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Abstract

Department of Information and Communication Systems Engineering
School of Engineering

University of the Aegean

Doctor of Philosophy
by Zisis K. Tsiatsikas

VoIP services in general, and Session Initiation Protocol (SIP) ones in particular, continue

to grow at a fast pace and have already become a key component of Next Generation

Networks (NGN). Despite this proliferation, SIP-based services expose a large attack

surface which make them prone to a plethora of attacks. Among them, Denial of Service

(DoS) is perhaps the most powerful and devastating one, as it aims to drain the underly-

ing resources of a service and make it inaccessible to its legitimate users. So far, various

detection and/or prevention schemes have been proposed to detect, deter, and eliminate

DoS occurrences in SIP ecosystems. It is true that while this topic has been addressed

in the literature to a great extent, none of the so far proposed works seems to be com-

plete in assessing in both realtime and offline modes if a system remains free of such

types of attacks. Additionally, only a handful of works examine the potential of Machine

Learning (ML) techniques to detect DoS in SIP-based networks, and even fewer do so in

realtime. Additionally, the current attack detection and prevention schemes focus almost

completely on the SIP headers neglecting the message body. An additional significant

gap of the literature of this topic is the examination of the potential of communicating

hidden information in SIP using the message body. The latter can be applied either with

respect to covert channels, or malformed messages. That is, while a significant mass of

works in the literature cope with covert communication channels, only a very limited

number of them rely on SDP to realize its goals.

The major contribution of this PhD thesis is focused on the design and implementation

of an Intrusion Detection System (IDS) framework, with the aim to battle against DDoS

attacks in SIP. This contribution is met with the design and development of a framework

which analyzes audit trails. Such network trails are considered a rich source of informa-

tion toward flushing out DoS incidents, and evaluating the security level of the system of

interest. Specifically, we introduce an end-user privacy-friendly service to assess whether

or not a SIP service provider suffers a DoS by examining either the recorded audit trails

(in a forensic-like manner) or the realtime traffic. To do so, we employ 2 statistical

methods namely Entropy and Hellinger distance.



A second contribution of this thesis revolves around the assessment of the potential of

5 different ML-driven techniques in combating SIP-driven Distributed Denial of Service

(DDoS) Attacks. In our analysis, we take into account both high and low-rate Dis-

tributed DDoS when assessing the efficacy of ML techniques in SIP intrusion detection.

Additionally, we employ this type of solutions both in an offline and realtime fashion. In

the context of this analysis, and for DDoS attacks, we compare our results with those

produced by the two aforementioned statistical and anomaly-based detection methods,

namely Entropy and Hellinger distance.

The last contribution of this PhD thesis pertains to the exploitation of Session Description

Protocol (SDP) as an attack vector. As already mentioned, while so far several works in

the literature have been devoted to the detection of DoS attacks in SIP ecosystems, the

focus is on those which exploit SIP headers neglecting the message body. In this respect,

in the context of this PhD thesis we examine the following two categories of attacks

(a) those that exploit SDP information residing in SIP requests, with the aim to hide

data in plain sight, and (b) those which capitalize on SDP to mount malformed message

attacks with the purpose of causing DoS either to the SIP proxy or the end-users. More

precisely, with respect to the first type of attack, the PhD thesis at hand demonstrates

and evaluates the feasibility of a simple but very effective in terms of stealthiness and

simplicity SDP-based covert channel for botnet Command and Control (C&C). To this

end, we do not only scrutinize this ilk of attacks and demonstrate their effect against

the end-user, but also develop an open source extensible SDP parser module capable

of detecting intentionally or unintentionally crafted SDP segments parasitizing in SIP

requests. Following a firewall-based logic, currently, the parser incorporates 100 different

rules organized in 4 categories (policies) based on RFC 4566 [1].



Greek Abstract

(Εκτεταμένη Περίληψη)

Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Πολυτεχνική Σχολή

Πανεπιστήμιο Αιγαίου

Διδακτορική διατριβή

του Ζήση Κ. Τσιάτσικα

Οι πολυμεσικές υπηρεσίες που παρέχονται μέσω του Διαδικτύου, και συγκεκριμένα αυτές

που αξιοποιούν το πρωτόκολλο SIP για τη διαχείριση της σηματοδοσίας, συνεχίζουν να

αναπτύσσονται ραγδαία. Επιπρόσθετα, οι εν λόγω υπηρεσίες αποτελούν ένα από τα βασικά

δομικά στοιχεία των δικτύων ύστερων γενεών (5G). Ανεξαρτήτως του ρυθμού ανάπτυξης

τους, οι πολυμεσικές υπηρεσίες που αξιοποιούν το SIP παρουσιάζουν μια ευρεία επιφάνεια

ευπαθειών, καθιστώντας τις αντίστοιχες υπηρεσίες επιρρεπείς σε ένα μεγάλο σύνολο ε-

πιθέσεων. Μεταξύ αυτών, οι επιθέσεις άρνησης εξυπηρέτησης ανήκουν στην κατηγορία

ισχυρότερων και καταστρεπτικότερων, καθώς στοχεύουν στην κατανάλωση των πόρων των

εμπλεκομένων συστημάτων και δικτύων, με σκοπό να τα παραλύσουν και να προκαλέσουν

δυσαρέσκεια στον τελικό χρήστη. Μέχρι στιγμής, η βιβλιογραφία στο συγκεκριμένο ε-

ρευνητικό πεδίο εμφανίζει ένα σημαντικό πλήθος εργασιών με σκοπό την ανίχνευση, την

αποτροπή και την ελαχιστοποίηση των επιπτώσεων των επιθέσεων άρνησης εξυπηρέτησης.

Συνολικά, αν και η συγκεκριμένη περιοχή έχει μελετηθεί εκτενώς στη βιβλιογραφία, φαίνεται

να υπάρχει ένα σημαντικό κενό αναφορικά με την αποτίμηση των μεθόδων ή/και πλαισίων

ασφαλείας, και την αξιολόγηση τους, όταν αυτά λειτουργούν τόσο σε πραγματικό, όσο και

σε μη πραγματικό χρόνο. Επιπρόσθετα, μόνο ένα μικρό σύνολο των εν λόγω εργασιών

ασχολείται με την εφαρμογή τεχνικών μηχανικής μάθησης για την ανίχνευση περιστατικών

άρνησης εξυπηρέτησης σε περιβάλλοντα SIP. Τέλος, ενώ το μεγαλύτερο μέρος της σχετι-

κής βιβλιογραφίας ασχολείται με τις επιθέσεις άρνησης εξυπηρέτησης που έχουν ώς φορέα

τις κεφαλίδες των μηνυμάτων SIP, ελάχιστες εξετάζουν το κυρίως σώμα του μηνύματος.

Επιπλέον, ενώ μέχρι τώρα ένας σημαντικός όγκος των σχετικών εργασιών στην παρούσα

ερευνητική περιοχή ασχολούνται με επιθέσεις στο πρωτόκολλο SIP, ελάχιστες από αυτές

ασχολούνται με τη δημιουργία συγκεκαλυμμένων καναλιών, και καμία με την αξιοποίηση του

πρωτοκόλλου SDP ως φορέα αυτών.



Η σημαντικότερη συνεισφορά της παρούσας διατριβής αφορά στην ανάπτυξη και το σχεδια-

σμό ενός συστήματος ανίχνευσης εισβολών, με σκοπό την καταπολέμηση κατανεμημένων

επιθέσεων άρνησης εξυπηρέτησης στο SIP. Ο στόχος αυτός, εκπληρώνεται με το σχεδιασμό

και την ανάπτυξη μηχανισμών ανίχνευσης εισβολών που βασίζονται στην ανάλυση αρχείων

λογιστικών καταγραφών του δικτύου στο επίπεδο εφαρμογής. Τα αρχεία αυτά θεωρούνται

μια πλούσια πηγή πληροφορίας αναφορικά με την ανίνευση περιστατικών άρνησης εξυπηρέτη-

σης, καθώς και για την γενικότερη αξιολόγηση του επιπέδου ασφαλείας ενός συστήματος.

Συγκεκριμένα, σχεδιάζουμε, υλοποιούμε και αξιολογούμε μια υπηρεσία ανίχνευσης εισβολών

που επιπλέον διατηρεί την ιδιωτικότητα του τελικού χρήστη με γνώμονα την ιδιωτικότητα,

για την αξιολόγηση επιθέσεων άρνησης εξυπηρέτησηςη ενός παρόχου υπηρεσιών VoIP, είτε

εξετάζοντας αρχεία λογιστικών καταγραφών, ή εξετάζοντας τη δικτυακή κίνηση σε πραγμα-

τικό χρόνο. Για να επιτευχθεί αυτό, αξιοποιούμε δύο στατιστικές μεθόδους που βασιζονται

στην εντροπία και την απόσταση Hellinger.

Μια δεύτερη συνεισφορά της παρούσας διατριβής επικεντρώνεται στην αξιολόγηση της ε-

φαρμογής πέντε διαφορετικών τεχνικών μηχανικής μάθησης, με σκοπό την καταπολέμηση

των επιθέσεων κατανεμημένης άρνησης εξυπηρέτησης. Στην αξιολόγηση των μεθόδων μας

λαμβάνουμε υπόψη επιθέσεις τόσο υψηλού όσο και χαμηλού όγκου δεδομένων και ρυθμών

μετάδοσης μηνυμάτων. Επιπρόσθετα, στο πλαίσιο της ανάλυσης μας, και για την περίπτωση

των κατανεμημένων επιθέσεων άρνησης εξυπηρέτησης, συγκρίνουμε τις επιδόσεις του συ-

στήματος με αυτές που παρήχθησαν κατά την εφαρμογή των στατιστικών μεθόδων, δηλαδή

της εντροπίας και της απόστασης Hellinger.

Υπό αυτό το πρίσμα, εξετάζουμε τις ακόλουθες δύο βασικές κατηγορίες επιθέσεων (α) αυ-

τές που χρησιμοποιούν το πρωτόκολλο SDP - το οποίο αξιοποιείται από το SIP - ως φορέα

προκειμένου να μεταφέρουν κρυφή πληροφορία, και (β) αυτές που αξιοποιούν συγκεκρι-

μένα τμήματα ενός μηνύματος SDP με σκοπό να προκαλέσουν άρνηση εξυπηρέτησης στα

εμπλεκόμενα συστήματα ή/και στον χρήστη της υπηρεσίας. Ως παράδειγμα του πρώτου

τύπου επιθέσεων παρουσιάζουμε και αξιολογούμε τη λειτουργία ενός απλού αλλά ιδιαίτε-

ρα αποτελεσματικού κρυφού καναλιού επικοινωνίας, το οποίο βασίζεται αποκλειστικά στο

πρωτόκολλο SDP, για την επικοινωνία μολυσμένων συσκευών (ρομπότ) μεταξύ τους ή με

τον διακομιστή εντολών (C&C). Σε αυτό το πλαίσιο, όχι μόνο εξερευνούμε αυτή την κα-

τηγορία επιθέσεων, αλλά επίσης καταδεικνύουμε την επίδραση τους στον τελικό χρήστη.

Επιπρόσθετα, υλοποιούμε ένα επεκτάσιμο άρθρωμα ανοιχτού λογισμικού, ικανό να ανιχνε-

ύει εκούσια ή ακούσια αλλοιωμένα μηνύματα SDP, τα οποία παρασιτούν στα μηνύματα SIP.

Ακολουθώντας μια λογική παρόμοια με αυτή ενός αναχώματος ασφαλείας, το εν λόγω άρ-

θρωμα λογισμικού μέχρι στιγμής ενσωματώνει 100 διαφορετικούς κανόνες, οργανωμένους

σε 4 κατηγορίες (πολιτικές) σύμφωνα με το RFC 4566 [1].
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Chapter 1

Introduction

According to recent marketing analysis reports [2, 3, 4], Voice over IP (VoIP) services

are mushrooming on a daily basis. As in Public Switch Telephone Networks (PSTN), a

central role in VoIP communications plays a signaling protocol responsible for manag-

ing (establish, update, terminate) user sessions. Although various signaling protocols,

including H.323 [5], SIP [6], Media Gateway Control Protocol (MGCP) [7], have been

proposed, the Session Initiation Protocol (SIP) [6] seems to be the predominant one.

This is because SIP inherits from the HTTP [8] model and structure, thus providing a

high degree of freedom to easily develop new multimedia services and products.

Despite the advantages users enjoy due to SIP flexibility, various attacks have been

identified against SIP-based VoIP services [9, 10, 11]. To alleviate, if not eliminate,

such security flaws a diversity of detection and prevention solutions have been proposed

in the literature [12, 13, 14, 15, 16]. However, while all these security mechanisms and

countermeasures may be of considerable value, they do not capitalize on log files collected

by the providers. So, it might mistakenly be taken for granted that the underlying

services are secure, while in fact they are prone to security breaches, which have gone

undetected. This especially applies to low-volume Denial of Service (DoS) attacks, which

are lately on the rise and admittedly remain hard to detect and repel. In fact, the value

of audit trail data in identifying security violations and flaws in applications has been

highlighted by several researchers, security fora and organizations, including the National

Institute of Standards and Technology (NIST) [17].

1
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On the downside, personal data contained in audit trails - and especially those stemming

from the application layer as that of SIP - are subject to various legal restrictions and

regulations. This fact alone makes the processing and exchange of audit trails among

multimedia providers highly troublesome and problematic. This is because the exposure

of sensitive personal information contained in audit trails to unauthorized entities is prone

to several malicious acts that clearly violate the users’ private sphere [18, 19, 20, 21].

For instance, an ill-motivated actor is able to learn the user’s real identities and next

eavesdrop on which services are being accessed by them, thus violating the principle of

user anonymity [22, 23]. In the long term, when this kind of information is systematically

gathered, the end-user can be profiled and sensitive information (e.g., preferred services)

can be inferred. So, while audit trail analysis in VoIP ecosystems may be of great value,

this needs to happen after a data-neutralization process takes place. This is necessary

in order to obfuscate certain pieces of personal information contained in log files and

preserve the privacy of the end-users.

Moreover, by examining the rather rich literature on SIP security, one can distinguish

several categories of assaults ranging from SQL injection to Denial of Service (DoS) [24,

25, 26, 27]. It can be safely argued that the latter category attracts the greater attention,

and seems to be the most perilous and difficult to confront since it is closely related with

the signaling nature of the protocol per se. So, focusing on this kind of attacks, so

far, several protection and detection methods have been proposed. Roughly, we can

categorize them into misuse-detection and anomaly-detection ones. Generally, the first

family of methods monitors network activity with exact signatures of known malicious

behavior (e.g., observe the network traffic for singular byte sequences), while the second

possesses a knowledge of normal activity and warns against any deviation from that

profile. The latter category of methods, is usually realized by means of tools borrowed

from the Machine Learning (ML) community. This refers to algorithms that get trained

first in an either supervised or unsupervised manner with reference input to learn its

particulars, and then are fed with unknown input for accomplishing the real detection

process. Specifically for SIP, although the DoS threat has been stressed out and dealt

with a significant number of researches [9, 28], the applicability and effectiveness of ML

techniques to cope against such incidents are still being assessed and certainly in need

for further development.

Naturally, this is mainly due to the increased overhead that these methods may bear
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- especially when it comes to realtime detection and a training phase is required - in

comparison to misuse-based or purely statistical ones. Nevertheless, in this PhD thesis

we argue that ML techniques can be particularly fruitful for examining the high-volume

log files of a given VoIP realm in an offline fashion if they contain DoS incidents. Also,

this category of methods may show better results when used for the detection of low-rate

DoS (also known with the term “low and slow”), which although not used to paralyze the

target system at a fast pace, it consumes valuable network, CPU and memory resources.

Ultimately, this results in service delays which in turn cause customer dissatisfaction

with direct negative results in the provider’s market share.

In a typical DoS assault, the attacker tries to paralyse the victim by either sending against

it a surge of SIP requests or a number of malformed messages. In the former case, the

victim is unable to serve the voluminus number of incoming requests, while in the latter

the sufferer is incapable of parsing or handling properly the incoming request, and the

service crashes. On the other hand, as VoIP services rely on the open Internet, providers

need to ensure availability levels similar to PSTN. This means that among other well-

documented threats [24, 26, 25, 27] they need to cope with resource consumption attacks

targeting the application layer, namely Denial Service (DoS) as well as their distributed

form (DDoS) that causes service disruptions and sometimes even complete outages. This

is of high importance especially for critical voice services e.g., emergency numbers. This

threat is further aggravated as the current predominant VoIP signaling protocol, namely

Session Initiation Protocol (SIP), can be easily exploited by an attacker. This is mainly

due to SIP text nature that allows the aggressor to straightforwardly craft and send large

volumes of SIP requests toward its victim with the aim of paralysing it. The perpetrator

is also able to exercise more clever attacks, including low and slow ones [29] in order to

consume a considerable amount of VoIP server’s resources and network bandwidth, and

thus degrade the quality of the service.

The common denominator of the latter kind of attacks is the manipulation of SIP message

headers by the attacker so as to hamper or preferably paralyse the parsing process at

the SIP server or client. To cope with this threat, the great mass of works [30, 31,

25, 32] in the literature propose some way for the SIP server to detect malformed SIP

headers, and thus discard the corresponding messages outright. However, what is largely

neglected is that similar assaults may take advantage of the Session Description Protocol

(SDP) [1] part of a SIP message. Recall that SDP is responsible for negotiating the
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media information among the communicating peers, and as a result, SDP information

is present in a diverse type of SIP requests and replies. Moreover, according to the

literature [33], SDP can be exploited to build covert communication channels in ignorance

of the SIP network. For instance, such hidden channels are typically exploited by botnets

for realizing a command and control (C&C) infrastructure.

Bearing SDP-driven DoS attacks in mind, the goal of this thesis is dual; first to provide

proof of the pernicious nature of this type of attacks, on real-life SIP clients and servers,

and second to introduce a lightweight and flexible filtering mechanism for effectively

coping with them. Moreover, a defensive solution is provided. The latter comes in the

form of a software module either embedded in the SIP server or running in a separate

machine in front of the former. In this way, the defender is able to timely detect and

silently drop messages that do not fully comply with the standard [1]. Also, as a side

advantage, the parser is capable of rejecting SIP requests that are found suspicious to

carry information that may be part of a covert communication channel.

