Number field. As made

clear, the structure (size, fields) of 802.11 frames drastically defers among its types and

subtypes. This dynamic nature of frames brings to surface the requirement for a static

representation of these as vectors within a given dataset.
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Figure 2.2: Structure of Header of 802.11 Fram

2.1.4 Security Procedures

2.1.4.1 WEP

Wired Equivalent Privacy (WEP) was deployed as the security mechanism of the first

version of the 802.11 protocol. Its basic objective was to provide a confidentiality levels

comparable to that offered in the wired world. However, as proved in practice, WEP

failed and this protocol was found susceptible to a number of different attacks, including

efficient cracking of its secret key. With the introduction of 802.11i, WEP became

officially deprecated. Still, a large number of 802.11 networks base their protection

solely on WEP.

WEP supports two methods of authentication namely, open system and shared key. In

the first case, the client does not need to provide any credentials in order to connect to

the AP and this process should not be considered as a real authentication. It is frequently

used in conjunction with a white list of MAC addresses, or when the connection is meant

to be totally open to everyone. On the other hand, shared key authentication completes

after the exchange of four messages: (a) the client sends an Authentication Request

message which contains the MAC address of the client and the MAC address of the AP,

(b) the AP responds with a challenge message which contains a 128 bits random number,

(c) the client sends a response message which contains the random number encrypted

with the WEP shared key. The AP then decrypts the previous message using its shared

key. If the number contained in the decrypted message matches the random number

previously send, then the AP considers that the client is in possession of the shared

key. To conclude this process, the AP responds with (d) an Authentication Response

message containing the outcome of the authentication. It is clear that the authentication

procedure described above is strictly unidirectional meaning the AP can authenticate

the client but not vice-versa.



Chapter 2. Wireless Technologies and Security 13

WEP relies on the RC4 [17] algorithm for confidentiality while the Cyclic Reduduncy

Check of 32bits (CRC-32) [18] mechanism is employed for message integrity. The entire

confidentiality structure in WEP has been built around a static key also known as root

key. WEP supports two different key sizes and as a result two versions exist, namely

WEP-40 and WEP-104.

WEP-40 supports key sizes of 40 bits. As expected, this key is never used for direct

packet encryption but is the basis (seed) for the generation of a session key. Only

data frames are protected while management and control frames remain unguarded.

Encryption of each packet is a multi-step process that consists of the following steps:

• A 24-bit long Initialization Vector (IV) is generated usually in a sequential way.

• Next, the root key is concatenated with the IV forming the per packet key. Note

that while the root key is static the IV is different for each encryption attempt,

therefore the per packet key is different for each packet.

• This key (which is a 64 bit sequence) is fed as a seed to the RC4 algorithm pro-

ducing a key sequence which is known as keystream.

• As a final step, the keystream is XORed with the concatenation of the plaintext

of the packet and its CRC-32 value. Thus, the ciphertext of the specific packet is

generated. The encryption process on WEP-104 is analogous except for key size

which in this case is 104 bits.

2.1.4.2 WPA

WiFi Protected Access (WPA) is a suite of security technologies that was introduced

in 802.11x amendment, as a patch, in order to mitigate some of the weaknesses of

WEP. Since the original security measures were found weak, in practice, even against

attackers with moderate level of skills, many network administrators started taking

privacy into their own hands by deploying third-party security solutions (e.g., 802.1X

and Virtual Private Networks (VPN)). The lack of native, reliable wireless security

mechanism triggered the development of 802.11i by the WiFi alliance and IEEE. WPA

was treated as a transitional step since the more robust 802.11i (frequently referred as

WPA2) security subprotocol was still under development. Actually, today WPA is a

subset of 802.11i but it maintains forward compatibility with it.

WPA’s security foundations lay in its stronger encryption mechanisms such as the Tem-

poral Key Integrity Protocol (TKIP), or the Advanced Encryption Standard (AES)
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Figure 2.3: The Encryption Process on WEP

which is employed as an alternative. WPA effectively addresses critical issues such as

mutual authentication, through the utilization of the 802.1X protocol and the Extensible

Authentication Protocol (EAP), more appropriate IV lengths, Michael, a cryptograph-

ically robust integrity check mechanism, and a secure rekeying function among others.

WPA depends on central servers such as RADIUS for user authentication, access control

as well as management. While this practice is typically adopted in enterprise environ-

ments for home users, a variation of WPA, namely WPA Pre-Shared Key (WPA-PSK)

is sufficient. In essence, WPA-PSK is a simplified version of WPA which is based on the

use of a passphrase as a pre-shared secret key among the users similarly to the case of

WEP.

2.1.4.3 WPA2

The IEEE 802.11i, also referred to as WPA2, was an amendment to the original IEEE

802.11 standard, incorporating the appropriate additions, to increase the security of the

protocol. The final draft was ratified on June 24, 2004 and it was finally incorporated

into the IEEE 802.11-2007 standard.

In WPA2 all keys derive from a single master key, placed in the highest level of the

hierarchy. There are two types of that key which depend on the utilized method of
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authentication. If the authentication method is based on a pre-shared key, the top

key is simply the pre-shared key itself and it is referred as Pre Shared Key (PSK).

If the authentication method is based on the 802.1X framework, the top key is called

Master Session Key (MSK). These top level keys are used to generate the primary

keying material in WPA2 which is the Pairwise Master Key (PMK). In the case of a

pre-shared key based network the PMK is equal to the PSK, while in the 802.1X based

network scenario the PMK is produced from a portion of MSK. The PMK is never used

for encryption or integrity checks directly; rather it contributes to the generation of

expendable keys. In the next level of the keying hierarchy exists the Pairwise Transient

Key (PTK) and the Group Transient Key (GTK). These keys are produced during the

authentication process with the STA and are unique for each client. These keys derive

respectively from the PMK or the GMK as well as other random number negotiated

with the client. The PTK key is then split into five subkeys, i.e., temporal encryption

key, two temporal Message Integrity Code (MIC) keys, EAPOL-Key Key Confirmation

Key (KCK), EAPOL-Key Encryption Key (KEK). These are the bottom level keys in

the WPA2 hierarchy. The KCK and KEK are used to protect EAPOL-Key frames while

the temporal key is used to encrypt/decrypt unicast network traffic. The GTK on the

other hand, is split into two keys the Group Encryption Key (GEK) which is used for

encrypting/decrypting multicast traffic and the Group Integrity Key (GIK) which is

used for verifying the MIC of multicast/broadcast traffic.

As far as protection of the network traffic, WPA2 supports three alternative proto-

cols. Temporal Key Integrity Protocol (TKIP), Counter-Mode/Cipher Block Chaining

Message Authentication Code Protocol (CCMP), and Wireless Robust Authenticated

Protocol (WRAP). The TKIP is based on RC4 encryption algorithm (which has been

proven to be insecure) and is regarded as a transitional step from WEP. Actually, in

comparison to WEP, it does provide a higher level of security and it is also backward

compatible with it. WRAP on the other hand, is based on the Offset Codebook (OCB)

mode of AES. This mode is considered more secure but may be subject to licensing

issues, thus is no longer considered an actual choice. The most viable solution comes in

the form of CCMP, which is based on the AES algorithm in its CCM mode. This cipher

mode, breaks the plaintext in chunks of 128 bits and encrypts them with a key of the

same size.

When CCMP is employed, the integrity of messages depends upon Message Integrity

Code (MIC). MIC is constructed with the Cipher Block Chaining (CBC-MAC) which

at the beginning it encrypts a nonce block, the source address and the packet number

and then XORs the result with each succeeding block. The MIC is attached at the end

of the plaintext and it is encrypted along with it.
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The process of authentication is mutual in WPA2. That means that authentication guar-

antees that both the supplicant and the authenticator share the same PMK. Addition-

ally, it ensures about the freshness of the peers, and contributes to a mutual agreement

concerning the cipher suite to be used. In the end, this protocol generates a fresh PTK

and with these keys, a secure communication channel is established for subsequent data

transmissions. The authentication process consists of a series of messages, exchanged

between the supplicant and the authenticator, commonly known as 4-way handshake.

The first message is sent by the authenticator towards the supplicant. It consists of the

MAC address of the authenticator, a nonce produced by the authenticator, the ID of

the PMK, the current sequence number, and other bits that state that this message is

the first one of the process. This message is not encrypted or integrity protected. Upon

acceptance of the first message, the supplicant checks whether the sequence number

contained in the message has been already used for that PMKSA. If not, the supplicant

produces a nonce, creates the PTK, constructs the second message of the process, and

transmits it to the authenticator. This message is integrity protected but it is not en-

crypted. In more detail, that message contains the MAC of the supplicant, the nonce

the supplicant produced, the same sequence number contained in the first message, the

security parameters agreed upon earlier stages of association, the MIC over the entire

message, as well as bits informing about the type of the message. When this second

message reaches the authenticator, it first checks that the sequence number is valid, then

it creates the PTK itself, extracts the KCK and validates the correctness of the MIC.

Finally, it verifies that the security parameters contained on that message are the same

as the ones agreed during association. If all the checks pass, the authenticator moves

to the generation of the GTK, its encryption with the KEK and it embodies it to the

third message of the handshake.After receiving the third message, the supplicant checks

that the sequence number is greater than the one contained in the first message, the

nonce field matches the one received in the first message, then verifies that the cipher

parameters are the same and finally that the MIC value is correct. The final message

is also sent from the authenticator to the supplicant. It acts as a confirmation of the

previous message. When this is received the supplicant is able to used the derived PTK

and the received GTK for encrypting and decrypting unicast or multicast traffic.

2.1.4.4 802.11w

While the 802.11i focuses on confidentiality and integrity of the wireless communication,

it has been proven rather thrifty on the availability. It is a fact that DoS attacks discov-

ered even from the WEP apply in the WPA/WPA2 settings too without modification.

The common denominator of most of these vulnerabilities is the fact that management
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Figure 2.4: 4-Way Handshake Protocol

frames are unprotected thus easily issued even by unauthorized entities. For this reason,

the 802.11w amendment, which was approved in 2009, focused on these issues and ad-

dressed them by introducing the Robust Management Frames (RMF) mechanism which

is merely the cryptographically protected version of some of the management frames

(Deauthentication, Disassociation, and Action management). In 802.11w the Robust

Security Network Information Elements (RSN IE) field is extended by two bits (bits six

and seven) to advertise the new capabilities which indicate that 802.11w is supported.

More specifically, the sixth bit corresponds to the flag, Management Frame Protection

Required while bit seven corresponds to the flag, Management Frame Protection Capa-

ble.

Unicast management frames are protected by the PTK, while for broadcast manage-

ment frames, a new encryption key had to be introduced namely, the Integrity Group

Transient Key (IGTK). The IGTK is used in a MIC information element. In further

detail, the MIC is comprised of a packet ID, IGTK key ID, a serial number (IPN), and

a cryptographic hash derived from a packet’s MAC header and payload. IPN protects

against replayed frames which are dropped if the IPN has been used in the past. To

tackle Association Request attacks, the Security Association Query (SA Query) mecha-

nism has been introduced. This mechanism makes use of two new management frames,

namely SA Query Request, and SA Query Response which are exchanged between STA

and AP as a follow up of every Association Request issued by the STA. The association

procedure carries on, only if the SA Query Response message is verified by the AP. For

the cases where an STA is already associated yet the AP receives a new Association Re-

quest message, the Timeout Information Element (TIE) is introduced. The AP replies
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with a rejection notice and remains blindfolded to every Association Request from that

client for a time interval equal to the one specified in the TIE field.

2.2 802.16 Architecture

WiMAX was partially based on the Data Over Cable Service Interface, Baseline Plus

Interface (DOCSIS BPI+) protocol [19] which has been originally designed for cable

modems. The first version of the standard, i.e., IEEE 802.16-2001 [20] only supported

point-to-multipoint (PMP) fixed wireless access between a Base Station (BS) and several

registered Subscriber Stations (SS). Since IEEE 802.16-2001 operates in the 10-66 GHz

frequency range, this technology required line-of-sight (LOS) communication. The next

version of the standard namely, IEEE 802.16-2004 [21] extended the frequency range into

the 2-11 GHz band, thus enabling nonlineof-sight (NLOS) communication. Among other

improvements in this version mesh mode was introduced. Until now, the most promi-

nent version of the standard, namely IEEE 802.16e-2005 [22] specifies numerous major

improvements including the full mobility support. Subscribers are now characterized as

Mobile Stations MSs (in the following we use the terms MS and SS interchangeably).

This became possible as the standard employs Scalable Orthogonal Frequency Division

Multiplexing (SOFDM) in the physical layer. Additionally, it supports advanced secu-

rity features such as mutual authentication for both the BS and MS. 802.16j-2009 [23]

added support for multihop relays. Finally, the latest version of the standard, namely

802.16m-2011 [24] (also known as WiMAX release 2), added support for data rates as

high as 100 Mbps for mobile nodes and 1 Gbps for stationary users.

2.2.1 Protocol Stack

The IEEE 802.16 protocol is organized primarily in the Physical (PHY) and the Medium

Access Control (MAC) layers. The MAC layer can be further divided into three sub-

layers, namely the Service Specific Convergence Sub-layer (CS), the Common Part Sub-

layer (CPS) and the Security Sublayer. CS is the sub-layer that communicates with

higher layers to acquire network data. In the process it transforms these data into

MAC Service Data Units (SDUs). The format of the CS payload itself is CS depended.

CPS provides basically the core MAC functionality being responsible for functions such

as bandwidth allocation, connection establishment, and connection maintenance. The

Security Sub-layer, addresses procedures such as authentication, authorization, key es-

tablishment, distribution and management. Also, it is responsible for encryption and
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decryption of traffic passing from the PHY to the MAC layer and vice versa. The se-

curity mechanisms applied in the Security Sub-layer will be discussed in greater detail

later in this section.

2.2.2 Network Entry

During the Initial network entry many critical parameters are negotiated between the

Mobile Station (MS) and Base Station (BS). From a security point of view, the entire

procedure is extremely receptive to violations since for most of its part the security

measures contemplated by the specification have not taken place and important nego-

tiation parameters are transmitted in cleartext. This section describes the basic steps

that occur during the initial entry of an MS to the network. The overall procedure is

summarized in Figure 2.5.

Figure 2.5: Initial Network Entry

Upon initial network entry (or after loss of signal) the first action an MS does is to

acquire a Downlink (DL) channel. The MS shall begin scanning the DL frequency band

for possible channels of operation until it finds a valid DL signal. This step ends once

the PHY has achieved synchronization.

To do so, at least one DL-Medium Access Protocol (DL-MAP) message must be received

by the MS. The DL-MAP informs the MS about the DL-Burst Profiles. The MAC

remains in synchronization as long as it keeps receiving the DL-MAP and Downlink

Channel Descriptor (DCD) messages for the channel. An MS may use the information

contained in the DCD to determine if the channel corresponds to its needs. Also, the

MS shall search for a Uplink Channel Descriptor (UCD) message from the BS (this is

transmitted periodically to all the available UL channels) for retrieving the transmission

parameters of a possible UL channel.
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After the MS has obtained the UL and DL parameters it will attempt to acquire the

correct timing offset and make power adjustments through the process of ranging. The

MS shall use the information contained in the UL-MAP (or UCD) message to find an

initial ranging interval. Usually, the BS allocates an initial ranging interval consisting of

many Transmission Opportunities (TO). For Single Carrier (SC) and OFDM PHY, the

MS shall construct an RNG-REQ message. Then the MS can transmit the RNG-REQ

message in one of the known TO. Typically, there are only 3 TO in a 5 ms frame thus

there is high probability of a collision to occur.

To reduce collisions the 802.16 specification dictates that the nodes should pass a period

of inactivity of random duration known as Backoff (BO). If a collision occurs, the MS

will eventually become aware of it since the corresponding RNG-RSP message will not

arrive to the device within the expiration of the T3 timer (set to 200 ms by default). The

collided nodes will attempt to resend the RNG-REQ message after a random waiting

time but the waiting time interval will be doubled (until a maximum value is reached).

This process will repeat (as long as MSs collide) up to a defined maximum number of

retries. The aforementioned process is known as Truncated Binary Exponent Backoff

(TBEB). Once the RNG-REQ message has been received by the BS, the latter will con-

struct an RNG-RSP message and send it using the Initial Ranging Connection Identifier

(CID). This message exchange shall result in the MS acquiring Basic and Primary Man-

agement CIDs as well as information about RF power level adjustment, offset frequency

adjustment and timing offset corrections. Figure 2.6 presents the entire initial ranging

procedure.

After ranging has successfully taken place, the MS will send to the BS an SS Basic

Capability (SBC)-REQ message to inform it of its basic capabilities. The BS responds

with an SBC-RSP message containing only the capabilities both the MS and BS can

support. Upon successful capabilities negotiation, MS authorization and key exchange

follows. The details of this procedure are analysed in greater depth in the next section.

Registration is the process that takes place after successful authorization. During this

step the MS gets the Secondary Management CID. This means that the MS is actually

granted entry into the network. This process involves the exchange of a pair of REG-

REQ and REG-RSP messages. When both messages are successfully received, the BS

will authorize the MS to forward traffic to the network.

Typically, the MS shall invoke Dynamic Host Configuration Protocol (DHCP) mecha-

nisms for receiving all relative parameters, establishing IP connectivity and obtaining

an IP address. The versions of the IP that are supported by the MS are indicated in

the REG-REQ message with the default value being IPv4. Both the MS and BS need

to be synchronized as the management system requires the current date and time for
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time-stamping logged events. For this reason, request and response messages are ex-

changed with a time server. The MS’s secondary management connection is utilized for

this process. This step is crucial for ongoing operation although not obligatory for a

successful registration.

Next, the MS shall receive the MS Configuration File using Trivial File Transfer Protocol

(TFTP) on the secondary management connection. This file consists of a number of con-

figuration settings that are encoded in Type-Length-Value (TLV) format. The MS must

notify the BS of successful receipt of this message by transmitting a Configuration File

TFTP Complete (TFTP-CPLT) message on the primary management connection. As

a final step, the BS shall send several Dynamic Service Addition (DSA)-REQ messages

to the MS for creating new service flows. The MS responds with DSA-RSP messages.

2.2.3 Security Mechanisms

IEEE 802.16 relies on the Security Sub-layer to provide security to the end-subscriber

and the network. This part of the protocol is where all the necessary cryptographic

transformations are applied to the MAC PDUs. This is necessary to provide: (a) privacy,

confidentiality and authentication to the subscribers, and (b) protection from theft of

service to the service providers. The basic mechanism of security enforcement in 802.16

is the Privacy Key Management (PKM) protocol. Both 802.16-2009 and 802.16e-2005

support two versions of the PKM protocol. Mainly, PKM is responsible for authorization

of subscribers and distribution of the keying material to the MS. Secondarily, it controls

the application of the negotiated encryption algorithms to the data traffic. Actually,

the PKM tasks can be divided into three distinct undertakings namely, authentication,

key exchange, and encryption with a brief step for the key derivation that takes place

in between the authorization and key exchange phases. These processes are described

in further detail hereunder.

2.2.3.1 Authorization

The step of authorization happens first in the PKM protocol. The messages exchanged

in this step differ for the two versions of the protocol. In PKMv1 the authorization

process is initiated by the Authentication Information message which is sent by the

MS to the BS. This message contains the MS manufacturer’s X.509 certificate, (the

manufacturer may have issued itself this certificate) and it is strictly informative. This

message is then followed by an Authorization Request message sent again by the MS to

the BS. This is comprised of the following information:
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• The manufacturer-issued X.509 certificate of the MS

• a description of the cryptographic capabilities the MS supports

• the MSs Basic CID

The purpose of this message is to request an Authorization Key (AK), and at the

same time be assigned with the Security Association Identifiers (SAID) (matching the

corresponding Static SAs) that the client has the right to participate in. In response,

the BS validates the MS’s identity and determines the encryption algorithm (among the

commonly supported ones), activates an AK for the MS, and constructs an Authorization

Reply message. The latter is sent to the MS and it consists of the following fields:

• the active (for this particular MS) AK which is encrypted with that MSs public

key,

• a 4-bit key sequence number used to distinguish between successive generations of

AKs,

• the lifetime of this key, and

• the identities (i.e., the SAIDs) and properties of the Primary and Static SAs for

which the MS is authorized to obtain keying information.

It is obvious that authentication in PKMv1 is one way, meaning that the BS can au-

thenticate the MS but not viceversa. This introduces a vulnerability that soon became

the cause of many attacks. As a result, PKMv2 was introduced and the authorization

part is slightly modified to support mutual authentication. As in PKMv1, the second

version of the PKM protocol dictates that the authorization process must start with the

transmission of the informative message Authentication Information. This message is

the same as in PKMv1. Following the Authentication Information the MS must issue

an Authorization Request. The format of this message is modified in PKMv2. The

Authorization Request includes:

• The manufacturer-issued X.509 certificate of the MS

• a description of the cryptographic algorithms supported by the MS

• the SSs Basic CID

• 64-bit random number generated by the MS.
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The last field is the only new one added since the original PKM protocol to the Au-

thorization Request message. In response, a BS sends back an Authorization Reply

message. This message has been rectified more extensively and its fields now include:

• The BSs X.509 certificate; It is used to verify the BSs identity and to guarantee

the authenticity of this message

• The pre-PAK key which is encrypted with the MSs public key; Only the owner of

the corresponding private key will be able to decrypt it

• A 4-bit PAK sequence number, used to distinguish between successive generations

of AKs

• The PAK lifetime

• the identities (i.e., the SAIDs) and properties of the SAs for which the MS is

authorized to have keying material

• the 64-bit random number generated by the MS, originally contained in the Autho-

rization Request message; This field is included to ensure that the Authorization

Reply corresponds to the correct Authorization Request message

Additional fields are:

• a new 64-bit random number generated by the BS

• the RSA signature over the entire message

This allows the MS to verify that the BS is indeed the author of the Authorization

Reply message. This process is performed using with the public key of the BS which

is acquired by the certificate contained in the message. In other words, this extra field

allows for mutual authentication. Following the message above the MS replies with an

Authorization Acknowledgement message (or an Authentication Reject message in the

case where the BS will reject the MS). The Authorization Acknowledgement includes:

• the 64-bit random number originally contained in the PKMv2 RSA Reply message

• an Authentication result code which can be “success” or “failure”

• an Error code which indicates the reason for the reject

• an optional Display string which includes a phrase for the reason for the reject

rather than just a code number
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• an RSA signature over the entire message

A comparison between the flow of messages in PKMv1 and PKMv2 is included in figure

2.7.

(a) Authorization Step of PKMv1 Protocol (b) Authorization Step of PKMv2

Figure 2.7: Message Flow in PKMv1 vs. PKMv2

2.2.3.2 Key Derivation

After the PKM authentication phase, normally the MS is in possession of some keying

material. A small step where the MS derives the appropriate keying material takes place

before the PKM can proceed to the next phase. The key derivation process is different

between the two versions of the PKM protocol. Actually, the keys in 802.16 form a

hierarchy. A key of a higher level is used to produce the key of the immediately lower

level. All key generations in PKMv2 are produced using the Dot16KDF function. This

function takes 3 arguments:

• A keying material of a higher level,

• A string used to alter the output of the algorithm

• A number used to indicate the length of the generated key.

More specifically, the RSA-based authorization process results in the creation of the pre-

Primary Authentication Key (pre-PAK) while the Extensible Authentication Protocol

(EAP) based authentication process produces the Master Session Key (MSK). These

two keys constitute the basis of all other keying material and they are placed in the

top of the key hierarchy. In RSA-based authorization a pre-PAK is used to generate

the Primary Authentication Key (PAK). Optionally, the EAP Integrity Key (EIK) can
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also be generated from the pre-PAK. EIK is used for transmitting authenticated EAP

payload. In EAP-based authorization the 512 bits MSK, is simply truncated to 160 bits

to derive the Pairwise Master Key (PMK). One of the PAK, PMK or both (according to

the authentication method that was used) will be provided as input to the Dot16KDF

function to produce the AK. The Key Encryption Key (KEK) is derived directly from the

AK. Message Authentication Code (MAC) keys are used to sign management messages.

This procedure is performed to guarantee the authenticity of these messages. The IEEE

802.16 supports two MAC modes namely Cipher-based MAC (CMAC) and Hashed MAC

(HMAC). The one to be used is negotiated during the MS Basic Capabilities negotiation

phase. Different MAC keys exist for UL and DL messages. The Cipher-based MAC Key

for Uplink (CMAC KEY U) is used for signing messages in the uplink while the Cipher-

based MAC Key for Downlink (CMAC KEY D) is used for the same purpose in the

downlink. This only applies for the cipherbased MAC mode. For the hash-based MAC

mode corresponding keys exist, i.e. HMAC KEY U, HMAC KEY D). In the case of

HMAC these keys are derived directly from Dot16KDF function while in the case of

CMAC and for versions later than 802.16e a corresponding prekey is generated first.

Also there are different keys for broadcast and unicast messages. In any case, MAC keys

are derived directly from AK by simply using different string and key size arguments in

the Dot16KDF function for each mode. Figure 2.8 depicts a diagram of the complete

key derivation flow.
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Figure 2.8: Complete Message Exchange and Key Derivation in 802.16
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2.2.3.3 Handshake

The next phase is a three way handshake. It’s main role is to confirm that both the

MS and BS have indeed the correct AK from the previous procedure. Additionally, the

handshake protocol takes care of secondary procedures such as key activation and SA

parameters negotiation, security parameters confirmation etc. For this purpose the BS

shall send an PKMv2 SA-TEK-Challenge which simply includes:

• a random number

• sequence number for the new AK

• the ID of the new AK

• Key Lifetime all protected by

• the HMAC/CMAC

The SS shall respond with a PKMv2 SA-TEK-Request to the BS. This message includes:

• the random number the MS received from the PKMv2 SA-TEK-Challenge

• a random number the MS produces,

• the sequence number of the new AK,

• the ID of the AK,

• the cryptographic suites supported by the MS

• the security capabilities of the MS

• the HMAC/CMAC of the entire message

Upon reception of PKMv2 SA-TEK-Request, a BS first confirms that the AK ID con-

tained in the message refers to a valid AK and then it verifies the HMAC/CMAC.

After that the BS will check if the random value sent matches the one contained in the

PKMv2 SA-TEK-Request. If any of the three aforementioned tests fails the BS will

simply ignore the message. Finally, the BS will make sure that the security capabilities

encoded in the Security Negotiation Parameters attribute are the same with the security

capabilities provided by the MS through the SBC-REQ message. If not, the BS should

report the inconsistency to higher layers but might as well accept the message. If the

validation of the PKMv2 SA-TEK-Request is successful, the BS shall send a PKMv2
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SA-TEK-Response back to the SS. This message includes all the fields of the PKMv2

SA-TEK-Request message plus a TLV list of the SAs, their identifiers (SAID) any addi-

tional properties of the SA (e.g., type, cryptographic suite) that the SS is granted access

to. The TEK-Parameters attribute in that list contains keying material such as the

TEKs remaining key lifetime, its key sequence number and the Cipher Block Channing

Initialization Vector (CBC IV). The HMAC/CMAC is the last field of this message.

2.2.3.4 TEK Transportation

As already mentioned, TEK is responsible for the encryption of traffic. The BS alone

is in charge for the creation of this key, thus it must securely transmit it to the MS.

The pair of PKM-REQ: Key Request and PKM-REP: Key Reply messages exist for this

purpose. PKM-REQ is comprised of the following fields:

• The Key Sequence Number, which allows the BS to determine the AK used for

the production of the corresponding UL HMAC/CMAC Key

• the ID of the SA whose TEK is requested

• the HMAC/CMAC digest over the entire PKM-REQ message payload

After verifying the authenticity of the message the BS responds with a PKM-REP

message. The fields of this message are the following:

• Key Sequence Number

• SAID

• TEK-Parameters (Older)

• TEK Key Lifetime

• Key Sequence Number

• CBC-IV

• TEK-Parameters (Newer)

• TEK Key Lifetime

• Key Sequence Number

• CBC-IV,

• HMAC/CMAC digest over the entire message payload
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It is to be noted that a unique state machine is maintained by the MS for each SAID

contained in the PKM-RSP message. Each state machine is responsible for the initial

establishment of TEK as well the periodic refreshing of those keys.

2.2.3.5 Traffic Encryption

After successful TEK exchange, both the MS and BS are able to encrypt/decrypt traffic,

using this key. Note that the generic MAC header is not included in the encryption.

Multiple encryption algorithms are supported. When DES algorithm in CBC mode is

used, the CBC IV for the DL, shall be calculated by performing the XOR function to IV

parameter included in the PKM-REP message and the current frame number. For the

the UL, the CBC IV shall be calculated by performing the XOR function to IV parameter

included in the PKM-REP message and the number of the frame where the relevant UL-

MAP has been transmitted. If the AES algorithm in CCM mode is used then the MAC

PDU payload shall always be prepended with a 4-byte packet number which will never

be encrypted. Also, the MAC PDU shall be appended an 8-byte integrity check value

which will be included in the encryption. Last, if AES in CBC mode is used then the

CBC IV is calculated as the result of the the IV parameter included in the PKM-RSP

message XORed with the concatenation of:

• the 48-bit MAC PDU header

• a 32-bit PHY Synchronization value of the MAP that a data transmission occurs

• the XOR value of the 48-bit MS’s MAC address and the Zero Hit Counter

The complete sequence of messages exchanged during the PKMv2 protocol is illustrated

in figure 2.9.

2.3 UMTS Architecture

The increasing demand for high quality multimedia services along with the need for

modern pervasive applications has given birth to the UMTS [25]. UMTS is the product

of a collaborative effort of international organizations, members of the 3rd Generation

Partnership Project (3GPP) consortium. Today, 3rd Generation (3G) mobile networks

based on the UMTS standard are deployed in Europe and USA (in lesser extend) with

great success. Users of these networks benefit from the higher quality of voice and

video calls, higher transfer rates, communication with the internet, and enjoy advance
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Figure 2.9: PKMv2 Phases and Messages

applications and value-added services and in some cases carry out wireless security-

sensitive transactions like e-banking, stock trading, and e-shopping.

Unfortunately, the primary target of the designers of UMTS was to maintain maximum

compatibility with the 2G systems. Additionally, its designers took into account the pos-

sible constraints in computational power mobile devices may have, and for that reason,

they adopted relatively lightweight security techniques such as symmetric encryption

[26]. Thus, even though UMTS is characterized by many major security enhancements

comparing to its 2G predecessor the GSM it still presents architectural weaknesses.

2.3.1 Network Structure

In an abstract level the typical UMTS network architecture is comprised by three core

components:

• Mobile Station (MS)

• UMTS Terrestrial Radio Access Network (UTRAN)

• Core Network (CN)

The MS, often refereed to as User Equipment (UE), is usually a mobile device (such as

a smartphone) with radio access capabilities. Each device accessing a UMTS network,

is equipped with a SIM card, which has imprinted several network specific constants

such as the private cryptographic keys, the International Mobile Equipment Identity
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(IMEI) which is a globally unique identification number, and the International Mobile

Subscriber Identity (IMSI), which is an identification number for the user. To provide

an increased degree of anonymity an expendable identification variable, namely the

Temporary Mobile Subscriber Identity (TMSI) is produced and used instead of IMSI.

The UTRAN, is comprised by one or several Node B stations, which are tower forma-

tions equipped with antennas, each connected to a Radio Network Controller (RNC)

through the lub interface. The RNC is a component that takes care of radio resource

management, caries out some of the mobility management functions and is responsible

for the encryption of traffic. The RNC also interacts with the Base Station Controller

(BSC) component of the traditional GSM/EDGE Radio Access Network (GERAN), and

enhances its capabilities.

The CN is comprised primarily by the Serving GPRS Support Node (SGSN) and the

Mobile Switching Center (MSC) components which are the ones bridging it with the

RNC components of the UTRAN. These are also responsible for forwarding packets and

circuit switched information to and from UTRAN. The two components play a role in

the authentication procedure and location management. For the latter procedure an

additional component, namely the Visitor Location Register (VLR) is necessary. In

essence, it is a database that contains the user identities associated to their location.

The CN may act as the Home Network for a subscriber if that user has been registered

to it, or as Serving Network if a user registered to another network roams in it.

The HLR (also known as HSS), maintains statistics about its subscribers and generates

billing and most importantly authentication information by interacting with the Authen-

tication Center (AuC). It usually serves thousands of users, in most cases concurrently,

for both both phone call and data/SMS services. Therefore, this is considered a point

of increased interest for both the administrators as well as the malicious users.

Figure 2.10 displays the basic architecture of a UMTS network.

2.3.2 Security Mechanisms

The UMTS security architecture defines a set of procedures that the user’s mobile equip-

ment as well as the network should execute in order to achieve increased message confi-

dentiality and integrity during their communication. In the heart of the UMTS security

architecture lies the user authentication mechanism known as Authentication and Key

Agreement (AKA) [25]. This mechanism is somewhat similar to the authentication in

Global System for Mobile Communications (GSM). The idea to use public keys in the
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Figure 2.10: Basic Architecture of UMTS Network

process of authenticating the users, was abandoned, mainly due to backwards compat-

ibility (with GSM) and for performance considerations. The authentication in UMTS

is based on a 128-bit symmetric secret key, namely Ki, which is stored in the user’s

tamper-resistant Universal Integrated Circuit Card (UICC) and in the corresponding

Home Location Register (HLR) of the user’s Home Network (HN). The AKA scheme

is a combination of the well known challenge response-protocol found in GSM and the

authentication mechanism based on sequence number as defined by the ISO organization

[27]. The network entities that take part in the user’s authentication procedure are:

• The UE and more specifically the Universal Subscriber Identity Module (USIM)

application stored in the UICC.

• The Serving GPRS Support Node (SGSN) of the HN or the Serving Network (SN).

• The HLR of the user’s HN.

The authentication procedure in UMTS is mutual, which means that both the network

is authenticated to the UE and the UE is authenticated to the network. After successful

authentication the two ends agree on the use of two additional 128-bit symmetric keys.

These keys are derived from the master key Ki and renewed every time the user is

authenticated. The procedure typically initiates after the Mobile Station (MS) attaches

to the network and sends its identity. Note, that the user can be identified either by
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a permanent ID, i.e., the International Mobile Subscriber Identity (IMSI) or, usually,

a temporary one known as Temporary Mobile Subscriber Identity (TMSI). During the

process, the user’s ID is forwarded from the Radio Access Network (RAN) sub-network

to the core network, that is, the SGSN serving that particular area. In any case, the

latter entity may send an Authentication Data Request message to the HLR of the user’s

HN in order to acquire Authentication Vectors (AV) required to authenticate the user.

This happens only in cases that no AV for that particular user is available locally in the

SGSN. For instance, the user attaches for the first time to this SGSN or the available

in the SGSN AVs for that user have been already consumed. Since the HLR possesses

the master key (Ki) for each user i is capable of creating the corresponding AVs. The

vectors are sent back to the SGSN in charge by making use of a control message known

as Authentication Data Response. Each vector can be used only once except the case

the SGSN does not receive an answer from the MS.