1.1 Thesis motivation and objectives

Attackers always find ways to elude the employed security mechanisms of a system, no

matter how strong they are. Nevertheless, audit trails - which as a rule of thumb are

kept by any service provider - store all the events pertaining to the service of interest.

Therefore, audit trail data can be a valuable ally when it comes to the certification of the

security level of a given service. This stands especially true for critical realtime services

such as multimedia ones, which nowadays are on the rise.

In a nutshell, audit trails, especially those of large volume as in the case of multimedia

services, are rarely utilized properly so as to prove service abuse. As already pointed

out this is mainly due to privacy restrictions. Therefore, as a general rule, any solution

focusing on digital forensic analysis should deduce services security level with respect

to audit trails (as well), but it is important to do so without violating the privacy of

the end-user. Overall, it would be very beneficial if the existing security audit controls

and certification methodologies could be seconded by appropriate tools that are able to

automatically analyze the collected audit trails and determine in a formal way whether

or not the provided service suffers a security incident, e.g., a flooding attack.
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To cope with this threat, several SIP-oriented intrusion detection and prevention systems

have been presented in the literature so far. Focusing on proposals to defend against

application layer DoS in these environments, one can identify simple statistical schemes

as those given in [13, 34]. In this category of solutions detection relies on different network

statistics, including incoming traffic rate, and uses a predefined threshold above which

the received traffic is classified as malicious. It is obvious, though, that such a solution

cannot protect SIP services effectively against low-rate application layer DoS attacks, as

it is cumbersome to constantly adapt itself, say, by recalculating the underlying threshold

to reflect the ongoing characteristics of the attack.

Furthermore, most of the existing solutions do not consider SIP different inherent fea-

tures and characteristics which can be exploited by an attacker to launch DoS, while the

majority of them are privacy-invasive. A comprehensive analysis of existing protection

solutions against DoS in SIP can be found in [9]. Therefore, as the aggressors become

more sophisticated, there is a need for advanced DDoS detection methods, in the ap-

plication layer, that are able to automatically adjust their behavior to the attack traffic

patterns. A way to achieve this is to use well-established classifiers from the Machine

Learning (ML) toolbox.

Moreover, the literature so far largely misses the exploration of SIP malformed message

attacks, which specifically leverage SDP information conveyed by certain SIP messages.

Even the RFC 4475 [35], which is dedicated to SIP torture test messages, does not

explicitly elaborate on SDP malformed message attacks. To this end, this PhD thesis not

only contributes proofs of the feasibility and impact of this ilk of attack against real-life

diverse SIP entities, but it additionally offers a publicly available parsing mechanism that

can remedy it. Also, the same solution can help into deterring evildoers from exploiting

the SIP infrastructure for building secret communication channels. As already discussed,

SDP-based covert channels are scarcely addressed in the literature. That is, the majority

of the existing works concentrates on the applicability of information hiding techniques

in VoIP-related protocols in general. This includes SIP, Real Time Protocol (RTP) and

RTP Control Protocol (RTCP). The delivered channels may be used in a variety of ways,

aiming to establish secret paths of communication.

Taking into account the previously-mentioned findings, this PhD thesis aims to provide

a complete framework, capable of thwarting application layer DDoS attacks in SIP and
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SDP. The framework has the following characteristics: a) it works both in a realtime and

offline fashion. b) It supports 2 statistical schemes and 5 ML classifiers. c) It performs a

privacy-preserving analysis. d) It examines syntactically wrong SDP bodies which may

cause either DoS attacks or convey hidden commands in the context of a C&C channel.

To this end, the objectives of this work can be summarized as follows:

Objective 1: The first objective of the PhD thesis at hand is focused on the privacy-

preserving analysis of audit-trails to detect security incidents. Moreover, the investigation

of the applicability of 2 statistical schemes in the detection of SIP-based application layer

DDoS attacks is considered a basic parameter of the proposed IDS framework. We aim

at evaluating the statistical schemes both in a offline and realtime manner.

Objective 2: The second objective concerns the extension of the framework to support

ML-driven detection of SIP-based application layer DDoS attacks. In this context we

want to employ different ML classifiers, both in offline and realtime fashion, in order to

evaluate their effectiveness. Using the results of Obj. 1 and Obj. 2, we intent to perform

a side to side comparison of statistical schemes with ML techniques. This comparison

will be based on the time overhead, false alarms, and detection accuracy between 2

statistical schemes and 5 ML techniques. Furthermore, it will provide proofs for building

more efficient and robust IDS systems, to cope against DDoS attacks in SIP ecosystems.

Objective 3: The third objective of this thesis pertains to the investigation and mitiga-

tion of application layer SDP-driven attacks. More specifically, we examine the feasibility

of exploiting SDP as a Command and Control (C&C) channel aiming to convey hidden

information over malformed SDP segments to an SIP botnet and launch attacks. Addi-

tionally, we study the impact of malformed SDP messages which target the application

layer in order to cause DoS. In this respect, the last goal of this thesis revolves around

the design and development of a protection mechanism to combat against the 2 types of

attacks we mentioned earlier, by detecting malformed SDP bodies.

1.2 Thesis contributions

As already pointed out in the previous subsection, the main intention of this PhD thesis is

the design and development of a privacy-preserving framework to trace application layer

DDoS attacks in SIP and SDP. In this direction, the privacy-preserving analysis of audit
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trails consists one of the main pillars of this framework. Additionally, the applicability

and the assessment of 2 statistical schemes and 5 ML classifiers against application

layer DDoS attacks in SIP, consists the main weaponry of this framework. Finally, the

examination of the impact of SDP-driven malformed message attacks which target the

application layer remains the last goal of this PhD thesis. More specifically, SDP-based

C&C channels and DoS attacks which are caused due to malformed SDP segments are

examined. Finally, a protection mechanism to remedy the previous-mentioned attacks

in SDP is given.

All in all, the contributions of this study are fully aligned with the previously-analyzed

objectives.

More precisely, to meet Obj.1 we study the privacy-preserving analysis of audit trail

files which contain SIP traffic. In this direction we apply 2 pure statistical schemes,

namely Entropy and Hellinger Distance, with the aim of detecting application layer

DDoS attacks. We design and develop a software module, in order to address a method

for the first scheme. Chapter 5 presents in detail the contributions with respect to the

statistical schemes.

Moreover, with regards to Obj. 2, we employ 5 well-known classifiers for the detection

of application layer DDoS attacks. Additionally, we study the overhead these methods

introduce in a realtime system for both the training and the detection phase. Finally,

we perform a side-by-side comparison with the schemes presented in the first objective.

A detailed overview of these contributions is provided in Chapter 6.

Concerning Obj. 3, we study the capacity of a SDP-driven C&C channel. Additionally,

we examine the impact of application layer DoS attacks which exploit SDP. Finally, in

order to thwart these vulnerabilities, we introduce a software module capable of filtering

malformed SDP segments. Chapter 7 presents a thorough view of these contributions.

All in all, the contributions of this PhD thesis with reference to publications in scientific

journals and conference proceedings are as follows:

• The introduction of an Entropy-driven, efficient, and easily deployable method to

analyze audit trail data from a security point of view in both realtime and offline
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Figure 1.1: PhD thesis - Objectives

fashion 1 2. On top of that, this contribution enables VoIP providers to share

their audit trails with trusted authorities in charge of analyzing its security status.

This is possible because we mandate all data to be anonymized prior to being

communicated between the different entities and get processed. In this respect,

it is argued that the proposed solution bridges the gap between the limitations of

existing approaches to identify security flaws by examining the audit trails, while

at the same time it is orthogonal to the current defensive weaponry.

• The applicability of the well-known Hellinger Distance (HD) metric [36] to identify

application layer DoS attacks in SIP-based multimedia services 3.

• The assessment of the effectiveness of 5 well-known classifiers to detect application

layer DDoS incidents in SIP is examined both in offline 4 and realtime 5 modes.

More specifically, :

- A method to calculate SIP message headers occurrences from a given log file in a

privacy-preserving way based on a predefined message window. The output of this

process are fed to the ML algorithm as the case may be.

- For DDoS scenarios, a comparison between two other anomaly-based detection
1Tsiatsikas, Z., Geneiatakis, D., Kambourakis, G., Keromytis, A. D. (2013, September). A

Privacy-Preserving Entropy-Driven Framework for Tracing DoS Attacks in VoIP. (ARES 2013), DOI:
10.1109/ARES.2013.30

2Tsiatsikas, Z., Geneiatakis, D., Kambourakis, G., Keromytis, A. D. (2015). An efficient
and easily deployable method for dealing with DoS in SIP services. Computer Communications,
https://doi.org/10.1016/j.comcom.2014.11.002

3Tsiatsikas, Z., Kambourakis, G., Geneiatakis, D. Exposing resource consumption attacks in internet
multimedia services, (ISSPIT 2014), DOI: 10.1109/ISSPIT.2014.7446237

4Tsiatsikas, Z., Fakis, A., Papamartzivanos, D., Geneiatakis, D., Kambourakis, G., Kolias, C. (2015,
July). Battling against DDoS in SIP: Is Machine Learning-based detection an effective weapon?, (SE-
CRYPT 2015), DOI: 10.5220/0005549103010308

5Tsiatsikas, Z., Geneiatakis, D., Kambourakis, G., Gritzalis, S. (2016, September). Real-
time DDoS Detection in SIP Ecosystems: Machine Learning Tools of the Trade. NSS 2016, DOI:
https://doi.org/10.1007/978-3-319-46298-19
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methods proposed in the literature (i.e., Entropy, and Hellinger Distance) and

ML-powered detection in terms of effectiveness, is given.

• A simple but powerful in terms of stealthiness covert communication protocol to

exchange botnet C&C messages over SDP data in SIP requests 6. More specifically,

we demonstrate:

– The evaluation of the effectiveness of the covert channel by controlling several

bots and launching two different (i.e., a volumetric and a protocol-based) Denial

of Service (DoS) types of attacks.

– The attack impact in terms of resource consumption at the victim side is also

examined.

• We provide proofs of the pernicious nature of SDP-driven application layer DoS

attacks, on real-life SIP clients and servers. Additionally, a lightweight and flexible

filtering mechanism for effectively copying with them is introduced 7. This defensive

solution comes in the form of an SDP parser software module either embedded in

the SIP server or running in a separate machine in front of the former. In this

way, the defender is able to timely detect and silently drop messages that do not

fully comply with the standard [1]. Also, as a side advantage, the parser is capable

of rejecting SIP requests that are found suspicious of carrying information that

may be part of a covert communication channel. More specifically, in the area of

SDP-driven malformed message attacks we provide:

- A study of the impact of SDP malformed messages on a variety of SIP software

and hardware phones, and servers.

- A publicly available open-source software module capable of detecting malformed

SDP messages lurking in SIP requests is given. Message parsing is done based on

RFC 4566 [1], while the implemented software can work alongside the SIP server

or independently in a separate machine.

- We extensively assess the performance of the proposed scheme in terms of service

time.
6Tsiatsikas, Z., Anagnostopoulos, M., Kambourakis, G., Lambrou, S., Geneiatakis, D. (2015, Septem-

ber). Hidden in plain sight. SDP-Based covert channel for botnet communication, (TrustBus 2015), DOI:
https://doi.org/10.1007/978-3-319-22906-54

7Tsiatsikas, Z., Kambourakis, G., Geneiatakis, D., Wang, H. (2019). The Devil is in the Detail:
SDP-Driven Malformed Message Attacks and Mitigation in SIP Ecosystems. IEEE Access, 7, 2401-
2417.
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Finally, figure 1.1 presents the contributions of this PhD thesis with respect to the

objectives described in the previous subsection.
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1.3 Thesis structure

The next Chapter presents the fundamental background of SIP and SDP. In this context,

the basic messages, syntax, structure and network entities are presented.

Chapter 3 presents SIP and SDP threat models with respect to application layer DDoS

attacks, malformed messages, and C&C channels.

Chapter 4 analyzes the literature review and emphasizes on three main pillars. The first

one concerns the analysis of log files to detect security incidents. The second pertains to

the detection of application layer DDoS attacks. The third one relates to C&C channels.

Chapter 5 elaborates in the detection of DDoS attacks in SIP using statistical means.

In this context, two different schemes are presented building over Entropy theory and

Hellinger Distance.

Chapter 6, presents and evaluates the applicability of five Machine Learning classifiers

in the detection of application layer DDoS attacks in SIP.

Chapter 7 analyzes SDP-driven malformed messages and C&C channels. Additionally,

a misuse-based prevention mechanism is presented against the aforementioned types of

attacks.

All in all, the epilogue is draw in Chapter 8, by analyzing the results obtained from

this PhD thesis. Additionally, defensive and preventive best practices, with respect to

application layer DDoS attacks in SIP and SDP, are provided. Finally, future directions,

with special emphasis on application layer DDoS attacks targeting SIP-based emergency

calling centers are also provided.



Chapter 2

Background

2.1 VoIP services

During the last years Voice over IP (VoIP) technologies and services have penetrated

the market and for many of us became an integral part of our software and/or hardware

portfolio. Recent reports indicate that this market will grow to reach about USD 190

billion until 2024 [2]. In both mobile and fixed networks, Session Initiation Protocol

(SIP) seems to be the predominant means for establishing and managing a VoIP session.

On the downside, the text and open nature of the protocol has given rise to a plethora

of attacks against it.

As the Internet dominates communication nowadays, telcos and other companies are

trying to exploit its advantages to offer low cost voice multimedia communication services

to their users. Very similar to legacy telecommunication systems the basis to do so is

a signaling protocol in charge of managing the multimedia session. As already pointed

out, nowadays, SIP seems to attract the major piece of attention. Intrinsically, SIP is

designed to create, modify, and terminate voice and other more advanced multimedia

sessions over the Internet. SIP is text-based with syntax similar to that of HTTP. SIP

messages can be either a request or an acknowledgment to a corresponding request,

consisting of the appropriate header fields and optionally a message body, depending on

the nature of the request or response. An example of a typical SIP request message is

given in figure 2.1.

12
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Whenever a user wishes to use a SIP service she should announce its presence by reg-

istering their current IP address to the registration service (registrar) through a SIP

REGISTER message. After that, the user is able to initiate a session with other reg-

istered or interconnected User Agents (UA) by sending a SIP INVITE message to its

local SIP proxy. After the call has been established, the two endpoints, namely the caller

and callee are able to start the multimedia session with the help of Realtime Transport

Protocol (RTP) [37]. At any time, either the caller or the callee may terminate the call

by sending a SIP BYE message toward the other endpoint.

2.2 SIP service architecture

SIP is a text-based protocol with syntax similar to that of HTTP. As shown in figure 2.1,

a SIP message (request in this case) consists of two basic parts. The upper one corre-

sponds to the message headers and carries information in regards to the sender (caller)

and the recipient (callee) of the message. The second part is known as the message

body and carries the media details. Communications resources in SIP are assigned a

SIP Uniform Resource Identifier (URI), e.g., with reference to the first line of figure 2.1,

sip:tzisis@msip.aegean.gr. Every SIP message is processed by the appropriate SIP com-

ponent. A basic SIP infrastructure consists of:

INVITE sip:tzisis@msip.aegean.gr SIP/2.0

Via: SIP/2.0/UDP 10.10.10.39:6040;branch=z9hG4bK-6176-2-1

From: alice <sip:alice@msip.aegean.gr>;tag=2-INV-UAC

To: tzisis <sip:tzisis@msip.aegean.gr>

Call-ID: 2-6176@10.10.10.39

CSeq: 1 INVITE

Contact: alice <sip:alice@10.10.10.3
9:6040>

Max-Forwards: 70

Content-Type: application/sdp

Content-Length: 140

v=0

o=user1 53655765 2353687637 IN IP4 10.10.10.39

s=SIPp-UAC

c=IN IP4 10.10.10.39

t=0 0

m=audio 6001 RTP/AVP 0

a=rtpmap:0 PCMU/8000

M
sg

. 

H
e

a
d

e
rs

M
sg

. 

B
o

d
y

Figure 2.1: A typical SIP INVITE request
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Figure 2.2: A typical SDP body

• SIP User Agent (UA) - Represents the end points of the SIP protocol, that is,

the User Agent Client (UAC) and the User Agent Server (UAS) which are able to

initiate or terminate a session using a SIP software or hardware client.

• SIP Proxy Server - An intermediate entity which plays the role of the client and

the server at the same time. Its task is to route all the packets being sent and

received by the users participating in a SIP session. Note that one or more SIP

proxies may exist between any two UAs.

• Registrar - Handles the authentication and register requests initiated by the UAs.

For this reason, this entity stores the user’s credentials and UA location informa-

tion.

The media session establishment process is initiated by the UAC (caller) sending a SIP

INVITE request to the UAS (callee) via one or more SIP proxies. Upon receiving the

request, the SIP proxy extracts the callee’s username and queries the Registrar for obtain-

ing the corresponding location information. Then, the SIP proxy forwards the request to
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the callee. After that, the session is considered established and a media protocol takes

over the management of the audio and video packets between the endpoints. Realtime

Tranport Protocol (RTP) [37] has been acclaimed as the most appropriate for this pur-

pose. At any time, either the caller or callee may terminate the media session by sending

a BYE request toward the other endpoint. SIP architecture offers a total of 88 messages

for session management. Among them, 14 are used as requests and the rest as responses.

A SIP message may consist of two main parts, namely the SIP message headers (the

upper part of the message) and the message body carrying SDP information. Specifi-

cally, the upper part carries information regarding the method, the sender, the recipient

of the message, and the communication path. The SDP part, which is the focus of this

work, conveys information concerning the media of the session and it may be present

in specific SIP requests and responses, including INVITE, ACK, 180 RINGING, 183

Session Progress, 200 OK. That is, with the help of SDP, SIP employs the offer/answer

model [38] to establish and manage multimedia sessions. Figure 2.2 presents the SDP

part of a SIP INVITE request generated by the open source SIP UA Jitsi [39]. According

to the corresponding RFC [1], every SDP message can contain up to 5 mandatory and

15 optional different descriptors. Table 7.1 provides a succinct overview per descriptor

along with a typical example.

2.3 Protocol messages

SIP provides a set of requests for session management. These requests are presented in

detail in Table 2.1. All of these requests can be used as a means to launch application

layer DDoS attacks. In any case, those which are usually exploited by the attacks for

these purposes are the SIP REGISTER and INVITE requests. Chapter 3 details on these

types of attacks. Furthermore, all of these requests can be used for attacking a victim

using malformed messages [40, 41, 42, 43]. Using this type of attack, the attacker aims on

causing application layer DoS in the victim side. Finally, all of the previously-mentioned

requests can be used for conveying hidden information in the context of a C&C covert

channel [44, 45]. In any case, keep in mind that SDP-driven C&C’s can be only build

over those requests which are used for media negotiation (i.e., they carry a SDP body).

Chapter 7 details on these messages.
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Table 2.1: Basic SIP requests

Type of Request Description
REGISTER It is used for Registering on a service
INVITE It is used for initiating a session
ACK Acknowledges a SIP INVITE request

OPTIONS It is used as a ping mechanism
SUBSCRIBE Creates a subscription between a client and a service
NOTIFY Provides information to the subscriber
PRACK Acknowledges provisional responses
PUBLISH Transfer information from the service to the broker
INFO Conveys application level information
REFER It is used for transfering a call

MESSAGE Provides the ability to send instant messages
UPDATE Updates the parameters of a session prior establishment

BYE Terminates a session
CANCEL Cancels the establishing of a session

Table 2.2 presents the set of responses which are used in SIP. The responses which convey

SDP information can be exploited by an attacker with the aim to launch the 2 types of

attacks this PhD thesis investigates in Chapter 7. In general, the rest of the responses

can be used in order to launch other types of DoS attacks (i.e., race conditions, etc.).

Such attacks are presented in Chapter 3.

Table 2.2: Basic SIP responses

Type of Response Description
1xx Set of responses used for provisional purposes
2xx Set of responses used for success purposes
3xx Set of responses used for redirection purposes
4xx Set of responses used for client failure purposes
5xx Set of responses used for server failure purposes
6xx Set of responses used for global failure purposes

2.4 SIP message flow

SIP [6] is an application-layer signaling protocol for creating, modifying, and terminat-

ing multimedia sessions among two or more participants. Actually, SIP is text-based

with syntax similar to that of HTTP. SIP messages can be either a request or an ac-

knowledgment to a corresponding request, consisting of the appropriate header fields

and optionally a message body, depending on the nature of the request or response. An

example of a typical SIP request message is given in figure 5.2.
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Whenever a user wishes to use a SIP service they should announce its presence by

registering their current IP address to the registration service (registrar) through a SIP

REGISTER message. After that, the user is able to initiate a session with another

registered or interconnected User Agent (UA) by sending a SIP INVITE message to

its local SIP proxy. After the call has been established, the two peers (the caller and

callee) can start the multimedia session with the help of Realtime Transport Protocol

(RTP) [37]. At any time, either the caller or the callee may terminate the call be sending

a SIP BYE message toward the other end. These procedures are succinctly illustrated

in figure 2.3.

Note that this kind of network logistic data pertaining to SIP calls are kept by default

by all VoIP providers in order to fulfill important tasks including billing, network man-

agement and planning, security assessment, etc. So, independently of the file format

each provider uses to store them, these raw data are solely consisted of SIP requests and

responses.

2.5 SIP log files anonymization

The concept of the end-user privacy is very crucial for any service. In this direction, SIP-

based applications can be assisted by appropriate tools that are able to automatically

Figure 2.3: A simplified SIP message flow example
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analyze the collected audit trails and determine in a formal way whether or not the

provided service suffers a security incident, e.g., a flooding attack. In any case, these

tools must meet specific requirements with respect to the end-users’ privacy.

The privacy and security requirements for any VoIP provider are strongly related to the

robustness of the anonymization process conducted on the log files. Therefore, there is a

need for a fast-performing solution able to cope with realtime detection, but also strong

enough to deter de-anonymization attacks when offline analysis is performed.

In this context, various techniques have been proposed in the literature for anonymizing

data that include private information [46, 47]. Since anonymization and privacy cannot

be considered as binary properties for any system, each solution is suitable for employ-

ment to a specific architecture and context depending on the requirements at hand. In

the following, a brief description of such approaches is offered showing their advantages

and disadvantages pertaining to our case. Note however that a comprehensive analysis of

all possible anonymization schemes for preserving the privacy of network log files remains

out of scope of this work.

Randomization was introduced in works [48, 49] for defending against zero-day at-

tacks. A similar approach can be followed for data anonymization. To do so, data are

transformed via the use of a randomized function. However, the transformation pattern

should be also known to the third party that wishes to analyze the transformed data.

Generalization [50] divides data (e.g., sensitive headers per SIP message) into Quasi-

Identifier (QI) groups, and changes their QI-values into less explicit forms, in a way that

data in the same QI-group are indistinguishable by their QI-value (corresponding to the

number of SIP message in our case). The philosophy of this method has been embraced

and evolved toward forming more advanced ones including anatomy [51], permutation

anonymization [52] and others.

K-anonymity is a privacy preserving approach [53] that constitutes k records indistin-

guishable. In this scheme a set of k data records are k|anonymized if for any data record

with a given set of attributes there are at least k-1 other records that match with those

attributes. To achieve this, sensitive attributes are hidden in order to obstruct leakage

of real identities.
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Symmetric encryption can be used to provide not only confidentiality services, but

also data anonymization [54]. Sensitive record’s attributes are encrypted using a secret

key. The output looks random, while decryption is computationally infeasible, unless you

know secret key. Symmetric encryption schemes can be used either in a deterministic

way, i.e., the same input produces the same output for the same key, or in a semantically

secure mode, i.e., a publicly known input modifies the output per encryption for the

same key.

Message Authentication Codes (MACs) are symmetric schemes that are used for

data integrity protection. When the plaintext space is much smaller than the tags space,

the tag can be used as pseudonym. Similarly to symmetric encryption schemes, MACs

are keyed constructions that can be either deterministic or non-deterministic.

Hash functions are instances of one way functions. They are very efficient keyless

schemes that are computationally difficult to invert. Secure hash functions possess several

nice cryptographic properties, like pre-image, second pre-image and collision security.

Searchable encryption has gained a lot of attention the last few years. It enables

keyword search on encrypted data [55] by employing either symmetric or asymmetric

cryptography. The asymmetric schemes are based mainly on homomorphic encryption

and functional encryption, and so far they add excessive overhead. On the other hand,

symmetric solutions are more practical. They are based on a combination of data struc-

tures and symmetric encryption algorithms. More precisely, the user, for a specific col-

lection of documents, creates a corresponding index of terms (keywords) with the help of

which one can execute queries. This process has inherently at least linear preprocessing

complexity on the number of files.

To sum up, although each of the aforementioned techniques could be employed to im-

pose log files anonymity, the selected anonymization technique must fulfill the following

requirements:

• Users’ anonymity, including SIP URI, IP address, etc. must be preserved.

• Perform fast both in realtime and offline.

• The Entropy of the original data after anonymization must remain intact.

• It must be computationally expensive to execute de-anonymization attacks.
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Based on the above requirements the anonymization technique must be a property-

preserving scheme and more precisely an Entropy preserving one. While randomization

and generalization kind of solutions perform fast, they produce negative effects on sym-

bols’ frequency, thus affecting Entropy. Furthermore, to perform any analysis on the

anonymized data requires the transformation method to be exchanged between the peers.

Consequently, these schemes can be regarded as more complex, and naturally vulnerable

to attacks, as this additional information is required to be stored in a secure manner. For

example, in [56] it is noted that anonymization can have severe undesirable outcomes if

implemented incorrectly. This negative effect is discussed by the authors in [57], showing

that the correlation of anonymous data with publicly available Internet movie database

information made possible to reveal the real identities of many of its customers. In this

line, K-anonymity and its variants can be used to hide sensitive data effectively, but

affect also the Entropy of the anonymized data. Finally, non-deterministic symmetric

schemes (encyrption and MACs) are not Entropy preserving as well. The outputs are

based on some input randomness and for the same input different outputs are produced.

Thus, among the proposed solutions, we have to choose one of the deterministic algo-

rithms, hash functions, deterministic symmetric encryption schemes and deterministic

MACs. All three of them are considered among the fastest cryptographic primitives and

they are adequate for real time applications.

Regarding privacy protection, hash functions are the weakest ones. In our setting, the

plaintext space is rather small. Thus, the keyless nature of hash functions make them

vulnerable to brute force attacks. Let us assume an adversary who possess parts of the

exchanged traffic (corresponding to a dictionary) and the anonymized data. Then, she is

in position to execute a brute force attack aiming to match the dictionary records with

the ciphertext and reveal, say, the URI of the end-users. To examine this possibility, we

performed such an attack assuming that the adversary has built a dictionary of about

1 million records of different SIP INVITE requests for the same provider obtained, say,

by eavesdropping. Using a laptop machine incorporating an i7 2.20 GHz processor and

6 GB RAM we managed to reveal a SHA-256 hashed header in 12.892 secs. On the

other hand, the use of keyed solution, like a deterministic symmetric encryption or MAC

algorithm, renders the application of a brute force infeasible.

In terms of performance, depending on the platform each technique excels. For instance,
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encrypting the following SIP request INVITE sip:zisis@195.251.161.166 SIP/2.0 with

AES-128 takes approximately 0.38 msec. For the same header, a keyed-hash message

authentication code (HMAC)-SHA256 requires 0.29 msec, and a SHA256 digest 0.13

msec. We consider the mean value of 1,000 iterations executed on the same machine

described above.

However, it is known that using deterministic algorithms makes the encrypted data

vulnerable to frequency analysis. To minimize the effect of such an attack, we modify the

parameters, i.e., the secret key, of the MAC algorithm per outsourced log file. Thus, using

the HMAC-SHA256 scheme parametrised with a specific secret key for a set of log entries,

the identical headers will produce the same digest and the Entropy will be preserved.

For the next log file, a new randomly chosen key will be used for anonymization. In this

way, an adversary is still able to process anonymous log records, but she cannot correlate

different anonymised data sets.

Of special interest are searchable encryption schemes and especially, the symmetric ones.

The last few years, several symmetric searchable encryption (SSE) algorithms have been

proposed that have practical implementations [58]. However, the most efficient among

them by design allow some leakage. More precisely, the leakage contain both the search

pattern and the access pattern, i.e., as soon a keyword is queried, the server knows

when the same keyword is accessed again. Thus, these schemes cannot protect from

frequency analysis. In order to hide access pattern, SSE must use Oblivious RAM so-

lutions, which are inadequate for real time applications, since they add polylogarithmic

overhead (around O(log2(N) per search, where N the number of data blocks) [59].

Summarizing, one needs to make a trade-off between performance and the level of

anonymity offered. In this respect, the use of an HMAC scheme seems to be a fast-

performing, well-respected and tested choice. Further analysis on the appropriateness of

an HMAC scheme over that of a hash function in terms of server overhead pertaining to

a real time detection service is given in section 5.1.11.
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DDoS attacks in SIP networks

3.1 Attacks in the SIP ecosystem

As already discussed, so far a plethora of attacks against SIP-based services have been

identified in the literature. These include eavesdropping, flooding, SQL injection, ma-

nipulation of SIP messages, and so on [24, 25, 26, 27, 11]. One of the categories we

address in this PhD thesis pertain to application layer DDoS attacks. These are caused

by malicious entities who send a surge of SIP messages against their target, that is, a

SIP server or UA. From an attacker’s viewpoint, this category of attacks are considered

quite straightforward mostly because of the text-based nature of the protocol, the lack

of built-in countermeasures, and the existence of open source publicly available attack

tools [60]. On the other hand, the impact of such an attack on the target is considerable

and may vary from loss of service to entire network paralysis. From a VoIP provider

viewpoint, this may result in many dissatisfied customers and loss of profit.

3.2 Types of DDoS attacks

Three main types of DDoS attacks are known in the literature. The first one concerns

the volumetric attacks. In this type of attack the attacker aims on saturating the target

bandwidth using for example UDP or ICMP floods. The impact of this category of

attacks is measured in bits per second. The second category pertains to protocol attacks.

SYN floods and ping of death belong in this category. The impact of the attack is

22
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measured in packets per second. The last category relates to the application layer, and

it makes use of requests which are seem to be innocent. The impact of the attack is

measured in packets per second.

3.2.1 SIP-based application layer DDoS attacks

Figure 3.1 presents the high level categorization of DoS attacks we take into account in

this PhD thesis. That is, in the upper level, the attacker can launch either a DoS or a

DDoS attack. These types of resource consumption attacks can be launched due to a

surge of syntactically correct signalling messages, or malformed ones. For each one of

the previously-mentioned categories, there are 3 different attack strategies.

The first strategy requires the aggressor to send the attack messages using a slow pace.

This strategy does not affect directly the target, but, instead, it introduces a small pro-

cessing overhead which is may crucial for the underlying service. In the second type, the

attacker sends an increased volume of traffic, which finally leads the victim to paralysis.

The latter one is used as a mix of the other 2 categories. That is, the attacker initiates

the attack using a low-rate traffic, and gradually increases the volume.

The importance of detecting and/or preventing these types of attacks is very crucial for all

types of services. The SIP ecosystem requires the design and development of lightweight,

efficient and easily deployable solutions, with the aim to deter the aforementioned types

of attacks. The latter becomes even more crucial when one considers the increased attack

surface in the context of SIP-driven solutions for public safety (i.e., NG9-1-1 emergency

calling centers).

3.2.2 Other types of DoS attacks against SIP services

Many realtime systems build over state machines with the aim to provide a deterministic

and stable functionality. State machines are usually operate in the context of a specific

process in the system. Using this approach there are certain events which advance the

state machine to the next state. In this direction, there are 2 paths of communication

for the processes which are also well-known as the signalling managers of the system

(SM). The first path of communication pertains to the network interface (i.e., the path

of communication with the external entities). The second one relates to the inter-process
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Figure 3.1: Categorization of application layer DDoS attacks in SIP and SDP

communication (i.e., the communication with the internal entities). In many cases the

design of the system is performed using the assumption that the inter-process communi-

cation is faster than the external network entities. In this direction, there is a big chance

that this hypothesis will fail.

As it has already been discussed, SIP networks are prone to a plethora of DoS attacks.

One of these types pertain to race conditions. That is, taking into account all the above,

an attacker could easily exploit the lack of state integrity between the different SIP

entities (i.e., race condition) with the aim to cause a DoS attack. Figure 3.2 presents 2

network entities which exchange SIP messages. In this case we assume that a network

entity sends an initial SIP INVITE request to the SM which handles the SIP messages
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in the SIP server. Assuming a state machine implementation in the SIP server, the

transition between the different states will be based on the messages exchanged between

the processes and the SIP messages between the network entities. If the interprocess

communication presents significant delays, then this might cause an unexpected behavior

in the state machine handling.

There are certain cases where the network delays are negligible and the process com-

munication is quite slow. These cases may occur either randomly or due to malicious

activity. For example, figure 3.2 depicts process A which communicates with process B

using Message 2. It is easily observable that process B responds in step 6 after receiving

the SIP ACK message (i.e., Message 5). This inconsistency will probably cause a DoS

attack in the system. That is, if an attacker is in position to affect both the message

in the network and the delays in the inter-process communication, then she will easily

launch a DoS attack.

SIP Server Network Entity

INVITE (1)

180 Ringing (3)

200 OK (4)

ACK (5)

Message 

response (6)

Message (2)

Figure 3.2: Race condition between SIP entities creates a DoS attack

3.3 SIP threat model

The formulation of a threat model in the context of this PhD thesis, has to do with two

types of adversaries; external and internal ones. The former category includes malicious

entities trying to cause DoS or collect information about the service. Such adversaries

will act from the perimeter of the network, meaning that they have no direct access to

the resources of the service itself. On the other hand, internal adversaries are assumed to

be honest-but-curious and reside either in the service provider or within a third party to

whom the provider has outsourced one of its security-related services. Prior to explaining
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further, we make the hypothesis that the integrity of the log files is assured by the use

of some well-accredited method [61, 62]. In fact, this requirement is a sine qua non for

any service provider and it is also mandated by law in most countries worldwide [63, 64].

More specifically, the following assumptions are made:

Malicious external adversaries: The flexibility in message coding SIP offers can be of

great advantage to an adversary when planning and executing, say, a flooding attack.

Therefore, in this case, it is reasonable for one to assume a Dolev-Yao threat model [65]

in which the adversary is among others able to eavesdrop, forge, and replay messages,

and the only constraint is that of the cryptographic methods used. The latter, however,

is not the case here as the tunneling of SIP traffic over, say, TLS or IPSec is not a widely-

used practice, mainly due to the need of some sort of Public Key Infrastructure (PKI).

So, for instance, the aggressor is able to launch a SIP INVITE or BYE flooding attack

with the aim to paralyze the victim as reported in [66, 67] or execute a low-volume DoS

to silently consume valuable network resources. This is for sure to gradually increase

user discontent, which in turn leads to reducing provider’s market share. Such type of

assaults, especially the low-volume ones, may go totally unnoticed. In any case, however,

the traces of the attack will remain hidden in the corresponding audit trails. Note that

this kind of threats has to do with availability and integrity of the VoIP service itself,

and do not focus on the (de)anonymization of log files.

Honest-but-curious third parties: While log files have special worth to multimedia

providers for managing their network and billing purposes, they do not include only

personal data but subscribers call history as well. Hence, due to the added value that

such raw data have in terms of profit for different types of organizations, it can tempt

any insider into gaining access to them. So, regarding the privacy preservation of the log

files, we consider honest-but-curious (also known as semi-honest) third parties to which

the service provider has outsourced the security analysis of its log files. Collaborating

service providers who exchange log files in pursuit of shared goals also fall in this category.

Insiders, that is, individuals working for the provider itself or a collaborating third party

can also behave this way. This category of adversaries is supposed to have access to some

version of the data and behave in a semi-honest manner. Namely, they might arbitrarily

try to infer some additional information from the log files, but they obey the bilateral

agreement in place as the case may be. Note that this category cannot be regarded

as malicious because any insider attempt to corrupt the detection service is generally
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detectable if the assumption on the integrity of the log files holds. The capabilities of

such an adversary are included in the following:

• They might learn which services are being accessed by the end-users of some

provider by just observing the information contained in <From> and <To> head-

ers. This information can be used towards profiling certain users. As already

mentioned in the previous section such privacy breaches clearly violate the princi-

ple of user anonymity [68].