After the SGSN in charge acquires some AVs (they are sent usually in batch), it sends

an Authentication Request to the user. The request contains two parameters:

• A RAND which is a random number

• The AUTN, i.e., the authentication token. These parameters are transferred in the

tamper resistant environment of the UICC/USIM and stored for further processing

The USIM is also aware of the Ki, and uses it along with the received parameters RAND

and AUTN to perform a series of calculations similar to those that took place for the

generation of the corresponding AV in the HN’s HLR. The outcome of this procedure

enables USIM to verify that the AUTN parameter was indeed created by the HLR of

the HN and also that it is fresh (i.e., it is not a message replay). In case that the above

verifications have a positive outcome the RES (result) parameter is calculated and sent

back to the corresponding SGSN by utilizing a User Authentication Response message.

Upon that, the SGSN compares the received RES with the XRES (Expected Response)

which is contained in the initial AV. If the two values match then the user is granted

access to the network.

Moreover, as already mentioned, two other keys that will be used for confidentiality

and data integrity are calculated by the USIM. Using a security mode command the

same keys, which are contained in the initial AV, are transmitted by the SGSN to the

corresponding Radio Network Controller (RNC). These keys are known as Cipher Key

(CK) and Integrity Key (IK). Note that while these keys are part of the corresponding

AV and thus immediately available to the SGSN, the USIM has to calculate them by

itself. An overview of the authentication sequence described above is depicted in Figure
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2.11. It is to be noted that this section presents only the fundamental information on

UMTS security architecture required for comprehending the concepts described in the

next chapters. For an in depth analysis the reader should always consult [25].

Figure 2.11: Initiation of Security Services in UMTS



Chapter 3

Mac Layer Attacks Against IEEE

802.11

Protection against wireless attacks is an active research topic but until now, most of

the research is focused on Wireless networks such as WLANs, Wireless Sensor Networks

(WSN) or 2G mobile networks such as GSM. Many different vulnerabilities have been

discovered, and the corresponding attacks have been described, unfolding at different

layers including physical, MAC, network or application ones. For instance, a jamming

attack [28] is unleashed in the physical layer and can prove very hazardous since it

cannot be addressed by adopting a more sophisticated network security architecture

design or by cryptographic techniques. In [29] the authors explore the feasibility and

effectiveness of jamming attacks in wireless networks and propose detection schemes.

Other examples include: for the data link layer exhaustion attacks [30], and unfairness

attacks [31], for the network layer black hole attacks [32], [33] and smurf attacks [34],

and for the transport layer flooding attacks [35], and desynchronization attacks [34].

In this chapter a purpose-centric categorisation of attacks against 802.11 is adopted.

As expected, the majority of attacks analysed, are against WEP protected networks as

this protection mechanism has critical vulnerabilities. Therefore, most of the attacks

described here, have nowadays part of publicly available penetration testing tools. How-

ever, to our knowledge, the attacks given in sections 3.0.5.5 and 3.0.5.10 are not known

to be implemented by any commonly available tool and remained strictly theoretic.

3.0.3 Key Retrieving Attacks

The goal of key retrieving attacks is to reveal the Secret Key of the network. These

attacks are considered critical not only because they reveal the most valuable asset of

36
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the network (i.e., the secret key) to malicious entities but also because they may be

conducted in a totally passive way. In such cases, the attacker simply needs to monitor

the network for specific packets, usually the ones exchanged during an authentication

session, and use them in the key cracking process which is executed offline. However,

even thought the passive mode of such attacks renders them totally untraceable, the

attackers often choose to actively take part in them, in order to speed up the process.

This possibly decloaks the aggressor and opens a window of opportunity to detection

methods.

3.0.3.1 FMS Attack

The Fluhrer, Mantin and Shamir (FMS) attack [36] is the first document WEP cracking

method. This attack is based on the weakness of the RC4 algorithm. In FMS the

attacker needs to monitor and store a single encrypted packet. Since, the first byte

of the keystream is predictable, the attacker is enabled to make assumptions about a

subsequent Key byte. By repeating the process, all the possible values of that byte will

be revealed, but the actual will be the one revealed with higher frequency. From that

point on the same cycle is repeated for the rest of the bytes of the key.

3.0.3.2 KoreK Family of Attacks

The cryptanalyst with the pseudonym KoreK published seventeen attacks for cracking

the WEP key. The KoreK attacks are based on similar mathematical principles as the

FMS, but use several different techniques in order to reduce the size of the key search

space. The KoreK attacks follow similar execution methodology as the FMS as they also

relay on statistical methods to vote for actual keys from a list of possible ones. In that

way, they require a significant amount of IVs be captured before the cracking process is

completed. Usually, a method of artificially increasing the amount of IVs transmitted

(e.g., ARP injection) is employed so that the attack proves practical speed-wise. For a

detailed analysis of this family of attacks the reader should consult [37].

3.0.3.3 PTW Attack

The Pyshkin, Tews, Weinmann (PTW) attack [38] was based on Klein’s attack against

the generic version of RC4 [39]. The PTW requires dramatically less IVs/data frames

than the previously described methods, but is constrained to the ARP packets, thus

making techniques such as ARP injection necessary.
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3.0.3.4 ARP Injection

ARP injection is not actually an attack itself and if executed alone it cannot pose a

threat to the privacy of the network key. However, it is solely used as the stepping stone

for the Key cracking methods, that require many IVs (e.g., the FMS one). Its purpose

is to manipulate the network in such a way so that new IVs are produced constantly

and in large numbers even if no actual data is transferred in the network. The forcefully

generated IVs will then be captured by the attacker and be fed to the respective Key

cracking algorithms in a subsequent offline step.

In an ARP injection the aggressor constructs an ARP Request packet with broadcast IPs,

encrypts it with a Pseudo-Random Generation Algorithm (PRGA) and finally transmit

it. Upon reception, the AP will re-broadcast it to network, producing in that way a new

IV for each request.

3.0.3.5 Dictionary Attack

The Dictionary Attack is, at the moment, the only reliable method for retrieving weak

WPA/WPA2 keys. It has also been used for cracking WEP keys in less extend. Initially,

the aggressor monitors the network hoping to catch a live handshake. Alternatively, she

can force a handshake to take place immediately, by issuing deauthentication frames

(usually a single or a very small number). Next, the attacker attempts to reproduce

the third message of the captured 4-way-handshake based on keys contained in a large

database, usually refereed to as dictionary. Essentially, this is a brute force practise. As

such, it is considered effective only if the dictionary utilized contains the passphrase and

its efficiency heavily depends on the computational power the attacker possesses.

3.0.4 Keystream Retrieving Attacks

In WEP protected networks it is possible for someone to benefit even from the knowledge

of just the keystream. Knowledge of the keystream empowers the attacker to forge

packets, encrypt them and inject them to the victim network. Moreover, as a bi-product

of some keystream retrieving attacks the plaintext of some portions of packets is revealed,

allowing an intruder to learn details about the topology of the network under attack.

3.0.4.1 ChopChop Attack

The ChopChop attack [40] enables an attacker to retrieve the m last bytes of both the

keystream and the plaintext of a packet. This attack initially attempts to deduce the
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Figure 3.1: Dictionary Attack

plaintext of the last byte of a message, after ‘chopping’ the corresponding byte of the

chipertext. In this truncated form, the frame will have invalid Integrity Check Value

(ICV). At this point, the attacker initiates a cycle that involves guessing the plaintext

value of the ‘chopped’ byte, XORing it and sending the modified message back to the

network. Theoretically, the AP must reply with a failure message, indicating that the

ICV is invalid every time the attackers guess is wrong. In that way the AP is abused as

an oracle to inform about the validity of her guess. In the end, the attacker will know

the plaintext of the truncated byte, and the keystream as well. Statistically, only 128m

guesses are required on average (256m guesses maximum) to retrieve the last m bytes

of a packet.

3.0.4.2 Fragmentation Attack

The fragmentation attack can reveal a portion of the keystream by taking advantage of

the fragmentation mechanism of 802.11. This mechanism allows large packets to be bro-

ken into several smaller ones that can be sent independently. The prerequisites are that

the intruder must have first falsely authenticated herself to the network and captured

at least one data packet from it. Since the first 8 bytes of plaintext are predictable, the

attacker can deduce exactly 8 bytes of keystream with high probability. Unfortunately,

8 bytes of keystream leave room for only 4 bytes of data (since the ICV itself requires
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another 4 bytes) which are insufficient for constructing anything meaningful. By em-

ploying the fragmentation mechanism, she constructs a number of 8 byte fragments with

content of her choice. Finally, she sends these small sized packets through the AP to the

broadcast address. Typically, the AP will reassemble the fragments and broadcast them

as a single packet this time. Since the plaintext of this packet is known beforehand, the

attacker will become able to retrieve keystream as large as that packet’s length.

DSAP SSAP CTRL ORG ORG ORG ETHER-TP ETHER-TP

IV Encrypted Data ICV

First 8 bytes of Encrypted Portion of the Packet

8 bytes of Predictable Sequence

XOR

8 bytes of Keystream

Fragment 1 (8 bytes)
Fragment 2 (8 bytes)
Fragment 3 (8 bytes)

Fragment 16 (8 bytes)
Reassembled Packet (64 bytes)

64 bytes of Encrypted Data

64 bytes of Keystream

Fr2 Fr3 Fr4 Fr5 Fr6 Fr7 Fr8 Fr9 Fr10 Fr11 Fr12 Fr13 Fr14 Fr15 Fr16Fr1

XOR

4 bytes of Data 4 bytes of ICV

XOR

Fragment

Figure 3.2: Fragmentation Attack

3.0.4.3 Cafe Latte Attack

The Cafe Latte attack was the first one used for retrieving the WEP key, without even

requiring from the victim-client to be anywhere near the victim-network (e.g., he could be

seating in a Cafe enjoying his latte). The authors in [41] proved that the only requirement

is that the client was once authenticated to the victim-network and is currently probing

for it. Initially, the attacker collects the probe messages from her victim and poses as one

of the corresponding APs. The victim being lured by the identical Extended Service Set

Identification (ESSID), authenticates and associates with the attacker’s rogue AP. This

is possible since WEP does not incorporate a mechanism for authenticating the AP. At

this point, the victim will self assign a private IP and then will start sending encrypted

gratuitous ARP packets. By manipulating that ARP packet she will try to deduce the



Chapter 3. Mac Layer Attacks Against IEEE 802.11 41

IP address of that client. After that she will be able to send a flood of encrypted ARP

Requests, thus artificially increasing the IVs.

3.0.4.4 Hirte Attack

Hirte Attack is another “AP-less” method for retrieving the WEP. It can be perceived as

a mix of the Cafe Latte and fragmentation attacks. Similarly to the Cafe Latte attack,

the attacker must first acquire an encrypted packet (a gratuitous ARP packet or an IP

packet) after setting up a Honeypot. Then, by breaking that packet into fragments and

changing their order, she transforms it to an ARP Request one. From that point on a

flooding of these messages can take place to harvest IVs for offline cracking attacks.

3.0.5 Availability Attacks

This category of attacks is usually deployed against specific clients or against the entire

network (e.g. the AP) and leads to loss of service. Most of the attacks can be mounted

by simply broadcasting a number of forged 802.11 management messages. This process

is considered trivial, in versions of the standard up to 802.11n [42] as the management

messages are transmitted unprotected. In all cases, the effects of these attacks apply as

long as the corresponding attack takes place. A comprehensive survey of DoS attacks

in 802.11 is included in [10].

3.0.5.1 Deauthentication Attack

The deauthentication attack is considered the most potent of the DoS ones due to its

simplicity and efficiency. The Deauthentication frames are unprotected management

frames and so, they can easily be spoofed by an ill-motivated entity. Surprisingly, the

specification dictates that upon issuing of such frames, the client must be immediately

exiled from the network without any further validating process. In real life situations,

even if the client will loose connectivity with the network, typically he will attempt to

re-authenticate immediately. The re-authentication cycle is usually very brief but of

course, the attack may be mounted repeatedly depriving service for a longer period of

time.

3.0.5.2 Disassociation Attack

The disassociation attack is similar to the Deauthentication one in matters of executional

simplicity and effects. In this case, the attacker will issue a Disassociation message
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instead. Theoretically, such attacks are less efficient because of the less procedures

involved to return to the associated state. Thus, the duration of loss of service is

expected to be briefer and more packets are required to be transmitted to maintain a

steady loss of service.

3.0.5.3 Deauthentication Broadcast Attack

The Deauthentication Broadcast Attack works in the same way as the simple Deau-

thentication one, but instead of a specific client address the packets are forged with the

the broadcast address. All clients in the network will receive this message and drop the

connection immediately. Since all the clients of the network, will possibly attempt to

authenticate at the same time, the system is also expect to be stressed mildly.

3.0.5.4 Disassociation Broadcast Attack

Similarly to the Deauthentication Broadcast Attack, this attack also causes loss of con-

nectivity to all clients in the network, with the transmission of a Disassociation frame

this time. The re-association process is briefer than the re-authentication one and less

computationally intensive, thus the symptoms of this attack mode are expected to be

less severe.

3.0.5.5 Block ACK flood

The Block ACK flooding attack is based on the Add Block Acknowledgement (ADDBA)

mechanism introduced in the 802.11n amendment. This mechanism enables a client

to transmit data as a single block instead of several smaller segments. An ADDBA

message has to be send on behalf of the client to notify for its intention to initiate

such a transaction. This message contains the corresponding frame sequence numbers

of the respective segments and from that point on the AP will only accept frames that

fall within that range. If the attacker forges a ADDBA frame with the client’s MAC

and randomly selected, but large sequence number, then all traffic originating from that

client will be ignored until the sequence numbers indicated in the invalid ADDBA frame

have been reached.

3.0.5.6 Authentication Request Flooding Attack

In this case the aggressor attempts to exhaust the resources an AP by causing an artificial

excess to the maximum number of clients, the victim AP can support simultaneously.
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More specifically, the client association tables of the AP, are updated with the receipt

of every Authentication Request message, even if a client does not manage to complete

the authentication process. In such attacks, the intruder will have to emulate a large

number of non existing clients and issue a stream of authentication frames on behalf of

each one of them. The client association table of the target AP will probably become

corrupt, overflown with fake entries, which will quite possibly, lead the AP to become

unable to associate new, legitimate STAs.

3.0.5.7 Fake Power Saving Attack

The fake power saving attack was originally described in [43]. It is based on the missuse

of the Null Data frames and the abuse of the Power Management mechanism. This

mechanism helps to reduce the power consumption of an STA by making it function in a

energy constrained mode. The transition to doze mode is initiated with a transmission

of a Null Data frame that has the Power Save bit set to 1, from that client. When in

doze mode the STA is unable to receive or transmit any frames and the AP temporarily

buffers all traffic destined to it. Since the Null Data frames do not carry any payload

they are not protected and can easily be forged. By simply transmitting a tampered

Null Data frame, the AP will considered the attacker’s target STA asleep, thus stop

transmitting packets to it. The fake power saving attack is the only availability attack

that is not based on the transmission of management frames. Actually, the structure

and role of the null data frames has been questioned in [44, 45].

3.0.5.8 CTS Flooding Attack

The Request to Send (RTS) - Clear to Send (CTS) is an optional mechanism for con-

trolling the access to the RF medium. When enabled, the STA has to request access

to the medium for a specified amount of time with an RTS frame. That privilege is

granted with the issuing of a CTS frame by the AP. In a CTS Flooding attack a ma-

licious outsider may constantly transmit CTS frames to itself or another STA of her

choice, forcing, in that way, the rest of the clients in the network to suspend their own

transmissions.

3.0.5.9 RTS Flooding Attack

An RTS Flooding Attack also abuses the RTS/CTS mechanism but works in reverse

way to the CTS Flooding one. It transmits a series of spoofed RTS frames with a
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large transmission duration window. The attacker is hoping to monopolise the wire-

less medium, by forcing the rest STAs to back-off from transmitting. [46] provides an

empirical evaluation of the different flavours of CTS and RTS attacks.

3.0.5.10 Beacon Flooding Attack

The Beacon Flooding attack may be used in two different flavours to achieve either an-

noyance or denial of entry of new clients to the network. In the first case, the attacker will

send a stream of fake Beacon messages with non existing ESSIDs, hoping to overflood the

list of available networks, making it troublesome for the end-user to locate his preferred

one manually. In the second case, the attacker will transmit a flood of spoofed beacon

frames with a specific ESSID but with alternative (non existing) BSSIDs. Depending

on the implementation, most probably the STA(s) will start a process of validating if

each of the synonymous ESSIDs.

3.0.5.11 Probe Request Flooding Attack

The goal of a Probe Request Flooding Attack is to stress the resources of a victim AP.

According to the 802.11 specification the network must resolve every Probe Request

by issuing Probe Response. These messages contain details about the network and the

capabilities of the AP. An attacker may send a constant stream of fake Probe Request

packets towards the AP. If this is done in high volumes the AP will consume most of

its resources into serving non existing clients, and eventually it will fail serving its legit

ones.

3.0.5.12 Probe Response Flooding Attack

This attack also takes advantage of the Probe mechanism although it works in a reverse

way to the Probe Request one. This time, the attacker targets specific clients rather than

the AP and by acting like an AP, she broadcasts fake Probe Response messages with

false, misleading details. In theory, this effectively prohibits these STAs from connecting

to the AP.

3.0.6 Man-in-the-Middle Attacks

The goal of Man-in-the-Middle attacks is to provide an ill motivated entity with full

access to the traffic of the clients of a network and enable her to stealthy modify the
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data they send or receive. In such cases, all traffic sent and received passes through the

attacker, who for the most time, plays the role of a forwarder of traffic.

3.0.6.1 Honeypot

In the context of wireless networks, Honeypots are wireless networks operated by mali-

cious administrators with the aim of luring clients to connect to them and then unleash

some type of attacks on them with ease. When the clients connect all traffic is visible

to the attacker. More importantly, the attacker may use penetration testing to discover

security holes to the connected clients and unleash higher level attacks against them.

3.0.6.2 Evil Twin

An Evil Twin is special case of Honeypot that advertise an existing ESSID lure users

of the valid network into connecting to it. Evil Twin APs are possible due to the fact

that (a) APs with the same ESSID may co-exist in the same area and (b) the client

usually connects to the AP with the strongest signal disregarding the Basic Service Set

Identification (BSSID). Initially, the attacker brings up a fake AP (usually a software

one) that advertises the same ESSID with a valid one in the vicinity. Preferably, the

impersonated networks must be open (e.g., networks of coffee shops, airports etc.) or

at least their credentials should be easily acquired by the attacker (e.g., hotel wireless

connection). Naturally, if the attacker’s Network Interface Card (NIC) transmits with a

stronger signal then the client will prefer to connect to that fake network. As in the case

of a normal Honeypot from that point on the attacker can launch higher level attacks

or simply monitor the traffic.

3.0.6.3 Rogue Access Point

Rogue APs are unauthorized access points (i.e., either hardware or software AP) within

corporate, home or office premises usually set up by undisciplined insiders of that net-

work. In most cases these users simply aim in bending the rules of a strict security

policy. Another possibility however is that these devices operate under the supervision

of traitors, with an ulterior purpose to leave a backdoor open for outsiders. Rogue APs

are usually connected to the wired counterpart of the network.



Chapter 4

Mac Layer Attacks Against

802.16

In this chapter attacks against IEEE 802.16 are analysed. These are organised according

to a taxonomy adopted from [47], which is in accordance to the exploited process of the

802.16 protocol stack. Many of the described attacks are, as of this writing, simply

theoretical. One can notice that the majority of the documented attacks against 802.16

aim in causing DoS to the network or just commotion to the end-user.

4.1 Ranging Attacks

As already mentioned in section 2.2.2, one of the basic steps of initial network entry is

the process known as ranging. This procedure aims in having the two peers (BS and

MS) acquire the correct timing offset and making the correct power adjustments so that

their transmissions are aligned for the chosen physical method.

When a ranging transmission opportunity occurs (these are discrete time instances in-

dicated in the UL-MAP message) for the first time, the MS shall send an RNG-REQ

message. Once the BS receives a RNG-REQ message, it shall assign Basic and Pri-

mary Management CIDs for the MS and commit bandwidth. At the same time, the BS

shall calculate the Radio-Frequency (RF) power level, frequency offset, and make timing

offset adjustments necessary for optimal communication. Finally, it will construct an

RNG-RSP message with all this information and transmit it using the Initial Ranging

CID. These two messages are responsible for the ranging procedure and have similar

format. In more detail the RNG-RSP message defines:

• The Basic and Primary Management CIDs for this SS.

46
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• Information about RF power level adjustment.

• Information about offset frequency adjustment.

• Information about timing offset corrections.

If the status of the RNG-RSP message is “success”, the initial ranging procedure shall

terminate. On the contrary if the Ranging Status field is “continue” the Basic CID shall

be used and MS and BS shall continue exchanging RNG-REQ and RNG-RSP messages

for fine-tuning the parameters mentioned above. Once the RNG-REQ is within the

tolerance threshold of the BS, the MS shall join data traffic in the UL. If the Ranging

Status is “abort” then the MS repeats the cycle of initial network entry by scanning for

DL frequency.

Besides initial network entry, ranging also occurs at predefined time intervals. Peri-

odic ranging allows the MS to adjust its transmission parameters so that optimal UL

communication levels are maintained. Periodic ranging may be also initiated by the

BS. For this reason the MS should always be able to accept RNG-RSP messages in an

unsolicited manner. These messages are not encrypted or integrity protected and they

are stateless, i.e., an MS will proceed to actions dictated in an RNG-RSP message if

that message is addressed to it and appears to be well-formed. Whatever the case, an

attacker may manipulate the ranging messages in many ways to affect single users or

the entire network. The relevant attacks found in literature are analysed below.

4.1.1 RNG-RSP DoS Attack

This attack is possible due to the fact that RNG-RSP messages can be transmitted in an

unsolicited manner. The RNG-RSP attack may be addressed to a single target MS or

multiple ones. In the first case, the attacker must also know the CID used by the victim

MS. This information can easily be sniffed from any (unencrypted) management message

exchanged between that specific MS and the BS. The she needs to forge and transmit

to her victim an RNG-RSP message with the “Ranging Status” field set to “abort” [48],

[49]. This will force the victim to disconnect from the network immediately. In the

case where the attacker needs to create a wider impact, she will cycle through all 65,536

possible CIDs in a brute force manner, and forged RNG-RSP messages for each CID.

After that the victim device will attempt to reconnect to the network by executing Initial

Network entry. It is possible, by repeating this procedure against a significant number of

users, to achieve DoS for an even larger number of users than the ones that immediately

targeted. This is because each round forces the network to a series of heavy signalling

procedures, including the Initial Network entry and several cryptographic procedures.
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4.1.2 RNG-RSP Annoyance Attack

An RNG-RSP message can be altered in a number of different ways by an intruder

aiming to disrupt the normal MS communication. For example, the attacker may alter

the RNG-RSP “Frequency” field in order to force the victim MS to shift to another

channel. Theoretically, the MS will have to rescan many frequencies (wasting 5 ms in

each one) until it locates again the proper channel. As a consequence, this will cause

annoyance to the users of network. Similar results can be achieved by shifting only the

UL or the DL channel, or by altering other fields of the same message such as the Timing

Adjust and Power Level Adjust [50]. In matters of execution and implementation cost

the RNG-RSP Attack is similar to the RNG-RSP DoS one. Let us underline that with

very little effort this mild attack may be transformed to a stepping stone for far more

dangerous methodologies. For example, in a potentially more dangerous scenario, the

attacker would have to shift the victim MS to a frequency where a rogue BS set by the

attacker exists.

4.1.3 RNG-REQ Downgrading Attack

One of the purposes of the RNG-REQ message is to inform the BS about the preferred

DL burst profile. By replacing the optimal burst profile with a less effective one, the

attacker will achieve downgrading the service [50], [49]. The effectiveness of the attack

depends on the selected choice of the burst profile. Generally, this kind of information

cannot be deduced on the fly, for any given MS.

4.1.4 RNG-RSP Water Torture Attack

This is a modification to RNG-RSP Downgrading Attack but with totally different

possible effects. An attacker might forge and send an RNG-RSP message with the

“Power Level Adjust” field set to the maximum value. This will force the MS to operate

in higher energy requirement state, thus causing a quicker drain of its battery resources

[50]. The effects, which are higher battery depletion rate persist for a considerable time

(i.e., until the next ranging/periodic ranging). On the other hand, the drain of energy

is not expected to be low, and all the attacker can hope for, is a simple annoyance.

4.1.5 RNG-REQ DDoS Attack

In this case a group of collaborating attackers may produce a large number of fake RNG-

REQ messages (with different values each time) and simultaneously transmit them to



Chapter 4. Mac Layer Attacks Against 802.16 49

the target-BS in order to have it function under heavy burden [51]. The construction

and transmission of multiple RNG-REQ messages with random fields and fake MAC ID,

in contention mode, is not a resource intensive process for an attacker. On the contrary,

the response part in the BS side is a multi-step process which involves the allocation of

Basic and Primary management CIDs, deciding whether the signal is good enough or

any adjustments are necessary, constructing an RNG-RSP etc. A collaborative attack of

this kind is expected to cause considerable burden in the BS which will possibly result in

lower quality of service or even Distributed DoS (DDoS) for all legitimate MSs connected

to the specific target-BS. Actually, when an attacker attempts such an attack she affects

the system in many different levels. For example she a) artificially increases the number

of collisions in the network, b) imposes burden on the BS by forcing it to conduct the

ranging process for a large number of virtually non-existing MSs, and c) tricks the BS

into ranging and then committing bandwidth and CIDs to fake MSs. The only real

requirement in matters of implementation methodology is the attacker to have control

over a small number of programmable MSs and synchronize their actions. The cost of

this orchestrated attacks depends on its scale. Since at this phase addressing information

has not been assigned to the MS (and MAC address field contained in the RNG-REQ can

easily be spoofed) the BS has not any means of recognizing the attackers. Additionally,

the small volume of traffic involved, makes it extremely difficult for external tools such

as Intrusion Detection Tools to classify such behaviour as intrusive.

4.1.6 MOB ASC-REP DoS Attack

When association level 2 is used, during the ranging procedure, an MS may receive

an Association Result Report (MOB ASC-REP) message instead of several RNG-RSP

ones. In this case, the RNG-RSP information that is sent by each target BS is gathered

to the serving BS over the backbone network. The BS then aggregates all the data

from the RNG-RSP messages to a single MOB ASC-REP message, transmits it over

the Primary Management CID. The MOB ASC-REP report messages are unprotected

making it possible for an adversary to forge them stating that no services are available

from all the target BSs [50], [52], [53]. A MOB ASC-REP DoS Attack will prevent the

victim MS from associating with the optimal BS which translates to lower QoS for the

target MS.
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4.2 Power Saving Attacks

4.2.1 MOB TRF-IND Water Torture Attack

This attack takes advantage of the unprotected nature of the MOB TRF-IND messages.

These messages are normally sent from a BS to a sleeping MS, when there is traffic

pending for that MS. To systematically skip the sleep mode is expected to have a negative

impact to the lifetime of the battery of the MS. If the attacker is able to forge valid MOB

TRF-IND, and repeatedly transmit it to a sleeping MS in the vicinity she would be able

to drain the energy resources of the victim on a higher pace. This attack was first

described in [48] and is also mentioned in [53], [54].

4.2.2 BR and UL sleep control header Annoyance Attack

It is possible for an MS to request activation of sleep mode by issuing a BR and UL

sleep control header instead of relying to the traditional mechanism of MOB SLP-REQ.

The authors in [55] claim that it is feasible for an attacker to forge a BR and UL control

header with the victim’s identity (MAC Address) and send it to an MS to have it fall

into sleep mode. As a result, the BS will stop transmitting messages to that MS and

DoS will take place. In our opinion, this is actually an manufacturer-dependent issue.

The specification indeed leaves room for such an invalid request for sleep to happen

even though in careful implementations of the standard the BS is expected to reject or

postpone any requests for Sleep mode if the BS has currently queued traffic pending for

that MS. In our opinion, the attacker can hope for disturbance for the user that will

include a brief lack of service for the MS to fall into sleep and the wake up after the first

availability window. Moreover,the attacker must know whether the victim’s equipment

does support sleep functionality.

4.2.3 Secure LU DDoS Attack

Location Update (LU) is a process through which a BS stays informed about the current

location of a given MS. This process may be initiated by the MS at will or when one of

the following conditions apply:

• the MS detects a change in paging group,

• on a standard basis, e.g., prior to the expiration of the idle mode timer

• as part of its power down procedure
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• when the MS MAC hash skip counter exceeds a threshold

There are two modes supported: secure LU or unsecure LU. In the first one, the MS is

required to send an RNG-REQ message to the BS including an HMAC/CMAC tuple.

Naturally, the BS will have to verify the HMAC/CMAC value. If the current BS does

not share security context with the MS then it will have to acquire it from the backbone

network via the LU Request message. The backbone network will generate and provide

the keying material via an LU Reply message. The authors in [56] claim that this process

may pose a considerable burden to the network when it is performed simultaneously by

a large number of devices. Since any MS can request bandwidth for LU, the attacker will

simply have to construct a valid RNG-REQ message but with wrong HMAC/CMAC. In

principle, this attack is very similar to the RNG-REQ DDoS one but it involves some

additional procedures (named above) by both the BS and the backbone network that

may magnify the result and cause additional damage.

A misbehaving MS can generate a large number of such requests easily and without

running the risk of getting discovered.

4.3 Handover Attacks

4.3.1 MOB NBR-ADV Downgrading Attack

MOB NBR-ADV messages are not integrity protected, giving a malicious user the capa-

bility of altering them at will. More specifically, by removing information about neigh-

bour BS in the corresponding message fields, will prevent a valid handover procedure to

take place as the victim MS will think it is isolated. While moving away from the serving

BS the MS will have no other choice than to remain attached to it and the QoS will be

reduced gradually until it will be out of service [48], [52], [50], [53]. In such attempts,

the intruder must have already pre-established a tunnel between the MS and the BS,

constantly eavesdropping for any MOB NBR-ADV messages and then transmitting a

flood of spoofed messages almost simultaneously, but with stronger signal. Since this

message is transmitted periodically, the attacker must follow its movement and always

alter these messages, upon every broadcast. It is easy to realise that the attack focuses

mostly on single target MSs.
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4.3.2 MOB NBR-ADV DoS Attack

MOB NBR-ADV message can be manipulated in an alternative way that will allow an

attacker to indicate the presence of a non-existing BS with better characteristics than

the serving one [57], [50]. By transmitting messages crafted this way, a victim MS will

disconnect from its currently serving BS and attempt to connect to a new one that does

not actually exist.

4.4 Miscellaneous Control Message Attacks

4.4.1 SBC-REQ Security Downgrade Attack

The critical process of basic capability negotiation takes place during the initial network

entry. During this step the MS informs the BS about the supported security capabilities

of the device. This is carried out via a negotiation process that involves the exchanging

of SBC-REQ message from the MS to BS and the SBC-RSP message from the BS

to the MS. These messages are exchanged before the BS and MS start an encrypted

session, so naturally no actions for securing the contents of SBC-REQ can be done.

This vulnerability was first mentioned by [48] and later on in [49]. Also, the authors

in [57] described a potential attack by exploiting this vulnerability. An attacker may

attempt to transmit an altered an SBC-REQ simultaneously with the valid message sent

from a legitimate MS to the serving BS during the network entry process, hoping that

her fake but higher-power message will overshadow the valid one. The forged message

should contain false information about the security capabilities of the legitimate SS,

typically lower or no security capabilities. The authors claim that in the second case,

the communication between the two parties will be conducted in a non-encrypted way,

allowing any malicious entity to easily eavesdrop the communication.

4.4.2 FPC Downgrade Attack

The Fast Power Control (FPC) is an optional mechanism used for adjusting the power

levels of multiple MS to an optimal level, simultaneously. It is much more efficient

than the standard mechanism, namely the periodic ranging. FPC messages are always

sent on the Broadcast CID and their format is rather simple: It contains the number

of MSs to be affected, and for each MS its Basic CID as well as the necessary power

correction. Once again, this management message is not integrity protected thus it may

be altered to set the “Transmission Power” field of victim MSs to non optimal levels,

in this case too low. In the first case, the aggressor by simply broadcasting a single
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message after specific time intervals, will force the MS to go through the procedure of

adjusting its power levels until the signal is strong enough. As collateral damage the

accumulated power adjustment messages will possibly result in many uplink bandwidth

requests. This generally causes collisions in uplink of the MS and stalls the procedure

of acquiring correct transmission power. The second case, causes faster drain of battery

of the victim MSs.

4.4.3 FPC Water Torture Attack

This is a slightly modified version of the FPC Downgrade Attack where the attacker

sets the “Transmission Power” too high. This may lead to drain the batteries of MSs

[50], [58], [52], [53] using a methodology and characteristics much similar to the ones of

RNG-RSP Water Torture Attack.

4.4.4 RES-CMD DoS Attack

Reset Command (RES-CMD) is a message used to reset an MS that appears to be

unresponsive to its serving BS, or in situation where there are persistent anomalies in

the UL transmission. When this message is received by an MS then it shall reset itself,

and repeat initial network entry procedure. Fortunately, this message is protected by

HMAC/CMAC therefore it cannot be spoofed by an attacker. Nevertheless, it is possible

to force the BS to transmit this message by itself. The trick here is to have the BS think,

that the victim MS is malfunctioning. This can be achieve for example by systematically

choosing to transmit at the exact same times as the victim SS. Provided that the two

signals will arrive at the BS with similar power strength the final message the BS receives

will appear as a single unintelligible message [52].

4.4.5 DBPC-REQ DoS Attack

Downlink Burst Profile Change Request (DBPC-REQ) is a message transmitted from the

MS to the BS on the Basic CID to request a change of the least effective DL burst profile.

Usually, this happens when channel conditions change with the DBPC-REQ message

being utilized in such situation as a quicker alternative to the RNG-REQ message [53].

As expected, the DBPC-REQ message is also unauthenticated, an attacker can change

the Burst profile (modulation, encoding etc.) with the intention of disrupting commu-

nication between the BS and MS by the misuse of the DBPC-REQ message.
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4.5 Attacks Against WiMAX Security Mechanisms

4.5.1 Interleaving

This theoretic attack was originally mentioned in [59], [60]. It consists of two rounds:

In the first round the attacker impersonates a valid MS and sends an Authentication

Information message followed by an Authorization Request message (these messages

were intercepted and stored during previous valid sessions). After receiving the Autho-

rization Reply message the attacker must complete the protocol by providing a valid

Authorization Acknowledgement response. The attacker is not in position to construct

this message because she does not have knowledge of the valid MS’s private key and

cannot decrypt the Authorization Reply message. However, the attacker can start the

second round (in parallel) aiming at using the valid MS as an oracle to construct an

Authorization Acknowledgement message on her behalf. In this round the attacker will

assume the role of a BS. By forcing the MS to start another protocol instance, it will

use the Authorization Reply produced in the first round (it was received by the valid

BS). The valid MS will provide the correct Authorization Acknowledgement message

which the attacker will forward to the valid BS and finish the first round. In this way

the attacker having acted as a Man-in-the-Middle will authenticate herself rather than

the valid SS and trick the system into registering the wrong user.

4.5.2 AUTH-REQ Replay Theft of Service Attack

The authors in [50] noticed that the random number field contained in message Auth-

Req, fails to protect against replay attacks. They implied that message can still be

retransmitted by an attacker and the BS will have no means of knowing about its

freshness, leaving room for a theft of service attack to occur. Actually, the random

number field in the Auth-Req message is a mechanism introduced to associate each

Auth-Rep message with one Auth-Req and not to protect Auth-Req from replay attacks.

The MS will know for sure that the Auth-Rep is fresh, if the MS random number field

matches the one originally sent in the Auth-Req message.

4.5.3 AUTH-REQ Replay DoS Attack

This attack is valid against the first version of the PKM protocol. Xu and Huang

[61] described its methodology, stating that an ill motivated user is possible to store

and replay an instance of a legit Auth-Req message sent by the SS in the past. If

the BS has set a timer for rejecting duplicate Auth-REQs originating from the same
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SS within a specific period, the attacker might be able to trick the BS into dropping

even valid requests coming by the victim SS. Depending on the vendor it is possible

for this attack to be feasible in the PKMv2 of the protocol. In this case there are two

possibilities: (a) either the attack will take the course the authors described leading to

a DoS against a small/moderate number of users, or (b) the BS will proceed normally

with the authorization process giving room for a DDoS attack to grow. This possibility

was also recognized in [62]. Considering the second case, for each Auth-Req message

the BS will have to verify each of the messages signature, generate keying context,

construct the Auth-Reply message and finally transmit it to the MS. It is obvious that

this sequence of actions may be a burden to the BS especially if it is repeated many

times and for a large number of simultaneous requests. The problem with this attack

which differentiates it from other DDoS attacks, is that it has an upper bound. That

is the collaborating attackers may reach a limit of simultaneous requests. This is due

to the structure of the Auth-Req message which contains the SAID field. This value

is validated and used for the construction of the Auth-Rsp. This practically limits the

attacker to replay Auth-Req messages for only the MSs whose basic CID is active.

4.5.4 PKM-RSP Auth-Invalid DoS Attack

PKM-RSP are messages issued by the BS and sent to the SS. Generally, messages of

this kind are comprised by the following fields:

• Management Message Type - for PKM-RSP messages the value of this field is 10.

• Code - this field identifies the type of PKM packet.

• PKM Identifier

• TLV Encoded Attributes - PKM attributes carry the specific authentication, au-

thorization, and key management data exchanged between the MS and BS.

The Auth-invalid message is sent by BS to MS when (a) the AK shared between BS and

MS expires or (b) the BS is unable to verify the HMAC/CMAC properly. This message

has a great chance to be used as a DoS tool for shutting down legitimate users. First of

all, the Auth-invalid message itself is not HMAC/CMAC protected. Furthermore, it can

be sent in unsolicited manner from the BS (when one of the aforementioned conditions

occur). The PKM identifier mechanism is not used in this case. Thus, the attacker

can easily inject fake messages of this kind and have the MS pass to Reauth Wait state

waiting further instructions from the BS. In the most likely event, that the MS’s Reauth

Wait timer expires without receiving any message, the MS will send a Reauth Request.
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In the Reauth Wait state the device may accept messages such as an Auth Reject which

will cause immediate break of all subscriber traffic[50], [52], [63].

4.5.5 DES CBC IV Attack

Cipher-Clock Chaining (CBC) [64] is a cipher mode in which the plaintext is broken into

fixed size blocks and each one is XORed with the previous block before it is encrypted. In

this way, each message is unique and each block is dependent on all preceding plaintext

ones. The first block is a special case since no previous one exists, hence a random

number, namely the IV, is be used instead. More specifically given a symmetric key K

and a plaintext P :

Ci = Ek(Pi ⊕ Ci−1), C0 = IV

Pi = Dk(Ci ⊕ Ci−1), C0 = IV

Generally, it is important for the IV to be unique and unpredictable. If not unique,

then the CBC mode is degraded to a simple Electronic Codebook (ECB) mode where

the distribution of the sequences of characters is maintained thus allowing traditional

cryptanalysis methods (such as statistical analysis) to succeed. If on the other hand, is

not unpredictable, then it gives room to a chosen plaintext attack to succeed. It is true

that while the IV for AES in CBC is produced in a secure way the same is not true for

the IV that is used for DES in CBC mode. Actually, the specification states that the

IV field in the keying information should be generated in a random way, and then be

XORed with the frame number or the UL-MAP for the DL and UL respectively. The IV

field is static for the entire TEK lifetime and is transmitted as an unencrypted field of

the RSP: Key Reply message. On the other hand, the frame number is a simple counter

which is exactly what makes the final IV material predictable. This vulnerability was

first mentioned in [65]. Although an attack methodology was never given we assume

that the author implies a known plaintext attack. In attacks of this type the aggressor

typically, as a first step, captures a cipher block cv. As a second step, she generates a

plaintext block of information as:

p = IVi ⊕ IVi+1 ⊕ Pguess

where IVi is the IV used to construct the cv, IVi+1 is an estimation of what the next

IV is going to be and Pguess is a guess of the plaintext encrypted to produce cv. Next,

the attacker sends and forces the victim to encrypt p as follows:

ca = EK(IVi ⊕ IVi+1 ⊕ Pguess ⊕ IVi+1)
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and as a final step she compares the two ciphertexts. If cv = ca then her original

assumption about the plaintext block must be true. It is to be noted that, similar

attack methodologies have been investigated for the IPsec realm in the past [66], [67].

4.5.6 DES CBC Insecurity Attack

This vulnerability was first revealed in [65]. According to the authors DES [68] in CBC

mode looses its security after 2n/2 blocks encrypted with the same key, where n is the

size of the blocks used by the cipher. Since DES utilizes 64-bit blocks, it is expected that

after 232 blocks of the respective size, the security of the system will be diminished. This

is realistic as under real-life conditions WiMAX networks have data rates that exceed

this security threshold before the end of the TEK’s lifetime. Although an analytical

methodology for this attack is never provided in the literature, it is certain that the

first step on behalf of the attacker is to force the system to switch to PKMv1 and

then instruct it to choose DES in CBC mode. This is necessary since in PKMv2 the

Authorization Request (which is the message that informs the BS for the supported

cipher suites) is protected by the signature of the MS. The attacker must first send a

bogus SBC-REQ message and then transmit a fake Authorization Request message with

the data encryption algorithm identifier field set to 0x01.

4.6 Multicast/Broadcast Attacks

4.6.1 GTEK Update Mode DoS Attack

GTEK is shared among all members of a multicast/broadcast group so that each member

is able to decrypt the traffic it receives from the BS. GTEK is a symmetric key. This

means that an MS cannot only decrypt data but also encrypt them using the same

GTEK key. The members of the same group will be able to decrypt such messages but

will not be able to distinguish if the message originates from the BS or an ill-motivated

member of the group. As long as this message has a valid encryption and HMAC/CMAC

the other MS will take for granted that the traffic is originated from the legitimate BS.

An adversary MS, member of the group, can use this opportunity to send malicious

traffic pretending to be the BS.

A possibly more harmful situation appears when the same scenario happens with the

GTEKs. The GTEK is encrypted and transmitted to all group members using GKEK,

which is also known to all group members. An adversary that is already member of the

group can manipulate MBRA to distribute its own fake GTEKs using the GKEK she
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rightfully owns. The messages will again be valid, and all the members will eventually

replace their current keys with the fake one. After that, all the group members except

the attacker will no longer be able to decrypt incoming traffic from the original BS [69].

This attack is straightforward in implementation and can affect all MSs within the same

MBS group with a single alter/broadcast of a message (which is typically a moderate

number of MSs). Moreover, the effects persist for as long as the current GTEK remains

active. For prolonged period the attacker must actively and continuously alter/forge the

Group Key Update Command with a fake key. The BS has no means of knowing that

the MS of a given group have another (wrong) key.

4.6.2 GTEK Theft of Service Attack

Members joining a multicast/broadcast group are provided the active GTEK. With

this key the members of the group are able to decrypt subsequent traffic, but also all

traffic sent since the specific GTEK became active, even if the members hadn’t join the

group yet. Therefore, an attacker can passively store traffic and near the end of the

GTEK lifetime join the network as a valid user [69], [61], [70]. The methodology of

this attack is extremely simple and does not require any costly equipment. The actual

service duration that the attacker will be able to intercept traffic is provider specific

as the GTEK lifetime is not specified by the standard. Typical implementations set

this counter anywhere from 30 minutes to 7 days which is adequate considering that

MBS deals mostly with multimedia services. This attack highlights the issue of lack of

backward secrecy of the MBRA.

4.6.3 MCA-REQ DoS Attack

The Multicast Assignment Request (MCA-REQ) message is sent from the BS to an

MS that is requesting to join or leave a multicast polling group. Upon receiving this

message the MS shall add the multicast CID to its transmission opportunities or remove

it according to the Join/Remove command of the corresponding field. Subsequently,

the MS will respond by sending an MCA-RSP message back to the BS. These messages

are transmitted over the primary management connection. Also, since the MCA-REQ

message is sent unprotected an attacker may remove an MS from a polling group at will.

This attack can disturbance against a single user, but it is possible to be extended in a

larger scale, causing overloading of the UL resulting in greater uplink delay [53].



Chapter 5

Mac Layer Attacks Against

UMTS

In this chapter the major attacks against UMTS networks as documented in the liter-

ature so far are described. Note that the organisation of the attacks described in this

chapter, follows a offended-subsystem approach. The majority of the attacks described

here inflict DoS to the network.

5.1 Attacks Against Core UMTS

5.1.1 RRC connection Request Message

In Khan et al., [71] among other types of attacks, investigate the feasibility of a DoS

attack by taking advantage of a particular flaw spotted in the UMTS security architec-

ture. Their proposed attack involves the modification of the RRC connection Request

Message and more specifically the field which defines the UE security capabilities. This

message is not integrity protected since the AKA procedure takes place at a later stage

and the MS and SGSN do not share a common IK yet. Any modification of this mes-

sage will go unnoticed until eventually the AKA procedure completes and the Security

Mode Command message is sent to the MS. This message includes the user’s equipment

security capabilities as received from the RCC Connection Request message in order to

be verified by the UE. In case of mismatch the connection will terminate, but during

the process sufficient resources will have been already consumed at both sides.

59
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5.1.2 Signalling Attack

Lee et al. [72] introduce a novel DoS attack specific for the 3G wireless networks which

they identify with the term “signaling attack”. Unlike traditional DoS attacks that

unfold in the data plane this one targets and attempt to overload the signaling plane.

The signaling attack is implemented by sending low volume (for instance 40 byte packets)

bursts at a specific time interval such that as soon as Radio Access Bearer (RAB)

is torn down due to a period of inactivity a new packet burst that originates from

the attacker forces for a new RAB establishment. This triggering of radio channel

allocations/revocations is associated with a large number of signaling operations; more

specifically 15 signaling messages are being processed by the RNC for the establishment

of a synchronized RAB and 12 messages for its release. The results of this attack are:

• congestion of the RNC-BS with setup/release messages

• consumption of resources of the RNC processor

• potentially consumption of the battery of the MS

The attack can prove to be very dangerous since it does not require many resources from

the attacker point of view (by using a cable modem with 1Mbps uplink bandwidth the

attacker can simultaneously attack 160K MSs) and it can evade detection by traditional

IDSs. In the same work the authors propose a technique for detecting and repelling this

attack.

5.1.3 Dropping ACK Signal

The protection of IMSI is considered of paramount importance in UMTS. Therefore, it

is transmitted and used as seldom as possible. To this end, temporary identities known

as TMSIs are distributed to the users and used for all signalling communication. TMSIs

are assigned to users, right after the initiation of ciphering, or every time a user roams

to an area monitored by a different SGSN. Although, a TMSI is transmitted encrypted

to the UE the SGSN does not associate the IMSI with the corresponding TMSI unless it

receives a TMSI Allocation Complete message from the MS. If this message never reaches

the intended SGSN then both the associations IMSI, TMSIold and IMSI, TMSInew are

considered valid, by the SGSN in charge for uplink communication and the UE is free

to use any of them. Contrariwise, for the downlink, the IMSI must be used because the

network has no means to know which one of TMSInew or TMSIold is valid at the UE

side at this particular moment. Upon such an event, the SGSN will instantly instruct
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the MS to delete every available TMSI. The network may initiate the normal TMSI

allocation procedure. Capitalizing on the aforementioned situation the aggressor might

wish to position his equipment to a strategic location, for instance circumferential to a

given network cell (where typically new TMSIs are assigned to subscribers entering the

cell after a handoff). Then, he would monitor for TMSI Allocation Command messages

and immediately drop any TMSI Allocation Complete message. This would cause new

TMSIs to be created repeatedly, which would be expressed as DoS to all the users

entering the particular routing area. Alternatively, this attack could be used to expose

and create a database of IMSIs, which will be used for more persistent attacks.

5.1.4 Modification of Unprotected RRC Messages

The Radio Resource Control (RRC) messages are considered vital for the smooth op-

eration of the UMTS network. It is without surprise that these signalling information

messages are protected by integrity mechanisms. Unfortunately, either because these

messages are exchanged during the early stages of a connection or for reasons of effi-

ciency, many messages exist that are not integrity protected and therefore are vulnerable

to manipulation. Some unprotected RRC messages might be:

• Handover to UTRAN Complete

• Paging Type 1

• Push Capacity Request

• Physical Shared Channel Allocation

• RRC Connection Request

• RRC Connection Setup

• RRC Connection Setup Complete

• RRC Connection Reject

• RRC Connection Release

• System Information (Broadcast Information)

• System Information Change Indication

• Transport Format Combination Control (TM DCCH only)
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Modifying and issuing unprotected RRC messages is expected to cause general system

instability, or at least commotion, which may lead DoS for the end-user. Let us con-

sider the following example: an attacker would transmit an RRC Connection Release

message during a valid ongoing session. Similarly, an attacker could transmit a forged

RRC Connection Reject message, before a valid RRC Connection Setup Complete is

transmitted.

5.1.5 Modification of the Initial Security Capabilities of MS

During this mode of assault, the attacker issues a forged a RRC Connection Request

message with invalid classmark value for the classmark field, in order to cause the termi-

nation of the connection of a single user. This prospect was first proposed in [71]. How-

ever, if we take a closer look we may realize that a more interesting potential emerges,

since the system under attack is forced to go through a sequence of heavyweight opera-

tions. More specifically, if the attacker has assembled a large database of stolen IMSIs

she would be able to cause much more extensive damage. She would have to issue a

very large number of simultaneous connection requests with bogus classmarks, trigger-

ing many simultaneous heavy operations (both bandwidth and computationally wise)

to take place.

5.1.6 Modified Periodic Authentication Messages

Periodic local authentication in UMTS is a procedure for providing an additional security

level to the network [25]. Potentially, it offers some sort of integrity protection in the

U-plane.

In this procedure the volume of data transmitted during the RRC connection (i.e.,

the COUNT-C value [25]) is periodically checked by both the RNC and the UE. The

system makes use of two variables to keep track of the user data transmitted from the

MS towards the network. The first one, Count-CUE, tracks the volume of user data

transmitted by the user equipment, while the other, known as Count-CRNC, stores the

volume of user data actually received by the corresponding RNC. The value of these

variables is cross-verified at regular intervals upon initiation by the RNC in charge. If

a significant inconsistency is found then the RNC may decide to abruptly release the

connection assuming that someone is injecting or dropping messages on the connection.

Assuming that the network provider supports this option, the RNC is constantly mon-

itoring the COUNT-CRNC value associated to each radio bearer. If this threshold is

reached, the RNC sends a Counter Check message which contains the most significant
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bits of Count-C of each active radio bearer. The user equipment compares the Count-C

value(s) received from the RNC with its local value, computes the difference, if any, and

constructs a Counter Check Response message with the differences. If one or more of

the values contained in the Counter Check Response message is greater than 0 (null)

then the RNC may decide to send a Release Connection message. Otherwise the proce-

dure completes with success. All the messages described above are integrity protected.

However, if the (RNC) notices that the received message has been somehow tampered,

then according to the specification[25], the RNC may release the connection. Although

the behaviour of the system thereafter is actually up to the provider, without doubt, the

specification leaves room for DoS situations to occur.

5.1.7 SQN Synchronization

Resynchronization is a procedure done for aligning the value of SQN in the MS and

HLR. Since it involves the generation of new AVs (normally in batches) as well as their

transmission from the HLR to the SGSN, it is considered a computational intense and

communicational heavy procedure. Naturally, an attacker would wish this procedure

to be executed simultaneously for large numbers of users, and if possible, repeatedly in

order to mainly overstress the HLR. However, one cannot simply modify the SQNHN

value of the Authentication Request message, because that messages is protected. Every

attempt to spoof the SQN would lead to MAC verification failure in the MS and probably

the whole procedure would be abandoned.

Such situations of course, are DoS attacks from a user point of view but such execution

limits to individual user level DoS. However, following an alternative methodology, there

is a prospect for a rather massive exhaustion of the server’s resources. Instead of at-

tempting to modify the Authentication Request message and hope for an Authentication

Reject as response, the attacker could eavesdrop on connections and build a database

of MSi, AuthReq1, AuthReq2, ..., AuthReqn. After the elapse of a period the attacker

would repeatedly replay these messages towards the corresponding MSs. Normally, these

messages will pass the MAC verification process but the not the SQN one, thus trigger-

ing the Synchronization Failure message to be sent and resynchronization procedure to

be initiated towards the HLR. The correct timing the attacker chooses to unleash his

attack is important. He may wait in order for the SQNHN to be considerably old or

soon enough in order for the SQNHN to be contained in the array of recently received

SQNs in the USIM.

What is more, Extensible Authentication Protocol (EAP)-AKA [73] authentication

method used for WLAN/UMTS interworking also makes use of AV. As usual, if the
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received SQNHN is in the incorrect range the MS should perform the SQN synchroniza-

tion procedure. Here the situation is worse because the communication penalty in terms

of network signaling is increased. This is because the cost for accessing HLR is expen-

sive, especially when AAA, SGSN and HLR are located in different countries. That is,

the AAA server in the visited domain must notify the HN and request fresh AV from

the HN’s HLR once more. Therefore, leaving aside the additional overhead caused to

the involved entities, another penalty is the bandwidth consumption between the AAA

server and the HLR.

The synchronization attack described in this subsection is feasible mostly due to weak-

nesses spotted in the UMTS specification itself. At its current form the UMTS archi-

tecture in order to protect against reply attacks in AKA procedure leaves room for DoS

attacks. A counter value indicating the number of failed authentication attempts at the

MS side can be a valuable tool for both the MS (for avoiding frequent resynchronization

attempts) and the HLR (for the same reason and for extracting conclusions and taking

appropriate measures).

5.2 Attacks Against WLAN/UMTS

In this section we consider some novel attacks that originate from the way Extensible

Authentication Protocol (EAP)-AKA operates [73]. EAP-AKA [73] has been specified

for achieving access control integration in hybrid UMTS/WLAN network realms.

Extensible Authentication Protocol (EAP) [74] provides a universal authentication frame-

work that is frequently used in wireless LANs, MANs, and cellular networks. EAP is

not an authentication mechanism per se, but it offers a series of generic functions and

a negotiation process based on the preferred authentication mechanism between two

parties.

5.2.1 EAP-Response/AKA-Client-Error Notification

Spoofing notification messages is a straightforward process which according to [73] in-

volves changing the most significant bit of the notification code. This bit is a 16-bit

number, which is called the Success bit (S bit) and specifies whether the notification

designates failure. By definition, the peer uses the client error code 0, i.e., “unable to

process packet”, while the server employs one of the general failure codes (“General fail-

ure after authentication” (i.e., error code 0) or “General failure” (i.e., error code 16384)

depending on the phase of the EAP-AKA exchange). When receiving a notification code
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with these respective values, the server must issue an EAP-Failure packet. Analogous

alternations must be held to the Phase bit (P bit) which is the second most significant bit

of the notification code. This bit designates at which phase of the EAP-AKA exchange

the notification is issued. For example, if the P bit is set to 1, the notification can only

be issued prior to the EAP/AKA-Reauthentication round in re-authentication or before

the EAP/AKA-Challenge round in full authentication indicating various failure cases.

If the peer detects any other error in a received EAP-AKA packet, it issues an EAP-

Response/AKA-Client-Error message with error code 0. Specifically, this error code is

used in various cases, e.g., “The peer encountered a malformed attribute”, “unrecog-

nised or unexpected EAP-AKA Subtype in the EAP request”, “the peer is not able to

parse the EAP request” etc. It is stressed that none of the aforementioned peer noti-

fications/messages (EAP-Response/AKA-Authentication-Reject, EAP-Response/AKA-

Synchronization-Failure, EAP-Response/AKA-Client-Error) is protected (authenticated)

by an AT MAC attribute. Therefore, these messages could be exploited by an attacker

in several stages of the EAP-AKA process. For instance, the attacker could spoof an

EAP-Response/AKA-Client-Error message and sent it to the EAP-Server in order to

fool him into halting the protocol.

5.2.2 EAP-Response/AKA-Synchronization-Failure Resynchronisation

Also, it could spoof an EAP-Response/AKA-Synchronization-Failure notification into

forcing the server to trigger the costly resynchronisation procedure.

5.2.3 EAP-Request/AKA-Notification Session Termination

Typically, in situations where the EAP-server detects an error when processing a re-

ceived EAP-AKA response, it must respond using an EAP-Request/AKA-Notification

packet with an AT NOTIFICATION code that implies failure. Some of the error cases

forcing the server to send an EAP-Request/AKA-Notification are: “The server is not

able to parse the peer’s EAP response”, “The server encounters a malformed attribute,

a non-recognized non-skippable attribute, or a duplicate attribute”, “Unrecognised or

unexpected EAP-AKA Subtype in the EAP Response” etc [73]. As with peer notifica-

tions EAP-Request/AKA-Notification packet is not protected and can be exploited by

an attacker into fooling the client to tear down the protocol session.
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5.2.4 EAP-AKA Request HLR Flooding

The EAP-AKA server acquires authentication vectors from the HLR residing in the HN,

in a process which is generally both computationally and communicationally intensive.

Thus an insider, i.e., a malicious peer, may produce a large number of concurrent and

forged EAP-AKA requests to stress the resources HLR. In this case the burden to the

network is much larger due to the nature of the processes involved.

5.3 Attacks Against GSM/UMTS

This family of attacks is feasible only if the victim MS is located in the GSM EDGE

Radio Access Network (GERAN) coverage of a UMTS network. In such scenarios the

attacker aims in inflicting damage to UMTS clients by taking advantage of the flawed

GSM/UMTS interconnection processes.

5.3.1 Real Time Eavesdropping

This attack was originally described in [75, 76] and further analysed in [77]. If successful,

the attacker will have complete access to the unencrypted traffic of the victim MS, until

the next authentication or handover to the UTRAN takes place. Initially, the attacker

sets up a BTS supposedly connected to a 3G VLR/MSC. The MS is lured to camp on its

radio channels and it is tricked to transmit its IMSI by receiving a user identity request

message by the attacker. After this phase the false BTS disconnects from the MS, but

simultaneously the attacker sets up a BTS connected to a 2G VLR/MSC, hoping that

the victim MS will then camp on these radio channels. In the meantime, the attacker

also assumes the role of the MS towards the valid 3G network and by using the security

capabilities and the IMSI of the victim MS, it acquires RAND, AUTN and immediately

disconnects. In the process, the fake BTS initiates a 2G AKA using the same RAND

received from the valid 3G VLR/MSC during the previous step. The fake BTS, accepts

the MS but sends cipher mode command with the flawed encryption algorithm, A5/2, as

the preferred one. The MS generates the 64 bit Kc but the attacker can easily break the

algorithm and derive the key in the way [78] describes. Finally, the fake BTS disconnects

the device which freely and without interruption starts authenticating with the valid 3G

VLR/MSC. The VLR/MSC will construct the authentication request using the same

quintet transmitted to the false BTS. In that way the new Kc will be the same as the

one retrieved by the attacker.
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5.3.2 Impersonation Attack

The goal of this attack is to steal the identity of an existing MS in a UMTS network

and take advantage of its services. Closely resembling the attack described in 5.3.1 in

matters of methodology, this attack is also feasible only if the MS is located in the GSM

EDGE Radio Access Network (GERAN) coverage of a UMTS network. Initially, the

attacker sets up a BTS, connected to a 3G VLR/MSC, and convinces the victim MS

not only to connect to it, but also transit its IMSI. While still connected to the victim

MS, the attacker poses as the victim MS and attempts to connect to the valid UMTS

network. To that end, it initiates a 3G UMTS process to retrieve RAND and AUTN.

Having this information the fake BTS proceeds to 3G AKA with the victim MS but

during that step it declares that the preferred cipher will be A5/2. Finally, the attacker

breaks this algorithm to derive the Kc which she can use to authenticate to the real

network.



Chapter 6

Assessment of Wireless Attacks

In this chapter we attempt to evaluate some of the most important attacks described

in chapters 3, 4 and 5 by providing a quantitative assessment. The attacks included

in this chapter were chosen because: (a) it is possible to evaluate them against some

quantitative characteristics, (b) their impact is highly bounded to these characteristics,

and (c) they may be representative for a broader category of attacks. Due to the nature

of the attacks, some of the evaluations were based on simulations while in other cases the

evaluation results were extracted from experiments which were conducted under realistic

conditions, using the appropriate equipment. In these cases, the devices employed were

a Nokia Lumia 800, an iPhone 2, a Samsung Nexus smartphones, a Samsung Galaxy

Tab tablet, as well as two desktop PCs with a Linksys WUSB54GC and D-Link DWA-

125 wireless USB adapters running Ubuntu Linux 12.04 and Windows 7 respectively.

Standard wireless penetration testing tools were employed such as the Aircrack suite

[79] and the MDK3 [80] tool. Whenever specific attacks were not offered by any publicly

available tool, custom scripts for launching these attacks were implemented. For example

Probe Request Flooding attack was fired with File2air tool [81] (using the Lorcon-old

library [82]) while the Fake Power Saving and the Disassociation attacks were unleashed

by custom C programs implemented using the Lorcon2 library [83]. Hereunder, the most

important of the conclusions are denoted.

A risk analysis for each one of the described attacks is also appended. Tables 6.1 and

6.4 gathers and presents the attacks that have been described in the corresponding

sections. We analyse and evaluate the severity of each attack according to a modified

version of the methodology presented in [84], [85] (which in turn is a stricter version of a

methodology developed by ETSI [86]). Specifically, we classify attacks according to the

risk they impose to the studied system as: Major, Moderate, Minor. This classification

is done by taking into account two factors:

68
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• Likelihood of Occurrence - This criterion indicates the possibility of an attack to be

implemented by exploiting vulnerabilities of the system. The attack is considered

unlikely if its implementation cost is high, major technical obstacles exist, or the

risk of the attacker to be exposed is high. An attack is possible if the cost of

the attack as well as the risk of exposing herself are moderate and the technical

difficulties are solvable. An attack is likely if the associated costs and risks for the

attacker are low and there are no technical difficulties associated with the attack.

• Impact Upon the System - This criterion is an indicator for the possible conse-

quences to the system, provided that the attack succeeds. The attack is consid-

ered to have low impact if it affects small number of users, for a short amount

of time and simply generates commotion to the system. An attack is considered

of medium impact if it succeeds to afflict loss of service, affects a larger number

of users but still its consequences are reversible. An attack is considered of high

impact if it affects a large number of users for a significant amount of time and

causes financial losses for the provider or loss of privacy/confidentiality for a user.

To formalize the aforementioned model we assume the following sets:

C = {Ex,Ma, In} represents the Cost of the attacker with Ex being Expensive, Ma

being Manageable, and In being Inexpensive.

D = {Ha, So,Ea} represents the Difficulty to implement the attack with Ha being

Hard, So being Solvable, and Ea being Easy.

R = {Hi,Mo,Lo} represents the Risk for the attacker associated with this attack Hi

being High, Mo being Moderate, and Lo being Low.

T = {Sh,Ln} represents the Time span of the attack with Sh being Short, and Ln

being Long.

S = {Sm,Me,La} represents the Population of users affected by the attack with Sm

being Small, Me being Medium, and La being Large.

O = {A,DoS,LoP, ToS} represents the Outcome of the attack with An being Annoy-

ance, DoS being Denial of Service, LoP Loss of Privacy and ToS being Theft of Service.

Table 6.1 contains an evaluation of all the attacks discussed in the process of this work

according to this model. For all possible Threat, Likehood and Impact values with

respect to the aforementioned characteristics the reader should consult appendix C.
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6.1 Theoretical Evaluation

6.1.1 Energy Consumption of MOB-TRF-IND Water Torture Attack

In order to evaluate the amount of energy consumption caused by attack described in

section 4.2.1 we have proceeded to an analysis which involves the 3 following scenarios:

• An MS does not support Sleep mode but does not send or receive any traffic for a

given period of time.

• An MS does support Sleep mode and does not receive any traffic for the same

period of time

• An MS which supports Sleep mode is under the attack described in section 4.2.1.

The energy consumption for each of the 3 scenarios respectively can be modelled in

equations 6.1, 6.2 and 6.3.

EAV G =


TTx (ETx+EA)+TRx (ERx+EA)+T iSEs+TLEL+TLRxERx

TTx+TRx+TminS +TL+TLRx
if 0 ≥ i ≤ n

TTx (ETx+EA)+TRx (ERx+EA)+TmS axEs+TLEL+TLRxERx
TTx+TRx+TminS +TL+TLRx

if i > n
(6.1)

EAV G =
TTx(ETx + EA) + TRx(ERx + EA) + TmS axEs + TLEL + TLRxERx

TTx + TRx + TminS + TL + TLRx
(6.2)

EAV G = EA (6.3)

where EAV G is the average amount of energy consumed, TTx is the time required for

transmitting a packet, EA is the energy consumed in awake mode, ETx is the energy

consumed for transmitting a packet, TRx is the time required for receiving a packet,

ERx is the energy consumed for receiving a packet, TminS is the smallest possible time

window of unavailability, TmaxS is the maximum window of availability, ES is the energy

consumed during unavailability interval, TL is the time window of availability without

performing any operation, EL is the energy consumed during availability interval without

performing any other operation, TLRx is the time required to receive a message during

availability interval, and ELRx is the energy required for receiving a message during
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Figure 6.1: Snapshot Energy Consumption Under MOB-TRF-IND-Water-Torture
Attack

availability interval. All time units are counted in msec, while all energy units are

counted in mW.

Based on the energy values found in [87], the energy values for transmitting and receiving

of a popular commercial device, as well as the values for time parameters retrieved

from [23], we have proceeded to a simulation with the following: TTx = 5, TRx = 5,

TminS = 10 (2 frames), TmaxS = 5120 (1024 frames), TL = 5, TLRx = 5 and EA = 750,

ETx = 2000, ERx = 1500, ES = 50, EL = 170. In our experiments we assume that the

network is operating in OFDMA/TDD with 10Mhz bandwidth. The frame duration is

5msec and for simplifying the calculations all three scenarios assume that packets are

transmitted to the MS immediately and there is no delay. Also, the energy consumed

for other operations of the MS (those relevant to the operating system for example)

are neglected. Figure 6.1 presents a snapshot of the instantaneous current consumed for

each of the three scenarios during the first second of operation, while figure 6.2 illustrates

the average energy consumption.

The results of the analysis indicate that by unleashing a MOB TRF-IND Water Torture

Attack, the attacker will be able to achieve an energy consumption rate which surpasses

that of an MS with no Sleep mode support for over 54%. More specifically, the average

power consumption is 750 mW for the case where the MS does not support Sleep mode

(scenario a), only 51.7 mW for the case where Sleep mode is enabled (scenario b), and

1156 mW for this last case, i.e. the attack takes place. We can easily deduce that the

energy consumption during the first scenario would deplete a battery of 1400 mAH 3.7 V

(such as the ones equipped by contemporary smartphones) in 6.9 hours. For the second

scenario the same battery would be drained in 100 hours under normal conditions, while

under attack the battery would be depleted in about 4.48 hours. This can prove quite

annoying for users of handheld devices for example, while it is doubtful if it will cause
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Figure 6.2: Average Energy Consumption Under MOB-TRF-IND-Water-Torture At-
tack

disturbance to users of larger energy capacity devices such as laptops. While these values

may not reflect realistic discharge rates they are indicative of the impact of the attack.

6.1.2 Degradation of Service from RNG-REQ DDoS Attack

For evaluating the impact of RNG-REQ DDoS Attack, the following scenario is consid-

ered: A number of MSs which has arrived since the last UCD transmission receives a

new UCD message at instance 0 so all MSs are cleared to enter contention for initial

ranging process. We consider this simulation for just a time frame as big as the UCD

interval (5 sec) but the aggressor unleashes her attack only during the first second of

the ranging process. This actually is an interval most likely be chosen in real attack

conditions since the Back Off (BO) window size is still small and the collision probability

is quite large. During this interval the attacker is transmitting an RNG-REQ message

on every single transmission opportunity of every frame.

For this simulation scenario we evaluated the initial ranging process in normal operation

as well as under attack. More specifically, the behaviour of the network in matters of

access delay and number of retries is considered under different number of contenting

mobile nodes. For the simulation experiment the following assumptions have been made:

frame duration of 5 msec, initial BO window 8, final (maximum) BO window 1024, UCD

interval 5 sec, T3 200 msec, simulation duration 5 sec.

The attack causes all contending MSs to collide and as a result to progressively set their

backoff window to a very high interval. This has an immediate effect in the access delay

thereafter. Still, the total number of RNG-REQ messages transmitted by the attacker
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in the 1 sec period of attack is not more than 600 messages with total traffic about

96 Kbps (assuming that the RNG-REQ message is 20 bytes). If there is a number

of collaborating attackers this value per user can become even smaller. This makes

it even harder for deployed defence mechanisms in the BS (such as Intrusion Detection

Systems) to become alerted of this abnormality. Figures 6.3a and 6.3 illustrate the delay

and number of retries an MS has to make in both scenarios.

(a) Average Access Delay

(b) Ad-Hoc Mode

Figure 6.3: Average Connection Retries

One can notice that when the attack is unleashed against 5 contending nodes (this

corresponds to an arrival rate of 1 node per second) becomes comparable to that of

150 contending nodes (arrival rate of 30 nodes per second) in normal conditions which

justifies our classification of this attack as major. At this point the reader should notice

that the TBEB algorithm is also part of the bandwidth request mechanism. Therefore,

attacks such as RNG-RSP DoS, Signalling DoS (in the unlikely event of success), PKM-

RSP: Auth Invalid DoS, Secure LU DDoS as well as MCA-REQ DoS cause very similar

results as the one investigated in this section. In most cases such attacks will force many

MSs to disconnect simultaneously. Naturally, after that this large number of MSs will
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attempt to reconnect performing Initial Network Entry. Eventually, this will result in a

large number of MSs contending for a small number of TO in the Initial Ranging step,

which is actually the bottleneck of the whole Initial Network Entry process.

[88] conducts similar experiments on the ns-2 simulator and concludes that parameters

of the Initial Ranging step should be considered critical for system security as a possible

inaccurate setting may lead to serious DoS attacks or poor system performance.