• They might copy (steal) log files with the intention to sell them to, say, advertising

companies for profit.

• An adversary working for a given provider has access to the audit trails of another

provider, and/or the employee of a public analysis (detection) service is able to

snoop on records contained in the raw data of one or multiple VoIP providers.

This is of significant importance as the confidentiality protection of audit trails

is of matter to the VoIP provider itself. For example, many providers would be

interested in hiding data about which their most popular (accessed) service is.

• Following the previous issue, an adversary working for the detection service or a

provider can correlate pieces of data contained in log files of different providers in

order to deduce more information about the end-users of interest.

From the previous analysis it becomes obvious that the sharing of network logistic data

among providers and between providers and third-parties (for outsourcing purposes)

remain highly questionable due to the type of data contained in them. As already pointed

out, this is of utmost important here as the security analysis service may be outsourced

to an external entity and/or some collaborating providers may share their data based

on a common agreement. This situation becomes even more complex, assuming service

providers operating in different countries or continents (mainly due to diverse legislation

and legal requirements applying to each particular country). Cloud-based operation,

which is currently on the ascend, adds one more dimension to worry about.
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3.4 SDP threat model

For analyzing DoS assaults caused by malformed SDP segments, we consider an adversary

model which includes two main types of opponents; the ones who register with the SIP

service (insiders), and those who remain unregistered (outsiders). The former category

typically refers to honest-but-curious parties that establish and maintain some bond

of trust with the VoIP service, while the latter to malicious external adversaries, i.e.,

aggressors who try to attack the service from the network perimeter. Specifically, insiders

are normally considered to be trusted or semi-trusted, say, they possess a SIP Uniform

Resource Identifier (URI) and the matching credentials to authenticate to the local SIP

registrar. On the downside, as explained in [69], trust may be the key element for

launching more silent type of attacks, without violating the communication protocol or

causing any obvious damage. On the other hand, external evil-doers reside outside the

local network, may muster an army of attack-bots (e.g., an IP stresser and/or zombie

machines), and employ techniques like IP spoofing to minimize the footprint of their

attack. This is straightforward for protocols like SIP which support both TCP and UDP.

Both these types of adversaries are capable of eavesdropping on SIP traffic, creating SIP

messages that contain a SDP segment, injecting data into the exchanged SIP messages,

and ultimately launching two basic types of assaults as illustrated in figure 3.3:

• DoS attacks against specific or random UAs. That is, by manipulating SDP mes-

sages, the attacker attempts to cause DoS to the corresponding SIP entity. These

messages can be crafted and sent at will to specific or randomly selected users or

be part of an ongoing session between a caller and a callee, where the attacker acts

as a man-in-the-middle. Additionally, the attacker may send such specially crafted

malformed messages to a SIP server with the aim of paralyzing its message parser.

• The creation of “hide-in-plain-sight” type of communication channels used to se-

cretly convey information via SDP.

In the first case, the SDP part of the message have been intentionally crafted with the aim

to crash the SDP parser at the SIP phone. This is usually accomplished using a packet

manipulation program [70]. Such a tool allows for the capturing and crafting of SIP

messages. However, keep in mind that a malformed message may be also unintentionally
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generated due to a software/hardware error. When the malformed SDP data are received

by the target phone, three outcomes are possible. First, the phone may not be able to

decode the SDP segment, and it will display an error message. Second, the phone will

abnormally crash because for example its parser enters to an infinite loop. Lastly, the

malformed data will go unnoticed. This typically happens because the malformed data

lie in non-critical fields, i.e., those that do not directly affect the session establishment

process. Overall, the effectiveness of this type of attack depends on which specific part (or

parts) of the SDP segment have been manipulated. It is also to be noted that the same

attack strategy can be used against SIP servers. That is, the attacker sends different

SDP malformed messages to the SIP server in hopes of driving its parser to paralysis.

Nevertheless, as discussed later, in section 7.3.2, at least two major SIP servers are found

immune to this attack because they simply do not check the SDP part of the message

(while they should). This means that the SIP server will simply forward the malformed

SDP information toward its final destination without bothering to check its soundness.

Of course, this negligence renders SIP clients highly prone to the same kind of attack.

As already pointed out, the second type of adversaries are assumed to use the SDP part

of SIP messages to create a C&C communication channel as described in detail in [33].

Briefly, this scenario assumes that the SDP part of SIP messages are used for secretly

exchanging commands with the sole purpose of coordinating a botnet. Therefore, in such

a case, the attacker’s goal, acting as a botmaster, is to realize a C&C without affecting

the underlying infrastructure and running services. This is accomplished by malformed

SDP messages that go unnoticed, i.e., do not induce an error condition on the target

device.

Having in mind all the above, in the following we formulate an attacker-centric threat

model. Specifically, we assume that the perpetrator is able to fabricate a SIP message by

simply spoofing its headers. The most appropriate SIP requests to achieve such a goal

are INVITE, REGISTER, and OPTIONS [6]. The attacker spoofs certain headers of the

message (i.e., Request-Line, <Via>, <From>, <To>, <Call-ID>, <Contact>) to create

a flooding effect towards the victim and obfuscate the forensic signal of the attack. For

instance, if the attacker knows the URI of a certain user, is then able to mount a high-rate

application layer DoS attack with INVITE requests to choke the user’s softphone. An

indicative example of a device that is prone to such a vulnerability is Cisco SIP Phone
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Figure 3.3: The malicious entity sends either malformed requests or (in red) commu-
nicates with bots

3905 [71]. An alternative attack strategy aims at paralyzing critical components of SIP

infrastructure, including SIP Proxy or Registrar.

As already pointed out, various vulnerabilities have been presented so far in the literature

concerning SIP [25, 11, 72]. The formulation of a threat model with respect to SDP-

driven C&C channels, has to do with adversaries who try to capitalize on SIP as a covert

channel. We consider two different cases depending on who controls the SIP Registrar

with which the bots need to be registered.

In the first one, the botmaster controls the Registrar, e.g., she is the owner of this server or

she has compromized it in some way. As a result, the botmaster is able of registering users

with the SIP proxy. This way she solves the problem of randomly assigning and updating

usernames to the bots. Moreover, she is capable of further eliminating the chances of

getting detected by applying IP and Domain Fluxing to the SIP proxy without significant

modification to the proposed architecture. In the case of IP flux, the botmaster would

regularly alter the IP address pertaining to the Fully Qualified Domain Name (FQDN)

of SIP Registrar by owning or controlling a group of PCs dedicated to that purpose. On

the other, by applying domain fluxing, she continuously modifies and associates multiple

FQDNs to the SIP Registrar. For example, every day, the botmaster could assign a new

domain name to the SIP Registrar. These names might be generated by a hash function

taking as input the current global date and a secret string. With the same way, the

various bots could produce the domain name of a specific day.
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The second scenario is the opposite of the former, i.e., the botmaster does not control

the Registrar. In this case, the easiest workaround for the botmaster is to register the

bots and herself to a SIP public service provider. A list of such providers is included

in [73]. However, the problem of assigning usernames in this case may not be so trivial.

The botmaster and consequently the bots must know which usernames are still available

(not taken by other users). This requires either a public directory or a P2P protocol

for sharing and updating a list which contains the already assigned usernames. Another

more straightforward solution lies in exploiting SIP protocol requests to determine if a

UA is alive. For example, an OPTIONS request could be used by the botmaster (or a bot)

to identify if a username has already been assigned to another user. According to RFC

3261 [6], this request is used by a UA for identifying the capabilities either of another

UA or a SIP proxy. Therefore, one could take advantage of this functionality to build

a list of the already occupied usernames. A third option is for the botmaster to assign

totally randomly generated usernames for the bots, but this may attract the attention

of the proxy administrator. Such a list can be shared between the botmaster and each

bot beforehand. Generally, it can be argued that the more realistic the usernames the

less the chances of being detected as malicious.

In our case, we assume that the Registrar is in the possession of the bot-herder. We also

hypothesize that the bots have been installed in the host machines following an infection.

Nonetheless, this infection phase remains out of scope of this work.

A botnet can be considered as a network consisting of infected and compromized com-

puters, called bots, zombies or slaves, which are controlled by an attacker known as the

botmaster or bot-herder. A bot agent obeys every command received by its botmaster

ordering it to initiate or terminate an attack. Botnets pose a serious threat to the Inter-

net, since they are capable of disrupting the normal operation of services, networks and

systems at will of their botmaster. For instance, botnets could be used for launching Dis-

tributed DoS (DDoS) attacks [74], sending spam emails on a massive scale, performing

identity theft, distributing malware or even copyrighted material, and so forth.

Perhaps the most vital demand for maintaining control of the entire botnet is the ability

for a bot to constantly stay in touch with its C&C infrastructure through a reliable and

undetectable covert channel. That is, a bot will not be able to receive new instructions

if the C&C cannot be located, and continue to probe the vanished C&C in vain. In
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this direction, botmasters employ a number of techniques to not only minimize the

probability of bots losing contact with their C&C infrastructure, but also to render their

botnet more agile to hijacking and stoppage attempts. Depending on how the bots are

remotely controlled by their master, i.e., how the C&C channel is structured, one is able

to classify them into centralized, decentralized or hybrid architectures.

The centralized infrastructure is based on the client-server model, where all bots are

directly connected with one or few C&C servers. These servers undertake to coordinate

the bots and instruct them to take action. Although a centralized botnet exhibits opti-

mum coordination and rapid dissemination of commands, it also poses a single point of

failure. From the moment the C&C server is detected and deactivated the entire botnet

is turned off. Usually, a bot-herder conveys its command through a well-known protocol.

This way, she is able to hide the C&C traffic into a legitimate one. As a rule of thumb,

the communication channels in this approach are based on HTTP or IRC protocol [75].

In the first case, the communication is disguised inside the normal Web network traffic

as the usage of Web is allowed in most networks, including corporate ones. On the other

hand, in IRC-based architecture the bots are connected to IRC channels and waiting for

commands from the bot-herder. Of course, the messages on the IRC channel are in an

obfuscated custom dialect, e.g., encrypted or hashed to avoid disclosure. In the context of

this PhD thesis, a centralized infrastructure is employed, where one or more SIP proxies

are responsible for dispatching the commands to bots. Furthermore, we are not based on

the aforementioned protocols, but rather we utilize SIP as a covert channel. Although,

centralized approach seems easily detectable, the botmaster is capable of evading defence

mechanisms by applying fluxing techniques. As detailed later in Chapter 7, section 7.2,

fluxing allows the aspiring botmaster to frequently change the IP and/or the domain

name of the proxy.

Alternatively, a decentralized architecture may be selected to carry out the C&C mech-

anism. In this approach, there is not a central C&C server, but rather the various bots

communicate with each other via Peer-to-Peer (P2P) protocols. In other words, the bots

behave as C&C server and client at the same time. Therefore, if any of the bots is tracked

down and deactivated, there are no implications to the robustness of the entire network

[76]. The hybrid architecture combines the advantages of both the centralized and de-

centralized ones. That is, in this setting, the bot agents exhibit diverse functionalities.

Some of them, temporarily undertake the C&C server role, with the aim to coordinate
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the botnet and disseminate the instructions, while the others wait for commands before

springing to action [77].



Chapter 4

Literature review

This Chapter provides a comprehensive survey in the area of security & privacy in SIP,

with special emphasis on application layer DDoS, malformed messages, and C&C chan-

nels. Furthermore, among the different security mechanisms presented in the Chapter,

the first part is focused on works which capitalize on log files with the aim to track

security incidents.

The researches presented in this Chapter have been classified in 3 main categories based

on the way they manipulate their inputs. In this respect, we categorized the works based

on the context they process and analyze the input data. The first type of class namely

“online”, pertains to works which process the data the same time they arrive on the

system. On the other hand, the “offline” category refers on researches which operate over

stored data. Finally, works which lack a real implementation are classified under the

other class.

Concerning the chronological range, we picked works spanning from 1998 to 2018. This

time period has been applied only to the proposals which rely on log files. For all the

other categories we touched works presented from 2012 to 2018. This has been done with

the aim to avoid an overlapping with existing researches which are mature and complete

in this research field [11]. Figure 4.1 provides an abstract overview of the literature map.

In total, 91 researches have been collected and analyzed in the context of this PhD thesis.

The next subsection provides the background of intrusion detection systems with respect

to their detection approach.

34
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4.1 Introduction to intrusion detection systems

Intrusion detection systems (IDS) can be categorized under 3 basic classes based on their

detection approach. These are the following ones: anomaly detection, misuse detection,

and specification-based detection [78, 79, 80].

Anomaly detection [81], [82] relies on the detection of deviations from a predefined thresh-

old. The latter is usually computed over an attack-free training dataset. After extracting

the thresholds, the testing data are examined for deviations from the normal traffic. An

important issue in these types of systems pertains to the attack-free data assumption [83].

Based on this assumption, the normal traffic which is used as a base to extract the legit-

imate traffic thresholds, must be attack-free. In a different case, the anomaly detection

will not be able to identify the attack patterns.

Misuse-based detection [84], [85] relies on specific patterns of the attack traffic. This

means that the examined traffic is compared over a set of predefined rules or signatures.

In case the IDS finds a match, the attack pattern is verified. While this category reaches a

100% of detection accuracy, it introduces the limitation of detecting only known patterns

of attack traffic. Systems which reside in this category cannot detect new attacks.

Specification detection [86] builds over the fact that each entity in a system must conform

to specific actions (i.e., security policy). Any entity which deviates from this set of normal

behavior is considered suspicious.

Table 4.1 summarizes the 3 aforementioned types of IDS and highlights the advantages

and the weaknesses of each one. That is, the first category is considered a good ally

in tracing new attacks with an increased number of false alarms. The second category

pertains to systems which are in the position to only detect an attack if it matches a

signature. From this point of view these systems are considered monolithic. On the other

hand, the process of updating the rules is fast, and thus it is considered much faster in

contrast to anomaly detection. Finally, the last category is considered as a top performer

in the false negative performance. The main disadvantage in this category relies on the

difficulty of generating formal specification.
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Table 4.1: Intrusion detection systems

Type of IDS Pros Cons
Anomaly detection Detects New attacks Increased False alarms
Misuse detection Fast rule update Cannot detect new attacks

Specification-based detection Low false negative Effort to generate formal specification

4.2 Exploitation of log files to detect security incidents

Network audit trails, especially those composed of application layer data, can be a valu-

able source of information regarding the investigation of attack incidents. In this respect,

the fast and accurate analysis of those files, is very critical because they may contain

pieces of attack data which have not raised the security alarms.

Motivated by this fact, 2 years before the beginning of the 3rd millennium, Schneier et

al. [62] presented a computationally efficient scheme to preserve log file integrity and

confidentiality in compromised machines. The authors rely on the fact that log files are

created using secret keys which already exist in untrusted machines. These keys are used

in untrusted machines, with the aim to communicate with trusted verification machines.

According to the proposed method, the overall security level is summarized in 4 different

steps. The first one relates to a hashed authentication key. The second one concerns the

creation of the encryption key. The third one is related to the authentication of all the

previous entries in the log file using a hash chain. The latter is produced in a one to one

mapping from the authentication key of each log entry. Finally, the last one relates to

role-based security systems, and the capability of partial access. This proposal presents

only the theoretical model and thus it is categorized under the other category.

Two years later, Biskup et al. [87] researched the area of transaction-driven pseudonyms.

The authors exploited a threshold-based approach, driven by the concept of the “legal

purpose”. In this direction, they provided an approach to retrieve the data subject

identity, upon exceeding a specific threshold. Additionally, the proposed design was

driven by Shamir’s approach [88]. More specifically, based on the proposed scheme, the

condition to retrieve the subject’s identity pertains to the excess of a threshold related to

the number of the pseudonymous actions, and a predetermined purpose. The proposal

details on the proposed scheme only in a theoretical level, and thus it is categorized

under the other class.
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The same year, Sah [89] introduced a new way to manage a high volume of enterprise log

data by introducing a novel LMS. The latter supports operations such as the compression,

the management, and the analysis of log files. The authors verified the performance of the

proposed scheme using five PC’s running on RedHat 7.1. According to the results they

obtained, the proposed data management platform exceeded the processing of 20,000

number of weblogs records per second. This proposal is categorized under the other

class.

One more work in the field was presented the same year by Flegel [90]. This research

presented a set of tools devoted to the pseudonimyzation of log files. As the authors state,

they performed the necessary actions with respect to the requirements for anonymity from

the user’s perspective, and the requirements for accountability from the service provider.

According to the introduced threat model and the presented architecture, the proposed

design fits well with existing Unix systems. This proposal is categorized under the online

category.

No year later than 2004, Rouillard [91] presented the Simple Event Correlation (SEC).

Using SEC, the authors contributed on the reduction of false alarms, introduced by the

process of automated log file analysis. Additionally, using a set of rules, they aimed to

maximize the efficiency to problem response. A main disadvantage highlighted by the

authors pertained to the performance with respect to the throughput. More specifically,

the rule-driven approach of SEC introduced a linear complexity with respect to the search

operations. Aiming to eliminate this drawback, the authors proposed to optimize the

solution by moving the most used rules on the top of the list. This work is classified

under the online class.

The same year, Xu et al. [92] proposed a correlation approach, driven by the concept

of “low-level” events. According to the authors, these types of events comprise the trig-

gering mechanism for generating alerts in a system. Additionally, the system triggers

alerts which may finally fit into the same attack category or cluster. Furthermore, they

detailed on the input and output resources. Using the resources, one is able to corre-

late different types of attacks and extract attack scenarios. Based on the experimental

results, the alert clustering created 512 clusters. Among them 17 pertained to 2-alert

clusters while the rest to single ones. Finally, based on their findings and with respect to

the attack reconstruction capability of their proposal, the proposed method succeeded
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in constructing 10 attack scenarios. This work is categorized under the other class. This

is because the authors exploited a simulator in order to simulate the behavior of sensors

and obtain the alert streams.

Two years later, Lincoln et al. [93] introduced a new scheme with the aim to research

the concept of log file sharing. According to the authors, the proposed scheme does

not require trusted third parties, while it is solely based on multiparty computation

schemes. Additionally, it does not require sophisticated key management. Based on the

collected results, the authors reported an overhead equal to 110.34 and 106.20 secs per 1

million records of alerts. These results considered the applicability of SHA-1 and HMAC

algorithms on source and destination IPs’. Finally, the results have been perceived

using a controlled lab environment. Based on the operation classification this work is

characterized under the online category.

The same year, Slagell et al. [94] conducted a survey on the proposals pertaining to log

file sharing. In this direction, the authors elaborated on the problem definition and they

provided a number of obstacles pertaining to large scale log file sharing. More specifically,

the authors highlighted the need of a protocol agnostic framework for log file sharing.

Additionally, they pointed the need for anonymization and balancing between security

and usability. This work is presented only on a theoretical level, and thus it is classified

under the other class.

A year later, Godínez et al. [95] exploited n-grams with the aim to reduce information

parasitizing in audit trails. The motivation behind this work stemmed from the training

overhead introduced in models like the Hidden Markov Model (HMM). Based on the

authors this cost is proportional to the size of log files. In this direction, the authors

offered a method to reduce the log file size. Their proposal relied on the process of

grouping subsequences of system calls which appear with high frequency. Based on the

results they obtained, the authors reported an improvement which ranges between a

factor of 3.6 and 4.8 in terms of audit trail size reduction. Finally, the proposed method

offers an increased performance without affecting the detection accuracy. This proposal

resides under the offline class.

One year later, Stathopoulos et al. [96] presented a framework for secure logging in

public communication networks. The authors conducted a study on the research area,

considering a threat model devoted to insider attacks. The proposal is based on a trusted
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“Regulatory Authority” which is responsible for the integrity of log files. The authors

assumed a semi-trusted environment and they defined 6 different phases. The first phase

corresponds to the definitions of the networks and the operational events. The second

one concerns the requirements of log files. The 2 next phases touch the security measures

employed for combating the external and internal attacks correspondingly. In the next

phase they deal with the design of implementation. Finally, the last phase revolves

around the log file verification procedure. This work is categorized under the other class.

The same year, CP. Lee et al. [97] introduced a forensic-driven analysis tool namely

FlowTag. Based on the authors, the proposed software has advanced characteristics

compared to other traditional tools. Such characteristics pertain to the quick analysis,

the reporting and the sharing of the attack data. All these features are driven from

the property of tagging specific flows. Using this approach the authors stated that

one can easily grasp a better understanding of a given network file. This seems to be

especially helpful for analysts as they are able to maintain the context without saving

details. Additionally, the authors highlighted the advantage of switching over different

tags really fast. Finally, the advantage of using tags is highlighted by the authors in

the process of generating corresponding reports and exporting “attack packages”. This

proposal is grouped under the other category.

Casey et al. [98] conducted a study on the investigation of sophisticated security breaches.

After studying the topic, the authors highlighted the importance of the immediate and

on target actions. The latter refer to actions performed by the investigators. In this

direction, the authors put special attention in the process of collecting digital evidence.

Additionally, they focused on the understanding of the actual breach. Furthermore,

special emphasis has been put on the attacker tactics which may include digital evidence

. For this reason, they stressed the need for speedy actions with the aim to preserve the

digital evidence integrity. This is so in order to perform advanced analysis using forensic

tools and techniques, and finally to seize the attacker without applying “hacking back”

techniques. This work is grouped under the other category.

Escobar-Jeria et al. [99] provided a review on the main applications of Fuzzy logic to

web mining. Initially, the authors elaborated on Web usage mining and they highligted

the process of constructing user profiles in the web. Furthermore, they provided results

regarding the applicability of Fuzzy Association Rules and fuzzy clustering in Web Server
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log files. The latter has been done with the aim to extract usage patterns. After analyzing

a bunch of CSV log files, they came up with a confidence factor which reaches 1. This

work is categorized under the other class.

Saleh et al. [100] proposed a model checking approach for the formally forensic analysis

of log files. The author exploited a tree structure aiming to model a set of logs from a

specific system. To accomplish the previously-mentioned goal, they employed algebraic

operations. The latter supported formalization of the actions parasitizing in the log

files and captured by the logging system. In order to highlight the advantages of the

tree-driven approach, they referred to the easiness of correlating Windows, system and

network logs into the same tree. After defining the patterns of traces, the forensic

investigator is able to submit a hypothesis in the form of a property, in the component

namely “model checker”. The latter will perform a search operation for these patterns

over the tree data structure. This proposal is grouped under the other class.

Monteiro et al. [101] used a variation of the Needham Schroeder protocol [102] in order

to authenticate and validate syslogs. The authors examined the authentication of the

records upon their creation. In contrast to the existing works in the field, the examined

work does not rely on the reactive forensic analysis of the log file records, but instead,

it relies on fingerprints, with the aim to achieve the authentication of the file contents.

The proposed method consists of 6 phases as follows: 1. User authentication, 2. System

connection establishment, 3. System connection establishment response, 4. Application

event entry generation, 5. Applications termination, 6. System connection termination.

Using the proposed method the authors managed to protect log files against truncation

and man-in-the-middle attacks. The latter has been done with the aim to preserve the

forensic viability of log files.

The proposed scheme includes a server which receives fingerprints from the different

entities (i.e., users’, applications’, system). Additionally, fingerprints are created using

the algorithm RS [103]. Using this approach, the files meet the following requirements:

a) the fingerprints provide integrity, b) the authentication is reassured, c) the files can

be used as evidence is a court.

The metrics are used aiming to quantify the ability of applying forensic analysis on a file.

The phase of detection relies on the fact that normal pieces of data have already been

fed into the system. Using this approach, the system generates the detection thresholds.
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Moreover, increased values denote that a forensic analysis is viable and fruitful. On the

contrary, low threshold values, indicate that the pieces of data included in the log files

are not enough to perform the analysis. This work is categorized under the other class.

Goel et al. [104] introduced a technique for reducing the size of audit trails. The authors

accomplished this task by simplifying the process of query analysis. Additionally, they

enabled the execution of analysis tools interactively. The previously-mentioned drawback

seems to create problems in the analysis from a system under investigation based on

their auditing system. As they state, the large volume system-level audit trails create

problems to the analysis tools. Aiming to bypass this problem, the authors employed

interval tables for storing the lifetimes of system objects or their attributes. According

to the authors, these pieces of data seem to play a vital role in determining the system

state. As far as it concerns the overhead of the proposed method, the authors state that

the necessary queries are 4-5 times slower without implementing the interval tables. The

aforementioned results perceived under a ftpd attack. The latter required less than 10%

of the overall loading overhead for their creation. This proposal is classified under the

online category.

The same year, Xia et al. [105] conducted a research on the reconstruction of probable

sequences of events created on the journaling process in the Ext3 file system. This

process makes use of program behavior signatures. The proposed architecture exploits

the metadata residing in the Ext3 file system in order to accomplish the process of

reconstruction. Additionally, as the authors state, principal investigators can be helped

by the proposed architecture using a program behavior database. The latter consists

of data extracted from system call monitoring and metadata archiving. Finally, as the

authors report, computational overhead is not given for the proposed architecture due

to lack of optimization. This work is categorized under the online class.

One year later, Pun et al. [106] provided a integrated framework for evaluating application

servers. More precisely, the authors investigated the key factors affecting intensive web

applications. The proposed framework introduced three main components. The first

one pertained to the audit trail analyzer, the second one to the web server log analyzer,

and the last one to the stress testing tool. The audit trail analyzer concentrates on the

business logic of the server. The web server log analyzer deals with the transactional

details. Finally, the stress testing tool provides an overview of the server capabilities
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with respect to the external volume of traffic. In this direction the authors focused on

the result integration, collected from audit trails from the application and web servers

and the stressing tool. For this purpose they exploited 20, 18, and 7 different statistic

characteristics. This work is categorized under the offline class.

The same year, Barradas-Acosta et al. [107] presented a system for evidence classification.

The authors proposed an algorithm building over the recurrent neural networks (RNN)

classifier. Using this algorithm they aimed on reducing the cost of analyzing big volumes

of traffic residing in log files. Based on the proposed architecture, the proposed system

comprises of a traffic analyzer devoted to the data parsing operation. Additionally, it

offers the preprocessing operation, used for extracting the useful pieces of information.

The latter is applied directly in the log file, and the data are fed to RNN for the learning

phase. Finally, the RNN is used in order to obtain a “possible evidence”. This work is

categorized under the offline class due to the fact that the input the data are fed to the

system from the log files.

Myers et al. [108] conducted a study on insider threat detection. The authors employed a

method for detecting insider attacks using only web server logs. Based on their findings,

the increase number of events and devices improves the detection of insider attacks. In

any case, they recognized the complexity and compatibility issues that arise from this

approach. Finally, their next steps focus on the analysis and the correlation of log files.

This work is supported only on a theoretical level and thus it is categorized under the

other group.

A year later, Nagappan [109] introduced a component-driven approach for the analysis of

log files. The authors emphasized on cloud systems. The proposed solution uses a range

of algorithms and tools, with the aim to find the optimized combination. The latter

is supported using a set of components. The first one pertains to the log abstraction

component which deals with the contents of the log file and extracts a canonical form

of the collected data. The second one deals with the common format that exists in

every log file, using specific pieces of data. The next component operates on the analysis

techniques and the corresponding tools. The author defines the classic requirements for

the framework evaluation. In this direction, the complexity in terms of time and space

and also the precision are the major pillars for evaluating this proposal. This work is

categorized under the other category.
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One year later, Mazza et al. [110] proposed a complete framework to achieve account-

ability. The authors highlighted the contribution of their work with regards to the

production of evidence for a legal dispute. More specifically, the proposed model builds

over B-method, and relies on agents for the organization of the log files. The latter,

emphasizes both on the data and the behavior of the system entities at the transaction

phase. That is, the authors make the assumption that they are in a position to know the

source of the exchanged packets. Additionally, they assume that log files do not contain

inconsistencies or wrong records. In order to achieve the goal of non-repudiation, they

make use of digital signatures. Moreover, a set of agents monitors these actions and

records the events in the form of a chain. Using this approach it is possible to represent

the event history, assuming that the agents are in the position to come to an agreement.

This work is grouped under the other class.

Six years ago, KH. Lee et al [111] introduced an audit logging system called LogGC. The

proposed system focused on the reduction of the log files size, taking also into account

the garbage collection process over the log files. Based on the authors, the proposed

system reduces the log size by 14 and 37 times without compression, when one considers

regular and server systems correspondingly. As the authors indicate, this performance

is reached without affecting the accuracy of forensic analysis. This system is categorized

under the offline group.

Yen et al. [112] presented a system, namely Beehive, for the automatic mining and

extraction of knowledge from large enterprise environments. The authors emphasized on

the high volume of data which is generated from the variety of different security products.

The proposed system relies on a set of operations for the processing of log files, and the

noise removal. These operations preserve the accurate timestamps and retain a consistent

ip-to-host mapping for locating devices which change IP address frequently. Using the

proposed system the authors reported a 74% reduction on the data inspected by the

proposed system (i.e., from 300 million to 80 million log messages per day). This system

is classified under the online class.

Additionally, King [113] introduced a new system to achieve non-repudiation. After intro-

ducing the minimum characteristics which must appear in a log file, the authors presented

the statistical metrics which need to be employed in order to ensure non-repudiation. The
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corresponding actions concern, the creation, the projection, the alteration, and the dele-

tion of the system resources. Furthermore, the authors took into account security-related

actions which pertained to the user rights and the authentication process. This work is

classified under the other class.

Singh et al. [114] detailed on the exploitation of log files to detect web attacks. Finally,

the authors provided a comparison between the buffer overflow and the iframe injection

attacks. In this comparison they detailed on the amount of the data transferred in

these types of attacks. Based on the obtained results, the buffer overflow attack is much

more devastating in contrast to the iframe one. In this direction, the attack impact is

proportional to the attack input. This work is categorized under the offline class.

The next year, Gu et al. [115] introduced a anomaly-based detection system building

over supervised statistical learning, for thwarting camouflaged attacks. The authors

highlighted the difficulty of purely statistical methods to combat these types of attacks.

Based on the authors, the main problem introduced in these types of attacks, pertains

to the process of computing accurate values of the normal thresholds. Moreover, this

goal is difficult to be achieved due to the noise which is injected to the traffic. For this

reason the authors exploit control flow graph (CFG) of each application with the aim to

reduce the noise. This work is categorized under the offline category.

The same year, Ambre et al. [116] elaborated on insider attacks by introducing a log/file

monitor filter. The proposed solution offers both misuse-based log analysis and event

correlation. The proposed mechanism comprises of 4 different modules as follows: The

first one pertains to the log collection, the second is responsible for the log analysis,

the next one performs event correlation, and the last one calculates the corresponding

probability. According to the authors, their solution detects DDoS attacks using the

random matrix theory. This work is classified under the offline class.

The same year, Juvonen et al. [117] investigated the applicability of 3 different methods

for reducing the dimensions of log files. The methods that have been touched by the

authors are as follows: random projection (RP), principal component analysis (PCA)

and diffusion maps (DM). According to the results they obtained from HTTP analysis,

they proposed to exploit the first and the third techniques together. Furthermore, the

authors highlighted the results they obtained using real-world traffic, even using only

the message headers. More specifically, after analyzing a log file with 2693 of records,
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they report a performance penalty, in terms of time, which fluctuates between 2.4 secs,

for the RP methodology and 196.6 secs using DM. This work is categorized under the

offline class.

One year later, Moh et al. [118] introduced a two-tier system for analyzing log files

with the aim to detect and prevent new attacks. The authors focused on SQL attacks.

The proposed architecture relies on 3 main components. The first one pertains to the

logging system, the second one details on the data preprocessing, and the last one focuses

on the detection methods. The combination of using pattern matching and Bayes Net

model gives an accuracy reaching 94.7%. In general, using the proposed architecture,

the authors reported a maximum detection accuracy equal to 95.4%. This research is

categorized under the offline class.

Finally, the next year Breier et al. [119] researched the concept of analyzing log files

for the detection of new attacks. In this direction, the authors investigated a set of

data mining techniques for the dynamic generation of rules. Additionally, the authors

employed data reduction techniques with the aim to handle the huge amount of data.

Based on the results they obtained, they report false alarms rates which do not exceed

10%. This work is categorized under the offline class.

4.3 Detection of DoS attacks

This section details on works which focus on the detection of resource consumption

attacks using statistical means.

4.3.1 Statistical schemes

A subset of the statistical schemes presented in this subsection rely on the Change Point

Analysis (CPA) tool [120]. One of these works applied this solution almost seven years

ago by Chen et al. [121]. The authors worked on the detection of flooding attacks in

IMS, by presenting a solution which builds over the non-parametric CUSUM algorithm.

In essence, the proposed solution relies on a changing point detection method for fast

tracking of alterations in the examined pieces of data. In this respect, the authors

model the attack traffic considering the REGISTER flooding attack as an example.
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More specifically, to apply this method, the authors track the differences between the

SIP REGISTER requests and the corresponding 200 OK responses. Additionally, they

employ the IMS platform with the aim to examine the detection accuracy of the proposed

solution. Using a sampling period of 5 secs, they obtained a threshold equal to 30. After

launching a flooding attack with a rate between 200 to 300 cps, they reported only 1

false alarm. This work is categorized under the offline category.

The same year, Stachtiari et al. [122] studied the field of admission control policies, with

the aim to cope against DDoS attacks targeting CAPTCHA protection mechanisms.

More specifically, the proposed approach defends against attackers which aim at causing

DoS to CAPTHA systems, by draining the bandwidth of the protection mechanism. In

essence, the authors provided an additional layer of protection to anti-SPIT mechanisms

which pertains to admission control. More specifically, their solution pertains to 4 dif-

ferent probabilistic models which have been developed on the PRISM model checking

toolset. Each model presents a VoIP server under DDoS attack. Additionally, they

authors researched the cost and net benefit metrics, using reward structures. The first

metric details on the probability to reject an incoming request and the bandwidth which

has been lost during a DDoS attack. The second one represents the probability to accept

an incoming request. Based on the obtained results, the reservation of 60% of bandwidth

in contrast to 80% saves unexploited bandwidth. Finally, the probability of accepting

new requests is increased. This work is classified under the other category.

The same year, Dassouki et al. [123] introduced a mechanism to combat against signalling

attacks in SIP. The proposed mechanism focuses on the authentication of SIP messages

with the aim to prevent message manipulations. In order to achieve this goal, the authors

exploit message fingerprints. As the authors state, the computational resources for the

proposed solution are driven by the cryptographic operations and the length of the SIP

messages. Additionally, the authors provide a comparison of the proposed work to RFC

3893 [124]. Based on the results they obtained, they state that the proposed mechanism

achieves 0.2 less CPU cycles compared to those obtained from [124]. Moreover they

present the different results, in terms of CPU cycles, they obtained for the rest of the

scenarios, and they report a 33% and 66% reduction respectively. This work is categorized

under the online class.

Two years later, Zargar et al. [125] presented an anomaly-based approach to prevent
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and detect DoS attacks in SIP. The proposed approach builds over Entropy theory and

makes use of a compressed summarized table of the packet data, i.e., a three-dimensional

Sketch structure. As the authors state, their method has been tested on the Spirent

server. According to the results they obtained, the acurracy of the proposed scheme

seems promising for both low-rate DoS attacks and their distributed form. Moreover,

based on the authors, the proposed method induces negligible overhead which does not

exceed the testing time over 1.5 times. More specifically, based on their results obtained

from 3 different data sets, the false alarm rate fluctuates between 2.1% and 4.2%. Fi-

nally, the authors performed a comparison of the proposed approach to the Hellinger

Distance. Based on their results the false alarm rates for the Hellinger Distance solution

fluctuated between 12.8% and 17.8%. This result indicates that the proposed Entropy-

driven method outperforms the Hellinger Distance one. This work is categorized under

the offline class.