6.1.3 Computational Burden of AUTH-REQ Replay DoS Attack

To evaluate the AUTH-REQ Replay DoS Attack we considered the situation where

different number of nodes perform the attack described in section 4.5.3 against a specific

BS. We monitored the amount of CPU load imposed to the system as well as the total

amount of time that is required from the BS to serve all the requests. Our purpose is to

evaluate the computation burden of this attack and attempt to estimate the amount of

client requests needed to (over)stress the BS. The number of Auth-Req considered starts

at 100 and scales up to 1000 messages. The maximum amount of Auth-Req messages

(1000) reflects the value of 10% of the number of maximum simultaneous connections

supported by the stateof-the-art BS equipments today [89]. This, apparently small,

percentage is a rather realistic attack condition as the attacker must first eavesdrop and

create a database of valid Auth-Req and then make sure that the corresponding CIDs

are still active.

The experiments were conducted in a custom made simulation environment written in

C++ and tested on a Windows 7 (64 bits) Intel Core i7 2.80 Ghz machine incorporating

4 GB of RAM memory. Modern BS equipment is expected to have similar computational

power and have analogous performance. Figures 6.4a and 6.4b present the CPU load

and delay (in terms of service times) respectively.

From the experimental results it is obvious that a significant penalization to the system

for a considerable amount of time happens only for more than 500 simultaneous requests.

In this case, the CPU load peaked at 94.24% and remained at high levels of 69.3%

average for 814 msec. In the case of 1000 simultaneous requests the CPU load peaked

at 98.4% and remained at high levels of 77% average for about 2 seconds (2050 msec).

Typically, BSs that support a large amount of simultaneous connections are expected to

incorporate a stronger CPU than those that support a smaller number of connections.

Generalising this empirical study we could conclude that the AUTH-REQ Replay DoS

Attack can be fruitful for the attacker only if she is willing to invest time and effort

to eavesdrop over a number of Auth-Req messages of at least 5% of the simultaneous

connections the victim BS can support.
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(a) System CPU load during an Auth-Req Attack

(b) Total Amount of Time Required to Serve All the Auth-Req
Messages

Figure 6.4: CPU Load and Delay Caused by Auth-Req Messages

6.1.4 IV’s Required in WEP Cracking Attacks

Most of the documented WEP cracking attacks are based on some kind of statistical

observations of a network’s traffic, however the amount of traffic needed to actually

crack the key is non deterministic. The basic characteristic of all these methods is

that they require a large number of IVs which may be obtained by monitoring the

traffic for encrypted data frames (such as ARP or IP packets). Such attacks can be

absolutely passive and in this way totally untraceable. However, in practise, this is

rarely the case as attackers inject traffic to the network (usually ARP packets) to trigger

responses (enforcing the generation of new IVs), thus speeding up the process and making

such attacks practical. Actually, several techniques including ARP amplification or

double ARP amplification exist to even further boost the generation of IVs. Table 6.2

summarises the estimated amount of IVs required for successful cracking by popular

attacking methods, based on statistical observations.
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Table 6.2: Average IVs required for WEP cracking by various attacks

Attack IVs (average) Success Year

FMS 5,000,000 50% 2001

KoreK 700,000-2,000,000 50% 2004

PTW 40,000-500,000 50%-95% 2007

VX 32,700 50%-95% 2007

Modified PTW 24,200 50%-95% 2008

In any case, to offer a clearer view of the amount of IVs required versus the amount of

IVs generated through everyday traffic we conducted several experiments on different use

case scenarios. More specifically, we calculated the average amount of IVs per minute

generated by applications such as video streaming, moderate web page browsing, file

downloading, as well as intrusive scenarios such ARP injection attacks. All scenarios

assume having one client connected to the examined network. Figure 6.5 summarises

the results obtained per application.

Figure 6.5: Average amount of IVs per minute generated by various applications

From the figure it becomes obvious that in networks with low to moderate load the

attacker must wait several hours (for the case of FMS) to several minutes (for the case

of PTW) to gather the appropriate amount of IVs that will allow her to unveil the key.

6.2 Practical Evaluation

6.2.1 Loss of Connection with Deauthentication and Disassociation

Flooding

As already mentioned in section 3.0.5.1 Deauthentication flooding attack is the most

popular DoS attack in 802.11 networks.
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In our experiments we used a range of different devices and measured the elapsed time

from the moment a Deauthentication frame is sent by an aggressor to a victim STA

until the STA gets fully re-associated to the AP. We noticed that in most of the cases,

these cycles are non-neglectible (e.g., greater than one second). This dictates that a

relatively small number of packets per minute is enough to significantly disrupt a vic-

tim’s communication if not cause a complete DoS. On the one hand, this conclusion

is contradictory to the common practice of the most popular modern wireless injection

tools (Aircrack suite, MDK3) that aggressively transmit hundreds of Deauthentication

frames per second. On the other hand, judging by the experimental results in [90] (which

was published in 2003) we can assume that manufacturers tend to construct NIC cards

which complete the re-authentication cycle faster.

For the Deauthentication attack we relied on the Aircrack suite but due to the lack of

support of a pure Disassociation attack by any of the existing penetration tools the attack

was launched by a separate self implemented tool. By comparing the deauthentication

cycles with the disassociation ones we noticed that the latter are noticeably greater. This

conclusion contradicts to our initial hypothesis that the disassociation cycle is briefer

because of the less actions involved. In practice, such cycles are longer due to the fact

that upon receiving a disassociation frame the STAs will first issue a deauthentication

frame to the AP and then go through a complete authentication and association/re-

association cycle. This behaviour is not according to the standard but has been observed

for all of our test subjects. In this way, it is made easy for the attacker to substantially

disrupt operations such as web browsing, app downloading, voip calling, video streaming

even for the most potent of the devices with as few as 100 frames per minute. Figure

6.6 compares the cycles for a variety of wireless devices.

Figure 6.6: Deauthentication vs. Disassociation Cycles For Several Devices
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It is worth mentioning that the use of WPA over WEP didn’t have any substantial

impact on the re authentication/reassociation cycle.

6.2.2 Reduction of Throughput with Probe Request Flooding

During all the experiments considering this attack we did not notice actual DoS against

any number of users of the network. However, what was apparent was annoyance in the

form of reduced throughput. While the theoretic ground of this attack is based on the

goal of exhausting the physical resources of an AP, according to our experiments the

main cause of commotion comes from the signalling overhead imposed on the wireless

medium. It must be made clear that a single probe request frame triggers multiple

responses from AP’s in the vicinity simultaneously. Thus, it is easily understandable

that the more APs exist in the neighbourhood the more effective the attack gets.

We believe that it is much more realistic for an attacker to cause havoc to a network in

this way rather hoping for driving a contemporary AP (even a low-end home device) to

its physical limitations and to force it to drop clients. Our experiments were conducted

with a custom-tailored version of the File2air tool (using the Lorcon-old library) that

allowed us to send 5,000 Probe Request packets in total with variable MAC address

fields (all corresponding to existing manufacturers) at variable rates. We evaluated the

results in both TCP (FTP file transfer) and UDP (Skype call) application scenarios.

More specifically, in the UDP scenario we noticed that the throughput dropped from

145Kbps to 68Kbps and in the TCP scenario from 2Mbps to 269Kbps. This is translated

to a loss of 53% and 87% respectively. Figure ?? shows the effects of probing attack to

throughput under TCP and UDP scenarios.

6.2.3 Denial of Network Entry with Beacon Flooding

As we already mentioned, this attack comes in two flavors: (a) transmitting beacons

that advertise non existing ESSIDs, and (b) transmitting beacons that all advertise

an existing ESSID, but correspond to different (non existing) BSSIDs. The first case

does not cause real DoS but may prove a factor of commotion. Actually, the eminence

of nuisance depends upon the patience of a user locating the network of interest in a

(unusually large) list of ESSIDs, most of which have random (thus meaningless and

unusual) names. For the second variation of this attack we executed our experiments

with the use of MDK3 by injecting Beacon frames that advertise the same ESSID as

the legit AP but with different (random but corresponding to existing manufacturers)

BSSID. This attack successfully prevented the entry of new clients to the network for all

hand-held devices except Samsung Nexus. For the laptop machines the ones equipped
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(a) Drop of Throughput in TCP Scenario

(b) Drop of Throughput in UDP Scenario

Figure 6.7: Effect of Probe Request Flooding Attack in Throughput

with Windows 7 OS seemed to be immune to this attack. Still, the attack was successful

against the Linux equipped machine. As expected, this type of Beacon flooding attack

had no success with the already connected devices

6.2.4 Stressing the AP Resources with Authentication Flooding

The theoretic foundation of this attack lays in an attempt to exhaust the physical re-

sources of the APs and then possibly force it to collapse. Results from real life exper-

iments however, indicate that even low-end contemporary devices can effectively cope

with this threat. Actually, even after 8 million authentication attempts there wasn’t any

noticeable deviation from the AP’s normal behaviour (i.e., freeze or reset). However, we

noticed that during the course of this attack even in its the early stages (i.e., the first

two seconds) the client was unable to perform authentication and enter the network.

More specifically, all devices presented such behaviour with the sole exception that of

Samsung Nexus which was able to connect but with a noticeable delay. This attack may

pose as a more effective equivalent of the Beacon Flooding attack. The above mentioned

experiments were conducted with the use of the MDK3 tool with an average injection

rate of 900 authentication frames per second.
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6.2.5 Packets Replayed with ChopChop

We conducted our experiments with the Aireplay-ng tool (of the Aircrack suite). In the

course of the attack we replayed packets of different sizes. We came to the conclusion

that the amount of time required for the ChopChop method to fully analyse a given

packet depends on the actual size of the packet. Some examples of various packet sizes

and the corresponding requirements in number of packets to be injected and amounts

of time are given in table 6.3.

Table 6.3: Requirements in Number of Frames and Time for ChopChop Attack

Size Frames Injected Total Time

70 6550 131

80 9445 187

122 13255 264

From the table it is clear that a significant amount of packets needs to be replayed back

to the AP for the ChopChop to complete successfully. However, traffic even of such

magnitude can be camouflaged in busy networks if the packet size is the only criterion

of detection. On the other hand, the replayed packets will have several fields identical,

including the IV one. While fields such as IV are randomly selected and as such they are

subject to possible repetitions it is highly unlikely that the IV field of numerous packets

in a short amount of time, say 1 sec, will be identical. The following table 6.4 presents

a summarizing overview and evaluation of the attacks against 802.11 networks.
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Chapter 7

Anomaly Detection

7.1 Detecting Anomalies in Data

The term anomaly, originates from the greek word “oµαλoς” (omalos) and the prefix

“αν” (an), literally meaning abnormality. The process of identifying anomalies in a

gathering of related data is commonly referred to as anomaly detection. This process

involves the definition of the portions of the data that represent normal behaviour and

the declaration of any observation which does not belong to those portions as an anomaly.

Generally, when analysing data, the exceptional observations that correspond to ab-

normalities are of equal importance, if not more significant, than the regularities that

obey a well-defined notion of normality. Note that anomalies in datasets must not be

confused with noise, which can be defined as observations in data which hinder data

analysis, since they are of no particular interest to the analysis. Noise removal [91]

deletes the unwanted objects before any data analysis is performed on the data so that

this process can conclude with higher success rate. Figure 7.1 presents data arranged in

a 2D plot. In this example, the data instances form 4 separate regions one of which (C1)

is dominant over the others, hence it is considered as normal. Regions C2 and C4 are

far away from C1 so they are considered anomalous and they are easily distinguishable.

Note that region C3 is fairly close to the normal area C1, so smart techniques must be

employed in order to identify the actual membership of candidate data instances.

7.1.1 Basic Aspects

Anomaly detection is a complex process involving multiple parameters. Most of them

are problem depended, however a common denominator can be inferred, with respect to

its most important aspects. More specifically we can identify:

83
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Figure 7.1: Normal VS. Anomalous Classes in a Sample Dataset

7.1.1.1 Type of Input Data

Typically, input data are presented to anomaly detectors as a set of data instances.

Often described as records, vectors, samples, or observations, these data instances are

usually comprised of several attributes. In turn the attributes (frequently referred to as

variables, features, or dimensions) can be of different types such as binary (being able

to take only one of two possible values), categorical (being able to take only one of a set

of predefined values), arithmetic (discrete or continuous), text or date. Data instances

may also by semantically connected or develop relationships among them [92]. More

specifically:

• Instances may be ordered with respect to time in the dataset. For example, frames

received from a monitor node in a network.

• Instances may be sorted with respect to a similarity measure when this relation

depends on distance we speak of spatial data and when both distance and time is

involved we speak of spatio-temporal.

• Data may be organized as a graph. In a graph data are represented as vertices

connected to other vertices with edges. The type of relation among instances is

usually specified with the definition of what the edges represent.
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Some anomaly detection techniques are able to work with certain types of data. Thus,

one of the most important parameters in anomaly detection is the nature of the data

that a given technique is required to work upon.

7.1.1.2 Data Labels

Ideally, input data should come with a tag denoting whether they are normal or anoma-

lous. The existence of labelled data instances usually boost the detection accuracy.

Realistically, data labelling is not always possible, either due to the high cost of the

labelling process, or the sensitive nature of the data. The extent to which the labels are

available, influences the choice of anomaly detection techniques to be utilized. Gener-

ally, anomaly detection techniques are organized into three big families with respect to

whether they are able cope with the absence of pre-labelled data instances or not. More

specifically:

• Supervised anomaly detection methods build a predictive model based on a set of

pre-labelled data, which includes both normal and anomalous instances. By using

the resulting model, the detector is able to determine the class of unseen instance.

• Semi-supervised anomaly detection techniques are able to detect anomalies after

being trained by a dataset that has only the normal instances labelled. Generally,

it is much easier to construct a dataset with normal instances as in most situations

normality is the rule. On the one hand, this resolves the issue of manually labelling

a dataset, but on the other, it is hard to guarantee that there are not abnormal

cases included.

• Unsupervised anomaly detection techniques do not require labelled data at all.

They are able to organize data instances into a (usually predefined) number of

groups/clusters with similar characteristics. Some methods go one step further as

they implicitly assume that the anomalous instances are fewer than the normal

ones, so they label these minority groups as anomalous ones.

7.1.1.3 Nature of Anomalous Data

A critical factor that influences the choice of a respective anomaly detection technique

is the nature of the anomalies under consideration. Generally, anomalies are organized

into three main categories, which are elaborated below:
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• Point anomalies - These are typically, individual data instances significantly di-

verse than those considered normal by the standards of the dataset. This is the

simplest type of anomalies.

• Contextual anomalies - This type of anomalies is heavily influenced by the values

of specific attributes within a specific context.

• Collective anomalies - These anomalies consist of instances that are considered

normal when they are located in isolation, but are anomalous when they occur

together as a collection. Such anomalies may occur when data instances develop

some kind of relation with each other. A typical example of collective anomaly is

web traffic datasets of normal and DoS attacks. DoS are produced by flooding the

server with an extremely large amount of a specific type of packet, which can be

tracked sporadically under normal conditions.

7.1.1.4 Result Presentation

In some problems the presentation method is as vital as the accuracy of the detection

itself. To this end, methods that incorporate complex data visualisation techniques to

describe the results have been developed. More traditional approaches present their

results as dots scattered in a 2D or 3D space, as a set of instances with a tag, or in some

cases, a tag and a confidence score.

7.1.2 Challenges

The nature of the application domain introduces problem-specific challenges to the

anomaly detection process. These challenges may drastically differ from one problem

to another however, there exist some which are common to most formulations of the

anomaly detection problem. These can be enumerated as:

• Distinguishing between excessive normal and anomalous data - The outliers of

normal and anomalous observations may confuse the detection process, especially

when these instances have characteristics that are very close or overlap.

• Noise elimination - Typically, noise has a negative impact on the speed of the

detection, but in some occasions noise and anomalies share common characteristics

which makes distinguishing between the two a tedious process.

• Adapting to variable conditions - The boundaries of normality may shift through

time and what is considered normal in a given period may prove anomalous in

another.
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• Existence of labelled dataset - Labelled data can be used for effectively guiding the

construction of prediction models (often referred to as training) or for validating

the efficiency of generated models. However, labelling of data is not a trivial task

as it often evolves manual labour.

7.2 Basic Anomaly Detection Techniques

The various approaches proposed in literature, have attempted to provide a solution to

the anomaly detection problem from different perspectives. Nevertheless, as the context

and the parameters of problems may differ drastically, not a single one has been found

to act as a panacea. One can speak about techniques that may have the advantage over

others in certain types of anomalies. The most important types of anomaly detection

methods are described in the following sections. These approaches have been successfully

applied in fields like biology and medicine ([93], [94], [95], [96]), engineering ([97]),

image processing ([98]), speech recognition ([99]), text processing([100], [101]), as well

as intrusion detection ([102], [103], [104]). For a holistic review of anomaly detection

methods and applications the reader should refer to [105].

7.2.1 Classification

Classification refers to the problem of categorising new data instances into one of the

possible classes with respect to a training set that contains pre-labelled data instances.

The classification consists of two phases:

• Training phase - during which a classifier develops a model by learning from the

available labelled training data

• Testing phase - which classifies an instance of unknown class as normal or anoma-

lous using the model produced in the previous step.

A training set is a necessity for classification techniques which in some problems may

be impossible to acquire. Moreover, the training set must be adequate in size and

accurately labelled for a precise model to be built. Generally, training is much more

computationally expensive than testing, since the latter simply uses a pre-constructed

model for classification.
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7.2.1.1 Neural Networks

Artificial neural networks (ANNs) are computational models inspired by the structure

of the central nervous systems of animals, with the goal of mimicking their learning

capacity and pattern recognition efficiency. ANNs are generally represented as graphs

of interconnected nodes, called “neurons” which are able to compute output values from

a set of input values.

ANNs are comprised of several layers of neurons that are interconnected. Thus, in an

example ANN with three layers, the first layer has input neurons which simply receive

data via its synapses and forwards them to the second layer of neurons, and then via

more synapses to the third layer of output neurons. The synapses consist of numerical

parameters that are adjusted by a learning algorithm, namely the adaptive weights.

Complex problems may require layers of more neurons and/or larger number of layers.

Figure 7.2: Example of the Structure of a Neural Network

The basic advantage of ANNs is that they are able to conduct their processing in a

non-linear, distributed, parallel and local way and at the same time, have high level of

adaptation. ANN are considered one of the best classification techniques and have been

used in most anomaly detection areas (including intrusion detection) as the main or in

conjunction with other algorithms and techniques [102].

7.2.1.2 Bayesian Networks

Bayesian networks are Directed Acyclic Graph (DAG) whose nodes represent random

variables and the edges represent conditional dependencies among them. Unconnected

nodes correspond to variables that are conditionally independent of each other. The

nodes are associated with a probability function. The input of the probability function

is a particular set of values for the node’s parent variables. The output is the probability

of the variable represented by the node. Bayesian networks and derivatives have been
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applied to intrusion detection early on [106], [107], [108], and is considered as one of the

dominant techniques in this area.

7.2.1.3 Support Vector Machines

Techniques employing Support Vector Machines (SVMs) [109] can be applied on binary

classification problems only. An SVM model represents data instances as points in a 2D

space, and maps these points in such a way, that the distance of the nearest points of

any class is maximum. Data instances on the margins are called support vectors. New

instances are labelled as normal or anomalous based on which side of the gap they fall

on [110].

Figure 7.3: Example of SVM

7.2.1.4 Decision Trees

Decision Trees is a method which progressively designs tree structures that correlate

observations about the attributes of data instances to conclusions about its class. During

the learning phase the construction of the model from class-labelled training data takes

place, resulting to a flow-chart-like structure. The internal nodes refer to an attribute,

the branches represent the outcome of a test, and the leaves correspond to the class.

A special family of such techniques, namely the ensemble methods is able to construct

more than one decision tree at a time, for increased accuracy. Popular algorithms of this

type are ID3 [111] and its extension C.45 [112]. The majority of decision trees algorithms

require the attributes of the data instances to take nominal values only. Decision trees

methods are popular in intrusion detection [113], but are usually used in conjunction

with some other classification method for improved performance.
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7.2.2 Nearest Neighbour

The nearest neighbour attempts to locate and retrieve the data instances that are the

most similar to a query instance, in given a collection of data. Nearest Neighbour

algorithms for anomaly detection capitalise on the observation that normal instances

exist in dense neighbourhoods, while anomalies tend to be isolated. A form of distance

measure such as Euclidean distance is used as metric of dissimilarity of the instances.

One of the benefits of nearest neighbour based techniques is their unsupervised nature.

However, nearest neighbour based detectors may perform poorly if normal instances do

not have enough close neighbours or if anomalies have enough close neighbours. This

is the reason why semi-supervised techniques have been applied to nearest neighbour

techniques.

Nearest neighbour based anomaly techniques can be grouped into two main categories

according to the adopted measure of dissimilarity:

• Distance to neighbours based - In this category belong approaches that use the

distance between a given data instance to the kth nearest neighbour, as their

anomaly measure. If the instance surpasses a predefined threshold, then it is

labelled as anomaly. Alternatively, anomalies may be considered as the top-n

instances with the largest anomaly scores.

• Density of neighbourhood. In this category belong approaches that use the distance

between a given data instance and the kth nearest neighbour in the dataset as

their anomaly measure. If the instance surpasses a predefined threshold, then it

is labelled as anomaly. Alternatively, anomalies may be considered as the top-n

instances with the largest anomaly scores.

The application of nearest neighbour algorithms is not new in the intrusion detection

ecosystem [114], [115].

7.2.3 Clustering

Clustering aims at organizing similar data instances in compact groups. Since a sepa-

ration occurs with respect to the attributes of data, it is possible to utilize clustering

techniques for anomaly detection, if the anomalies are grouped in a different cluster than

the normal data. Usually, clustering methods achieve the separation of dissimilar data

by calculating the distance of a data instance from another. Once more, distance here

refers to a metric such as the Euclidean distance, which scales the dissimilarity between
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vectors. Clustering was adopted early on in the field of intrusion detection [116], [104],

[117].

Usually, such methods perceive anomalies as the instances which have the following

characteristics:

• are not embodied to any formed cluster - Such anomaly detection methods rely

on clustering techniques that do not necessarily incorporate all given instances to

a cluster.

• are embodied to very small or sparse clusters - The assumption here is that the

number of anomalous data instances is much less than the one of the normal ones.

Thus, when the size and/or density of a given cluster is below a threshold then all

the instances contained it are anomalous.

• are placed in the outer layer of a cluster or outside it - In such cases the anomalies

must not form independent clusters.

7.2.4 Statistical Methods

Statistical methods employ statistical analysis for constructing detection models. Some

representative examples of both categories are further presented in the following subsec-

tions.

7.2.4.1 Gaussian Techniques

Gaussian techniques assume that the underlying data follow a Gaussian distribution.

As a first step, these methods estimate the mean of normal instances with regard to one

or more of its aspects. The anomalies are determined in a second step by calculating

the distance of a new instance from the mean and by checking if that distance exceeds

a threshold.

A popular approach relies on the use of box plots, which graphically depicts a summary of

the data characteristics including, the minimum and maximum instances, the lower and

upper quartile (Q1 and Q3 respectively), as well as the median. Anomalous instances

are those whose distance from the box exceeds a threshold. Usually, the lower bound is

Q1 − 1.5 ∗ IQR and the upper bound is Q3 + 1.5IQR, where IQR is the Interquartile

Range (IQR).
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7.2.4.2 Regression Techniques

Techniques that fall in this category initially fit a regression model to the dataset and

then for each instance the part of the instance which is not explained by the regression

model, known as residual, is used to assign an anomaly score to the instance.

7.2.4.3 Hybrid

Such techniques use a mixture of multiple parametric statistical methods to model the

data. Normally, they model the normal instances and anomalies as separate paramet-

ric distributions. For example, [118] assumes that the normal data is generated from

a Gaussian distribution with variance (N(0, σ2)). On the other hand, anomalies are

generated by the same distribution but with larger variance, N(0, k2σ2). The testing

phase involves, determining the distribution in which the test instance falls.



Chapter 8

Nature Inspired Approaches for

Network Intrusion Detection

The methods of nature have always been a source of inspiration to humans for problem

solving. Yet, it is only until recently, that researchers managed to successfully model and

emulate the natural processes in a variety of research fields, ranging from engineering,

computer science, economics, medicine and social science. Therefore, it was only a mat-

ter of time until such techniques were tested against the intrusion detection sector. The

advantages that biology inspired approaches impose to the field of intrusion detection is

the basic topic of this chapter.

Initially, we describe the limitations of traditional intrusion detection approaches that

led the research community to a quest for novel, unconventional, approaches. Next, we

introduce the foundational principles of 3 of the most important bio-inspired approaches.

In the process, we conduct a survey of IDS that fall into these categories.

8.1 Swarm Intelligence

The term Swarm Intelligence (SI) was introduced by Beni in the context of robotics

system [119]. The methods and algorithms that this research field embraces draw in-

spiration from the behaviour of insects, birds and fishes, (or more generally, swarm

formations of animals in general) and their unique ability to solve complex tasks collec-

tively, although the same thing would seem impossible in individual level. Indeed, single

ants, bees, birds and fishes appear to have very limited intelligence as individuals, but

when they socially interact with each other and with their environment they seem to

be able to accomplish harder tasks such as finding the shortest path to a food source,

93
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organizing their nest, synchronizing their movement and travel as a single coherent en-

tity in high velocities etc. This achievement becomes even more commendable if one

takes into account such accomplishment is done without the presence of a centralized

authority (e.g., the queen of the hive) enforcing the right actions. Applications of this

can be found in NP-hard optimization problems such as the travelling salesman, the

quadratic assignment, scheduling, vehicle routing etc.

The unique characteristics of SI establish it as one of the better options amongst the

existing ones for intrusion detection. This is due to the fact that SI techniques aim at

solving complex problems by employing numerous, yet simple agents, without requiring

any kind of a central coordinating authority. Such agents collaborate with each other to-

wards finding an optimal solution for the given task. Their organization occurs naturally

via direct or more frequently indirect communication (e.g., by marking their environ-

ment). In this respect, agents can be used for carrying out several hard tasks, like finding

classification rules, organizing traffic into clusters, keep track of intruder trails etc. In

intrusion detection in particular, the self-organizing and distributed nature of these sys-

tems is highly desirable as it offers the means to break down a difficult IDS problem into

multiple simpler ones and delegate it to parallel-functioning, autonomous units. This

potentially makes the IDS autonomous, highly adaptive, parallel, self-organizing and

cost efficient.

The systems surveyed in this section are organized primarily according to the adopted

SI technique. The three main categories that accrue are: (a) IDS that make use of Ant

Colony Optimization, (b) IDS that employ Particle Swarm Optimization and (c) IDS

that utilize Ant Colony Clustering. Each class may further be broken down into smaller

subcategories leading to the following taxonomy scheme:

• ACO Oriented IDS Approaches

– ACO for Induction of Classification Rules

• PSO Oriented IDS Approaches

– PSO & Neural Network Hybrid Approaches

– PSO & SVM Approaches

– PSO & K-Means Approaches

– PSO for Induction of Classification Rules

• ACC Oriented IDS Approaches

– ACC & SOM Hybrid Approaches

– ACC & SVM Hybrid Approaches
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8.1.1 Ant Colony Optimization

The foraging behaviour of ants and more specifically their unique ability to find the

shortest path from their nests to food sources, has inspired the conception of perhaps

the most prominent algorithmic model of this kind, namely the Ant Colony Optimization

(ACO). Most ant species have very limited or no vision and simultaneously are deprived

of speech or any other means of conventional communication. Nevertheless, ants seem

to act in a strictly organized manner, which indicates that some sort of camouflaged

communication takes place. Indeed, experiments conducted to certain ant species prove

that this communication occurs by depositing a substance called pheromone along the

path they follow. In more detail, ants initially move randomly in order to locate a food

source. As soon as they do so, ants carry food to their nest and deposit pheromone

traces along the trail. Subsequently, ants decide which of the available paths they shall

follow based on the pheromone concentration deposited on each particular path. As

was anticipated, paths with greater pheromone concentration have higher probability of

being selected. The insects that follow the shortest path return to their nests earlier

and pheromone on that path is reinforced with an additional amount sooner than the

one in the longer path. Therefore, the selection among the paths is biased toward the

shortest path.

Deneubourg et al. presented the double bridge experiment in which nest and food source

were separated by a bridge of two branches of equal lengths [120]. In fact, the authors

noticed that the majority of ants will eventually follow only one of the paths but which

one is randomly decided. Goss et al. extended the experiment by using paths of unequal

lengths [121] showing that in all experiments the majority of the ants will, ultimately,

choose the shortest one as shown in 8.1.

Figure 8.1: The Extended Double Bridge Experiment

Dorigo et al. introduced an algorithmic model of the described behaviour for solving

minimum cost path problems on graphs known as Simple Ant Colony Optimization

(SACO) [122], [123]. In this model ants begin from a source node of a graph G = (N,A)

and try to reach a destination node following the shortest path. To each arc (i, j) of a
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graph an amount of artificial pheromone is deposited τij. This information can be read

and written by the ants to govern their movement to the next node. Specifically, the

probability of an ant k located at a node i of choosing j as the next node to be visited

is calculated as:

pkij =


τaij∑
j τ

a
i j

if j ∈ Nk
i

0 if j /∈ Nk
i

Where Nk
i of ant k when in node i contains all the nodes directly connected to i, except

the predecessor of i. a is a parameter for controlling convergence speed. When the ant

reaches its destination it has to return to the source. In this backward mode the ants

deposit pheromone along the trail. Normally, the ant will attempt to follow the same

route but if that route contains loops then it must eliminate them first, in order to avoid

the problem of self- reinforcing loops. The new amount of pheromone in the arc (i, j)

after ant k has traversed it in backward mode is calculated as:

τij ← τij + ∆τk

Pheromone trails evaporate over time. This mechanism can be seen as a way to avoid

the problem of convergence to suboptimal paths, or a way to adapt to dynamic graph

changes if they ever occur. Pheromone evaporation is simulated by applying the following

equation to all arcs:

τij ← (1− p)τij , ∀(i, j) ∈ A

where p ∈ (0, 1] is a constant.

8.1.1.1 ACO for Deduction of Classification Rules

Soroush et al. presented one of the first works employing ACO as an efficient method

for intrusion detection and more specifically the inference of classification rules [124].

Their proposed system was based on the novel rule extracting algorithm Ant-Miner

[125]. The authors adjusted the Ant-Miner algorithm to cope with high dimensional,

high volume data, such as the ones usually involved in intrusion detection. Ant-Miner

itself is inspired by the foraging behaviour of ants in order to classify numerical data to

one of some predefined classes. In particular, this algorithm relies to ants to construct

a set of candidate rules in parallel. The rules are of the type:

IF (term1term2...termnt)THENclassc
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In this case termi is formed by three parts, (a) an attribute of the dataset, (b) an

operator, and (c) a value. The quality of these randomly generated candidate rules is

evaluated against the training set by considering the confusion matrix of real and pre-

dicted instances with respect to the training set. During this process the pheromone

trails increase for the terms used in the generated rules, in a proportional way to the

fitness of that rule. At the same time they decrease for all the rest of the terms (evap-

oration). Among the generated rules in this step the best one is selected and added to

the discovered rules set. This is done iteratively until an adequately large base of rules

is constructed. These rules are used later on in test sets as criteria for discriminating

network connections into intrusive or normal.

Similarly Junbing et al. propose an Ant-Miner based classification system [126]. Its

main differentiation is the introduction of multiple ant colonies. The authors noticed

that the algorithm’s efficiency might be pushed back, in the case where ants searching

for best rules of a class A, have been mislead by the pheromone trails deposited at a

prior time, by ants searching for rules of a different class. In this case, each class is

handled by different ant types organized into colonies. In this way, ants that belong to

a colony deposits a distinct type of pheromone which applies only to ants belonging to

the same colony. Colonies are searched in parallel to finally discover one rule per colony.

As a final step, the rule with the best quality is selected and added to the rule set.

Fork [127] is an IDS optimized for the special requirements of ad-hoc networks. Due

to the resource constrained nature of these terrains, the nodes may produce intrusion

detection requests if are incapable of meeting the intrusion detection requirements at a

specific time. Thus, the capable nodes are allowed to compete according to an auctioning

system for satisfying these requests. The engine that powers Fork is also based on Ant-

Miner. The most important modifications include: (a) The priority assignment strategy:

a method for rewarding the creation of good quality solutions. (b) Use of modularity:

a method of forming clusters of similar pathways in the solution graph. (c) Use of

attack thresholds: a method for improving the processing time for the formation of

more accurate rules.

Works of Abadeh et al. ([128]; [129]) and Alipour et al. [130] were among the first that

combined genetic algorithms and ACO for the induction of accurate fuzzy classification

rules. Fuzzy set theory [131] has been applied successfully in the past in the field

of intrusion detection [132] and has proven to provide very competitive DR and FAR

percentages. In this case, fuzzy if-then rules are coded as strings, with 5 linguistic values

being represented by the following symbols: small (A1), medium small (A2), medium

(A3), medium large (A4) and large (A5). For instance, a rule which is coded as follows:

(A3, A2, A5, A1), Cj , CFj can be translated as: if x1 is medium and x2 is medium
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small and x3 is large and x4 is small then the class is Cj with certainty CF = CFj . For

the most part their algorithm follows the flow of the Michigan algorithm [133], thus an

initial population of fuzzy if-then rules is randomly generated. This population is then

evaluated and genetic operations take place so that a new population can be produced

by generating new rules. At this point, the ant colony algorithm takes a fuzzy rule and

modifies it by performing a number of predefined changes so that an improved version

of the same rule is produced. The algorithm then continues as normal by replacing a

prespecified number of if-then rules with newly generated ones and finally stops according

to some termination rules. In other words, the authors added a local search step based

on ACO to the Michigan algorithm. By doing so, the entire (global) search capability

of the algorithm is enhanced.

Agravat et al. [134] on the other hand, decided to modify the algorithm so that it will

store all the generated high quality rules by the entire ant colony, instead of just the

best one produced by each ant. In the end, all rules are first sorted with respect to their

predictive accuracy, and then sorted again with respect to false positives this time.

8.1.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) seeks inspiration in the coordinated movement dy-

namics of swarms of animals such as the birds or the fishes. Reynolds’ studies in the bird

flocking behaviour [135] indicate that the transpositions of the entire flock is a result

of the individual effort of birds, each revolving around 3 basic laws: (i) collision avoid-

ance, which dictates individuals to avoid neighbour mates by readjusting their physical

position, (ii) velocity matching, which dictates individuals to synchronize their speed

with neighbour mates, and (iii) position centring, which dictates individuals to stay

close to flockmates. Reynolds applied this model to simulate the aesthetics of the flock

choreography in a three dimensional computer generated environment. Before that, the

sociologist Wilson, noticed that individual members of a swarm may profit from the

discoveries and previous experiences of other members during tasks such as food discov-

ery for instance [136]. Putting it in another way, a larger number of swarm members,

increases the chances of locating a rich food source and the social information sharing

among the swarm members offers an additional advantage. It was not until later how-

ever, that Kennedy and Eberhart introduced the term of Particle Swarm Optimization

and their work was the main influence of the basic PSO model [137]. According to this

model, a fitness function exists f : Rn → R which measures the quality of the current

solution. A number S of particles (solutions) is placed randomly inside the hyperspace

in the position x ∈ Rn each having a random velocity vi ∈ Rn The particles move in the

hyperspace and at each step evaluate their position according to the fitness function.
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Each particle in the swarm represents a possible solution. The basic update rule for the

speed is:

vi(t+ 1) = ωvi(t) + c1r1(pi − xi) + c2r2(g − xi)

Where ω is the inertia weight constant, c1 and c2 are the acceleration constants, r1 and

r2 are random numbers, pi is the personal best position of particle i, g is the global best

position among all particles in the swarm, and xi is the current position of particle i.