J. Tang et al. [126] researched the area of DoS attacks in SIP. The authors offered

a detection and prevention system based on Hellinger distance (HD) and the sketch

data structure. The proposed system exploits the sketch data structure in order to

represent the different attributes presented in a SIP message. This is achieved using

two-dimentional hash tables to store the different attributes. The authors exemplified

this architecture using 4 different tables for each one of the investigated SIP attributes. In

this direction, they highlighted the system performance to detect multi-attribute flooding

attacks. After the generation of the sketch structures, the authors compute the HDmetric

over the stored hashes for the training and the testing period. According to the results

they obtained, the authors report a detection accuracy spanning between 88% to 100%.

This work is categorized under the online category.

Under the same pillar, J. Tang et al. [32] presented an approach driven by Hellinger

Distance. In essence, the authors enhanced their previous solution presented in [126].

The main difference from their previous work pertains to the detection of DDoS attacks.

Based on the authors, this proposal aimed on detecting low-rate DoS attacks with dy-

namic background conditions and multi-attribute traffic. As a drawback, the authors

highlighted the weakness to combat against stealthy attacks. This is caused due to the

limitation of the proposed method to create significant deviations in the Hellinger Dis-

tance between the normal and the attack distributions. Finally, based on the obtained

results, the maximum computational cost generated by the Hellinger Distance and the
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multi-dimentional sketch does not exceed 0.82 secs. Additionally, concerning the detec-

tion accuracy, the false alarm rate seems to be zeroed when K equals 32. Moreover, it

does not exceed 7.81% when K becomes equal to 8. The parameter K corresponds to

the attribute hash-table size. This work is categorized under the online category.

The same year, J. Lee et al. [127] researched a scheme for the detection of SPIT and

DoS attacks. The authors considered DoS attacks which are triggered due to increased

volumes of traffic. The latter may contain and malformed messages. More specifically,

the DoS attack detection module is based on the completeness of the sequence of messages

that need to be exchanged between a UAC and a UAS bi-directionally. The correlation

of the various SIP messages is done by analyzing the L7 information residing in the SIP

headers. In the case of SPIT, the module makes use of a DB to store users’ past call

patterns. As the authors state, the SPIT detection if performed with a small number of

false positives equal to 0.16%. On the other hand, the DoS detection rate reaches 98.05%,

when the traffic of SIP messages equals 400 packets/sec. Finally, the same module reaches

100% accuracy when a malformed packet filter is applied to the proposed scheme. The

proposed scheme is categorized under the online category.

The same year, Tsiatsikas et al. [128] detailed on DoS attacks in SIP. The authors pre-

sented a privacy-friently scheme, building over the Hellinger distance metric, with the

aim to trace DoS assaults. The authors reported a FP rate spanning between 0.2 to

7.6%, and a FN rate which does not exceed 0.002%. This work is categorized under the

offline class.

A year later, Tsiatsikas et al. [34] proposed an entropy-driven framework for battling

against DoS attacks in SIP. In essence, the authors extended their previous work intro-

duced in [129]. As the authors stated, their scheme operates both as a standalone appli-

cation and a software module destined to SIP proxies. In the first case, the framework

performs fundamental parsing operations in audit trail files, using 6 different features. In

the second case, the same anonymization scheme is employed on the fly in each incom-

ing request. The processing of the traffic in both the offline and the realtime software

modules is performed in a privacy-friendly manner, after employing a HMAC-SHA256

algorithm over the data. In both cases the Entropy calculations are performed over a

set of messages, using a specific message window which is pre-configurable. The authors

exemplified their results using the SIP INVITE request, but as they state the proposed
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scheme can be applied in any SIP request. According to the results obtained from the

analysis, the scheme introduces negligible time overhead. Moreover, it presents a de-

tection accuracy which remains lower than 2% for the FP, in the case of the realtime

processing. On the other hand, for the offline module it fluctuates between 0.3% and

10.6%. In the same direction, the minimum FN for both modules remain low, almost

equal to 1%. For the maximum FN, the scheme presents a significant difference, almost

equal to 24%. Finally, the mean overhead introduced from the anonymization scheme,

does not exceed 16.8 msec for all the scenarios. This work belongs to the online class.

Semerci et al. [130] elaborated on DDoS attacks by providing a scheme that is capable

of detecting alterations in the network flow. The scheme is based on changing point

analysis. The same approach was followed by Kurt et al. [131]. More specifically, the

authors delivered a framework building over the Bayesian multiple change model. Addi-

tionally, aiming to evaluate their proposal, they provided a probabilistic SIP simulation

system exploiting also F-score. The latter relies upon precision and recall measures.

Furthermore, it indicates a good performance when the value converges to 1. The best

average score equals 0.94 and is given with a lag value of L=5. As the authors state,

the increase of L parameter more than 5, does not necessarily indicate an increase in the

F-score. Finally, they compare their framework with a distance-driven method, building

over the Helinger distance method. When the distance method reach the true positive

values, they report a 15-20% false positive ratio. This work is classified under the offline

category.

Three years ago, Golait et al. [132] researched the area of flooding attacks in SIP. The

authors exploited the Poison distribution with the aim to generate normal profiles. The

latter are generated using a set of statistical observations, extracted from the original

dataset. The proposed scheme follows the same logic in both phases of training and

testing. Thus, in the testing period the same profiles are generated and compared to

those obtained from the training phase. The proposed system consists of the following

components. The first one pertains to the probabilistic distribution of the training data.

The second one details on the threshold probability δ for event. The last one is devoted

to the Number of Events in Τ Time Period from Testing Data. Based on the results they

obtained, the authors report a 100% detection accuracy for all the scenarios. This work

is classified under the offline category.
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Recently, Dassouki et al. [133] presented an approach to combat against flooding at-

tacks in SIP. The proposed research concentrates on flooding attacks launched in cloud

infrastructures. The detection scheme consists of two main algorithms. The first one

concerns the phase of detecting an attack, while the second one pertains to the miti-

gation phase. The detection algorithm relies on temporal characteristics of SIP, as well

as the fingerprints of SIP messages. The second algorithm makes use of a fingerprint

database, following a whitelist approach. This case concerns the SIP INVITE request

fingerprints, which preserve a constant size stored for all the introduced scenarios, equal

to 100 records. In terms of detection accuracy, the presented results concern a flash

crowd, a stealthy flooding attack, and a DDoS one. In the first case, the attack was

successfully detected with a 0.24% false alarm rate. In the second case the proposed

approach required 1.95 secs, while in the last case, the method introduced a delay of

1.65 secs for low and high rate DDoS. In each one of the previous scenarios, the authors

provide a comparison to the Chi-square test-driven approach. Finally, after comparing

the mitigation method with other researches in the literature, they reported a 4% CPU

overhead for 100 to 1,000,000 users. For the same number of users, the rest of the ap-

proaches in the literature report an overhead which varies between 4% to 47%. This

work is categorized under the offline class.

Golait et al. [134] studied flooding and coordinating attacks. For detecting these types

of attacks, and more specifically to identify anomalies, they modeled the SIP operations

related to transactions and dialogs, using a Discrete Event System (DES). More specif-

ically, they designed a new state machine namely Probabilistic Counting Deterministic

Timed Automata (PCDTA). In this respect, they identified attacks using a mapping

from DoS attacks to anomalies in the DES model. Furthermore, they train the PCDTA

to identify probabilities of transitions and timings between SIP operations. Based on

their results, the PCDTA hits a 100% detection accuracy in flooding attacks. Finally,

they compare their solution to the one provided in [127]. The latter reaches a maximum

detection accuracy equal to 98.14% in flooding attacks, and a 6.3% false alarm rate.

Finally, as they state, for their experiments they used simulated SIP traffic. This work

is categorized under the online class.

Two years earlier Kurt et al. [131] elaborated on the detection of DDoS attacks in SIP.

The authors proposed a scheme based on the change point model to thwart DDoS inci-

dents. The authors extensively evaluated their scheme under 4 different datasets. Each
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one of the datasets they used contained 40 DDoS attacks. Additionally, they exploited

the Poison and Multinomial observation models using 242 observation models. Finally,

they implemented a detection scheme prototype based on the Hellinger distance met-

ric. In addition, they offered a comparison between the aforementioned scheme to those

presented in [31] and [128]. This work is categorized under the online class.

Lastly, two years ago Wu et al. [135], presented two schemes to cope with SIP-based

flooding attacks in VoLTE. The proposed schemes build over the Counting Bloom Filter

(CBF) data stucture. For the second one namely PFilter, the authors state that it is

easy to expose a bunch of malicious messages inside a crowd of legitimate messages. This

statement is defended based on the fact that using a CBF one is in a position to easily

extract simple statistics over repeated occurences for an element, assuming a constant

time period. The second scheme introduced in this work comprises a robust version of

the first one with regards to multi-attribute flooding attacks. In this direction, the main

drawback of the first solution pertains to the memory consumption (overflow). In order

to overcome this problem, the authors introduced a second scheme which is based on a

lightweight CBF-driven data structure to cope with the overflow limitation. Furthermore,

the detection accuracy for PFilter reaches 76.4% when the proposed solution battles

against a flooding attack with rate equal to 10 cps. Additionally, it reaches a maximum

of 100% detection accuracy for a flooding attack of 100 cps. Finally, the authors perform a

side-by-side comparison with the research presented in [126]. As they state, the proposed

solution presented an increased detection accuracy for all the experiments the authors

conducted, except the last one which was not applied in the proposed solution (i.e.,

flooding rate equal to 500).

The latest work in this subsection was given by Semerci et al. [136]. The authors elabo-

rated on the detection of DDoS attacks by introducing a scheme which relies on change

point model. As the authors state, the proposed scheme detects alterations in the Ma-

halanobis distance metrics of the feature vectors. The scheme consists of a change point

detector and a identification module for the malicious entities. In every scenario, the

factor which seems to affect the accuracy pertains to the fluctuations of the traffic. In

general, increased values in the fluctuations of the traffic correspond to lower F-score

values. In any case, the lowest reported value equals to 0.70. This work is categorized

under the online category.
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4.3.2 Machine learning techniques

Until now, a handful of works discussed the suitability of methods borrowed from the

ML community to detect DoS attacks in VoIP realms and particularly in SIP.

Almost seven years ago, Ferdous researched the area of anomalous messages in SIP net-

works [137]. The authors offered a two-tier system to cope with malformed messages. The

proposed architecture comprises of a lexical analyzer and a ML-driven classifier based

on SVM. The latter has been employed with the aim to expose semantically anomalous

messages which have gone undetected from the first layer. Based on the results they

obtained, the authors reported a 0.45 msec overhead per SIP message regarding the clas-

sification process. Regarding the performance of the proposed architecture, the authors

reported a 99.9% accuracy when they employed their scheme on real traces. This work

is categorized under the offline class.

The same year Mehta et al. [138] explored the applicability of Euclidean distance clas-

sifiers to cope against malformed SIP messages. The vectors used to feed the classifiers

were obtained using substrings from each SIP message. That is, using a sliding window

and the n-gram technique, they extracted a set of 100,000 features. Using the high fre-

quency n-grams, and the Kolmogorov Smirnov (K-S) test, they successfully reduced the

feature set to 2,000. Based on the authors, this was the first work which elaborated on the

applicability of multiple-classifier systems (MCS) in SIP. Using the logistic Regression

approach, the authors selected the most prominent classifiers in terms of performance,

and they correlated their results using weighed the linear combination method. More

specifically, they used a combination function to correlate the pieces of information be-

tween the different classifiers, with the aim to reach on a consensus between them. As

the authors state, their approach reaches 97.56% accuracy. This proposal is categorized

under the offline group.

Ferdous et al. [139] presented a two-tier system for defending against malformed SIP mes-

sages. The proposed system comprises of two logical entities, and classifies the messages

in two classes, as “good” or “bad”. The first level of the system performs lexical analysis

on SIP messages, while the second one detects structural and/or content anomalies. The

level of deviation is calculated by taking as a reference to past messages which were

classified as “good”. Moreover, the authors presented a bunch of configuration steps in

order to calibrate the environment for the use of SVM using 26 features extracted from
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800 pre-classified SIP messages. On the other hand, for the calibration they used SIP

messages captured on a real VoIP infrastructure. Finally, the proposed system induces

an overhead of 0.45 msecs/msg. This work is categorized under the offline category.

Two years later, Akbar et al. [140] proposed a set of spatial and temporal packet-related

features to protect SIP infrastructures against application layer DoS, DDoS attacks, and

SPIT. The framework assembles vectors of certain features contained in SIP messages,

which are provided as input to Naive Bayes and J48 classifiers. The authors highlighted

the advantage of the proposed framework to perform analysis over a bunch of packets,

compared to other existing works in the field which need to analyze streams. More

specifically, the spatial features used in this work pertain to the IP address contained

in the <From> header and the call ratio of SIP INVITE requests. As in their previous

work [141], the authors synthetically injected attack messages to the normal SIP traffic

with the aim to estimate the detection accuracy of their proposal. Based on their results

the proposed mechanism induces negligible false alarm rates. More specifically, they

report 0% to 0.7% and 0% to 25% for the FP and FN metrics, respectively. This work

is categorized under the online category.

The same year, Mohamadi et al. [142] proposed an anomaly-driven method building

over Artificial Immune Systems (AIS). The authors aimed to counteract various types

of known and unknown attacks in SIP. Aiming to evaluate the proposed algorithms, the

authors exploited existing, well-known datasets, namely as follows: KDD99, Darpa98,

NSLKDD, INRIASip. Furthermore, they introduced IUSTSip and DataSetMe datasets.

All of the aforementioned datasets contain a variety of known attacks, like, for example,

DoS, flooding, and SPIT. Additionally, they launched a DDoS attack namely Torsham-

mer, with the aim to evaluate their method on learning new attacks. That is, based on

the provided results, the proposed method successfully detected the new attack. This

work is categorized under the offline class.

The next year, Tsiatsikas et al. [143] provided an offline assessment of 5 different ML

classifiers in the battle against DoS and DDoS assaults in SIP. This has been done

by examining the recorded SIP audit trails in a forensic-driven manner. Based on the

results they obtained, the authors stated that ML-powered methods outperform legacy

statistical schemes [129], [36]. Additionally, they highlighted the fact that some classifiers

achieved satisfactory results even in the case of low-rate flooding attacks. For instance,
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according to the results presented, the Neural Networks classifier succeeded a FP rate

of 5.2% and zero FN. This work is classified under the offline category. One year later,

the same authors [144] researched the applicability of the same classifiers in a realtime

fashion. In this direction, they presented clues of efficiently thwarting DDoS assaults and

performance applicability details concerning the overhead of ML classifiers on a realtime

system. More specifically, based on their results, Naive Bayes and Random Forest were

the top performers in terms of false alarms. Additionally, the classification overhead for

all the classifiers remained lower than 4 msec. This work is categorized under the offline

class.

4.3.3 Other approaches

Another research focusing on SIP-based DoS attacks was published almost seven years

ago by Voznak et al. [145]. This study was the first one presenting a realtime hybrid

system using Snort, SnortSam, and IPTables. The proposed solution relied on the statis-

tics over signatures. That is, after reaching a threshold of matchings, with respect to

the aforementioned signatures, the SnortSam plugin informs the IPTables component to

apply the corresponding rules. Based on their results, the system introduces delays in

the response phase. This delay is irrelevant to the signature-driven detection scheme and

is considered as a second drawback of the solution. Using sipp and Asterisk, they created

a set of scenarios, considering attacks generated using the following SIP requests: REG-

ISTER, INVITE, ACK, BYE, CANCEL, OPTIONS. Moreover, they launched UDP and

TCP SYN flooding attacks. Based on their results, REGISTER and OPTIONS were

the most devastating ones. Finally, considering the lack of protection directly in the

SIP proxy, they proposed an alternative network topology, using a Demilitarized zone

(DMZ). This approach protects the SIP proxy from internal and external attacks. This

work belongs to the online class.

Maccherani et al. [146] extended the NetServ node architecture, using OpenFlow. Using

this approach, the authors presented a flow-based approach for intrusion detection (FIDS)

which reaches an increased performance in high speed networks. The latter is evaluated

in contrasto to DPI systems. The proposed system relies on 2 distinctive steps. The

first one pertains to the flow exporting, and the second one to the flow collection. Based

on the authors, the main difference of the proposed system in contrast to the prior art,
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relates to the distributed functionality. That is, the proposed system can be easily applied

in a distributed manner, using the NetServ service, by deploying the solution in every

node. Additionally, in order to exemplify their proposal, the authors picked the GENI

platform. As an example, they picked SIP and more specifically DoS attacks. Based on

their results, the reaction time on 2 attacks does not exceeded 2.4 sec. Finally, based

on their results, the use of 2 PUs doubles the handled traffic. This work is categorized

under the online class.

Rodnikorn et al. [147] presented a new protection mechanism against signaling attacks,

forgery and message manipulation, namely SIPE-SAP. The proposed mechanism em-

phasizes on confidentiality and message integrity. Additionally, it constists of 3 different

modules, namely as follows: a. KeyAg module, b. EDCrypt module, and c. MD. The

first sub-module is devoted to the key exchange process, the second one pertains to the

confidentiality, and the latter one is used for the digest generation. In order to assess

the proposed mechanism, the authors created a testbed using OpenSIPS, and the SIPp

tool. After applying SIPE-SAP, a registration response time similar to the original reg-

istration process is reported. In addition, concerning the overhead, for the call setup the

authors mention an improvement smaller than the one presented with TLS. In the latter

case, the average overhead with SIPE-SAP equals 1.7 msecs, while for TLS it is almost

2 msecs higher. This proposal is categorized under the online class.

Not later than 2012, Rontti et al. [148] performed a demonstration on how it would

be possible to expose vulnerabilities in NGN networks by employing specification-based

fuzzing. Using the proposed method, the authors aimed to prevent DoS and DDoS

attacks against IMS. More specifically, using the SIP ABNF [149] the researchers de-

veloped a fuzzer with specification-based rules. As the authors state, the purpose of

this approach is to test the internal software modules and dive into the functionality as

much as possible. After this phase, an attacker can send the packet with the malformed

content. The latter assures that the scarlet packet will affect the corresponding state

machine in the underpinnings. After that, they tested 4 critical core NGN interfaces.

The P-CSCF and the I-CSCF in the core network, and the S-GW and the P-GW in the

home network. Based on the results obtained from the proposed method, they managed

to expose vulnerabilities. More specifically, the DoS time for S-GW and P-GW was 11.5

secs, while for P-CSCF the maximum DoS time was 33.7 secs, while for I-CSCF 0.5 secs.