Moreover, the update rule for the position is:

xi(t+ 1) = xi + vi(t+ 1)

Two key features of this model are that (a) the speed (and therefore the next position)

of each particle is calculated according to the findings of both that particle and the

findings of the rest of the swarm and that (b) the global best solution is communicated

among all particles of the swarm. The reader may notice the obvious similarities PSO

portray to Genetic Algorithms as described in section 8.3. Indeed, they both consider

a fitness function that acts as a criterion for population reproduction and update their

population using randomness. However, PSO does not incorporate genetic operators

such as mutation and gene crossover. Furthermore, PSO retain a kind of memory,

which is essential toward the convergence to an optimal solution.

8.1.2.1 PSO & Neural Network Hybrid Approaches

PSO has been extensively used in combination with various types of ANN for improving

the performance of the resulting system.

Michailidis et al. were the first who managed to successfully merge these two techniques

to create an improved system for intrusion detection [138]. During the training phase

the PSO is executed recursively to train the ANN with each particle in the PSO cor-

responding to the synaptic weights of the ANN. The optimal synaptic weights are fed

to ANN, which is actually responsible for the main part of the classification. The input

layer of the ANN is constructed by the m features that constitute a record in the dataset.

The output layer is comprised of the normal and abnormal classes. The particle with

the optimum adaptation values is searched globally.

A Wavelet Neural Network (WNN) [139] is a feedforward type of ANN. Systems of

this type use a wavelet function on the hidden layer instead of the sigmoid one. The

resulting systems may achieve higher learning speed and avoid the creation of local

minima, therefore this type of NN has been used frequently in intrusion detection. Liu

and Liu ([140], [141]) proposed the utilization of PSO instead of the typical methods
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of weight adjustment (such as the Gradient Descent (GD) algorithm [142]), as it makes

it possible for the solution not to get trapped in local minima. The authors used two

variations of PSO, namely Quantum Particle Swarm Optimization (QPSO) [143] and

Modified Quantum Particle Swarm Optimization (MQPSO) respectively, to train the

WNN.

Ma et al. [144] use both the Conjugate Gradient (CG) algorithm [145] and QPSO for

parameter optimization. The QPSO has a better global searching ability compared to

the CG, thus it is employed in the initial steps of the training to quickly cover a larger

portion of the search space. As the iterations of the algorithm proceed, and before

the solution gets trapped in local minima, CG is utilized to help QPSO escape this

unwanted situation. Moreover, Ma and Liu [146] adopt principles of fuzzy set theory

and integrate them on a WNN based IDS. The hybrid ANN is able to “fuzzily” describe

fault characteristics of a state classified as “abnormal”.

Radial Basis Function Neural Networks (RBF) [147] are probabilistic Neural Network

frequently adopted by classifiers in the field of intrusion detection. An RBF may achieve

classification faster because that process is based on a simpler measure, that of the

distance of the centres of the neurons from the inputs fed to it.

On the negative side, RBF is highly sensitive to certain parameters such as the number

of center and the variance of the RBF, which are generally chosen manually. If the

parameters are not optimal this will have a negative impact on the accuracy of the

resulting classification. Systems such as [148] use PSO for RBF parameters optimization

and achieve better performance than standard RBF. Tian and Liu [149] build upon the

same theme to create a hybrid PSO-ANN system but also introduce an evolutionary

mutation algorithm as an extra step in order to (a) protect PSO from trapping into

local minima, (b) increase the diversity of the population, and (c) expand the scope of

the search.

8.1.2.2 PSO & SVM Approaches

Another technique frequently used in combination with PSO is Support Vector Machines

(SVM) [150], [151]. SVM is based on structural risk minimization of statistical learning

theory and showcases good learning ability and generalization skills when applied to

high dimensional or noisy datasets. These attributes are highly desirable in intrusion

detection. However, one of the major shortcomings of this technique is the difficulty to

determine certain parameters so that the performance of the algorithm becomes optimal.

Wang et al. were among the first who combined PSO and SVM [152]. They used two

different flavours of PSO the Standard Particle Swarm Optimization (SPSO) and Binary
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Particle Swarm Optimization (BPSO) [153] for seeking optimal SVM parameters and for

extracting a subset of the most relevant features, respectively. In a similar way, Ma et

al. [154] propose a combinatorial BPSO-SVM technique where dataset features and the

crucial SVM parameters are represented by each particle position. The choice of SVM

parameters and feature reduction happens simultaneously in one step. The classification

process, which based on SVM, is given the inputs from the previous step, thus it becomes

much more accurate. Hybrid PSO-SVM systems are common in literature [155], [156].

8.1.2.3 PSO & K-Means Approaches

Xiao et al. [157] combined the simplicity of the K-Means algorithm [158] with the PSO

to create a hybrid detection algorithm. According to their algorithm, the data points are

first assigned to K clusters in a random manner, then the centroids are calculated and

the position of each particle is deduced. For each particle, the fitness function evaluates

the position, and if necessary, the Pbest and Gbest values are updated along with the

velocity and position. Finally, the K-Means algorithm runs with the aim to optimize

the new generation of particles. The advantages of this approach is that the algorithm

converges to local optimum with very low probability and has high convergence speed.

8.1.2.4 PSO for Induction of Classification Rules

Guolong et al. explored the efficiency of a novel rule-based IDS based on PSO [159]. In

their approach, each particle represents a rule, and recursively an entire population of

particles is created based on the training dataset. For each of the particles, its fitness

is calculated and the values of Pbest and Gbest, i.e., the velocity and the position values

of that particle are updated. When some criteria are met, the Gbest particle (the most

accurate classifying rule) is inserted into the rule sets and at the same time the training

data covered by this rule is deleted. The authors had to overcome the fact that PSO

cannot be directly applied to network intrusion datasets because the attributes take

distinct values. To overcome this limitation they also proposed a new coding scheme.

Chang et al. [160] followed a similar approach to achieve better detection rates by

incorporating a more accurate fitness function to the system described above.

8.1.3 Ant Colony Clustering

Many ant species exhibit an interesting behaviour concerning the organization of their

nests. By taking a look on the inside of their nests, one may notice that eggs, brood

and food are not randomly scattered. On the contrary, they follow a strict organization
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into piles of homogeneous objects. Moreover, if for example an external force would

cause turmoil to the nest, then the sum of the ants would start reconstructing these

piles rapidly. This behaviour is achieved while each ant appears to work autonomously

without receiving any orders by ants placed higher in the hierarchy. Based on these

observations mathematical models have been constructed to simulate the clustering and

sorting behaviour of real-life ants. Deneubourg et al. constructed the basic model to

describe this behaviour and applied the result in robotics [161]. According to their

model, ant-like robots without communication abilities, hierarchical organization or any

global mapping of their environment, move randomly on a two dimensional space and

pick up the objects that are located in the less dense areas. Being able to carry them

they dispose them in locations where a large number of similar type of object exists.

Thus, the probability of picking up or dropping objects is relevant to two factors: (a)

the density of objects in the immediate neighbourhood, and (b) the similarity of objects.

More specifically, the probability for an unloaded ant-like robot to pick up an object oj

is calculated as:

ppick(oi) = ( k+

k++f
)2

Where f is an estimation of the spaces in the neighbourhood that are occupied by

objects of the same type, and k is a constant. If there is a small number of objects in

the neighbourhood, then f << k+ and ppickup tends to 1, and as a result, the objects

will likely be picked up. On the other hand, the probability for a loaded ant-like robot

to drop the object if that robot is located on an empty cell is calculated as:

pdrop(oi) = ( f
k−+f

)2

In case where many objects are observed in the immediate neighbourhood then f >> k−

and pdrop tends to 1, which in turn means that the object will most likely be dropped.

The model assumes that each ant-like robot has a short term memory of m steps that

records what is met in each of the last m time steps. Since the robot moves randomly

in the search space, this sampling provides an estimation of the type of objects that

exist in the immediate neighbourhood. For example, for a memory of 5 steps at time t

the memory string could have been “ AA B” indicating that the robot met 2 objects of

type A and 1 object of type B. Thus fA = 2
5 and fB = 1

5 . Lumer and Faieta generalized

the aforementioned model for clustering multidimensional datasets [162]. The algorithm

scatters the multidimensional records of the dataset in a theoretical two dimensional

grid. At each iteration of the algorithm the elements are rearranged in such a way so

that similar elements are grouped together to form compact clusters (ideally one for each

class in the dataset). According to the LF model, the probability of picking an element

i, is defined as:
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Ppick = ( kp

kp+f(i))2

Where kp is a constant and fi is the local estimation of the density of elements in a small

surrounding area defined as a square of d nodes. Likewise, the probability of dropping

a carried item is calculated by:

Pdrop =

2f(i) if f(i) < kd

1 otherwise

The density dependent function f(i) for an element i, at a particular grid location, is

defined as:

f(i) =


1
d2

∑
j

1−d(i,j)
a if f(i) < kd

0 otherwise

In the expression above, d(i, j) measures the dissimilarity between all elements in the

local area that surrounds node i and a scales the dissimilarities. Since the elements are

vectors, d measures dissimilarities by calculating the Euclidean distance between the

elements in nodes i and j. The normalizing term d2 equals the total number of sites in

the local area of interest, thus f(i) may only take its maximum value if all the neigh-

bourhood is occupied by identical elements. The algorithm described above can lead to

the construction of clusters of similar objects from an initial randomly scattered state.

Figure 8.2 visually depicts this process. This achievement is of paramount importance

for any IDS. Based on the assumption that intrusive activity happens scarcely than

legitimate one, datasets that contain low level network traffic can be analysed in order

to form clusters that represent different types of attacks or normal activity respectively.

The LF algorithm and subsequent variations of it were also utilized with great success in

a number of other applications such as text document classification [163] to name one.

Recall that this section focuses solely on the application of this family of algorithms in

intrusion detection, neglecting the rest of the potential applications.

8.1.3.1 ACC Approaches

Ramos and Abraham were two of the first researchers who attempted to introduce the

LF algorithm described above into the intrusion detection realm [164]. In this case,

instead of having agents exploring the terrain randomly, they suggested on relying on

pheromone traces to guide the agents in the grid. Moreover, the computation of average

object similarities, which is dictated by the LF algorithm, is avoided since it is blind
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Figure 8.2: The Arrangement of Data into Four Classes After (a)0 (b)10,000 (c)50,000
and (d)130,000 Iterations

to the actual number of objects present in a given neighbourhood. According to the

authors, this strategy (a) allows ants to find clusters of objects in an adaptive way, (b)

eliminates the need of short term memory of the agents, thus making the algorithm less

resource demanding, (c) it accelerates the algorithm into finding optimal solutions since

the ants tend to focus on areas of higher interest.

Tsang and Kwong noticed that data used in the cases of intrusion detection analysis,

typically, have large volume and high number of dimensions, [165],[166]. The original

LF algorithm suffers from the fact that (a) many homogeneous clusters are formed and

thus it is difficult to be merged when they are spatially separated into a large search

space, (b) the density of similarity measures, favours cluster formation in locally dense

regions but discriminates dissimilar objects intensively. In other words, elements of

type A that are located near compact clusters of elements of type B will likely remain

isolated. Under the light of these facts, the authors proposed a variation of the LF

algorithm which combines measurement of local regional entropy and average similarity.

Furthermore, they relied on two different types of pheromones for guiding the ant-like

agents toward clusters (for object deposition) and toward isolated objects (for object

pick up) respectively. Based on this classification algorithm, the authors proposed an

integrated multiagent IDS architecture for industrial control systems later on [167].

8.1.3.2 ACC & SOM Approaches

Feng et al. followed a similar approach to the LF model although in their case the

neighbourhood is perceived as circular area around the ant, and the pick and drop

probabilities are calculated based on non-linear functions [168], [169]. After the initial

clustering step, the labelling of the clusters begins. Finally, live detection is possible by

calculating the a-posteriori probability with the help of the Bayes theorem. This makes

the detection procedure more accurate since it is independent of cluster centres. Later



Chapter 8. Nature Inspired Approaches for Network Intrusion Detection 105

on, Feng et al. [170], fused the algorithm described above with a variation of the Self

Organizing Maps (SOM) [171] neural network model.

Dynamic Self-Organizing Maps (DSOM) [172] was added as an extra step before the

main ant colony clustering process. Rather than placing the input data randomly on a

2-D grid, DSOM is used to represent the input data. As an extra step the ants move

the objects in the output layer of DSOM and normally form clusters. This additional

step increases the efficiency of cluster formation process.

8.1.3.3 ACC & SVM Approaches

Zhang and Feng presented a hybrid framework [173] which combines SVM [151] and ant

colony clustering for increasing the performance of IDS. Typical SVM techniques when

used for clustering in intrusion detection, map the data as points in a multidimensional

space. SVMs create hyperplanes between two classes of objects with the best one being

that with the maximum distance between marginal points of the two classes. The authors

incorporate, active training [174], a technique for decreasing the necessary amount of

training data used to train the SVM. This is a multistep process where, for each iteration,

only some of the training data are chosen and the hyperplane is modified gradually.

During this step, the authors use ant colony clustering as a selection technique of the

data points. The active training algorithm is extended by adding an extra step of cluster

creation around marginal points, and then the selection is made from the data points of

these clusters.

An intrusion detection model based on the combination of SVMs and ant colony clus-

tering can also be found in [175]. In this approach, ACC, has more active role which

is to refine the clusters initially produced with SVMs. The utilized ACC algorithm in

this case is based on the fuzzy ants concept [176]. This algorithm is a variation of the

original LF algorithm, but in this case, ants are allowed to pick up and drop objects to

initially form heaps, each positioned on a single cell. As a second stage of this algorithm

the ants pick up and drop the entire heaps formed in the first stage to construct clusters.

All the approaches discussed here are arranged in chronological order and presented in

figure 8.3. IDS are organized according the SI technique adopted by the system. Arrows

indicate other ML methods that possibly influenced each IDS.
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8.2 Artificial Immune Systems

The Human Immune System (HIS) is a self-organizing, distributed but also lightweight

system that has undergone millennia of evolution to render itself an effective defensive

system against various harmful pathogens, such as bacteria, viruses, and parasites. The

admirable attribute of the HIT is that it is capable of distinguishing pathogens (even ones

that has not encountered before) from self tissues, and then proceed to the appropriate

actions against the intruders. The features of the HIS, by definition, fulfil the design

principles of an IDS, so it is without surprise, that this paradigm has gathered the

attention of the research community. Eventually, the accumulated interest has lead to

the generation of a new research field, namely the Artificial Immune System (AIS).

8.2.1 The Human Immune System

The HIS follows a multilayered, complex structure which includes the adaptive immune

subsystem among others. The way the adaptive (also refereed to as “aquired”) immune

system functions, has been proved the primary source of inspiration for the creation of

AIS. This system is able to adaptively alter itself in such a way that it may distinguish

between a large variety of alien, non-self, elements even in the presence of native, self,

ones. More importantly, it is capable of developing memory to their signature structure

for faster responses in the future.

Among the large variety of the cells in the adaptive immune system, the lymphocytes and

more specifically the T and B cells play a more central role. T lymphocytes are involved

in cell-mediated functions, while B cells are important in the humoral operations of the

immune system. The two coordinate their actions to distinguish self from non-self cells.

Specialized cells, namely the Antigen Presenting Cells (APC) engulf and fragment anti-

gens to smaller, inactive portions, the peptides. Then, they expose these peptides to

their surface, so that T cells (which have receptors) may bind with them. A binding of

this kind is actually of chemical nature and when it occurs a positive match is said to

have taken place. The more compatible the structure of receptors and peptides is, the

larger their affinity is, a metric that dictates the strength of the bond.

Lymphocytes pass through several phases in their lifetime, perhaps the most significant

of which is the negative selection stage. During this process, T cells and B cells that

bind with self cells are killed, so that autoimmunity is prevented. T cells and B cells

which survive the negative selection become mature, and only then are granted access

to the blood stream to start patrolling for pathogens. At this point, the lymphocytes

may be considered mature but still are naive, since on the one hand, they don’t have
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encountered antigens and on the other, they aren’t exposed to certain uncommon self

proteins. The chance for false detection is still high, thus these cells need to be activated

first from multiple sources. Even after activation, the lymphocytes still pass through

several processes of mutation until they become fully capable. One of these processes

for example, is somatic hypermutation, during which, B cells mutate with great pace to

produce new versions of themselves that possess differentiated receptor structures. The

cells become able to match to a large variety of antigens. In this way, the immune system

is able to protect against unseen or dynamically changing pathogens (like viruses). When

B cells and T cells are activated a portion of that population will mutate to become

memory cells. These cells play the role of a database of effective B and T lymphocytes.

Upon every new encounter with a previously seen antigen, the appropriate memory cells

are activated. In this way, subsequent exposures to a known antigen produce a timely

response.

8.2.2 Artificial Immune System Models for Intrusion Detection

As already pointed out, the HIS is a highly complex system that involves a plethora

of different functions. Judging by the works in literature we can conclude that it is

only specific functions of the entire immune response have been adopted and led the

researchers in creating a digital analogy. The most important of such can be organized

into:

• Idiotypic Network Theory

• Negative Selection

• Clonal Selection

• Danger Theory

8.2.3 Idiotypic Network Theory

This theory assumes that antigens are primarily detected from an idiotypic network of

interconnected B cells. These cells both stimulate and suppress each other in certain

ways that lead to the stabilization of the network.

8.2.4 Negative Selection

Models of this type are inspired by the negative selection process that undergoes in

the thymus during the maturization of the lemphocytes. The receptors of T cells are
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constructed through a random rearrangement of their structure, during a process which

may result in new receptors matching both antigens and self proteins. With negative

selection however only the T cells that do not bind to self are permited to exit the

thymus and enter the bloodstream. In essence, negative selection is the mechanism that

gives the immune system the ability to detect antigens, while maintaining tolerance to

the body’s own proteins.

The first attempt to construct an artificial version of the HIS was proposed by [177].

The authors chose to model the negative selection mechanism and used it as the core

of an IDS specialized in the detection of invalid system call sequences and suspicious

file changes. The proposed system required a dataset of normal/self records given as

strings. Then, a process of hypermutation, would initiate during which a new set of

random strings would be generated from recombining parts of the existing ones, on

a binary level. That step produced a large population strings to be added to a set

of detector candidates. The detector strings matching one in the existing normal/self

strings would immediately be removed from the detector pool. In the detection phase,

if a new record matching one of the detector strings, would appear, an alert would be

raised. Essentially, Forrest [177] algorithm consists from 3 discrete steps: (a) recognizing

what is perceived as normal, (b) generating possible instances of anomalous activity, and

(c) monitoring for anomalies by trying to match the instances of the previous step with

the test instances.

The same system was later on extended with emulation of the possible states or con-

ditions, a lymphocyte may go thorough in its lifetime, i.e., immature, naive, activated,

memory or dead. This contributed to a faster elimination of self-matching detector

strings and rendered the system more adaptive to slight changes on the structure of

normal data.

Finally, Williams et al. [178] added a maturation mechanism in an effort to expand the

space of the non-self antibodies, thus achieving more efficient detection rates.

8.2.5 Clonal Selection

The Clonal Selection Theory provisions that only the lemphocytes which systematically

recognize antigens are reproduced and proliferate. Being close to the principles of that

theory as well as the foundations of evolution and natural selection, the basic axes of

such models are: (a) new detectors are clones of their parents (thus maintaining their

basic characteristics) but are also subjects to mutation (thus incorporating new detection

abilities), (b) the detectors that act against self lympocytes are banned, and in that way,
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are not able to expand their population, (c) the detectors that are matched with antigens

(detect threats) proliferate.

Capitalizing on this theory, Kim and Bentley [179] proposed a double layered IDS.

The first subsystem generates detectors from a library of genes, and forwards them to

the secondary, which executes the actual detection and simultaneously perpetuates the

successful detectors through clonal selection.

8.2.6 Danger Theory

Danger Theory suggests that cells which die abnormally (a condition known as necrosis),

or get injured, release biological alarm signals. A type of cells known as Dendritic Cells

(DC) forward the alarm signal to the adaptive immune system for specialised response.

The DCA algorithm, proposed by [180], places the emulated DCs at the core of their

architecture. In their model, input data correspond to the antigens and different kinds

of signals (pathogen associated molecular, patterns, safe signals, danger signals and

inflammatory cytokines), describe different danger states of the monitored system. The

DCs are able to coordinate the functionality of the immune system by correlating these

signals to the antigens.

Twycross et al. [181] proposed an alternative approach to the negative selection algo-

rithm, that is based on danger theory. Once more, entities described as DCs have a vital

role in this model. During the training phase DCs are fed with normal data and with

randomly generated T-cells. In the case of successful match, the corresponding T cells

are removed. During the testing phase, an alarm is raised when T cells are activated by

antigens.

Dasgupta et al. [182] simulated the functions of T and B cells in further extend. In

their model, T cells were specialised to perform low-level continuous bitwise match, in

an analogy with the real T cells which are capable of recognizing peptides extracted from

real proteins. On the other hand, the B cells performed a high-level match, similarly to

the real B cells which recognize epitopes on the surface of antigens. This model further

simulated suppression of false alarms and negative selection, maturing/activating of the

cells, clonal selection and somatic hypermutation of mature T cells and B cells.

8.3 Evolutionary Computation

Evolution is the natural process of alternation in the inherited characteristics of orga-

nizations over the course of several generations, so that these organisms become better
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adapted to their environments. Charles Darwin [183] formulated the theory of evolution

through the process of natural selection. Evolution by natural selection makes three

assumptions about its population:

• More offspring are produced than can possibly survive.

• The characteristics of individuals vary in a population, leading to different rates

of survival and reproduction.

• Differences among individuals are inheritable.

The least fit members are statistically the ones that become extinct the first, thus grad-

ually leaving a population dominated by the members which are better adapted to their

environment and posses those characteristics that can ensure their survival. By repro-

duction these characteristics are inherited and possibly combined, leading to descendant

with even more of these desirable characteristics. Natural selection, perpetuates and

increases desirable features over a population and is the sole driving force of adapta-

tion. However, it is not the only cause of evolution with two others being the random

mutation and genetic drift.

Approaches that fall into the family of Evolutionary Computation (EC) are Evolutionary

Programming (EP), Genetic Algorithms (GA), Genetic Programming (GP). While some

differences, regarding implementation details may exist, conceptually they are nearly

identical. Such techniques rely on procedures that simulate the natural processes of

reproduction, mutation, recombination, natural selection and survival of the fittest.

Typically, candidate solutions, play the role of individuals in a population, and a fitness

function dictates whether these individuals will act as a basis for the creation of better

solutions.

The partial solutions are usually represented as tree structures and with each generation

applying mainly two actions on them:

• Crossover - is applied on individuals by switching one of its nodes with another

node from another individual in the population.

• Mutation - is applied on individuals by altering a node.

Except for these operators, many other variations have been proposed for improving

detection rate specifically in the intrusion detection realm. Among them, seeding and

deletion are two emerging operators that have been applied with success.
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• Seeding [184] is a method for dynamically generating new individuals fast, and

usually used to initialize the first population.

• Deletion [184] helps in maintaining the size of a population constant by removing

the correct individuals after the generation of new ones. In traditional EC, the less

fit individuals are replaced blindly. However, this approach may not be appropriate

for multimodal, unequally distributed datasets such as the ones met in intrusion

detection problems. In such datasets, rules that cover normal class will have a

higher fitness than others, thus rules for the normal class have much lower chances

to be deleted compared to ones for other classes. By integrating class distribution

into the deletion operator contributes to the better handling of minority classes.

8.3.1 GA & Neural Networks

Evolutionary computation has been applied to ANN for automatic design of the net-

work. Typically, deciding an optimal network structure is one of the bottlenecks of

ANN. The experimental results usually indicate that the hybrid solutions outperform

the conventional approaches. In schemes such as [185], GA were employed for discover-

ing an optimal feature set and to learn the RBF network parameters such as the basis

function, the hidden neurons, and the training epochs.

The IDS presented in [186], [187] uses ANN and Fuzzy logic to detect threats, but utilizes

GA to generate all nodes for the network.

8.3.2 GA & Clustering

The authors in [188] capitalise on the Unsupervised Niche Clustering (UNC) a clustering

algorithm that combines GA with a niching strategy. More specifically, the GA locates

the clusters using a robust density fitness function, while the niching technique creates

and maintains the candidate clusters. UNC is less prone to finding suboptimal solutions

than traditional techniques.

Similarly, [189] used the K-means clusterer to locate possible cluster centres, and in a

second step, GA is used to optimize the result by refining the cluster centres.

The authors in [190] employed GA to find the value of the most important parameter

of K-means algorithm which is the number of clusters.
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8.4 Conclusions

According to our study, the majority of the IDS that make use of ACO, utilize this

mechanism for post intrusion procedures. More specifically, most approaches employ

ACO for tracing the source of an intrusion and in some cases even responding to that

intrusion at its source [191], [192], [193], [194], [195]. However, these systems do not fall

within the scope of this work because they use the ACO paradigm for response rather

than detection.

Very few proposals recognized the potential of ACO in the improvement of the classi-

fication process. Most of these apply ACO for classification rules extraction and all of

them rely on a modification of the Ant-Miner algorithm, which uses the pheromone con-

cept for extracting good quality classification rules. Generally, the Ant-Miner algorithm

was originally tested on datasets with distinct record values and it is not optimized for

datasets with continuous attributes such as the ones used for intrusion detection.

PSO in intrusion detection is rarely used as the exclusive method for classification. The

majority of the relative research treats this technique as a supplementary step to some

other machine learning classifier which in turn conducts the main part of the detection.

One basic point to be taken into account is that the use of PSO has significantly boosted

the performance of all the machine learning techniques in which it was applied. It is

safe to say that the use of PSO into an existing machine learning based IDS is expected

to enhance the system’s DR accuracy by a factor of at least 3%. Unfortunately, with

the incorporation of multiple techniques the computation requirements are expected to

increase.

Interestingly, most ACC methods, rely solely on an ACC algorithm for the classification

process, and to the best of our understanding the true potential of ACC methods is

yet unexplored. From the presented works one can notice ACC based detectors achieve

some of the best results for the R2L class among all machine learning approaches. Ad-

ditionally, it performs extremely well for Normal class (99.1% on average).

A great amount of work uses GA in combination with other approaches (more frequently

ANN) as an auxiliary method for calculating sensitive parameters.

Most researchers have confirmed the positive role, mutation has played in the process

for searching the optimal. However, different opinions about crossover in multimodal

problems where the population contains niches.

Conclusively, the advantages nature inspired approaches possess over traditional machine

learning and other soft computing techniques render them good candidates for IDS. The

strong points of nature inspired approaches can be summarised as:
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• They can achieve high degree of parallelism with little effort and changes to their

basic concepts.

• They have the potential of achieving better detection rates as they are able to

avoid falling into local minima/maxima.

• They can adapt fast, to changes in conditions regarding both the normal and

anomalous data instances.

Despite the considerable adoption of nature inspired computation tactics in the intru-

sion detection problem, some open issues remain. Evolutionary approaches favour the

frequently occurring instances. In particular, individuals that represent the frequently

occurring data instances are more likely to survive during the evolution steps, even if

they are less fit than others [184]. Unfortunately, in intrusion detection datasets, the

data distribution is expected to be highly unbalanced, with the attack data being the

minority, and with some attack classes being an order of magnitude smaller than the

rest.

The efficiency of the majority of the evolutionary algorithms depends upon the manual

setting of numerous parameters including the termination after a maximum number of

generations. Such parameters can only be decided empirically, something which renders

the entire process error prone. The absence of an automatic stopping criterion, in par-

ticular, may undermine the process of discovery of the global optimum. An even worse

situation occurs with the ACC algorithms which have even more parameters requiring

custom fine-tuning.

Although the appealing metaphor of AIS has ignited a significant amount of work by

the research community, there still seem to be hurdles preventing such approaches from

being applied to real world problems. The most important one is its efficiency on the

high dimensional data. In further detail, the majority of NS approaches rely on the

greedy, random generation of non-self patterns, to be used as signatures for matching

intrusions. Obviously, this scales bad especially, in high volume, high dimensional data

such as the ones usually handled in intrusion detection problems.

Finally, it has been found that PSO besides its simplicity and speed it has a tendency

to converge to a suboptimal solution on the early stages of its execution and naturally

it performs poorly when used as the core detection method on an IDS. Further research

is required to alleviate this behaviour.



Chapter 9

AWID: A Dataset for Wireless

Intrusion Detection

In the field of network intrusion detection, the development of anomaly based IDS is

constantly in the scope of researchers due to its promising characteristics, with the recog-

nition of unknown threats being viewed as the “golden goose”. However, the application

of such systems as part of a real-life protection mechanisms is hindered, as the major-

ity of such systems struggle with inaccurate predictions percentages and unsatisfactory

performance.

The existence of trustworthy datasets that will not only act as a type of virtual instructor

for the IDS, but also a reliable benchmark is considered of paramount importance,

especially during the early stages of IDS development. Yet, in practice the available

choices are not only limited but also of poor quality. Due to the sensitivity of their

content many datasets created for industrial needs are never made available to the

public, instead, they remain as a corporate secret. As for the publicly available ones,

in some cases, their contents are heavily tampered by their creators (e.g., in order to

become anonymized), while in other cases, they are outdated or may even contain data

that do not correspond to realistic conditions.

In this chapter, we briefly describe the most common datasets used in the field of in-

trusion detection. We attempt to highlight the inefficiencies of the most popular one,

namely the KDD’99, as well as the reasons why this particular dataset falls short when

being used as a benchmark for wireless intrusion detection. In the process, we introduce

our custom-tailored dataset, specifically targeting the wireless realm, namely the Aegean

Wireless Intrusion Dataset (AWID) and provide details about several of its aspects. To

the best of our knowledge this is the first attempt to release a security relevant, dataset

specifically targeting any kind of wireless technology.
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9.1 The Importance of Datasets in Anomaly Intrusion De-

tection

9.1.1 What is a Dataset

A dataset is typically a collection of information instances, frequently refereed to as

records, vectors, observations, samples, events, or entities. Each of these instances

contains a set of attributes which can be of different types such as nominal, numerical,

textual or even binary. Attributes may be of the same type or more frequently of different

types. Typically, each one of the instances is associated with a label to denote its class.

In intrusion detection the label indicates whether that record is a normal or an anomalous

one and in most cases the attributes of that record correspond to a certain aspect of a

network connection, a field of a packet header, a column of a log file generated by the

OS or some part of a user executed sequence of commands.

9.1.2 Datasets in Supervised Anomaly Detection

As explained in 7 anomaly based intrusion detection approaches may fall into either

one of the two large families of intrusion detection techniques, namely the supervised

and the unsupervised one. Detectors of the first category rely on the existence of pre-

labelled data to build their predictive models for normal and anomalous classes during an

early training phase. Newly fed data instances are evaluated against this pre-constructed

model, in deployment phase, so that they are categorized in normal or one of the intrusive

classes.

It is straightforward, that supervised learning algorithms not only require the existence

of such a dataset but more importantly their efficiency depends on the quality of that

dataset. In other words, algorithms of this kind, will perform poorly if trained wrongly.

In ideal conditions, the terms described in the dataset during the training step should

be as close as possible to the ones faced in the deployment environment. However, with

the intrusive traffic being unpredictable, a subject to fast evolution and altering, one

can hope that trained cases are both abstract and variate.

9.1.3 Datasets in Unsupervised Anomaly Detection

Unsupervised approaches do not require a training phase so a dataset may seem as a

redundant asset. Yet, even this kind of systems is imperative to be evaluated against
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some sort of pre-labelled set of data to estimate their performance (both prediction and

time wise) before their deployment.

9.1.4 Evaluation Metrics Used on Datasets

Usually, a dataset is used as a benchmark for estimating the effectiveness of an IDS

according to its ability to provide accurate classification results. The four possible

outcomes of the detection process are:

• True negatives signify the correct classifications of the IDS regarding instances of

the normal class

• True positives refer to the amount of records successfully recognized as attacks

• False positives refer to false alarm events, i.e., normal records which are wrongly

perceived as attacks

• False negatives refers to the amount of intrusive events that went undetected by

the IDS

Based on the results described above, 6 more complex metrics can describe the perfor-

mance of an IDSs from different angles. The definition of each of most commonly used

evaluation metrics is as follows:

• True Negative Rate (TNR) - TN
TN+FP

• True Positive Rate (TPR) or Detection Rate (DR) - TP
TP+FN

• False Positive Rate (FPR) or False Alarm Rate (FAR) - FP
TN+FP

• False Negative Rate (FNR)- FN
TP+FN

• Accuracy - TN+TP
TN+TP+FN+FP

• Precision - TP
TP+FP

Another important performance metric is the Receiver Operating Characteristic (ROC)

which can be defined as DRAVG
FAR . It is usually used to compare performance of of the

same systems when different parameters are applied to it or the performance of different

systems.
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9.2 Datasets for Intrusion Detection

9.2.1 DARPA 2000

A DARPA evaluation project [196] contributed a scenario specific dataset in the year

2000. This dataset consists of 3 subsets that correspond to specific attack scenarios,

namely, the LLDoS 1.0, the LLDoS 2.0, and the Windows NT attack scenario. More

specifically:

• LLDoS 1.0 includes a distributed denial of service attack unleashed by hypothetical

a novice user. The scenario is executed over multiple sessions, grouped into 5 attack

stages, over the course of which the attacker (a) probes the victim network, (b)

gains access to a host by exploiting a specific vulnerability, (c) installs a trojan

(mstream DDoS), and finally (d) launches the DDoS attack against an off site

server from the compromised host.

• The LLDoS 2.0 scenario is similar to the LLDoS 1, yet more challenging from

intrusion detection perspective, since the execution methodology of the attack is

somehow more stealthy.

• Windows NT Attack scenario contains traces of data from that run of one day’s

mixed normal and intrusive traffic on an NT machine.

9.2.2 CAIDA DDoS Attack 2007

The CAIDA dataset [197] contains approximately one hour of traffic traces from a real

DDoS attack that occurred in 2007. The entire set of records is given as a set of

multiple files, each 5-minute in duration. All files are in pcap format, which can be read

and analysed by tools such as Wireshark. The total size of the dataset is 21 GB (or 5.3

GB compressed). Non-attack traffic has been removed as much as possible leaving just

the attack traffic, as well as the corresponding responses to the attack. The traces in

this dataset are anonymized and the payload has been removed from all packets.