This research is categorized under the other class.
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The same year, Stanek et al. [150] contributed to the detection of DDoS attacks by

introducing a new architecture entitled SIP protector. The main components of the

architecture pertain to a redirect server, a rate-limiting firewall, a NAT element and a

mapping function. Using these elements, the authors constructed the proposed archi-

tecture which as they state is not appropriate for a real-life deployment. This is due

to the results obtained from the stress testing, which indicated a processing capacity

of approximately 20000 rps. Additionally, in their experiments, the authors simulated

both General and Tailored DDoS attacks, using the SIPp-DD [151] tool. To complete

the testbed, they employed the widely-known SIP server Asterisk. When the authors

launched a typical DDoS attack, this was successfully thwarted on the second level of the

proposed architecture (i.e., the rate-limiting firewall). For the second type of attack, the

proposed architecture mitigated 75% of the attack traffic. This work is classified under

the online class.

The same year, Farley et al. [152] proposed a lightweight mechanism devoted to the

mitigation of MITM, counterfeit and replay attacks, namely VoIP Shield. The proposed

mechanism relies on pre-shared keys and the pairing bonds between UACs’ and SIP

servers’. As the authors state, the architecture allows one pairing connection from the

side of each client, and multiple pairings from the side of server. Using simple hash

functions, the proposed scheme employs a Message Authentication Code (MAC) in every

SIP message. Using this approach, every message can be authenticated in the recipient

shield for the integrity and the authenticity of the sender. In order to test the proposed

mechanism, the authors utilized 23 different attacks. Based on their results, 22 of these

attacks are successfully detected, while one of them is prevented. This work is categorized

under the online category.

Lahmadi et al. [153] designed and developed a framework namely SecSIP, for preventing

exploitations from well-known vulnerabilities in SIP. As the authors state, their method

relies on captured traffic which is analyzed in order to create prevention-specifications

in the form of rules. The latter are coded in a language called VeTo. In this respect,

event graphs are employed with the aim to correlate protocol activities with prevention

specifications. Based on their statements, genetic algorithms are employed with the aim

to automatically extract prevention specifications. As a paradigm, they make use of

flooding and DoS attacks. Using OpenSIPS and SIPp, they created the legitimate traffic

which was captured using the SecSIP framework on a realtime fashion. As they state,
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SecSIP introduces an overhead which ranges between 1 and 10 msecs, with a call rate

lower than 800 packets/sec. Finally, based on their results, the maximum time overhead

reaches 900 msecs on a heavy load of 900 concurrent calls. This work is categorized

under the online class.

Asgharian et al. [154] presented a combined approach to detect DoS attacks in SIP. In

this direction, the authors provided a publicly available dataset. Regarding the detection

scheme, their proposal consisted of anomaly-driven approaches and specification-based

detection [155]. As they state, the intrusion detection engine relies upon a finite state

machine. In this respect, the main idea of the proposed mechanism relies on the concept

of complete SIP transactions. In order to monitor the transactions, the authors selected

features which describe uniquely SIP transactions and dialogs. That is, they touched the

<From> and <To> headers tags, the branch parameter in the <Via> header, and the

<CSeq> correspondingly. Using a labeled dataset, they reported an average of 85% and

7.7% for detection and false alarm rates correspondingly. On the other hand, using the

dataset provided in [156], they reported average detection and false alarm rates equal

to 85% and 15% respectively. Finally, using the ROC curves [157], they calibrateed the

proposed scheme and extracted the corresponding thresholds. This work is categorized

under the online class.

Vrakas et al. [158] were the first who managed to introduce a realtime system capable

of detecting and preventing a wide set of spoofing and DDoS attacks. In their analysis,

they considered a set of spoofing attacks, like, for example SIP signaling, identity theft,

masquareading, and MITM. The architecture of the proposed system is structured based

on the policies that must be applied, the spoofing, and the flooding attacks. The basic

functionality of the system relies on the cross correlation of 6 different values which

parasitize in different layers of the network stack. Using these values, they created vectors

which are then forwarded in each different module. The initial decision for forwarding

a message is always obtained by using the policy enforcer module. Furthermore, in

order to achieve memory efficiency, they employed a bloom filter for performing the

search operation of the vector. Finally, based on the obtained results, the false alarm

rate is almost zeroed for the spoofing module. For the flooding modules, the authors

mentioned a large number of false positives in scenarios which exceed the training period.

Additionally, they mentioned a constant number of false alarms in simple flooding attacks
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with minimum alterations in the traffic patterns. This work is categorized under the

online class.

Raza et al. [159] researched the concept of restrictive modeling, with the aim to detect

and prevent DoS attacks. The proposed model operates on the transport layer, using

UDP. The authors introduced the “WAIT” and the “GO” messages. The first one restricts

the caller to flood the SIP proxy with redundant messages. This happens by sending a

“WAIT” message to the caller. The “GO” message, is exploited with the aim to inform

the caller about the restriction revocation. Based on the results they obtained from a

10 call attack, a packet drop reduction to 3.2 secs is reported. Additionally, the authors

highlighted the 1 second improvement with respect to service availability. This work is

categorized under the other category.

The same year, Hussain et al. [160] presented a lightweight mechanism to detect SIP

flooding attacks. Based on the authors, the simplicity of the proposed scheme relies

on the use of one transition table in the SIP proxy, and one new custom header field

in each SIP REGISTER request. The transition table is used with the aim to match

requests, with source and destination IPs’, along with the arrival time. Moreover, the

addition of a new header entitled as “Critical number”, serves the purpose of limiting

the requests that can be handled in the UA side. Using this approach the SIP proxy

can limit the number of SIP INVITE requests, based on this value. Moreover, based on

the results they obtained on a realtime assessment, the proposed mechanism presents

improved response times spanning between 0.5 to 1.0 μsecs. Finally, even for stressing

scenarios the proposed scheme outperforms the original core functionality of openSER.

This work is categorized under the online class.

Seo et al. [14] conducted a study on resource consumption attacks targeting SIP prox-

ies. More specifically, the scope of this research is twofold, researching both malformed

messages and flooding attacks. In order to enhance the security of IMS, with respect

to the previously-mentioned attacks, the authors introduced a stateful mechanism called

SIPAD. Based on the authors, the main advantage of their proposal is concentrated on

the performance, which relies on the applicability of an optimized data structure. Based

on the results they obtained, SIPAD was the top performer in the category of malformed

message attacks, with a detection accuracy reaching 100%. This research is classified

under the online class.



Chapter 4. Literature review 59

Roh et al. [161] researched the area of DoS attacks in SIP. The authors introduced a

whitelisting approach to defeat those types of assaults. The proposed scheme consisted

of three fundamental modules. The first one, namely the whitelist manager, is related to

the process of whitelisting. The second one pertains to a filter, and the last one to the

attack detector. Based on the proposed architecture, these modules are placed in front

of the SIP server, and thus they do not create additional costs in terms of overhead in

the SIP server side. As the authors state, the main advantage of the proposed scheme

compared to the rest of the related researches, relies on the bloom filter data structure

which outperforms the other solutions in terms of memory consumption. In essence, the

attack detector performs the first layer processing of the messages in order to identify

anomalies. After that, the traffic is forwarded to the filtering module which takes the

final decision. That is, in case an attack has been detected, the packets will be forwarded

to the SIP server only in case the whitelist manager has instructed to do so. The authors

reported false positive alarms below 0.1%, and false negatives which reach 0.2%. These

results have been obtained when the system receives attack traffic of 600 messages/sec.

Finally, the authors perform a side by side comparison to the whitelisting-based work

presented in [162]. Based on the results they obtained from this comparison, the proposed

method is the only one which exhibits a tolerance with respect to the throughput, which

is not lower that 1. This work is categorized under the online class.

The same year Zhang et al. [163] proposed a bloom filter-driven approach, to cope against

resource consumption attacks in SIP proxies. More specifically, the authors provided

insights on the reasons affecting the time latency in DNS queries. After exemplifying

how an attacker could launch a DoS attack by utilizing hard-to-resolve domain names,

they proposed a solution related to blacklisting. More specifically, instead of using the

traditional blacklisting approach which is limited by the O(N) search operation, they

employed a counter bloom filter. Based on their results, the proposed mechanism does

not give any false negative alarms, while it presents a few false positives which are caused

due to size issues pertaining to the data structure. Aiming to surpass this problem, they

provided information for best practices using bigger structures. This research is classified

under the online category.

One year later Sebastian et al. [164] proposed a mechanism to prevent registration flood-

ing attacks in SIP infrastructures. The proposed mechanism consists of 3 basic layers.

The first one relies on simple calculations for blocking packets which exceed specific
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thresholds. The second one banks on the concept of “reverse routing technique” [165].

The last one counts on a anti-spoofing mechanism which monitors the source IP address

of the network layer, and the <Contact> header. Aiming to evaluate their mechanism on

a realtime fashion, they developed a software module using the C language. More specif-

ically, they employed OpenSIPS along with SIPp for providing SIP service and creating

the attack traffic accordingly. Based on their results, the introduced overhead does not

exceed 2 secs in terms of CPU processing. The latter comes true when the authentication

is not enabled on the server. On the contrary, after enabling the authentication process,

a maximum of approximately 7 secs overhead is reported. This research is categorized

under the online group.

The same year, J. Tang et al. [40] conducted a study on stealthy attacks and malformed

messages. With respect to the first category of attacks, the authors provided a detection

mechanism building over the sketch data structure. In this case, the authors picked

every SIP address as the key of a record in the data structure, and the sum of the

INVITE messages originated from this address as the value. In the next phase of the

detection, the proposed solution performs wavelet analysis over the output perceived

from the first phase. Moreover, the authors employed the EWMA [166] method for

handling the normal traffic, using dynamic thresholds. Based on the provided results, the

authors stated that their proposal is directly comparable to the HD solution, considering

a normal flooding scenario. On the contrary, their proposal outperformed HD in the case

of stealthy flooding attacks. Concerning the second category of attacks, the researchers

focused on attacks which rely on the exploitation of the “Session-expires” header, and

the open nature of the wireless protocols in general. This concerns the attacks which

aim on draining the target resources by simply allocating resources on the SIP proxy.

In this direction, the SIP proxy reserves resources for the time period defined in the

“Session-expired” header, which is not upper bounded by RFC 4028 [167]. Taking into

account this type of attack, the authors presented a detection mechanism building over

the Anderson–Darling test. In the examined problem the different Session-expired values

composed the values of the distribution. Based on the proposed method, using a 400s

session timer the attack was successfully detected upon receiving 436 samples. This work

is categorized under the offline category.

Liu et al. [168] explored DoS attacks in SIP borrowing models from queuing theory.

More specifically, the authors modeled the victim of this type of assault as a M/M/1/K
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system [169]. Additionally, they proposed a new priority queue in order to enhance the

existing SFW architecture. They achieved this by using a new architecture consisting

of 2 different priority queues. The first one, the low-priority queue, deals with the

SIP INVITE requests. The second one, the high-priority one, with the rest. In any

case, as they state, this can be configured for addressing the needs of every different

infrastructure. Furthermore, they employed a bandwidth policy with the aim to trigger

the SDN controller and reform the network. Finally, based on their results, using an

arrival rate equal to = 450, they obtained a better response time from the priority queue

which is almost 50% better than the single FIFO case. This proposal is categorized under

the other class.

Marchal et al. [41] employed MCS in order to achieve a consensus between different clas-

sifiers, in the battle against DoS attacks in SIP. More specifically, they investigated a

new type of DoS attack in SIP, called mimicry TDoS. In this type of assault, the attacker

sends a volume of malformed messages which contain minor changes in contrast to the

normal ones. As the authors stated, using their approach, they totally bypassed the

parser module needed in the detection side. In this respect, they exploited MCS aiming

to classify the message. Moreover, they employed Kamailio and SIPp tool, with the aim

to generate SIP REGISTER malformed requests. Using the Rieck’s et al. [170] method,

they employed a 4-gram approach to extract the necessary features. After testing two

combination functions, namely “the voting rule” and LR, they achieved the combination

of different classifiers. The proposed MCS reached a detection accuracy, with a probabil-

ity spanning between 98.5% and 99.12%. Additionally, this approach induces a constant

algorithmic complexity equal to O(1). Finally, they reported that the major drawback

of MCS in detecting malformed SIP messages, pertains to the classification of inconsis-

tencies in the <Content-Length> header. This happens because there is a difficulty in

comparing this SIP header to the actual payload. This work is classified under the online

category.

Venilla et al. [171] presented a hybrid approach to detect flooding attacks and bogus

messages in SIP. The authors employed a two-tier architecture, consisting of a less than

10-feature SVM classifier in the first layer, and an Entropy-driven approach in the second

one. More specifically, the first layer (preprocessor) SVM, is utilized as a first step

classification to differentiate irrelevant VoIP traffic. The second level is based on Entropy

which takes as an input the packet count. Additionally, the Entropy is used in conjuction
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with EWMA [166], with the aim to handle dynamic thresholds. In order to assess

the proposed solution, the authors created a testbed using the Asterisk PBX, SIPp, a

bunch of VoIP applications, and Nsauditor for creating the attack traffic. Based on the

provided results, the authors reported an accuracy which exceeds 92%. Finally, they

provided results of performance after using a different kernel SVM function. This work

is categorized under the offline group.

Bansal et al. [172] researched the area of flooding attacks in SIP. The authors offered

a mitigation mechanism which correlates the number of SIP messages. That is, the

authors make the assumption that under normal conditions a legitimate user will send

1 to 2 signalling messages in order to initiate a call. Additionally, they stated that each

new call from the same user should follow a SIP BYE request. In this direction, if a user

wants to initiate a new call she should first disconnect the previous call. Under this pillar,

the authors state that an attacker could be identified by measuring and correlating the

number of SIP INVITE and BYE requests. Based on the results they obtained under

a DoS attack, the authors the proposed scheme improved the system performance by

158%, in terms of CPU consumption. This work is categorized under the online class.

Jyothi et al. [173] conducted a study on the overhead introduced in the pre-processing

phase of Deep Packet Inspection (DPI). Even the latter consists one of the fundamental

operations in every NIDS, the authors stated that it comes with the L7 extraction over-

head. This operation is considered to be quite expensive because the usual form of field

extractors is driven by software solutions. In this respect, the authors contributed with a

deep packet field extraction engine, namely DPFEE, capable of extracting L7 fields into

hardware. Based on their results, DPFEE presented an improved performance compared

to PJSIP parser and Snort. The total improvement ranging between 22X-80X. Finally,

as the authors state, using their proposal, one can achieve a 30% reduction in the system

load. This work is categorized under the online category.

Akbar et al. [174] introduced a scheme building over HD, with the aim to detect low-

rate and multi-attribute DDoS attacks. Additionally, they considered the SIP BYE

tear down attacks. For HD, they used the normalized frequencies of INVITE, BYE,

200 OK, and ACK. Using a training period of 120 secs, they obtained the necessary

metrics for the normal values of the distribution. On the other hand, they performed

the classification using a 10 secs testing period. As they state, they used Kamailio as
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a SIP proxy and load balancer. In order to achieve that, they amended “rate control”,

“pike”, and “dispatcher” modules correspondingly. In order to create the attack traffic,

they used SIPp. Finally, they compared their proposal to the Adaptive threshold and

CUSUM. Based on the results they obtained, the proposed method presented a higher

accuracy in all the scenarios, achieving a 98.3% detection accuracy in the worst case in

the low-rate attack. In any case, the proposed method presented a better performance

in all scenarios. This research is categorized under the online class.

Shah et al. [175] presented an approach to enhance SIP security with respect to malformed

and spoofed messages. The proposed approach comprised of 2 conceptually separated

entities. The first one is devoted to Header validation using a rule-driven approach. The

latter goal is achieved using Snort. The second one deals with the IP validation through

whitelist. In this context, they used Asterisk PBX as a SIP proxy, and 2 softphones to

generate the normal traffic. Additionally, they exploited VoIPER as an attack generator.

Based on the results they obtained, their approach touched a detection accuracy equal

to 87.27% . The latter was perceived when the attack tool generated a traffic of 100

packets. At the same time, 96 packets were detected as an alert in the proposed scheme.

This research is categorized under the offline category.

Sabra et al. [176] exploited the concept of clusterheads with the aim to protect users’

privacy. The authors considered a model with 2 different clusterheads which communi-

cate directly. The latter preserves the users’ privacy and unlinkability by broadcasting

the packets to the rest of the nodes, belonging in the same area. One of the criteria they

picked in order to select a node as a clusterhead pertained to the remaining battery of a

node. This was induced from the fact that the forwarding functionality of a clusterhead

drains its resources. The authors examined the concept of energy consumption by using

a laptop and a smartphone. For the first one they reported an energy consumption of

approximately 0.031% per session. For the other, the energy consumption reached 1.6%

per session. The authors employed the OPNET software in order to grab a better under-

standing of the model performance. In this direction, they touched the MOS metric [177]

with the aim to assess the QoS at the network. In this direction, the authors assessed

different codecs regarding jitter, MOS, and end-to-end delay. Based on the results they

obtained, the G.729b codec scored the worst results. This work is categorized under the

other class.
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Two years earlier, Cadet et al. [178] detailed on a realtime hybrid scheme for protecting

SIP infrastructures from DoS and DDoS attacks. The authors employed Snort [179]

in conjuction with iptables, with the aim to counteract flooding attacks. In the first

layer the SIP messages are classified based on the rules of Snort. In the next layer (i.e.,

iptables filtering), a final decision is granted with respect to the luck of a SIP packet.

That is, the packet is forwarded to the SIP server or it is dropped. The authors employed

the NFQUEUE kernel module aiming to redirect the traffic from iptables to Snort and

back again. Furthermore, they employed the rules presented in [172] along with a static

threshold equal to 4. The latter was selected using the results obtained in [172]. Based

on these results it was found that a legitimate user sends 1 to 2 SIP INVITE requests

in every call initiation. The proposed scheme was evaluated using a testbed consisted of

the Asterisk PBX and the SIPp tool. Based on the obtained results, the applicability of

Snort reduced the CPU consumption by 20%. Finally, the authors reported a betterment

to the bandwidth utilization, after applying SNORT. This work is categorized under the

online class.