9.2.3 UNIBS-2009

The UNIBS-2009 [198] dataset contains traces which were collected from the network of

the University of Brescia over three consecutive business days. The traffic was captured

from the faculty’s router with the use of the Tcpdump tool. The resulting raw data

spans in 27GB disk size approximately, and it is constituted of primarily TCP and
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UDP traffic. More specifically the traffic flows include Web (HTTP and HTTPS), Mail

(POP3, IMAP4, SMTP and their SSL variants), Skype, traffic generated by Peer-to-

Peer applications, such as BitTorrent and Edonkey, as well as other protocols (FTP,

SSH, and MSN). The records were anonymized and stripped from their payload, in a

second step for preserving the privacy of the users. The resulting traces come with a

log file which indicates for each flow (a) the transport port numbers, (b) the outcome of

the DPI analysis (by considering 200B of data for each packet, and signature patterns

as provided by l7 filter), the application name that generated the flow, (as returned by

GT).

9.2.4 CCTF-DefCon10

The CCTF-DefCon10 [199] dataset was prepared by the Shmoo Group. It was gathered

during a capture-the-flag style penetration testing competition during which teams of

hackers assume the the roles of the attacker and the defender interchangeably. The

dataset has been stripped off its normal traffic traces leaving only the intrusive ones.

9.2.5 ISCX Datasets

The ISCX dataset [200] is built around the concept of intrusions specific profiles. A

profile is fundamentally an abstract representation of certain features and events on the

network. Its purpose is to facilitate the simulation and reproduction of certain behaviour

as monitored through the operation of a real-life network. The profiles are subsequently

used by agents to generate analogous events on the network which include anomalous

as well as normal HTTP, SMTP, SSH, IMAP, POP3 and FTP traffic.

9.2.6 Android Genome Project Dataset

This dataset is a product of the Android Genome Project [201, 202] and contains of

more than 1,200 malware applications, collected over a more than a year period of time

(2010-2011). The contained samples cover the majority of the existing (at that time)

Android malware classes. The creators of the dataset also characterized each sample

with respect to their installation method, activation mechanism, the type of payload as

well other aspects.
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9.2.7 The Case of KDD99

The KDD’99 [203] dataset is considered as the golden standard in intrusion detection.

Partially due to its transparent nature and in part due to the fact that it has been

openly offered, it has become the most widely used benchmark in the field of network

intrusion detection. The KDD’99 dataset was initially compiled for the needs of The

Third International Knowledge Discovery and Data Mining Tools Competition, which

was held along with the The Fifth International Conference on Knowledge Discovery

and Data Mining. The objective of the competition was to develop a network intrusion

classifier, capable of discriminating between intrusive and normal connections.

The dataset includes a variety of traces taken from a simulated a military network envi-

ronment consisting of 3 victim machines running different operating systems. Another 3

machines were used inject background normal traffic that approximates the traffic profile

of a real military network. A final node that acted as a monitor was placed next to the

network’s router and stored all traffic using the TCP dump format. The total simulated

duration of the experiment was seven weeks.

9.2.7.1 Characteristics

Each record in KDD’99 corresponds to a connection between two hosts in the network

and is described by 41 attributes (38 of which take continuous or discrete numerical

values and 3 are categorical attributes). The dataset is comprised of two subsets, namely

the training and testing one. The training set contains a total of 22 attack types and

an additional number of 15 attack are solely contained in the test subset and consists

of approximately 5,000,000 records. Although the records are labelled per attack type,

each one of these can be further organised into of 4 broader attack classes, namely,

denial-of-service, remote-to-local, user-to-root, and probe. In more detail:

• Denial of Service (DoS): In this class of attacks, the aggressor attempts to suppress

the normal operation of system thus preventing valid clients from using the service.

Examples of attacks included in the KDD’99 that fall into this category are the

Smurf and SYN Flooding attacks.

• Remote to Local (R2L): In this case, the attackers attempt to gain access to a

remote host without having a valid user account. An example of such attack is

password cracking by brute force.

• User to Root (U2R): This class includes attacks where a misbehaving user has

initially valid access to a low-privileged account but attempts to gain access to



Chapter 9. AWID: A Dataset for Wireless Intrusion Detection 121

a higher-privileged account frequently the superuser. Buffer overflow attacks fall

into this category.

• Probe: This class contains attacks that first expose then collect information about

a specific client. An example of probe attacks is port scanning.

The number of records of each of these classes in full KDD’99 and the reduced versions

of the datasets respectfully, is given in table 9.1.

Table 9.1: Number of Records Per Class in Various Types of the KDD’99 Dataset

Dataset DoS Probe U2R R2L Normal Total

Full KDD’99 3883370 41102 52 1126 972780 4898430

10% Reduced 391458 4107 52 1126 97277 494020

Table 9.2: Number of Records per Attack and the Corresponding Classes in the 10%
Reduced KDD’99 Dataset

Attack Samples Category

smurf 280790 dos
neptune 107201 dos

back 2203 dos
teardrop 979 dos

pod 264 dos
land 21 dos
satan 1589 probe

ipsweep 1247 probe
portsweep 1040 probe

nmap 231 probe
warezclient 1020 r2l

guess passwd 53 r2l
warezmaster 20 r2l

imap 12 r2l
ftp write 8 r2l
multihop 7 r2l

phf 4 r2l
spy 2 r2l

buffer overflow 30 u2r
rootkit 10 u2r

loadmodule 9 u2r
perl 3 u2r

normal 97277 normal

9.2.7.2 Critique

Due to its wide adoption by the research community the KDD’99 has been analysed

extensively [204], [205], [206] but has been the center of critique [207], [208].
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It is noticed that the vast majority of machine learning algorithms trained with the

KDD’99 performed poorly against the test version of the dataset, especially for the U2R

and R2L classes. Actually, even after 15 years from the dataset’s release, there is a

surprisingly low number of approaches in literature, exhibiting satisfactory performance

levels.

The organization of attacks included in KDD’99 follows an effect-centric approach which

is primarily adopted by the corresponding taxonomies found in literature. While such

approaches are good for academic purposes they are proven to be inefficient when it

comes to intrusion detection. Hence, 2 attacks that fall into the same class may have so

drastically diverse execution methodologies, that it might be impossible to identify the

similarities in their traffic patterns. For example, the DoS class, includes attacks against

the protocol stack, against applications as well as the system process table, all of which

have practically nothing in common in matters of execution besides their effect. It is

apparent that this taxonomy does not serve the intrusion detection process in the best

way possible.

Another point that has raised objections is the unrealistic distribution of normal versus

intrusive records in the test set, with the later covering over 80% of that particular

scheme. However, unrealistic distributions expand even within the attack classes them-

selves, with the DoS class being the dominant, even though, experience has shown that

in real life Probe attacks are by far the most common attack in computer networks.

What is more troubling is that, in their majority, U2R and R2L classes contained in the

test subset, are comprised primarily by attacks not seen before in the training version

of the dataset. This in combination with the fact that these two attack classes are

contained is smaller percentages in the dataset gives a sound justification of their poor

prediction levels.

Another discussed deficiency is the large number of noise (or repeated) records it con-

tains. Theoretically, this forces the learning algorithms to be biased towards the more

frequent records, thus preventing them from efficiently modelling the infrequent ones.

As a final word of notice we should add, that as the nature of attacks and even the

normal traffic changes dynamically over time so should the dataset. The systems that

are responsible for generating the background traffic in KDD’99 are by today’s standards

obsolete and by all means the contained attacks are no longer effective.
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9.3 The Need for a Contemporary Wireless Intrusion De-

tection Testbed

The inefficiencies of the existing datasets for intrusion detection led us to formulate 5

major principles that a dataset in the field of intrusion detection should follow. In this

way the dataset may not only pose as a trustworthy benchmark but also manage not to

impede the intrusion detection process.

• Area Specific - Different domains may have drastically diverse behavioural profiles.

Distinct evaluational territories, impose new challenges to classifiers. Naturally,

the effectiveness of these systems is heavily influenced by the particularities of the

domain it is applied to. It is straightforward that a dataset must clearly state the

sector it refers to.

• Realistic Traffic - Both normal and anomalous traffic should be represented as real-

istically as possible. The dataset should effectively describe the normal conditions

on a studied system, including the traces of the attacks, the effect these attacks

have on the system, as well as the valid reactions of the system’s entities to such

situations. In this perspective, artificial traces are expected to have a negative

effect on the consistency of the data and therefore the overall evaluation accuracy

in real life conditions.

• Labelled - A labelled set of records is a mandatory asset during the evaluation

of the detection systems. However, the process of labelling records is a tedious

one and frequently error prone if done manually. Coupling records to one of the

available classes should be done in an automated fashion.

• Integrity - Each record should be complete. The deletion of attributes from records

may result in unexpected implications leading to lower detection rates, particularly

for unknown attacks.

• Satisfactory Size - The amount of information available influences the accuracy of

the detection mechanisms. It is also not uncommon for naive dataset reductions

to happen, introducing that way an additional factor of abnormality.

• Variation - As attacks methods continuously evolve and intruders purposely alter

their methodologies or even invent new penetrations schemes a large number of

different attack classes, attack types and variants exists for virtually all environ-

ments. A dataset for intrusion detection should always strive to be as complete as

possible.
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• Freshness - This complements the aspect of variation. A dataset should be the

subject of continuous update.

9.4 Introducing AWID

9.4.1 Setup & Method of Data Collection

The goal was to create a dataset that would contain realistic normal and attack traffic.

To that end we choose not emulate traffic using the respective tools, nor reconstruct an

artificial network but to rely on an existing SOHO infrastructure. This network already

included a variety of mobile and stationary STAs, ranging from smartphones and tablets

to laptops and desktops PCs. Following pre-compiled scenarios we introduced, at dis-

crete times and for pre-specified durations, a single attacking node that was unleashing

a set of attacks.

In further detail, the valid network, with ESSID “AegeanSecLab”, consisted of 1 desktop

machine, 2 laptops, 2 smartphones, 1 tablet and 1 smart TV. The position of the desktop

machine and smart TV remained static throughout the course of all the experiments,

for all scenarios. The smartphone devices displayed high mobility, i.e., they frequently

changed position inside the facilities of the lab and joined/left the network numerous

times throughout the course of the experiments. Finally, the laptop machines were semi-

static, i.e., they rarely changed their position. Figure 9.1 illustrates the blueprints of the

lab and the relative positions of the nodes inside the its facilities throughout the course

of the dataset collection.

Attacker

Monitor Node

Client 6

Client 10

Client 5
Client 2

Client 4

Client 1

Client 8

Client 3

Client 9

Client 7

Figure 9.1: Lab Blueprints
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The network was covered by a single AP, which was a Netgear N150 WNR1000 v3 device

(Firmware Version V1.0.2.54 60.0.82), protected by WEP encryption (which nowadays

is considered obsolete), supporting up to 54Mbps transfer rates. The services running

on the client that were responsible for the normal traffic generation were: web browsing,

e-mail messaging, music and video streaming, video conferencing, and file downloading.

A single node was responsible for introducing attack traffic to the network. The attacking

node, had an Acer Aspire 5750G laptop, running Kali Linux 1.0.6 64 bit, at her disposal.

The laptop was equipped with an D-Link DWA-125 card set in promiscuous mode for

injecting packets, as well as a Linksys WUSB54GC card for connecting to the network.

Depending on the attack scenario, the aggressor had to change her MAC address. For

the attack execution various tools were used, including the Aircrack-ng suite, the MDK3

tool, the Metasploit framework, as well as custom made ones developed in C language

(with the aid of the Lorcon2 library). The intruder was acting outside the perimeter of

the facilities of the lab, changing her position in a random fashion.

A separate device played the role of the network monitor. This node was placed within

the network premises, but was never associated with it or any other network in the

vicinity (and therefore it was not probing). The monitor node was a desktop machine,

running Linux Debian 7.3, equipped with a Samsung 840 series SSD hard drive capable

of writing 130 MB/s and an Alpha AWUS036H card, set in promiscuous mode. The

Tshark application (which is the terminal version of the Wireshark) was installed on that

node and was used for dumping the captured traffic into several pcap files of smaller

size. Each one of those files contained all (not limited to the network of interest) traffic

captured during 1 hour. Hence, each capture file has different, unpredictable size.

Note, that the introduction of a wireless monitor node is not 100% reliable since packet

drops and losses are expected to occur naturally. Yet, we highlight the simplicity and

cost efficiency of this method and argue that it is the optimal solution for data capturing

especially in resource constrained environments such as the SOHO ones.

After the completion of the monitoring phase an intermediate step took place, during

which the generated binary files were transformed into text format (CSV files) and later

on the produced ones were subjected to a process of normalization (e.g., to transcode

the hexadecimal values into decimal ones).

Table 9.3 contains a detailed description of the equipment used throughout the course

of the scenarios.
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9.4.2 Types

The AWID dataset is constituted of 2 equal basic sets spread throughout 8 files. The

two sets namely, AWID-CLS, AWID-ATK defer merely on the labelling method. The

first one is labelled according a method-centric classification (4 classes), while the latter

follows a more detailed attack-centric classification (16 classes).

Each of the two sets is comprised of two extended version subsets (namely, AWID-ATK-

F and AWID-CLS-F) and two compact ones (namely, AWID-ATK-R and AWID-CLS-

R). The compact versions are not derivatives of the full ones but were produced with

the same capturing method, over two different, briefer, capturing sessions. The compact

subsets are better suited for the early stages of experimentation, due to their smaller size

which is permissive for analysis by a single machine. On the other hand, the extended

ones have significantly larger size and possibly require big data analysis techniques.

Finally, each of the described subsets has two versions; a training (AWID-ATK-F-Trn,

AWID-CLS-F-Trn, AWID-ATK-R-Trn, AWID-CLS-R-Trn) and a testing one (AWID-

ATK-F-Tst, AWID-CLS-F-Tst, AWID-ATK-R-Tst, AWID-CLS-R-Tst). The training

versions may be used for building models of “normal” and “abnormal” traffic during

the learning phase while the testing ones serve for evaluating the trustworthiness of the

constructed models.

The brief subsets (AWID-ATK-R-Trn and AWID-CLS-R-Trn) contain 1,795,575 records.

Out of that volume 1,633,190 records refer to normal traffic and the rest are records

classified as intrusive (162,385 records). These were generated by monitoring the test

network for 1 hour, with the attack free traffic spanning 35 minutes and the traffic that

contains attacks lasting for 25 minutes. The respective raw (pcap) file occupies 948 MB

on the disk while the corresponding extracted dataset CSV file of 935 MB (or merely 68

MB if compressed with gzip). Likewise, the AWID-ATK-F-Trn and AWID-CLS-F-Trn

contain 37,817,835 records, 1,085,372 of which correspond to some kind of attack. The

records are spread over 96 files each of 1 hour of network monitoring. The accumulated

size of the dataset in text format is approximately 15 GB and it was produced from over

16.3 GB of raw data.

Table 9.4 summarises the main characteristics and file structure of all the AWID sets.

9.4.3 Labelling

The AWID-CLS and AWID-ATK are virtually the same datasets with the sole differenti-

ation on the way these records are labelled. While the AWID-ATK sets have the records
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labelled as either normal or one of the 15 total kinds of attacks, in case of AWID-CLS

set an execution-centric organization of attacks into classes is adopted.

In further detail the AWID-ATK may have records labelled as Normal, Fragmentation,

ARP Injection, Deauthentication, Amok, Authorisation Request, Beacon, Probe Re-

sponse, Evil Twin, Cafe Latte, ChopChop, CTS, RTS, Disassociation, Power Saving,

Probe Request or finally Hirte. On the contrary, the AWID-CLS labels its records as

Normal, Flooding, Injection and Impersonation classes.

Table 9.5 presents the correspondence of each attack type to an attack class.

Table 9.5: Correspondence of Categories and Attacks Contained in the AWID-CLS
and AWID-ATK Versions of Sets

Attack Category

Normal Normal

Fragmentation Injection

ARP Injection Injection

ChopChop Injection

Deauthentication Flooding

Amok Flooding

Authorisation Request Flooding

Beacon Flooding

Probe Response Flooding

CTS Flooding

RTS Flooding

Disassociation Flooding

Power Saving Flooding

Probe Request Flooding

Evil Twin Impersonation

Cafe Latte Impersonation

Hirte Impersonation

9.4.4 Composition

Both AWID-CLS-R-Trn and AWID-ATK-R-Trn subsets were generated by 1 hour uti-

lization of the test network. In our experiments the attack-free traffic lasted 35 minutes

(60% of the time) while the rest 25 minutes (40% of the time) were dedicated to ex-

ploiting vulnerabilities of the test network. During the attack free traffic the users of

the network were conducting ordinary activities such as file transfers, web browsing and

video streaming but for some periods of time the network was dormant. During the
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attack window a single node unleashed a set of 15 unique attacks and multiple varia-

tions of them in a non random way. The attacks were sequentially executed with the

necessary order to achieve a specific task e.g., cracking the network key. In more de-

tail, in the AWID-CLS-R-Trn and AWID-ATK-R-Trn subsets 54.5% of the attacking

period was dedicated to injection attacks, 18.5% to flooding attacks and 26.8% to im-

personation attacks. The AWID-CLS-R-Trn and AWID-ATK-R-Trn subsets include:

Fragmentation and ARP Injection attacks, Deauthentication, Authorisation Request,

Beacon, Probe Response flooding attacks as well as Evil Twin and Cafe Latte imper-

sonation attacks. On the other hand, the AWID-CLS-R-Tst and AWID-ATK-R-Tst

contains additional ones not met in the traiing sets. More specifically the ChopChop,

CTS, RTS, Disassociation, Power Saving, Probe Request and Hirte attacks.

Figure 9.2: Sequence of Attacks in the Compact Training Set

Note that the percentages above refer to time durations and do not correspond to actual

number of records. For instance while flooding attacks occupied 18.5% of the attack

time (or 7.5% of the total experiment time) in the AWID-CLS-R-Trn set, but during

this time 48,484 malicious packets were introduced which may be as high as 29.8% of

the entire attack traffic but is also just 2.7% of the sum of traffic in that set. The type

of attacks included in the training and test versions of the AWID dataset along with the

corresponding normal to attack traffic ratio with respect to time as well as traffic, are

illustrated in figure 9.3 and 9.4. Moreover, the complete sequence of intrusive events,

and their duration through time is illustrated in figure 9.2.

9.4.5 Record Scheme

Packets in AWID are described as vectors of 156 attributes, with the last one always rep-

resenting the attack category (for AWID-CLS-R-Trn, AWID-CLS-R-Tst) or the attack

type (for AWID-ATK-R-Trn and AWID-ATK-R-Tst). The set of attributes is static
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(a) Time Based Composition of the Train-
ing Subset by Class

(b) Traffic Based Composition of the Train-
ing Subset by Class

(c) Time Based Composition of the Train-
ing Subset by Attack

(d) Traffic Based Composition of the Train-
ing Subset by Attack

Figure 9.3: Attack vs. Normal Traffic in the Reduced Training sets

which means that a packet is described by the same number of attributes independently

of its type and subtype. For this reason, a verbose representation of a 802.11 frame

bearing (almost) all possible 802.11 fields was constructed. The values of -1 or “” were

assigned to the fields that do not apply to a specific header type. Note that the actual

data field was considered irrelevant, as its encrypted nature would not lead to the ex-

traction of valuable conclusion and by all means it would effect negatively the detection

process. Therefore, it and was not included in the dataset. Moreover, extremely rare

fields (such as vendor depended ones) or custom tags were also filtered out beforehand.

Each attribute in the records was adopted either by (a) the MAC layer header, e.g., the

Source Address (wlan sa), Initialization Vector (wlan wep iv), the ESSID (wlan mgt ssid),

(b) the Radiotap header e.g., Signal Strength (radiotap dbm antsignal), or finally, (c)

from general frame information such as Packet Number (frame number).

All attributes in the dataset have numeric or nominal values except for the SSID value

which takes string values. Hexadecimal values or fields that represent MAC addresses

were transformed to their corresponding integer values on a preprocessing step. For

example, a typical MAC address corresponds to an integer value of 82468889197.
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(a) Time Based Composition of the Test
Subset by Class

(b) Traffic Based Composition of the Test
Subset by Class

(c) Time Based Composition of the Test
Subset by Attack

(d) Traffic Based Composition of the Test
Subset by Attack

Figure 9.4: Attack vs. Normal Traffic in the Reduced Testing Sets

9.5 Evaluating ML Algorithms Against AWID

We evaluated the compact version of the AWID dataset against several soft computing

algorithms with a twofold objective: on one hand we were interested to ascertain whether

the crafted dataset possesses the qualitative attributes that may benefit the detection

process, and on the other hand we wanted to give pointers towards the approaches that

behave best with the AWID dataset.

9.5.1 Machine Learning Classification

Our experiments were conducted with the Weka framework on an 8-core, Ubuntu 12.04

server, virtual machine with 56 GB RAM, located on the Azure cloud service. The

chosen datasets were AWID-CLS-R-Trn and AWID-CLS-R-Tst for training and testing

purposes respectively. A summary of the results is shown in table 9.6.
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One can notice that the J48 algorithm achieved the best FP, TP rates with the cost of

training speed. In particular, J48 required 3921.68 seconds to construct its model from

the training data, which is significantly longer than any other method. The Random

Forest and OneR achieved the second best TP and FP rate respectively, both an order

of magnitude faster.

What is more interesting is that algorithms such as Adaboost, Hyperpipes, ZeroR which

present TP rate of 0.922 may initially seem satisfactory, yet these number are mislead-

ing. In truth, this illusion is generated by the fact that the portion of normal traffic

greatly outnumbers the abnormal one. Actually, these algorithms do nothing more than

assigning every record to the normal class, thus achieving TP rates equal to the records

of that class. Nevertheless, a closer look at the comparative confusion matrices in 9.7

can verify that these algorithms misclassify all intrusive records.

Regarding the effectiveness of algorithms with respect to separate classes, the normal

class was almost infallibly predicted by the OneR algorithm with 99.99% rate. Naive

Bayes managed to correctly recognize 72.69% of the flooding records. The injection class

was very accurately predicted by the J48 algorithm (99.98%) but records of imperson-

ation class were the toughest ones to recognize with the top performer for the class,

namely Random Tree, being able to correctly classify only 7.5% of these records.

9.6 Comparison

Although, the existing datasets have been proved valuable to the research community,

all of them seem to have failed to meet the standard requirements as outlined in section

9.3. We argue that under this prism, the evaluation results presented by the majority

of the proposed works in literature may exhibit a significant deviation, with respect to

the achieved detection rates, when applied in real world.

For example, the CAIDA dataset is comprised by a limited number of events or attacks.

Some of the traces contained in that dataset are anonymized ones with their payload

maintained, while other traces have their protocol information, destination, and so forth

completely removed. This dataset does not fulfil the requirement for integrity, satisfac-

tory size,

The DEFCON dataset is harvested in the course of a Capture The Flag (CTF) compe-

tition which states that the traffic contained does not correspond to real-world network

traffic.
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The DARPA datasets fail to emulate real traffic and several irregularities among the

attack instances are introduced due to the synthetic approach this dataset was generated.

The gathering of the AWID dataset was motivated by the evident absence of a satisfac-

tory, publicly available dataset that could be used as a trustworthy benchmark. This

lack is even more conspicuous in the wireless realm where not a single dataset specifically

targeting this sector ever existed.

On the contrary, AWID dataset aims for intrusion detection in wireless environments

at the MAC layer solely. It contains attack and normal traffic from the utilization of a

real network. The attacks were unleashed by field experts and were not simulated. The

harvesting of the test network lasted 4 days producing more than 30,000,000 records.

The AWID includes the majority of the fields of a pcap file except for the payload of

each packet is removed along with some other rarely occurring fields. Nevertheless, we

claim that the actual data of the payload is of small significance for MAC layer intrusion

detection. Moreover, the data contained in the payload are normally encrypted and the

inclusion of that field would add tremendous overhead in the dataset. All the versions

of the dataset contain labelled records. The tagging was done off-line with the aid of

automated tools that made use of signatures defined by field experts. An effort was

made to include as many as possible attacks of known and in some cases unimplemented

attacks. In many cases variations of these attacks where included. The AWID is an

ongoing project committed to correct, update and enrich its datasets with the bleeding

edge threats against multiple networks.

A comparison of Datasets frequently used in intrusion detection with respect to the

requirements defined in section 9.3 can be seen in table 9.8

Dataset Area Specific Realistic Labelled Integrity Satisfactory Size Variation Freshness

Darpa X X X X - - -

Caida X - X - X - -

Unibs - X X - X X X

Defcon X - X - X X X

ISCX - - - X X X X

Android Genome X X X X X X X

KDD99 - - X - - X -

AWID X X X X X X X

Table 9.8: Comparison of Datasets Used in Intrusion Detection
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Chapter 10

Extracting Wireless Attack

Signatures

Being in possession of attack signatures is not critical solely in anomaly-based intrusion

detection but also creates a better understanding of the methods ill-motivated entities

follow. This, indirectly, may prove beneficial even for misuse-laden intrusion detection.

The AWID dataset described in chapter 9 contains traffic from the utilization of a real

life wireless 802.11 WEP protected network, and is primarily intended to be used as an

evaluation tool for ML-based IDS. However, the realistic nature of this traffic database

can also function as credible source for extracting valuable conclusions about wireless

attack patterns and to document normal traffic of typical small to medium scale 802.11

wireless networks.

In this chapter, we first attempt to fingerprint the normal traffic contained in the com-

pact version of the AWID dataset. In the process, we formulate pattern signatures for

some of the most common wireless attacks based on observations on the AWID dataset.

To the best of our knowledge this is the first documented attempt to describe the sig-

nature of 802.11 attacks in such depth. Based on these revelations and in combination

with theoretical hypotheses we apply the extracted conclusions to achieve manual fea-

ture reduction on the AWID dataset. Finally, we repeat the experiments discussed in

chapter 9 for validating the legibility of our assumptions.

10.1 Formulating Attack Signatures

As a fact, most attacks have inherent characteristics that attest their presence. The

evidences may be the result of the theoretic foundations of the attack itself or the digital

137
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footprints left by the tools that were used to execute it. A characteristic example is the

the Authentication Request attack: In theory, such attacks can be recognized if one is

monitoring for sudden spikes in the number of Authentication Request frames per time

unit. In practise, this attack is implemented by the MDK3 tool exclusively. During this

mode of execution the tool generates a flood of frames of subtype 0x0b, that all happen

to have their Sequence Number field set with 0. This signature is not correlated with

the attack on a theoretical level but when used in conjunction with the first it may give

a stronger inddication of a Authentication Request flooding attack.

10.1.1 Flooding Attacks

Flooding attacks create a sudden spike of the number of management frames (in their

majority) per time unit. Although this observation it easy to discern some type of

flooding attack from the normal traffic it is not always as straightforward to distinguish

it from other attack types as some may also cause a temporary increase of certain

management frames. As will be made clear in the process, additional hints and traces

usually exist although they are contingent on the specific tools used during each attack.

Generally, there may be certain actions an aggressor can make to masquerade the latter

(i.e., the tool specific traces) but there is very little she can do about the proportional

increase of management frames. This process is imperative for the effectiveness of all

flooding attacks.

Deauthentication Flooding attack is considered one of the most potent DoS attacks in

the wireless realm, yet it is also one of the hardest to accurately identify. During its

course, a burst of Deauthentication frames is generated, however, elevated levels of such

frames may also be tracked in Amok, Dissassociation, Power Saving, Authentication

Request Flooding attacks, as well as in the ARP Injection one, in the case where that

attack fails (for example, when such frames are transmitted by intruders that possess or

impersonate non authenticated MAC addresses). It is important to keep in mind that

only in the case of an actual Deauthentication Flooding attack the corresponding frames

are forged and transmitted by the adversary. In the rest of the cases they are products

of the AP itself as part of a valid response to the attack. As far as the practical aspect of

this attack, Aireplay, which is the de-facto tool for launching Deauthentication flooding

attacks, transmits management frames that have the same Reason Code (0x0007) and

their Sequence Number are out of order.

Figure 10.1a shows the total amount of Deauthentication frames throughout the entire

duration of the reduced training set. Notice that only few timeslots contain Deauthen-

tication frames that have the Reason Code field set to 0x0007. Even so, there are cases
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where Deauthentication frames with the exact same Reason Code do not correspond to a

Deauthentication Flooding attack. For example, the timeframe between seconds 1050 to

1150 contain frames originating from an actual Deauthentication Flooding attack, while

the timeframe between seconds 1400 to 1600 contain Deauthentication frames that are

produced by the AP as a valid response to a ineffectual ARP Injection attempt. Figure

10.1b focuses in this time zone. Notice that the Signal Strength criterion that is applied

as a last resort reveals of the actual Deauthentication Flooding attack. As observed

from the figure, in the first time slot there is a significant percentage of packets that

deviate from a certain threshold of Signal Strength, while in the second time slot this

percentage is kept low.

(a) Deauthentication Management Frames

(b) Zoom on Deauthentication Management Frames During Seconds 950 to 160

Figure 10.1: Patterns of Traffic During Deauthentication Flooding Attack

During an Authentication Request Flooding attack the Authentication frames are ex-

pected to show a significant increase. Naturally, increased numbers of Authentication
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Requests can also be noticed in the Amok as well as the Deauthentication Flooding at-

tacks, but in the case of the Authentication Request Flooding the accumulated volume is

much higher. This attack is mainly launched via the MDK3 tool which always transmits

Authentication frames with a static Listen Interval field (value 0x0000) and the Tagged

Parameters field contain static, fewer in number parameters than usual. Additionally,

the sequence number has always the constant value of 0.

A Beacon Flooding attack causes a vigorous increase in the quantity of Beacon frames.

Typically, the advertised ESSIDs are new and short-lived (i.e., not many Beacon frames

with the same SSID are transmitted) while frequently they have uncanny, randomly

generated, names. An increase in Beacon frames occurs naturally in all impersonation

attacks too, but in such cases the ESSID has the value of a network that already exists in

the vicinity. The MDK3 tool is the only one that offers an implementation of this attack.

Similarly to the Authentication Request Flooding attack, the generated frames have a

Timestamp field of static value (0x0000000000000000). Secondly, the Sequence Number

does not increase and remains 0 for all frames. Finally, the Short Preamble and Short

Slot Time flags are simultaneously set to 0. After observing the beacon frames during

the attack free periods, the frames that possess all the aforementioned characteristics

are practically non existent. Figure 10.2 displays the total number of Beacon frames

in the training set, as well as those Beacon frames in that set that meet the MDK3

signature attributes. Note that even with the use of the first filter alone (blue area) it

is easy to identify the time frame in which a Beacon attack unfolds with high accuracy,

however the use of the second filter (orange area) achieves optimal results.

Figure 10.2: Traffic Pattern During Beacon Flooding Attack

Probe Response Flooding attack results in an outburst of Probe Response frames. An

increase of such frames is also observed during the impersonation assaults but it is

generally much milder. The Metasploit tool has a mode of attack (payload), which allows
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an aggressor to discharge such attacks. Probe response frames crafted with Metasploit

have a totally random sender address i.e., it may not have a valid Organizationally

Unique Identifier (OUI), the Beacon Interval field does not have the usual value (which

is 0.102400) but rather a random one, and the Sequence Number follows an out-of-order

increment.

10.1.2 Injection Attacks

Injection attacks usually cause a deluge of validly encrypted data frames of smaller size.

In ARP Injection attacks the aggressor is inclined to transmit a large number of small

data frames for a significant amount of time, hoping to evoke the appropriate response

from the network. Currently, Aireplay is the preferred tool of hackers for unleashing

attacks of this kind and by analysing the structure of the frames this tool generates, it

is obvious that they have identical IV values, something which is statistically impossible

to occur in such brief timeframes under normal conditions. Additionally, the DS Status

flag is set to 1 which is another indication of an ARP Injection attack.

Figure 10.3 highlights the fact that small sized Data frames may occur under various

conditions not necessarily solely on ARP Injection attacks. However, when seeking for

small sized Data frames that have repeating IVs one may identify ARP Injection attacks

with satisfactory accuracy. The reader should notice time durations between the second

1,400 to the 1,600 and 2,800 to the 3,000 second which refer to ARP Injection attacks.

The first case represents a failed attempt since the amount of Data frames that have

identical IVs is the same as the total amount of Data frames. On the other hand, the

second timeframe corresponds to a successful attack as the number of total small sized

Data frames (i.e., ARP Requests plus ARP Responses) is about three times the amount

of the small sized Data frames with repeating IVs (i.e., ARP Requests injected by the

attacker).

During a Fragmentation Attack the intruder injects a sequence of short, fragmented,

data frames. If successful this process usually does not consume more than one second,

however if not successful the same procedure will be repeated. The Aireplay tool contains

an implementation of this attack and by examining the packets it produces, we notice

that all have a static, invalid value in the Destination Address (ff:ff:ff:ff:ff:ed) field, the

DS status flag is set to 1, the length of the frame is small (but not fixed) and finally the

sequence number is out-of-order. Not surprisingly, the More-Fragments flag is set to 1

and the fragment number field is greater than zero in all (but one) of the fragments in

the chain.
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Figure 10.3: Traffic Pattern During ARP Injection Attack

10.1.3 Impersonation Attacks

Impersonation attacks introduce an additional AP in the neighbourhood broadcasting

Beacon frames that advertise a pre-existing valid network (i.e., that of the victim’s).

The common denominator of all Impersonation Attacks is that the number of Beacon

frames of the victim network is approximately doubled. Quite frequently these attacks

are combined with a short flood of Deauthentication frames as an initial step, so that

the attacker may force the STAs to connect to its own rogue AP.

Typically, attackers rely on the Airbase tool of the Aircrack suite to launch Evil Twin

attacks. As expected, additional Beacon frames are broadcasted but in this case they

have significantly different characteristics. For example, the Timestamp field has a fixed

value (0x0000000000000000) for all the forged beacon frames, and the Tagged Parameters

field contains steadily a different number of parameters.

Figure 10.4 displays the number of Beacon Frames having the ESSID of the victim

network. The reader should notice that there are timeframes during which the amount of

these Beacons is almost doubled. These durations correspond to impersonation attacks,

and this conclusion is verified by the fact that approximately half of these frames possess

intrusive characteristics.

Cafe Latte attacks are more complex in nature. As a type of Impersonation attack, these

attacks will introduce additional Beacon frames, all having the ESSID of the victim

network. As expected, these frames will also bear the same signature characteristics

as the ones transmitted during an Evil Twin attack when the Airbase tool is utilized.

However, Cafe Latte assaults will simultaneously inject encrypted Data frames of small
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Figure 10.4: Traffic Pattern During Evil Twin Attack

size much like an normal injection attack making it harder to clearly distinguish it from

an ARP Injection or Evil Twin attack for instance.

As a final note, in all cases described above the received Signal Strength of all forged

frames (as indicated by the corresponding Radiotap Header field) will probably fall

within a different range of values (usually forged frames have higher Signal Strength)

than that of the validly generated ones. This criterion is not undisputed but when

applied as statistical mean and combined with other factors, it is usually indicative of

an attack.

The attack signatures according to the training set of the AWID dataset can be formu-

lated as following:

• IF (Frame Type == Deauth) AND (Number of Deauth > AV GDeauth)* AND

(Reason Code == 7) AND (Sequence Number Out of Order > AV GSequenceNumber

) AND (Signal Strength ! = AV GSignalStrength) THEN Deauthentication Flooding

• IF (Frame Type == Auth Request) AND (Auth Request > AV GAuthRequest) AND

(Listen Interval == 0) AND (Sequence Number == 0) AND (Timestamp == 0)

THEN Authentication Flooding

• IF (Frame Type == Beacon) AND (Beacon > AV GBeacon) AND (Sequence Num-

ber == 0) AND (Timestamp == 0) THEN Beacon Flooding

• IF (Frame Type == Probe Response) AND (Probe Response>AV GProbeResponse)

AND (SA == “Other”) AND (Beacon Interval ! = 0.102400) AND (Sequence

Number Out of Order > AV GSequenceNumber) THEN Probe Response Flooding
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• IF (Frame Type == Data) AND (DATA > AV GData) AND (Data Size ==

“Small”) AND (Repeated IVs > 0) THEN ARP Injection

• IF (Frame Type == Data) AND (DATA > AV GData) AND (Data Size ==

‘Small”) AND (Destination Address == ff:ff:ff:ff:ff:ed) AND (DS Status Flag ==

1) AND (More Fragments Flag == 1) THEN Fragmentation

• IF (Frame Type == Beacon) AND (Beacon == 2∗AV GBeacon) AND (Timestamp

== 0) AND (ESSID == “Victim”) THEN Evil Twin

• IF (Frame Type == Beacon) AND (Beacon == 2∗AV GBeacon) AND (Timestamp

== 0) AND (ESSID == “Victim”) AND (DATA > AV GData) AND (Data Size

== ‘Small”) AND (Repeated IV > 0) THEN Cafe Latte

10.2 Attribute Selection Based on Empirical Criteria

In ML-based classification the existence of attributes not directly influencing the be-

longing class of a record may have a negative impact on the speed and the predictive

effectiveness of the classifier. Many attribute selection techniques (also referred to as

feature reduction) have been proposed in literature. However, attribute selection in in-

trusion detection may prove a double edged sword: on one hand it may increase speed

by eliminating redundant data and simultaneously improve the detection accuracy, by

wiping out misleading fields. On the other hand, it may remove attributes that are

exclusively related with unseen malignant behaviour (novel attacks) or attributes re-

lated with outliers. Especially in intrusion detection, one does not have the luxury of

overlooking outliers since they are tightly coupled with intrusive behaviour.

In accordance with the revelations of section 10.1 we attempted to manually reduce the

number of fields describing each record in the AWID dataset. After thorough exami-

nation we empirically deduced that only 20 attributes are immediately related to the

attacks contained in the training set. In order to estimate the magnitude of the impact

in the speed and efficiency of the test algorithms, we repeated the experiments described

in 10.1 with the reduced variant of the dataset. The chosen attributes can be seen in

table 10.1.

The results of the evaluation indicate that while there was a small (and in many cases

negligible) increase in the overall accuracy, there was a definite boost in the training

speed of almost all algorithms. More specifically, the shrinkage in training time varied

from 10.75% for the Random Forest algorithm to up to 89.35% for the Adaboost algo-

rithm. The only exception to this rule was the ZeroR algorithm which actually required

more time.
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Table 10.1: The Remaining Attributes After Feature Reduction

Explanation Field
Signal Strength radiotap dbm antsignal
Type of Frame wlan fc type subtype

To or From Distribution System wlan fc ds
Frame is a Fragment wlan fc frag
Destination Address wlan da

Source Address wlan sa
Fragment Number wlan frag
Sequence Number wlan seq

Preamble wlan mgt fixed capabilities preamble
Short Slot Time wlan mgt fixed capabilities short slot time
Listen Interval wlan mgt fixed listen ival

Timestamp wlan mgt fixed timestamp
Beacon wlan mgt fixed beacon

Reason Code wlan mgt fixed reason code
Size of Tagged Parameters wlan mgt tagged all

ESSID wlan mgt ssid
IV wlan wep iv

Extended IV wlan tkip extiv
Data Length data len

Label -

Likewise, we observed a improvement in the classification precision which was of milder

intensity. More specifically, the achieved gain ranged from 0.1% for the Random Forest

algorithm to 4.5% for the Random Tree one. Analytical results can be seen in table

10.3.

Interestingly, only the Naive Bayes algorithm showcased a significant gain in prediction

accuracy of the impersonation attacks. Yet, with 4,419 correctly classified instances out

of 20,079 in total for the class (22%) the achievements are still unsatisfactory. In this

round of experiments the Naive Bayes algorithm actually, presented the lowest FP rate,

the J48 achieved the highest TP rate while Random Forest had the best accuracy for

the Normal class, Naive Bayes for the Flooding and Impersonation classes, and J48 for

the Injection one.

In conclusion, the experimental results confirm that out of the 156 features in the AWID

dataset, 20 have the most important role in predicting malicious traffic. The fact that

not only the prediction accuracy didn’t drop but slightly increased verifies that our

empirical evaluations that led to manual feature reduction were correct.
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Chapter 11

Termid: Robust Prediction of

Spurious Network Traffic

This chapter describes the implementation of a distributed execution strategy of the Ant-

Miner algorithm. Originally proposed by Parpinelli et al. [125], the algorithm applies an

ant colony optimization heuristic to the classification task to discover classification rules.

The algorithm is modified accordingly, and applied to a multicore/cluster environment.

The performance evaluation is conducted against the AWID dataset and the acquired

results show significant improvement with respect to execution time. More interestingly,

this approach seems to indirectly increase the detection accuracy by exploring a larger

portion of the search space, thus extracting more high quality rules.

11.1 Introduction

Anomaly detection is one of the most important applications of data mining. Due to

variate nature of the problem many numerous approaches have been proposed, the most

important of which were analysed in chapter 7. When applied in intrusion detection each

of these approaches has its own limitations and inefficiencies, including low prediction

rates, convergence to suboptimal solutions, poor escalation behaviour as the dataset size

increases, low training speed and incomprehensible (to humans) decision models.

Among these approaches, the discovering of classification rules is a promising one. Es-

sentially, this technique creates a number of grammar rules to define classes in a dataset.

Evolutionary algorithms are frequently employed for rule discovery, but interesting re-

sults are obtained by the application of SI (for further details the reader should refer to

section 8.1) for rules extraction.

148
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Parpinelli, et al. [125] were the first to apply Ant Colony Optimization (ACO) for

extracting classification rules with success. One of the advantages of their proposed

algorithm, Ant-Miner, is that it generates simple and comprehensive rules that can be

reviewed, validated and altered if necessary by humans. That is, comprehensibility is

important in some highly sensitive application scenarios (e.g., security, health) where the

discovered knowledge has to be reviewed by a human expert. What is more, the ACO

nature of the algorithm contributes to its flexibility and robustness arguably surpassing

the traditional approaches, in some datasets. More specifically, their method uses a

heuristic value based on entropy measure. On the downside, the training speed of this

approach is unsatisfactory, being several orders of magnitude higher than traditional

approaches such as the C.45 [209] classifying algorithm for example. This fact alone has

discouraged the application of the Ant-Miner algorithm in intrusion detection.

In this chapter we present a classification rule extraction algorithm based on Ant-Miner.

Our algorithm is appropriate for large datasets such as the ones produced through

monitoring the traffic of large wireless networks for example. The algorithm is extended

and altered in order to be able to run in a highly distributed cluster environments.

We apply our proposed approach in the field of intrusion detection. Through empirical

results obtained from experimental evaluation on AWID and several other datasets, we

prove that our approach produces more accurate and more comprehensive rules than

the ones obtained by the best conventional approaches. Although one can argue that

the distributed nature of the algorithm has high deployment complexity, we juxtapose

that the training phase of the classification engine, after the proposed ameliorations,

is remarkably fast, and due to low requirements of algorithm in memory the overall

financial cost is maintained low.

11.2 Description of the Ant-Miner Algorithm

Ant-Miner is a supervised rule extraction algorithm which combines a measure of entropy

and ACO techniques to complete the classification task of data mining efficiently. In

this approach each classification rule follows the format:

IF{term1 AND term2 AND . . . AND termn} THEN Classi

where each term consists of three parts: attribute atri, operator =, value valj . The

value is constrained to the domain of the respective attribute. The operator is always

the equality, since Ant-Miner supports only nominal values.

The algorithm requires a number of ants to be given as a parameter. Each of these is

responsible for the incremental construction or modification of a single classification rule.
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A generation of ants lasts until every ant has constructed a rule or until a series of ants

has constructed the exact same rule. That is the solution is converging to a specific rule.

The ants construct a rule, die and then the next generation of the same number of ants

takes over and repeats the same procedures. For each generation, the rules constructed

by all ants are maintained on memory and the best of them is chosen to be added to

the ordered list of discovered rules. Then, the cases of the dataset that are covered by

the chosen rule, are removed from the training set. Thus, each subsequent generation

of ants works with a reduced dataset. The generations succeeds one another for as long

as the dataset contains more cases than a user-defined threshold. A high level overview

of the algorithm can be seen in listing 1.

Algorithm 1 Ant Miner

Require: List of Training Instances,
Max Uncovered Cases,
Number of Ants,
Number of Rules Converging

1: Training Set← List of Training Instances
2: Discovered Rules List← {}
3: while Length(Training Set) ≥Max Uncovered Cases do
4: ant = 1 . Index of ants
5: convergence = 1 . Index of the rules converging
6: pheromoneInit( ) . Initialize with the same pheromone
7: repeat
8: Rt ← constructRule() . Incrementally construct a rule by adding one

term at a time
9: Rt ← pruneRule(Rt) . Remove irrelevant terms

10: addToList(Current Generation Rule List, Rt) . Add the rule to a
temporary list

11: Qt ← calculateRuleQuality(Rt) . Calculate the quality of the rule
12: updatePheromone(Rt) . Increase the pheromone on the trails followed by

the ant, decrease on the rest
13: if (Rt == Rt−1) then
14: convergence← convergence+ 1
15: else
16: convergence← 1
17: end if
18: until (ant ≥ Number of Ants)OR(convergence ≥

Number of Rules Converging)
19: Rbest ← chooseBestRule(Current Generation Rule List) . Retrieve the

best quality rule among all ants
20: addToList(Discovered Rule List, Rbest) . Save that rule
21: Covered Cases List← calculateCasesCovered(Rbest) . Get the instances

correctly covered by that rule
22: removeFromList(Training Set, Covered Cases List) . Remove these

instances from the dataset
23: end while
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From the description above it is clear that the main procedures of the algorithm are:

the rule construction, the rule pruning, and the pheromone updating. These three basic

routines will be analysed in the following.

11.2.1 Pheromone Initialization

On each generation of ants all terms τij are associated with the same amount of pheromone,

so that when the first ant starts its search, all paths have the same amount of pheromone,

thus the choice of a term is independent of the pheromone factor. Since each term termij

can be perceived as a segment of a path that can be followed by an ant, the initial amount

of pheromone deposited at each path is:

τij = 1∑a
i=1 bi

where a is the total number of attributes and bi corresponds to the number of possible

values of that attribute.

11.2.2 Selecting Terms

In Ant-Miner each ant starts with an empty rule, and adds one term at a time to

its current partial solution. The rule is extended with new terms until: (a) either all

attributes have been used for rule construction, (b) any new term added would simply

reduce the quality of the rule, by making it cover less cases than a user-defined threshold.

The choice of a term to be added next depends on (a) a heuristic function η, and (b) on

the amount of pheromone associated with that term τ . More specifically, the probability

is given by the equation:

Pij =
ηijτij(t)∑a

i=1 xi
∑bi
j=1(ηijτij(t))

where ηij is the value of a problem-dependent heuristic function for term termij , this

value is based on the entropy of the term and will be analysed in greater extend in the

process, τij is the amount of pheromone associated with the term, a is the total number

of attributes in the dataset, bi is the number of possible values for the ith attribute, and

xi is value indicating whether attribute Ai has been used for the construction of the

current partial rule or not.
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11.2.2.1 Heuristic Function

The heuristic function plays a pivotal role in the selection of the terms to be added to

a candidate rule. In essence, it reflects the amount of entropy associated with a term.

For each termij of the form Ai = Vij the heuristic function is:

ηij =
log2(k)−H(W |Ai=Vij)∑a

i=1 xi
∑b
j=1 log2(k)−H(W |Ai=Vij)

The entropy denoted as H(W |Ai = Vij) in the equation is defined as:

H(W |Ai = Vij) = −
∑k

w=1(P (w|Ai = Vij))log2(P (w|Ai = Vij))

where W is the class, k is the total number of classes in the dataset, P (w|Ai = Vij) is

the empirical probability of a term having attribute Ai set to value Vij to belong to the

class to the total number of terms with attribute Ai set to value Vij . More specifically:

P (w|Ai = Vij) =
freqTw

ij

|Tij |

11.2.3 Rule Pruning

Pruning is a process which (a) aims to increase the quality of the generated rules, (b)

contributes to the elimination of the overfitting of the rule to the training cases, and (c)

promotes the generation of simpler rules. This process iteratively removes, irrelevant

terms, that might have been included in the rule. A cycle of term removal and quality

evaluation occurs for as long as the rule is left with just one term or until there is no

term whose removal will further improve the quality of that rule. The quality of the

reduced rule is evaluated using the equation presented in subsection 11.2.4.

11.2.4 Pheromone Updating

The amount of pheromone of a term termij that is part of the rule discovered by an ant,

is increased proportionally to the quality of that rule. This reflects that the probability

of that term to be re-chosen in the future, is increased, with respect to the level of

accuracy of that rule. The quality of a given rule, is calculated as:

Q = TP
TP+FN

TN
FP+TN

where Q is the quality of the rule and TP , TN , FP , FN are the same metrics defined

in section 9.1.4.

The pheromone associated with a term is increased according to the formula:



Chapter 11. Termid: Robust Prediction of Spurious Network Traffic 153

τij(t+ 1) = τij(t) +Qτij ,∀i, j ∈ R

where τij(t) is the pheromone associated with the term in the current generation t,

τij(t+ 1) is the pheromone associated with the term at the next generation, R is the set

of terms occurring in the discovered rule.

To reduce the probability of an irrelevant term to be chosen in the future, the amount

of pheromone associated with each termij that does not occur in the discovered rule

must be subject to an analogous decline. This can be seen as the virtual equivalent of

pheromone evaporation, observed on real ant colonies. Precisely, the pheromone decrease

is calculated as:

τij(t+ 1) =
τij(t)∑a

i=1

∑b
j=1 τij(t)

11.2.5 Classifying New Instances

After the training set has constructed a model, the contained rules must be applied in

the order they were discovered, for a test case to be classified. If the antecedents of a

discovered rule satisfy the test case, then that case is assigned to that rule’s consequent.

If no rule on the list covers the test case, then that case is assigned to the majority class

of those training instances, left uncovered by any of the discovered rules.

11.3 Previous Work

Ant-Miner is a relatively recent algorithm and its potential is not fully exploited to date.

However, there are numerous works that have attempted to alleviate its inefficiencies

and increase its speed or accuracy. This section will briefly describe the most important

of these approaches. Recall that a study of applications of this algorithm in intrusion

detection is included in section 8.1.1.1.

The work in [210] incorporates an alternative heuristic function, which is based on a

simple sample density estimation, that is argued to be less computational intense than

the original one. This heuristic measure may be less accurate, but the authors advocate

that pheromone mechanism compensates the possible errors of the heuristic values. More

specifically, the new heuristic function is defined as:

ηij =
CTij
|Tij |

where CTij is the class of the majority of the instances in partition Tij . Through ex-

perimental evaluations the authors show that this method has equal performance as the

original Ant-Miner.
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In [211] the authors are motivated by the observation that during a generation of ants

the pheromone of each term changes, while η remains the same. In this way, subsequent

ants tend to choose the same terms used in the rule constructed by the previous ants,

because the pheromone consecration of these terms is increased. This leads to a failure

to produce alternative rules, and as a result, the ants converge to a single rule too fast.

The authors propose a new pheromone updating method and a new state transition rule

to increase the accuracy of classification. Moreover, the pheromone update is subject to

the following equation:

τij(t) = (1− p)τij(t+ 1) + (1− 1
1+Qτij(t− 1),∀i, j ∈ R

where p is a parameter reflecting the pheromone evaporation rate.

On the other hand, the term selection strategy depends not only on the heuristic function

ηij and pheromone τij , but also on two new newly introduced random numbers.

ACO-Miner [212] is an improved version of the Ant-Miner that incorporates a better

term selection rule, a more appropriate pheromone updating rule, and an alternative

heuristic function. The authors stress that the original Ant-Miner suffers by the following

shortcomings: the term selection is computationally expensive and lacks of balancing

between exploration and exploitation, (b) discovery of new rules is undermined if the

quality measure Q is very small, and (c) the entropy of termij is always the same

regardless of the contents of the rule in which the term occurs. Therefore, they proposed

that the term selection process should be subject to newly introduced parameters such

as the relative importance of trail (which states that if there has been a lot of traffic

on termij then it is highly desirable) and its visibility (which dictates that close terms

should be favoured).

The authors in [213] propose a new rule pruning technique for Ant-Miner, which is said

to further reduce the size of the discovered rules and at the same time decrease its

computational cost. In this case, only the rules with more terms than the user-specified

value r are subjected to the pruning mechanism and they are shortened strictly up to

that size. For each term within the rule antecedent, the probability of selecting that

term to be removed is calculated based on the term’s information gain (which is pre-

computed) and a random value, result of a roulette wheel selection technique. The r

remaining terms are fed into the original rule pruning mechanism. This hybrid approach

may be faster, however the results indicate that it leads to reduction of accuracy.

The authors in [214] propose an alternative approach which produces an unordered set

of classification rules, unlike the traditional approach in which the interpretation of

any rule requires knowledge of all the previously discovered ones. This fact contributes

to the better readability of the constructed rules. In fact, this result is achieved by
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having groups of ants searching/constructing rules of a specific class only. The problem

dependent heuristic function, has been adapted accordingly, in this case, it is the Laplace-

corrected confidence for each term, which is calculated as:

ηij =
|termij ,k|+1
|termij |+V

where |termij , k| is the number of training instances that have the term termij and

class k, |termij | is the number of training cases having termij , and V is the number of

possible values in the class attribute’s domain.

The work [215] presents an extension to Ant-Miner, namely the cAnt-Miner, which is

able to cope with continuous valued attributes during the rule construction process.

cAnt-Miner does not requires a discretization method in a preprocessing step since it

is able to generate discrete intervals of the continuous attributes “on-the-fly”. This

operation benefits the discovery of more accurate rules than the traditional approaches

which apply the discretization process on a preprocessing phase. Naturally, the entropy

calculation procedure cannot be straightforwardly applied to attributes with continuous

values. For this reason, the entropy of the a term termi is calculated by selecting a

threshold value v to dynamically splits the continuous attribute ai into two parts ai < v

and ai ≥ v. Then, the best threshold value is the value v that minimizes the entropy of

the partition.

The approach presented in [216] describes more extensive alternations to the to origi-

nal Ant-Miner. More specifically, the authors introduce the concept of multiple types

of pheromone, each one governing a different class of the dataset. That is, a different

pheromone update strategy for penalizing low-quality rules and rewarding the high-

quality ones, by incorporating a quality contrast intensifier is also considered. Addition-

ally, the proposed scheme supports the logical negation operator, in the antecedents of

constructed rules, thus resulting into the creation of more dynamic and accurate rules.

Moreover, this work adopts the concept of “stubborn ants”, in which an ant chooses

terms considering its own previous experience. A final modification provisions that ants

choose their own values for specific parameters thus having in a way, their own person-

ality.

11.3.1 Parallel Approaches

Ant-Miner is provably efficient in its prediction tasks. We argue that one of the aspects

of this algorithm which is heavily neglected is the training speed factor of the algorithm.

Most of the approaches include experiments with medium sized datasets which may give

the illusion that algorithm converges fast. Indeed, this fact was diagnosed relatively
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early and some approaches exist that have attempted to speed up the rule discovery

process by adopting parallel computation approaches.

The [217, 218] were the first works to bring the Ant-Miner algortithm to the parallel

realm. In this approach each processor is assigned to a specific class and all the rules it

discovers must cover it. A group of ants are allocated on each processor to search for the

antecedent part. Driven by the observation that most works neglect the importance of

attributes to the efficiency of classification, the authors modify the Ant-Miner algorithm

accordingly so that the term selection process will take into account the importance of

each attribute to the class, along with the pheromone, and the heuristic information.

To do so, the authors utilize the Bayes discriminate analysis to measure the influence

of attribute j to class p. Moreover, their approach prunes the rules during the process

of rule construction which is demonstrated to significantly reduce the time complexity

and improve the solution quality.

In the same context the work in [219] describes an adaptation of Ant-Miner algorithm,

appropriate for large datasets, namely Parallel Ant-Miner2. This model provisions that

ants are first separated into groups; each assigned to a different processor. The ants of

each group are responsible for producing rules for a single class only. Additionally, to

complete the pheromone update process, ants are allowed to communicate other ants

in the same group as well as with the best ant of any other group. This helps ants

eliminate irrelevant terms of the rule. More specifically, the pheromone update rule for

ants within the same group is:

τijp(t+ 1) = (1− p)τijp(t) + p
∑
τijp(t)
|X|

where |X| is the number of ants on processor p, and
∑
τijp(t) is the sum of all pheromone

produced by all ants on processor p for termij .

On the other hand, the pheromone update rule that applies to the communication with

the best ant of other groups is:

τijp(t+ 1) = (1− p)τijp(t) + p
∑G
p=1 τijpbest (t)

|G|

where |G| is the number of groups/classes, τijpbest(t) is the best pheromone produced

by the ants of processor p, and
∑G

p=1 τijpbest(t) is the summation of the pheromones

produced by the best ants of all the processors.

The authors in [220] propose a parallel version of Ant-Miner developed according to

the master-slave model. The authors were motivated by the fact that discretization of

continuous attributes as well as rule construction are the most computationally expensive

operations of the algorithm. Initially, the master node broadcasts the training set to

all other slave nodes, along with the initial values of pheromone. Each slave node has



Chapter 11. Termid: Robust Prediction of Spurious Network Traffic 157

a group of ants, which are responsible for the construction of local rules. When all

rules are generated, they are send to the master node. Upon reception, the master node

moves on to the evaluation of the quality of the constructed rules, the reduction of the

attributes, and the pheromone update.

11.4 Termid: A Distributed Ant-Miner Strategy for In-

trusion Detection

The distributed nature of our proposed approach renders Ant-Miner suitable for wireless

intrusion detection environments. The reader should keep in mind that in such scenarios,

a number of monitor nodes is spread within the coverage of the network. These nodes

produce their own portions of the dataset which may contain totally different instances

or partially overlapping ones. Under these circumstances, the conventional approaches

require the following actions to be made:

• Extract the partial dataset. Due to the sensitivity of their contents, the partial

datasets have to be securely transmitted from the monitor nodes to a central

location for further processing.

• Concatenate the partial datasets. This process is not trivial as identical records

may exist among partial datasets (probably captured by neighbouring monitor

nodes), which have to be eliminated in the aggregated one.

• Retransmit the entire dataset to a detector node. The transmission of the unified

dataset to a central point raises concerns regarding the security and time/band-

width requirements of this action. Additionally, the detector node should have

enough resources to handle the processing of large datasets.

Therefore, it should be stressed that, our approach has the advantage of not requiring the

transmission of the dataset or any part of it. On the contrary, our model provisions that

only conclusions (rules) about the actual data can be transmitted instead. Inductively,

since the data exchanged in the network will have much smaller size, commotion to the

network is avoided. Additionally, each node can work with a partial dataset which allows

for the IDS to be integrated into the monitor node. Even more, since each processor

is able to work with a subset of the entire dataset the training completes much sooner,

and for the same reason, the memory requirements of the classifier are maintained in

low levels.
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11.4.1 Description of The Solution

Our distributed model coined as Termid, follows the master/slave architecture. The

master node is using the slave nodes as oracles, to complete the selection of the best

global rule, but itself it has no knowledge of the data. Here, the term “master node”

may be misleading, as these nodes can be perceived as the virtual counterpart of the

environment, a terrain on which only the fittest survive, and not as a centralized au-

thority that dictates the behaviour of ants. Therefore, the term environment is adopted

for such nodes.

The slave nodes evaluate the quality of a rule, extracted by each other node, according

to their own limited knowledge of the dataset. The selection is made based on the overall

quality of the rules the master node possess. The term ants is used for the slave nodes.

Initially, each trail will be assigned with the same amount of pheromone by the en-

vironment node according to the formula described in 11.2.1. In this context, a trail

represents a unique combination of attribute/value pairs.

The ant will construct the rule by adding one term at a time. In this case, the decision

of the next term to be added to the rule will be based solely on the knowledge of the

partial dataset. Let LocalRulep be the rule produced from ant p in this step. Note,

that each ant is agnostic of all other portions of dataset and has no means of direct

communication with the rest.

After LocalRulep is pruned, it will be broadcasted to each other ant through the envi-

ronment. The process of pruning is similar to that described in 11.2.3. The environment

node will broadcast the LocalRulep to the rest of the ants, asking their opinion about

its quality. In this step, each ant calculates an evaluation list comprising of TP, TN,

FP, FN values (as defined in 9.1.4) against their local partial training set. If the rule

LocalRulep does not cover any case in the local set or if it is empty, then apparently

only the TN and FN values will be > 0.

Upon receiving responses from all ants, the environment node will calculate the global

quality of each local rule based on all the evaluation lists. Then, it will broadcast the

best of e rules GlobalRule to every ant. Based on this variable, the ants will remove the

instances that match GlobalRule, thus reducing the corresponding local dataset.

At the final step, the environment node will update the pheromone trails, i.e. pheromone

value associated with each term, and broadcast the new pheromone to all ants. A high

level description of the processes executed by the slave nodes and the master one can be

seen in algorithms 2 and 3 respectively.
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Algorithm 2 Termid - Ant Side

Require: Local Training Instances,
Max Uncovered Cases,

1: Training Set← Local Training Instances
2: pheromone← receiveFromEnvironment()
3: while Length(Training Set) ≥Max Uncovered Cases do
4: LocalRulep ← constructRule()
5: LocalRulep ← pruneRule(LocalRulep)
6: sendToEnvironment(LocalRulep, p)
7: RuleList← receiveFromEnvironment()
8: EvaluatedRuleList← evaluateRule(RuleList)
9: sendToEnvironment(RuleEvaluationList)

10: GlobalRulei ← receiveFromEnvironment()
11: Covered Cases List← calculateCasesCovered(GlobalRulei)
12: removeFromList(Training Set, GlobalRulei)
13: pheromone← receiveFromEnvironment()
14: end while
15: Status← completed

Algorithm 3 Termid - Environment Side

1: CalculateInitialPheromone( )
2: while number of completed 6= N do
3: for all p in AntList do
4: Rulep ← receiveFromAnt()
5: sendToAnt(Rulep, AntList− p)
6: EvaluationRulep ← receiveFromAnt()
7: EvaluatedRuleList← calculateQuality(EvaluationRulep)
8: end for
9: GlobalRule← getBestRule(EvaluatedRuleList)

10: updatePheromoneOnTrails(GlobalRule)
11: sendToAnt(GlobalRule,AntList)
12: end while

11.5 Evaluation

Our experiments were conducted with 5 virtual machines (1 for environment node, 5 for

ant nodes) with 1GB of memory and 1 core each running on a single physical machine

(Intel i7 with 8 GB or memory, on an SSD hard drive). We must underline that since

the virtual machines were running on the same physical one, the communication part

was neglectable, although this would not be the case in real life conditions. Also, take

into account, that an underlying subsystem for health monitoring the nodes was also

running on the same machine but its specification is outside the scope of this study.
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11.5.1 Complexity Analysis

In order to analyse the computational complexity of the distributed Ant-Miner strategy

both the ant and environment nodes need to be taken under consideration.

First off, the environment node sets the initial pheromone value to all possible terms.

The values are kept fixed until the update step. Their calculation requires O(α ·υ) where

α is the number of attributes and υ is then number of possible values per attribute. Then,

the loop begins, a single iteration of which involves the following actions:

• The internal loop which will be executed for N times which is equal to the number

of ants. This loop involves 4 operations, thus it is N · c1 +N · c2 +N · c3 +N · c4

and the resulting complexity is O(N).

• The getBestRule() subroutine is a classic maximum selection function with an

average complexity O(N).

• The next step, namely pheromone updating, aims at of increasing the value of the

pheromone variable of the terms used in the rule and decreasing the pheromone

of unused terms. The former process consumes O(κ) where κ is the number of

attributes used in the GlobalRule and the latter takes O(α). Since κ ≤ α the

whole process of pheromone update takes O(α).

Therefore, the total complexity of a single while loop executed in the environment node

operations is O(N) + O(N) + O(a) which collapses to O(N) especially because α is a

small value.

Each ant node iteratively performs a set of tasks which essentially are reduced to the

following:

• Rule Construction - the choice of the term to be added to the current rule requires

the evaluation of the probability P (defined in 11.2.2), which in turn involves

the calculation of the heuristic function η and pheromone τ . The values of both

heuristic function and pheromone are precomputed as a preprocessing step and

remain constant, throughout the construction of the rule. Thus, the complexity of

rule construction is O(κ · α).

• Rule Pruning - this process involves the evaluation of a steadily decreasing number

of terms for each candidate rule. In the first iteration, κ potential new rules

(each consisting of a different term removed), are evaluated. The second pruning

iteration evaluates κ−1, the third κ−2 and so on. Therefore, the entire rule pruning
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process consumes at most (κ− 1) ·κ+ (κ− 2) · (κ− 1) + (κ− 3) · (κ− 2) + · · ·+ 1 · 2
which results to O(κ3).

• Rule List Evaluation - this process involves (a) the counting of instances matching

each rule (TP) in the list given by the environment node, (b) the ones covered

but not matching (FP), (c) those not covered but with the same class (TN), and

(d) those not covered but with different class (FN). Since the number of rules is

equal to the number of ants minus its own, and there are 4 operation involved, the

total complexity is O(N · Lp) where Lp is the size of the training set in ant node

p. Note, that in an ideal case, the size of the Lp is G
N where G is the size of the

entire dataset. Additionally, the size of the training set will gradually decrease.

• Covered Cases Removal - this step iteratively checks whether the GlobalRulei

matches each instance in the local training set. Matching involves the comparison

of the terms in the rule with the corresponding attribute values of each instance.

Therefore, the complexity of this operation is O(Lp ·κ). After a matching is done,

the instance is removed from the training set.

Considering all the above, the total complexity of a single while loop of an ant node will

be O(κ·α)+O(κ3)+O(N ·Lp)+O(Lp ·κ) which reduces to O(k3+N ·L+L·κ). The reader

should note that unlike the centralized Ant-Miner algorithm, where the complexity is

further multiplied with the number of ants, in our approach, this operation does not

occur thus leading to a much effective overall training phase.

11.5.2 Accuracy Against Toy Datasets

Our first set of experiments was conducted against some small, publicly available datasets

that are commonly used in data mining. This was done primarily to validate the pre-

diction accuracy of our approach with some easy benchmarks without caring about the

training speed. Secondarily, through these experiments we were given the opportunity to

study the influence of the user-defined parameters, required by the algorithm, upon the

predictive accuracy and training speed. The basic aspects of these datasets are briefly

presented in table 11.2.

A comparison of the predictive accuracy of our distributed approach and the original

Ant-Miner, as well as the top performing Ant-Miner approach, documented in the litera-

ture, is provided in table 11.3. The results indicate that Termid has prediction accuracy,

not less than the original Ant-Miner approach, and in one case it even outruns the best

performer. We can safely conclude that the distributed architecture of our proposal does

not undermine the prediction accuracy of the algorithm.
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11.5.2.1 Empirical Estimation of Parameters

Figure 11.1 illustrates the variation of prediction accuracy with respect to the maximum

uncovered cases and minimum one per rule parameters, for constant population of 5,

25, 75, 95 ants, against the tic-tac-toe dataset. Note, that throughout the literature

the number of ants utillized for various experiments has usually a rather large value

(e.g. 3,000). We argue that the distributed nature of our approach renders these values

redundant.

(a) With Constant Value of 5 Ants (b) With Constant Value of 25 Ants

(c) With Constant Value of 75 Ants (d) With Constant Value of 95 Ants

Figure 11.1: Variation of Prediction Accuracy According to Varying Maximum Un-
covered Cases and Minimum Cases per Rule Parameters

Beginning from figure 11.1a we observe a variation of accuracy which only sporadically

reaches its peak, which indicates that this small number of ants is not sufficient for

generating good quality rules. As the number of ants increases the Max Uncovered

Cases parameter becomes progressively more irrelevant while the Min Cases per Rule

parameter steadily traps high accuracy rules between a space of 5 to 25 values.

11.5.3 Accuracy Against AWID

We moved on to conducting a more focused chain of experiments against the AWID-

CLS-R-Trn and AWID-CLS-R-Tst versions of the AWID dataset. These datasets had

gone through the process of feature reduction according to the conclusions extracted in
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section 10.2. The reduced sets contain 20 attributes with the former being comprised

of 1,795,575 data instances, unequally divided into 4 classes (1 normal, 3 intrusive),

and the latter containing 575,643 instances. A more detailed description of the datasets

characteristics is provided in table 9.4.

11.5.3.1 Predictive Accuracy

Both the environment and the ant nodes were deployed as different threads of execution

operating on the same machine. Threading is a means of concurrency that greatly

resembles the distributed nature of a realistic distributed deployment, thus reducing the

testing costs for the purposes of initial experimentation. A comparison in matters of

accuracy can be seen in table 11.4.

11.5.3.2 Training Speed

Although one of the most importance inefficiencies of Ant-Miner algorithm is its training

speed, we managed to reduce the average training time, by splitting the burden to

multiple ants operating on different nodes. For a system consisting of 10 ants, we were

able to obtain training times that outperformed the best of the conventional methods

(Naive Bayes).

11.5.4 Profiling the Algorithm Procedures

Towards evaluating the performance of our proposed approach in detail, we distinguished

the 5 most important procedures executed by the nodes: (a) Rule Construction, (b) Rule

pruning, (c) Pheromone updating, (d) Deleting instances, (e) Updating Entropy and

performed profiling by instrumenting the binary executables with a custom tool. The

statistical average over 100 executions of the time consumption of the corresponding

functions in the source code was taken. The results can be seen in figure 11.2.

From the experimental results we can notice that the 3 most demanding processes are

deleting the instances from the dataset, rule construction and rule pruning. Interestingly,

while removing instances from the dataset is by far the most demanding process in the

initial iterations of the processes, this situation changes for the iterations that follow, as

the dataset shrinks. Thus, in the later iterations, the dominant processes in matters of

time consumption are, rule construction and rule pruning.
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Figure 11.2: Profiling of Basic Operations

11.5.4.1 Simplicity of Rules

The result of the training phase produces a model comprised of 8.75 (about 8 to 9)

rules in average and 6.7 (about 6 to 7) terms per rule. This result influences the testing

phase, since each term per rule has to be compared against each instance in the test set.

We underline the simplicity of the generated rules, especially when compared to other

approaches like random tree, where the produced tree size surpass 500 nodes in some

cases.
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Dataset Records Attributes Classes
Tic-Tac-Toe 958 9 2

Breast Cancer (L) 286 9 2
Car 1728 6 4
Vote 435 16 2

Table 11.2: Characteristics of Toy Datasets

Dataset Termid Ant-Miner Best Performer
Tic-Tac-Toe .844 .730 1

Breast Cancer (L) .823 .752 .784
Car .848 .849 .980
Vote .949 .949 .956

Table 11.3: Prediction Accuracy on Toy Datasets

Table 11.4: Accuracy of Termid Compared to Other Algorithms on the 20 Feature
Set (%)

Our Proposal AdaBoost J48 Naive Bayes OneR Random Forest Random Tree
95.22 92.2073 96.2574 90.5504 94.5741 95.8247 96.2258

Table 11.5: Time requirements of Termid Compared to Other Algorithms on the 20
Feature Set (in secs)

Termid J48 Naive Bayes Random Forest Random Tree
25.91 568.92 29.67 739.78 49.3



Chapter 12

Conclusion and Future Directions

12.1 Conclusions

Based on the study conducted in the previous chapters, in this section we enumerate

the basic conclusions that can be extracted from this PhD thesis.

12.1.1 The Nature of Wireless Attacks

Despite the revolutionary features of wireless technologies it is proved in practice that

the end-user has to settle with more serious security risks. From our study (mainly

chapter in 2) it becomes obvious that even the most recent and theoretically improved,

amendments of virtually all wireless technologies, suffer from severe security inefficiencies

which make them susceptible to a number of attacks. Judging from the amount of

documented attacks (reviewed in chapters 3, 4, 5) it is proved that in some cases the

methodology for executing such assaults is so trivial and the tools for orchestrating

them are so widely available, that even low skilled ill motivated entities can unleash

their attacks.

At the same time, the wireless medium has not only acted like a totally new playground

for attackers and armed them with new potentials, but its idiosyncrasies rendered the

existing intrusion detection and prevention mechanisms designed for the wired realm,

inappropriate.

From an execution-method point of view, one can derive the common denominator of

wireless attacks. More specifically, we claim that practically all MAC layer attacks

are executed by either (a) taking advantage of unprotected packets to manipulate the

management of the network, (b) introducing a rogue base station on the proximity of

167
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a real one, and having it replicate its signalling behaviour to trick the end-users, or (c)

inject encrypted packets of a specific structure to confuse the network.

Unlike the most well-known taxonomies in literature a taxonomy based on the execution

method can be proposed as following:

• Flooding - Attacks capitalizing on the transmission of a large number of unen-

crypted frames, such as [221], 4.3.1 or 3.0.5.1.

• Injection - Attacks which are based on the injection of custom-shaped encrypted

frames.

• Impersonation - Attacks powered by the introduction of a BS-like equipment on

the network that claims it actually is the legit one.

12.1.2 Studying Wireless Attacks

For every study in network intrusion detection a realistic, representative dataset is con-

sidered a necessary asset. Nevertheless, according to our study (conducted in chapter

9) the available choices for a trustworthy testbed of such kind, are not only limited but

also of poor quality. Partially, due to the sensitivity of their content and in part because

of the difficulty of collecting and labelling such databases, the publicly available choices

are narrowed down to datasets whose contents are artificial, tampered, ones that do not

correspond to realistic conditions, or ones that are obsolete. Surprisingly, this is the

case with the most popular dataset in intrusion detection, the KDD’99, which ends up

producing highly questionable results when used as benchmark for intrusion detection.

We formulated the most desirable characteristics of a contemporary dataset for intrusion

detection as:

• Area Specific - To apply to specific domains of interest.

• Realistic Traffic - To effectively describe the normal and anomalous conditions on

a studied system, including the traces of the attacks.

• Labelled - To accommodate tagged records.

• Integrity - To contain complete records.

• Satisfactory Size - To be large enough in order to not undermine the accuracy of

the detection process.

• Variation - To include a wide range of attacks as well as their modifications.



Chapter 12. Conclusion and Future Directions 169

• Freshness - To be subject to updates.

A custom tailored dataset was introduced and by extensive analysis of this dataset we

were able to realize that tree construction algorithms have an inherent advantage in

intrusion detection. Nevertheless, we should underline that (a) the traditional machine

learning algorithms disappoint when it comes to adequately detecting known and more

importantly unknown attacks, and (b) most of these algorithms have extreme time and

memory requirements for the training process.

12.1.3 Intrusion Detection with Bio-Inspired Algorithms

Having a mechanism for detecting the occurrence of attacks and attempts of misuse,

before they prove disastrous is highly desirable for any type of computer network, wired,

or wireless. However, the problem of intrusion detection and more specifically, network

intrusion detection, is not a trivial one. Anomaly-based IDS, which rely on some type

of soft computing technique, are promising for detection of unknown attacks. However,

the application of such systems in real-life systems is scarce and limited. Despite the

significant research in the field, the majority of such systems suffer from:

• Inaccurate predictions percentages.

• High false positive rates.

• Poor escalation behaviour as the dataset size increases.

• Low training speed.

• Incomprehensible (to humans) decision models.

It is without a doubt that the methods nature choose for solving complex problem,

have always been a source of inspiration to scientists. Focusing on intrusion detec-

tion the problem is to define which portions of data from a given dataset represent

normal behaviour and which ones lay outside these boundaries (thus consisting anoma-

lies). According to the comprehensive review presented in 8, nature-inspired/bio-inspired

techniques have been developed and successfully applied to the problem of intrusion de-

tection. The main reasons for such an undertaking is their potential supremacy due to

their following attributes:

• Ability to provide more accurate results by overcoming local minima/maxima.

• Self-adapting character.
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• Highly parallel nature.

However, the problem of intrusion detection expands and differentiates, when applied

to wireless networks. One the one hand, the processing of extremely large chunks of

traces/data is required, and on the other, in such cases it is necessary to cope with a

highly dynamic sense of normality.

While the theoretic advantages of nature-inspired approaches are clear, the implementa-

tion of a real-life system, is needed to experimentally verify this hypothesis. To this end,

we developed Termid, a distributed IDS which conducts the detection process based on

the Ant-Miner rule induction algorithm. We experimentally proved that such nature-

inspired algorithms are easily parallelisable and at the same time they can be equally

competitive with the legacy ones.

12.2 Thesis Contributions

The primary contribution of this thesis is the creation and public offering of a dataset

specifically targeting wireless network intrusion detection. This dataset contains both

normal and intrusive traffic, has enough size to fully describe all its classes, contains real-

istic traffic from a real network, and its attacks are distributed according to estimations

of their severity. Generally, it conforms with the 7 principles a contemporary dataset

must follow as stated in section 9. To the best of our knowledge it is the only dataset for

wireless networks relevant to intrusion detection. For more details the interested reader

should refer to [222] as well as section 9.

Another notable contribution of this work is the implementation of a distributed execu-

tion strategy of the pre-existing Ant-Miner classification rules extracting algorithm. The

proposed algorithm applies an ant colony optimization heuristic to the classification task

in order to extract If . . . Then rules. After being modified accordingly, it is deployed

in a multicore/cluster environment, which provably boost its speed and efficiency. The

algorithm becomes able to detect intrusions in large datasets, such as the ones obtained

in wireless networks. The work in [223] along with section 11 contains the details of this

undertake.

A contribution not to be neglected lays in the comprehensive survey of the known attacks

for three of the most popular wireless technologies namely, the IEEE 802.11, IEEE 802.16

the UMTS technologies. Works [222], [47] and [224], [225] elaborate on this topic.
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An exhaustive review of swarm intelligence methods in the field of intrusion detection

is the final contribution of this thesis. This is included in its full extend in [226] and

analysed here in chapter 8.

Table 12.1 provides global map of all the accomplishments relevant to this PhD thesis

with respect to contributions in literature for quick reference.

Table 12.1: Overall PhD Thesis Contribution

Chapter Contribution Publication
2,3,4,5 Overview & Assessment of Wireless Threats [224], [225], [47], [222]

8 A Dataset for Wireless Intrusion Detection (AWID) [222]
7 Review of Nature Inspired Intrusion Detection Systems [226]
10 A Distributed Ant Colony IDS (Termid) [223]

12.3 Future Research Directions

The PhD thesis at hand has mainly contributed to the domain of intrusion detection

in wireless networks with a new dataset and a fast and efficient algorithm/architecture

based on nature-inspired algorithms for conducting intrusion detection. Yet, a number

of areas is still left unexplored, and further work could be conducted. In this subsection,

we elaborate on these possible directions.

• Review of possible vulnerabilities of LTE - Long Term Evolution (LTE) is a wireless

standard based on the GSM/EDGE and UMTS network technologies, but increases

their capacity and speed using a different radio interface along with other core

network improvements. An in depth review of its security mechanisms and a

presentation of the attacks that apply to it, should be beneficial for the research

community due to its galloping adoption.

• Expanding AWID with traces from different types of technologies - AWID is a

dataset containing real traces extracted from a working 802.11, WEP protected

network. One can argue that this security mechanism is obsolete and the SOHO

setting of the monitored network may not adequately apply to large scale settings.

Moving towards the industry oriented networks seems to be the next natural tran-

sition for the AWID project.

• Exploring alternative parallelization strategies - Fast training and instant classi-

fication is important for in network intrusion detection. However, the extremely

large volume of data (and signalling overhead) makes timely detection a trouble-

some task. Nature-inspired algorithms are in general greedy ones, requiring large

amounts of time for their training. Still, interesting alternative parallelization
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techniques such as Map Reduce or GPU-based acceleration approaches are left

unexplored.

• Efficient Discretization Technique - Ant-Miner (and as a consequence Termid)

has the ability of working with nominal values only. Several works have been

published, that extend Ant-Miner’s capacity by making it able to cope with con-

tinuous values, most notably [215]. Unfortunately, all these strategies seem to have

high memory and CPU requirements. Applying such discretization techniques in

big data scenarios, greatly undermines the potential gains of the algorithm from

paralellization. A more efficient discretization technique should be considered as

a high priority.

• Integration of Termid with other approaches - Termid surpassed the conventional

approaches in detecting anomalous traffic. However, it did not perform adequately

in detecting the normal class or the attacks for which it wasn’t trained for. Such

as potential lies in the integration of Termid with other approaches to increase its

accuracy.

• Multilevel Experiments On a Cloud Platform - In this thesis the set of experiments

was conducted on a single physical machine in which multiple virtual machines

were spawned 11.5. While this approach has been particularly helpful for the

initial phase of our studies, more sophisticated experiments could be completed in

cloud platforms (like Amazon’s EC2), with different number of virtual machines

and characteristics, towards estimating Termid’s scaling factor. By doing so, the

network communication times will also be taken into account, thus offering much

more complete results.



Appendix A

Record Fields of the AWID

Dataset

Field Name Type

frame interface id Numeric

frame dlt Numeric

frame offset shift Numeric

frame time epoch Numeric

frame time delta Numeric

frame time delta displayed Numeric

frame time relative Numeric

frame number Numeric

frame len Numeric

frame cap len Numeric

frame marked Nominal

frame ignored Nominal

radiotap version Numeric

radiotap pad Numeric

radiotap length Numeric

radiotap present tsft Nominal

radiotap present flags Nominal

radiotap present rate Nominal

radiotap present channel Nominal

radiotap present fhss Nominal

radiotap present dbm antsignal Nominal

radiotap present dbm antnoise Nominal

radiotap present lock quality Nominal

173



Appendix A. Record Fields of the AWID Dataset 174

radiotap present tx attenuation Nominal

radiotap present db tx attenuation Nominal

radiotap present dbm tx power Nominal

radiotap present antenna Nominal

radiotap present db antsignal Nominal

radiotap present db antnoise Nominal

radiotap present rxflags Nominal

radiotap present xchannel Nominal

radiotap present mcs Nominal

radiotap present ampdu Nominal

radiotap present vht Nominal

radiotap present reserved Nominal

radiotap present rtap ns Nominal

radiotap present vendor ns Nominal

radiotap present ext Nominal

radiotap mactime Numeric

radiotap flags cfp Nominal

radiotap flags preamble Nominal

radiotap flags wep Nominal

radiotap flags frag Nominal

radiotap flags fcs Nominal

radiotap flags datapad Nominal

radiotap flags badfcs Nominal

radiotap flags shortgi Nominal

radiotap datarate Numeric

radiotap channel freq Numeric

radiotap channel type turbo Nominal

radiotap channel type cck Nominal

radiotap channel type ofdm Nominal

radiotap channel type 2ghz Nominal

radiotap channel type 5ghz Nominal

radiotap channel type passive Nominal

radiotap channel type dynamic Nominal

radiotap channel type gfsk Nominal

radiotap channel type gsm Nominal

radiotap channel type sturbo Nominal

radiotap channel type half Nominal

radiotap channel type quarter Nominal

radiotap dbm antsignal Numeric
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radiotap antenna Numeric

radiotap rxflags badplcp Nominal

wlan fc type subtype Numeric

wlan fc version Numeric

wlan fc type Numeric

wlan fc subtype Numeric

wlan fc ds Numeric

wlan fc frag Nominal

wlan fc retry Nominal

wlan fc pwrmgt Nominal

wlan fc moredata Nominal

wlan fc protected Nominal

wlan fc order Nominal

wlan duration Numeric

wlan ra Numeric

wlan da Numeric

wlan ta Numeric

wlan sa Numeric

wlan bssid Numeric

wlan frag Numeric

wlan seq Numeric

wlan bar type Numeric

wlan ba control ackpolicy Nominal

wlan ba control multitid Nominal

wlan ba control cbitmap Nominal

wlan bar compressed tidinfo Nominal

wlan ba bm Numeric

wlan fcs good Nominal

wlan mgt fixed capabilities ess Nominal

wlan mgt fixed capabilities ibss Nominal

wlan mgt fixed capabilities cfpoll ap Numeric

wlan mgt fixed capabilities privacy Nominal

wlan mgt fixed capabilities preamble Nominal

wlan mgt fixed capabilities pbcc Nominal

wlan mgt fixed capabilities agility Nominal

wlan mgt fixed capabilities spec man Nominal

wlan mgt fixed capabilities short slot time Nominal

wlan mgt fixed capabilities apsd Nominal

wlan mgt fixed capabilities radio measurement Nominal
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wlan mgt fixed capabilities dsss ofdm Nominal

wlan mgt fixed capabilities del blk ack Nominal

wlan mgt fixed capabilities imm blk ack Nominal

wlan mgt fixed listen ival Numeric

wlan mgt fixed current ap Numeric

wlan mgt fixed status code Numeric

wlan mgt fixed timestamp Numeric

wlan mgt fixed beacon Numeric

wlan mgt fixed aid Numeric

wlan mgt fixed reason code Numeric

wlan mgt fixed auth alg Numeric

wlan mgt fixed auth seq Numeric

wlan mgt fixed category code Numeric

wlan mgt fixed htact Numeric

wlan mgt fixed chanwidth Numeric

wlan mgt fixed fragment Numeric

wlan mgt fixed sequence Numeric

wlan mgt tagged all Numeric

wlan mgt ssid Nominal

wlan mgt ds current channel Numeric

wlan mgt tim dtim count Numeric

wlan mgt tim dtim period Numeric

wlan mgt tim bmapctl multicast Nominal

wlan mgt tim bmapctl offset Numeric

wlan mgt country info environment Numeric

wlan mgt rsn version Numeric

wlan mgt rsn gcs type Numeric

wlan mgt rsn pcs count Numeric

wlan mgt rsn akms count Numeric

wlan mgt rsn akms type Numeric

wlan mgt rsn capabilities preauth Nominal

wlan mgt rsn capabilities no pairwise Nominal

wlan mgt rsn capabilities ptksa replay counter Numeric

wlan mgt rsn capabilities gtksa replay counter Numeric

wlan mgt rsn capabilities mfpr Nominal

wlan mgt rsn capabilities mfpc Nominal

wlan mgt rsn capabilities peerkey Nominal

wlan mgt tcprep trsmt pow Numeric

wlan mgt tcprep link mrg Numeric
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wlan wep iv Numeric

wlan wep key Numeric

wlan wep icv Numeric

wlan tkip extiv Numeric

wlan ccmp extiv Numeric

wlan qos tid Numeric

wlan qos priority Numeric

wlan qos eosp Numeric

wlan qos ack Numeric

wlan qos amsdupresent Numeric

wlan qos buf state indicated Numeric

wlan qos bit4 Numeric

wlan qos txop dur req Numeric

wlan qos ps buf state Numeric

data len Numeric

label Nominal



Appendix B

Swarm Intelligence Algorithms

Used in Intrusion Detection

Algorithm 4 Pseudocode for Standard Particle Swarm Optimization-Algorithm

1: Initialize Swarm( )
2: repeat
3: for ρ = 0 to P do
4: evaluate( ρ )
5: updatePersonalBest(ρ)
6: updateGlobalBest(ρ)
7: end for
8: for =. 0 to D do
9: updateVelocity(d)

10: updatePosition(d)
11: end for
12: until StoppingCriterion == true

Algorithm 5 Pseudocode for Basic Ant Colony Clustering Algorithm

1: scatterDataOnGrid( Dataset )
2: placeAntsOnGridRandomly( )
3: for ρ = 1 to MaxIterations do
4: MoveAnt( j, StepSize )
5: if (antCarriesItem() == true) AND (currentPositionHasItem() ==
false) then

6: dropItem( )
7: end if
8: if (antCarriesItem() == false) AND (currentPositionHasItem() ==
true) then

9: pickItem( )
10: end if
11: updateGlobalBest( )
12: end for
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Appendix C

Formal Definition of Threat in

802.16

Likelihood L : fL = (x, y, z)wherex ∈ C, y ∈ D, z ∈ 2R

Likely =



fL = (Ex, Ea, Lo)

fL = (Ma, Ea, Lo)

fL = (Ma, Ea,Mo)

fL = (In, Ea, Lo)

fL = (In, So, Lo)

fL = (In, Ea,Mo)

(C.1)
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Possible =



fL = (Ex, So, Lo)

fL = (Ex,Ea,Mo)

fL = (Ex, So,Mo)

fL = (Ex,Ea,Hi)

fL = (Ex, So,Hi)

fL = (Ma,So, Lo)

fL = (Ma,So,Mo)

fL = (Ma,Ea,Hi)

fL = (Ma,So,Hi)

fL = (In, So,Mo)

fL = (In,Ea,Hi)

fL = (In, So,Hi)

(C.2)

Unlikely =



fL = (Ex,Ha,Lo)

fL = (Ex,Ha,Mo)

fL = (Ex,Ha,Hi)

fL = (Ma,Ha,Lo)

fL = (Ma,Ha,Mo)

fL = (Ma,Ha,Hi)

fL = (In,Ha, Lo)

fL = (In,Ha,Mo)

fL = (In,Ha,Hi)

(C.3)

Impact I : fI = (k, l,m)wherek ∈ S, l ∈ T,m ∈ OR

Low =



fI = (Sm,Sh,An)

fI = (Sm,Ln,An)

fI = (Sm,Sh,DoS)

fI = (Me, Sh,An)

fI = (Me,Ln,An)

fI = (Me, Sh,DoS)

(C.4)
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Medium =



fI = (Sm,Sh,An)

fI = (Sm,Ln,An)

fI = (Sm,Sh,DoS)

fI = (Me, Sh,An)

fI = (Me,Ln,An)

fI = (Me, Sh,DoS)

(C.5)

Medium =



fI = (Sm,Sh, ToS)

fI = (Sm,Ln, ToS)

fI = (Sm,Sh, LoP )

fI = (Sm,Ln,LoP )

fI = (Me, Sh, ToS)

fI = (Me,Ln, ToS)

fI = (Me, Sh, LoP )

fI = (Me,Ln,LoP )

fI = (La,Ln,DoS)

fI = (La, Sh, ToS)

fI = (La,Ln,LoP )

fI = (La, Sh, LoP )

fI = (Ka, Sh, LoP )

fI = (Me,Ln,LoP )

(C.6)

Threat T : fT = fL + fI

Major =

fI = High ∧ fL = Likely

fI = High ∧ fL = Possible
(C.7)

Moderate =

fI = Medium ∧ fL = Possible

fI = Medium ∧ fL = Likely
(C.8)
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Minor =



fI = Low ∧ fL = Likely

fI = Low ∧ fL = Possible

fI = Low ∧ fL = Unlikely

fI = Medium ∧ fL = Unlikely

fI = High ∧ fL = Unlikely

(C.9)
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[205] H Günes Kayacik, A Nur Zincir-Heywood, and Malcolm I Heywood. Selecting

features for intrusion detection: a feature relevance analysis on kdd 99 intrusion

detection datasets. In Proceedings of the third annual conference on privacy, se-

curity and trust, 2005.

[206] Matthew V Mahoney and Philip K Chan. An analysis of the 1999 darpa/lincoln

laboratory evaluation data for network anomaly detection. In Recent Advances in

Intrusion Detection, pages 220–237. Springer, 2003.

[207] Maheshkumar Sabhnani and Gursel Serpen. Why machine learning algorithms fail

in misuse detection on kdd intrusion detection data set. Intelligent Data Analysis,

8(4):403–415, 2004.

[208] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999

darpa intrusion detection system evaluations as performed by lincoln laboratory.

ACM transactions on Information and system Security, 3(4):262–294, 2000.

[209] John Ross Quinlan. C4. 5: programs for machine learning, volume 1. Morgan

kaufmann, 1993.

[210] Bo Liu, Hussein A Abbass, and Bob McKay. Density-based heuristic for rule

discovery with ant-miner. In The 6th Australia-Japan joint workshop on intelligent

and evolutionary system, volume 184. Citeseer, 2002.

[211] Bo Liu, Hussein A Abbass, and Bob McKay. Classification rule discovery with ant

colony optimization. In Intelligent Agent Technology, IEEE/WIC/ACM Interna-

tional Conference on, pages 83–83. IEEE Computer Society, 2003.

http://cctf.shmoo.com/
http://cctf.shmoo.com/
http://iscx.ca/datasets
http://www.malgenomeproject.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Bibliography 202

[212] Ziqiang Wang and Boqin Feng. Classification rule mining with an improved ant

colony algorithm. In AI 2004: Advances in Artificial Intelligence, pages 357–367.

Springer, 2005.

[213] Allen Chan and Alex Freitas. A new classification-rule pruning procedure for an

ant colony algorithm. In Artificial Evolution, pages 25–36. Springer, 2006.

[214] James Smaldon and Alex A Freitas. A new version of the ant-miner algorithm

discovering unordered rule sets. In Proceedings of the 8th annual conference on

Genetic and evolutionary computation, pages 43–50. ACM, 2006.

[215] Fernando EB Otero, Alex A Freitas, and Colin G Johnson. cant-miner: an ant

colony classification algorithm to cope with continuous attributes. In Ant colony

optimization and swarm intelligence, pages 48–59. Springer, 2008.

[216] Khalid M Salama, Ashraf M Abdelbar, and Alex A Freitas. Multiple pheromone

types and other extensions to the ant-miner classification rule discovery algorithm.

Swarm Intelligence, 5(3-4):149–182, 2011.

[217] Ling Chen and Li Tu. Parallel mining for classification rules with ant colony

algorithm. In Computational Intelligence and Security, pages 261–266. Springer,

2005.

[218] Yixin Chen, Ling Chen, and Li Tu. Parallel ant colony algorithm for mining

classification rules. In GrC, pages 85–90, 2006.

[219] Omid Roozmand and Kamran Zamanifar. Parallel ant miner 2. In Artificial

Intelligence and Soft Computing–ICAISC 2008, pages 681–692. Springer, 2008.

[220] Janaki Chintalapati, Maan Arvind, S Priyanka, N Mangala, and Jayaraman Val-

adi. Parallel ant-miner (pam) on high performance clusters. In Swarm, Evolution-

ary, and Memetic Computing, pages 270–277. Springer, 2010.

[221] Christos Xenakis and Christoforos Ntantogian. An advanced persistent threat in

3g networks: Attacking the home network from roaming networks. Computers &

Security, 40:84–94, 2014.

[222] Angelos Stavrou Constantinos Kolias, Georgios Kambourakis and Stefanos Gritza-

lis. Intrusion detection in 802.11 networks: Empirical evaluation of threats and a

public dataset. Submitted in Communications Surveys & Tutorials, IEEE, -(-):.–.,

2013.

[223] Constantinos Kolias and Georgios Kambourakis. Termid: A distributed ant colony

based ids. Under Submision, -(-):.–., 2014.



Bibliography 203

[224] Georgios Kambourakis, Constantinos Kolias, Stefanos Gritzalis, and Jong Hyuk-

Park. Signaling-oriented dos attacks in umts networks. In Advances in Information

Security and Assurance, pages 280–289. Springer, 2009.

[225] Georgios Kambourakis, Constantinos Kolias, Stefanos Gritzalis, and Jong Hyuk

Park. Dos attacks exploiting signaling in umts and ims. Computer Communica-

tions, 34(3):226–235, 2011.

[226] Constantinos Kolias, Georgios Kambourakis, and M Maragoudakis. Swarm in-

telligence in intrusion detection: A survey. computers & security, 30(8):625–642,

2011.


	Declaration of Authorship
	Advising Committee of this Doctoral Thesis
	Approved by the Examining Committee
	Abstract
	Greek Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Outline

	2 Wireless Technologies and Security
	2.1 802.11 Architecture
	2.1.1 Network Structure
	2.1.2 Frame Types
	2.1.2.1 Management Frames
	2.1.2.2 Control Frames
	2.1.2.3 Data Frames

	2.1.3 Frame Structure
	2.1.4 Security Procedures
	2.1.4.1 WEP
	2.1.4.2 WPA
	2.1.4.3 WPA2
	2.1.4.4 802.11w


	2.2 802.16 Architecture
	2.2.1 Protocol Stack
	2.2.2 Network Entry
	2.2.3 Security Mechanisms
	2.2.3.1 Authorization
	2.2.3.2 Key Derivation
	2.2.3.3 Handshake
	2.2.3.4 TEK Transportation
	2.2.3.5 Traffic Encryption


	2.3 UMTS Architecture
	2.3.1 Network Structure
	2.3.2 Security Mechanisms


	3 Mac Layer Attacks Against IEEE 802.11
	3.0.3 Key Retrieving Attacks
	3.0.3.1 FMS Attack
	3.0.3.2 KoreK Family of Attacks
	3.0.3.3 PTW Attack
	3.0.3.4 ARP Injection
	3.0.3.5 Dictionary Attack

	3.0.4 Keystream Retrieving Attacks
	3.0.4.1 ChopChop Attack
	3.0.4.2 Fragmentation Attack
	3.0.4.3 Cafe Latte Attack
	3.0.4.4 Hirte Attack

	3.0.5 Availability Attacks
	3.0.5.1 Deauthentication Attack
	3.0.5.2 Disassociation Attack
	3.0.5.3 Deauthentication Broadcast Attack
	3.0.5.4 Disassociation Broadcast Attack
	3.0.5.5 Block ACK flood
	3.0.5.6 Authentication Request Flooding Attack
	3.0.5.7 Fake Power Saving Attack
	3.0.5.8 CTS Flooding Attack
	3.0.5.9 RTS Flooding Attack
	3.0.5.10 Beacon Flooding Attack
	3.0.5.11 Probe Request Flooding Attack
	3.0.5.12 Probe Response Flooding Attack

	3.0.6 Man-in-the-Middle Attacks
	3.0.6.1 Honeypot
	3.0.6.2 Evil Twin
	3.0.6.3 Rogue Access Point



	4 Mac Layer Attacks Against 802.16
	4.1 Ranging Attacks
	4.1.1 RNG-RSP DoS Attack
	4.1.2 RNG-RSP Annoyance Attack
	4.1.3 RNG-REQ Downgrading Attack
	4.1.4 RNG-RSP Water Torture Attack
	4.1.5 RNG-REQ DDoS Attack
	4.1.6 MOB ASC-REP DoS Attack

	4.2 Power Saving Attacks
	4.2.1 MOB TRF-IND Water Torture Attack
	4.2.2 BR and UL sleep control header Annoyance Attack
	4.2.3 Secure LU DDoS Attack

	4.3 Handover Attacks
	4.3.1 MOB NBR-ADV Downgrading Attack
	4.3.2 MOB NBR-ADV DoS Attack

	4.4 Miscellaneous Control Message Attacks
	4.4.1 SBC-REQ Security Downgrade Attack
	4.4.2 FPC Downgrade Attack
	4.4.3 FPC Water Torture Attack
	4.4.4 RES-CMD DoS Attack
	4.4.5 DBPC-REQ DoS Attack

	4.5 Attacks Against WiMAX Security Mechanisms
	4.5.1 Interleaving
	4.5.2 AUTH-REQ Replay Theft of Service Attack
	4.5.3 AUTH-REQ Replay DoS Attack
	4.5.4 PKM-RSP Auth-Invalid DoS Attack
	4.5.5 DES CBC IV Attack
	4.5.6 DES CBC Insecurity Attack

	4.6 Multicast/Broadcast Attacks
	4.6.1 GTEK Update Mode DoS Attack
	4.6.2 GTEK Theft of Service Attack
	4.6.3 MCA-REQ DoS Attack


	5 Mac Layer Attacks Against UMTS
	5.1 Attacks Against Core UMTS
	5.1.1 RRC connection Request Message
	5.1.2 Signalling Attack
	5.1.3 Dropping ACK Signal
	5.1.4 Modification of Unprotected RRC Messages
	5.1.5 Modification of the Initial Security Capabilities of MS
	5.1.6 Modified Periodic Authentication Messages
	5.1.7 SQN Synchronization

	5.2 Attacks Against WLAN/UMTS
	5.2.1 EAP-Response/AKA-Client-Error Notification 
	5.2.2 EAP-Response/AKA-Synchronization-Failure Resynchronisation
	5.2.3 EAP-Request/AKA-Notification Session Termination
	5.2.4 EAP-AKA Request HLR Flooding

	5.3 Attacks Against GSM/UMTS
	5.3.1 Real Time Eavesdropping
	5.3.2 Impersonation Attack


	6 Assessment of Wireless Attacks
	6.1 Theoretical Evaluation
	6.1.1 Energy Consumption of MOB-TRF-IND Water Torture Attack
	6.1.2 Degradation of Service from RNG-REQ DDoS Attack
	6.1.3 Computational Burden of AUTH-REQ Replay DoS Attack
	6.1.4 IV's Required in WEP Cracking Attacks

	6.2 Practical Evaluation
	6.2.1 Loss of Connection with Deauthentication and Disassociation Flooding
	6.2.2 Reduction of Throughput with Probe Request Flooding
	6.2.3 Denial of Network Entry with Beacon Flooding
	6.2.4 Stressing the AP Resources with Authentication Flooding
	6.2.5 Packets Replayed with ChopChop


	7 Anomaly Detection
	7.1 Detecting Anomalies in Data
	7.1.1 Basic Aspects
	7.1.1.1 Type of Input Data
	7.1.1.2 Data Labels
	7.1.1.3 Nature of Anomalous Data
	7.1.1.4 Result Presentation

	7.1.2 Challenges

	7.2 Basic Anomaly Detection Techniques
	7.2.1 Classification
	7.2.1.1 Neural Networks
	7.2.1.2 Bayesian Networks
	7.2.1.3 Support Vector Machines
	7.2.1.4 Decision Trees

	7.2.2 Nearest Neighbour
	7.2.3 Clustering
	7.2.4 Statistical Methods
	7.2.4.1 Gaussian Techniques
	7.2.4.2 Regression Techniques
	7.2.4.3 Hybrid



	8 Nature Inspired Approaches for Network Intrusion Detection
	8.1 Swarm Intelligence
	8.1.1 Ant Colony Optimization
	8.1.1.1 ACO for Deduction of Classification Rules

	8.1.2 Particle Swarm Optimization
	8.1.2.1 PSO & Neural Network Hybrid Approaches
	8.1.2.2 PSO & SVM Approaches
	8.1.2.3 PSO & K-Means Approaches
	8.1.2.4 PSO for Induction of Classification Rules

	8.1.3 Ant Colony Clustering
	8.1.3.1 ACC Approaches
	8.1.3.2 ACC & SOM Approaches
	8.1.3.3 ACC & SVM Approaches


	8.2 Artificial Immune Systems
	8.2.1 The Human Immune System
	8.2.2 Artificial Immune System Models for Intrusion Detection
	8.2.3 Idiotypic Network Theory
	8.2.4 Negative Selection
	8.2.5 Clonal Selection
	8.2.6 Danger Theory

	8.3 Evolutionary Computation
	8.3.1 GA & Neural Networks
	8.3.2 GA & Clustering

	8.4 Conclusions

	9 AWID: A Dataset for Wireless Intrusion Detection
	9.1 The Importance of Datasets in Anomaly Intrusion Detection
	9.1.1 What is a Dataset
	9.1.2 Datasets in Supervised Anomaly Detection
	9.1.3 Datasets in Unsupervised Anomaly Detection
	9.1.4 Evaluation Metrics Used on Datasets

	9.2 Datasets for Intrusion Detection
	9.2.1 DARPA 2000
	9.2.2 CAIDA DDoS Attack 2007
	9.2.3 UNIBS-2009
	9.2.4 CCTF-DefCon10
	9.2.5 ISCX Datasets
	9.2.6 Android Genome Project Dataset
	9.2.7 The Case of KDD99
	9.2.7.1 Characteristics
	9.2.7.2 Critique


	9.3 The Need for a Contemporary Wireless Intrusion Detection Testbed
	9.4 Introducing AWID
	9.4.1 Setup & Method of Data Collection
	9.4.2 Types
	9.4.3 Labelling
	9.4.4 Composition
	9.4.5 Record Scheme

	9.5 Evaluating ML Algorithms Against AWID
	9.5.1 Machine Learning Classification

	9.6 Comparison

	10 Extracting Wireless Attack Signatures
	10.1 Formulating Attack Signatures
	10.1.1 Flooding Attacks
	10.1.2 Injection Attacks
	10.1.3 Impersonation Attacks

	10.2 Attribute Selection Based on Empirical Criteria

	11 Termid: Robust Prediction of Spurious Network Traffic
	11.1 Introduction
	11.2 Description of the Ant-Miner Algorithm
	11.2.1 Pheromone Initialization
	11.2.2 Selecting Terms
	11.2.2.1 Heuristic Function

	11.2.3 Rule Pruning
	11.2.4 Pheromone Updating
	11.2.5 Classifying New Instances

	11.3 Previous Work
	11.3.1 Parallel Approaches

	11.4 Termid: A Distributed Ant-Miner Strategy for Intrusion Detection
	11.4.1 Description of The Solution

	11.5 Evaluation
	11.5.1 Complexity Analysis
	11.5.2 Accuracy Against Toy Datasets
	11.5.2.1 Empirical Estimation of Parameters

	11.5.3 Accuracy Against AWID
	11.5.3.1 Predictive Accuracy
	11.5.3.2 Training Speed

	11.5.4 Profiling the Algorithm Procedures
	11.5.4.1 Simplicity of Rules



	12 Conclusion and Future Directions
	12.1 Conclusions
	12.1.1 The Nature of Wireless Attacks
	12.1.2 Studying Wireless Attacks
	12.1.3 Intrusion Detection with Bio-Inspired Algorithms

	12.2 Thesis Contributions
	12.3 Future Research Directions

	A Record Fields of the AWID Dataset
	B Swarm Intelligence Algorithms Used in Intrusion Detection
	C Formal Definition of Threat in 802.16
	Bibliography