Sun et al. [180] introduced SFADS, a two-layer, novel flooding attack detection scheme.

The first one builds over the CUSUM algorithm and more particularly relies on 2 features,

one internal and one external. The features are extracted in the initial phase of session

establishment. Additionally, the output of the first layer is fed in the second layer,

which relies on fuzzy logic. The latter is used with 25 rules, with the aim to assist

on taking decisions prior reaching the predefined thresholds. Furthermore, the authors

employed OpenIMScore and sipp in order to test the proposed scheme. As the authors

state, the main advantages of the proposed solution compared to the CUSUM algorithm,

are highlighted as follows: a. SFADS detects more accurate low-rate flooding attacks.

b. The detection performance in terms of time detection are far lower for SFADS,

considering the scenarios with a number of SIP INVITE requests which does not exceed

100. Additionally, the false alarms are zeroed for all the comparable scenarios, except

the second one, which reaches 0.2%. Finally, for the worst detection time of CUSUM

solution which equals 7.3 msec, the proposed solution introduced a delay equal to 4.8

msec. This research is categorized under the online category.

The same year, Hosseinpour et al. [181] presented an anomaly-driven detection method,

to detect DoS attacks in SIP. After employing an FSM to extract specific characteristics

from normal traffic, the authors make use of fuzzy logic to detect attacks based on the
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extracted characteristics. More specifically, they rely on the average of time between

differences in the FSM states and the number of messages obtained in the various states.

For the testbed they used Spirent Abacus 5000, along with Asterisk, and SIPp. In the

flooding scenario, they launched a bunch of SIP OPTION requests in a variety of rates.

Prior reaching the SIP proxy, the proposed scheme detected 99.9% of the attack traffic.

Additionally, they provided a comparison to the work presented in [14]. As they report,

the false alarm rates are quite lower than in SIPAD. Finally, their approach is irrelevant

to the type of processed SIP messages. This work is categorized under the offline group.

The same year, Dassouki et al. [182] researched the area of DoS attacks in SIP. The

authors introduced a new specification-driven mechanism, exploiting an FSM for each

session initiated using the SIP INVITE request. The main pillar of the proposed mech-

anism relies on the delayes of ACK messages with respect to the callee entity. In this

direction, the proposed scheme makes use of 2 counters which correspond to the differ-

ent levels of analysis, the session and the aggregation level. That is, the first counter

is increased in the session level when an ACK delay is encountered. In case this delay

persists for a specific time range, then the second, aggregation level counter will increase.

When the latter exceeds a predefined threshold, then a SIP INVITE flooding attack is

detected. Finally, the authors provided a comparison to the works presented in [183]

and [184]. Based on the obtained results, the proposed mechanism detected a slow flood-

ing attack in 2.6 secs. On the other hand, the solution presented in [184] detected the

same attack in 9.2 secs. Additionally, for the same attack pattern, the method presented

in [184] introduced a delay of approximately 10 secs. This work is marked under the

online category.

Hosseinpour et al. [42] presented a new method for thwarting out of sequence messages,

malformed messages, and flooding attacks. The authors considered the detection and

prevention of DoS attacks in SIP, by modeling the states of normal traffic using an FSM.

This was achieved by using a parser which correlates session information among different

SIP messages. In order to detect the attack patterns, the authors defined 3 different

attack states, namely “Normal”, “Alarm”, and “Attack”. Moreover, they compared their

results with those obtained from SIPAD [14]. The results indicated that especially for

low-rate attacks, the proposed method performed better in terms of detection probabil-

ity. More specifically, their method presented a detection probability varying between
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38.27% and 98.41% for all the scenarios. This happened because SIPAD employs spe-

cific thresholds which make very difficult to detect low-rate attacks. Additionally, with

respect to malformed messages, the proposed method reached a 100% accuracy, in con-

trast to SIPAD which reached a 33.13% one. This work is categorized under the offline

category.

Recently, Tsiatsikas et al.[43], researched the area of SDP-driven malformed attacks and

their impact in the server and client side. The authors touched 9 different softphones

and 1 hardware phone in order to highlight the impact of malformed message attacks

to real-life SIP equipment. Additionally, they researched the tolerance of SIP proxies

to the handling of big SDP segments. In this direction they successfully managed to

convey a SDP segment equal to 12,116 bytes. This finding indicated that SIP proxies

may be suceptible to volumetric DDoS attacks. In order to combat the aforementioned

types of attacks, the authors provided a software module capable of preventing SDP

malformed message attacks and SDP-driven covert channels. Based on the presented

results, the proposed solution introduced negligible overhead in terms of processing time.

Additionally, the authors provided a side-by-side comparison to the widely-known open

source SIP proxy Kamailio in terms of processing overhead. As the authors stated, the

parser detection accuracy reached 100%. This is explained due to the fact that the parser

relies on misuse detection, and thus it can detect a set of 100 implemented rules, based

on RFC 4566 [1]. This work is categorized under the online class.

4.4 C&C channels over SIP

This section succinctly reports on works that have been presented in the literature so far

regarding C&C channels over SIP.

Zhao et al. [44] exploited 3 randomly generated strings included in SIP messages in

order to create a covert channel. In this respect, the aim of this work is to detect

hidden information in SIP headers using chaos theory. Following this approach and

using only a small portion of normal messages, the authors analyzed and reconstruct

the random numbers included in the <Call-ID> header and the various Tags of a SIP

message. This is undertaken by means of a time series analysis. Additionally, the authors

highlighted the advantage of using the proposed scheme on a realtime fashion, based on
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the computational complexity and the detection accuracy. According to the obtained

results, the complexity reaches O(k), and the detection accuracy does not exceed 91.9%

on average. This work is categorized under the offline category.

Two years later, Mehic et al. [185] researched the area of VoIP steganography with respect

to the capacity of covert channels. The authors calculated the number and the type of

SIP messages which can be used to convey hidden traffic during established calls. In this

direction they exploited AD Snort, with the aim to capture network traffic. After that

they employed a profile generator in order to perform network traffic predictions. For the

profile generator the authors picked the Naive and Moving average methods. Using the

predicted results, they aimed on comparing the current network traffic with the predicted

one. Based on the metrics obtained from their testbed and the calculated bandwidth, a

value of 4 cps, i.e., 1856kbps, was perceived without being exposed by Snort. This work

is categorized under the other category.

One year later, Tsiatsikas et al. [186] evaluated the capacity of covert channels over SDP.

The authors exploited one mandatory and one optional descriptor with the aim to convey

secret information. As they stated, they picked <a=ptime:> and <o=> with the aim

to eliminate the chances of triggering communication problems in the session. The first

descriptor has been used as a means to convey the attack type, while the second one has

been used for communicating the IP address of the victim. For their experiments, they

used 6 different infected machines. Using the proposed C&C channel, they successfully

managed to simulate a botnet consisting of infected phones. More specifically, they

managed to simulate the attack capacity of their army by using 2 types of attacks. The

PING and the SYN flooding one. Based on their results, they obtained a 6 MB/sec

volume of traffic on the victim side when the number of threads in every bot reached a

number equal to 30. This work is categorized under the other class.

Wendzel et al. [187] provided a unified description method for the research area of network

steganography. The authors provided a literature review with regards to the researches

touching data hiding methods. After that, they collected a set of 131 hiding methods and

they provided a method for helping the classification and evaluation of future works in

the field. That is, they created a unified method to describe the different steganographic

approaches presented in the corresponding research area. The authors recognized 3 main

areas of hiding methods. These are a. “general information about the hiding method”,
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b. “description of the hiding process”, and c. “potential or tested countermeasures”. The

first two consist of mandatory and optional sub-categories. Furthermore, aiming to help

researchers, they proposed to combine their method, with the one given in [188]. Using

this combination, they state that it is easy to identify the novelty of a new work with

respect to data hiding methods. Moreover, as they state this correlation can be applied

in the peer review process. This contribution is categorized under the other group.

The same year, Shrestha et al. [189] presented a ML-driven framework to detect covert

channels. This proposal exploited SVM using fingerprints obtained from network com-

munications. The proposed framework consisted of 3 different units. These are the traffic

filter, the fingerprint extractor and, the SVM framework. In essence, these components

capture the traffic, extract the necessary features, and finally feed the features to the

SVM framework. As the authors stated, the obtained results have been perceived by

training the classifier using 4 diverse covert timing channel (CTC) algorithms. For the

feature extraction process, the authors utilized the following types of statistical finger-

prints: the Kolmorov-Smirnov (K-S) score, the Regularity score, the Entropy, and the

Corrected Conditional Entropy (CCE). Finally, they reported that the classification ac-

curacy of covert and overt traffic in the case of a On-Off channel reached 100% and

97% respectively. The latter was perceived on a system examining block sizes of 2,000

samples. In the case of a L-Bits-to-N-Packets, the authors reported a 100% and a 96%

accuracy for covert and overt communication. This work is categorized under the offline

class.

Finally, the same year, Mazurczyk [45], presented an IP-driven steganographic method

namely LACK. Building over useless Real time Transport Protocol (RTP) packets that

may exist in a communication network, they builded a hidden channel of communication.

Additionally, they evaluated their method in terms of steganographic bandwidth, using

different voice codecs. Based on their results, they stated that high bit rate codecs are

prefereable. In order to exemplify the previously-mentioned statement they exploited the

G.711 codec. This was further verified by their experimental results, which provided a

robustness on packet losses over 5%, and a MOS score [177] greater than 3. Finally, they

stressed the robustness of their method, in terms of steganalysis attacks, which in turn

was justified from the “naturallity” of the packet loss process. This work is categorized

under the other category.
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4.5 Discussion

As already discussed in the beginning of this section, the contributions of this PhD

thesis in contrast to the existing works in the literature are depicted in figure 4.1. The

red circles correspond to works which have been published in the context of in this PhD

thesis. On the other hand, the green circles refer to works which have used as a reference,

the contributions of the PhD thesis at hand.

Tables 4.2 and 4.3 present the analysis of the literature contributions. The first table

is devoted to the analysis of the researches which exploit log files to detect security

incidents. The second table details on the works which refer to DoS attacks and C&C

channels.

Table 4.2: Analysis of the literature: Log files

No. Reference Year Contribution area Processing
1 Schneier et al.[62] 1998 integr./confid. other
2 Biskup et al. [87] 2000 privacy other
3 Sah [89] 2002 integr./confid. other
4 Flegel [90] 2002 privacy online
5 Rouillard [91] 2004 log correlation online
6 Xu et al. [92] 2004 log correlation other
7 Lincoln et al. [93] 2004 privacy online
8 Slagell et al. [94] 2005 anonymity other
9 Godinez et al. [95] 2005 reduce log size offline
10 Stathopoulos et al. [96] 2006 integrity other
11 CP. Lee et al. [97] 2006 trace viewing other
12 Casey et al. [98] 2006 log analysis (forensics) other
13 VH. Escobar-Jeria et al. [99] 2007 log analysis other
14 Saleh et al. [100] 2007 log analysis other
15 Monteiro et al. [101] 2008 log authentication other
16 Goel et al. [104] 2008 system state online
17 Xia et al. [105] 2008 probabilistic forensics online
18 Pun et al. [106] 2009 log analysis offline
19 Barradas-Acosta et al. [107] 2009 log analysis offline
20 Myers et al. [108] 2009 malicious insiders other
21 Nagappan [109] 2010 log analysis other
22 Mazza et al. [110] 2011 log analysis other
23 KH. Lee et al [111] 2013 garbage collection offline
24 Yen et al. [112] 2013 knowledge extraction online
25 King [113] 2013 non-repudiation other
26 Singh et al. [114] 2014 log analysis offline
27 Gu et al. [115] 2015 log analysis (extract info) offline
28 Ambre et al. [116] 2015 log analysis (extract info) offline
29 Juvonen et al. [117] 2015 log analysis (extract info) online
30 Moh et al. [118] 2016 ML (training) offline
31 Breier et al. [119] 2017 log correlation offline



Chapter 4. Literature review 70

Table 4.3: Analysis of the literature: DoS attacks & C&C Channels over SIP

No. Reference Year Protocol Protects/Proposes Type Processing Comparison
32 Voznak et al. [145] 2012 SIP DoS SnortSam, IPTables online N/A
33 Maccherani et al. [146] 2012 SIP DoS OpenFlow, NetServ online N/A
34 J. Tang et al. [126] 2012 SIP message forgery statistical (Sketch, HD) online N/A
35 Rodnikorn et al. [147] 2012 SIP message forgery new header online N/A
36 Rontti et al. [148] 2012 SIP DDoS specification-based fuzzing other N/A
37 Stanek et al. [150] 2012 SIP DDoS three-tier online N/A
38 Farley et al. [152] 2012 SIP MITM, counterfeit cryptographic-driven online N/A
39 Lahmadi et al. [153] 2012 SIP DoS (malformed, flooding) rule-based online X(Suricata [190])
40 Asgharian et al. [154] 2012 SIP DoS (flooding) state machine online N/A
41 Chen et. al. [121] 2012 SIP DoS (flooding) statistical (CUSUM) offline N/A
42 Ferdous et al. [137] 2012 SIP DoS (Malformed) rule-based, ML(SVM) offline N/A
43 Mehta et al. [138] 2012 SIP DoS (Malformed) ML (MCS) offline N/A
44 Ferdous et al. [139] 2012 SIP DoS (Malformed) ML (SVM) offline N/A
45 Zhao et al. [44] 2012 SIP C&C chaos theory offline N/A
46 Mazurczyk [45] 2012 RTP C&C N/A online N/A
47 J. Tang et al. [40] 2013 SIP DoS (malformed) statistical (Anderson–Darling) offline X(HD)
48 Vrakas et al. [158] 2013 SIP DDoS - spoofing attacks statistical (bloom filter) online X
49 Raza et al. [159] 2013 SIP DDoS restrictive model other N/A
50 Hussain et al. [160] 2013 SIP DDoS statistical, new header online N/A
51 Seo et al. [14] 2013 SIP DoS (malformed, flooding) rule-based (stateful) online X(SecSip [191], [13], [183])
52 Tsiatsikas et al. [129] 2013 SIP DoS (flooding) statistical (Entropy) offline N/A
53 Roh et al. [161] 2013 SIP DoS (flooding) statistical (bloom filter) online X(whitelist [162])
54 Zhang et al. [163] 2013 DNS DoS (DNS) statistical (bloom filter) online N/A
55 Stachtiari et. al. [122] 2013 SIP DDoS N/A other N/A
56 Sebastian et al. [164] 2014 SIP DoS (flooding) three-tier online N/A
57 Zargar et al. [125] 2014 SIP DoS (flooding) statistical (Entropy) offline X(HD)
58 Akbar et al. [140] 2014 SIP DDoS (flooding) - SPIT ML, Entropy online X(HD)
59 J. Tang et al. [32] 2014 SIP DDoS (flooding) statistical (HD) online N/A
60 Liu et al. [168] 2014 SIP DoS (flooding) priority queue other N/A
61 Dassouki et al. [123] 2014 SIP spoofing fingerprints online X(AIB [124])
62 Tsiatsikas et al. [128] 2014 SIP DoS (flooding) statistical (HD) offline N/A
63 Mohamadi et al. [142] 2014 SIP new attacks ML (AIS) offline N/A
64 Mehic et al. [185] 2014 SIP/RTP C&C N/A other N/A
65 Marchal et al. [41] 2015 SIP TDoS (mimicry) ML (MCS) online N/A
66 Venilla et al. [171] 2015 SIP DoS (flooding) ML (SVM), Entropy offline X
67 Bansal et al. [172] 2015 SIP DoS(flooding) statistical online N/A
68 Jyothi et al. [173] 2015 SIP DoS pre-processing online N/A
69 Lee et al. [127] 2015 SIP DoS (malformed) - SPIT statistical online N/A
70 Tsiatsikas et al. [34] 2015 SIP DoS (flooding) statistical (Entropy) online N/A
71 Akbar et al. [174] 2015 SIP DDoS statistical (HD) online X(CUSUM)
72 Tsiatsikas et al. [143] 2015 SIP DDoS (flooding) ML offline X(Entropy [34], HD [128])
73 Tsiatsikas et al. [186] 2015 SDP C&C N/A other N/A
74 Wendzel et al. [187] 2015 N/A N/A N/A other N/A
75 Shah et al. [175] 2016 SIP DoS (malformed), spoofed rule-based offline N/A
76 Sabra et al. [176] 2016 SIP privacy cryptographic-driven offline N/A
77 Dassouki et al. [182] 2016 SIP DoS (flooding) specification-based online X([183], [184])
78 Cadet et al. [178] 2016 SIP DoS (flooding) Snort online N/A
79 Sun et al. [180] 2016 SIP DoS (flooding) CUSUM online X(CUSUM)
80 Hosseinpour et al. [181] 2016 SIP DoS FSM offline N/A
81 Semerci et al. [130] 2016 SIP DDoS statistical (CPA) offline N/A
82 Golait et al. [132] 2016 SIP DoS (flooding) statistical offline N/A
83 Tsiatsikas et al. [144] 2016 SIP DDoS (flooding) ML online N/A
84 Shrestha et al. [189] 2016 N/A C&C ML (SVM) offline N/A
85 Dassouki et al. [133] 2017 SIP DoS (flooding) fingerprints online X
86 Golait et al. [134] 2017 SIP DoS (flooding, coordinated) state machine online X(RET [192])
87 Wu et al. [135] 2017 SIP DoS (flooding) statistical (bloom filter) online X(Sketch [40])
88 Kurt et al. [131] 2018 SIP DDoS (flooding) Statistical online X([193], [128])
89 Hosseinpour et al. [42] 2018 SIP DDoS (malformed, flooding) FSM offline X(SIPAD [14], [161])
90 Semerci et al. [136] 2018 SIP DDoS statistical (mahalanobis dist.) online N/A
91 Tsiatsikas et al. [43] 2019 SDP DoS (malformed) - C&C rule-based online N/A
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Chapter 5

Detection of DoS attacks in SIP

using statistical means

Until now, various research works [194, 195, 196, 197, 198] have been dedicated to the

identification of resource consumption attacks as a part of network Intrusion Detection

Systems (IDS). However, as already pointed out, mainly for privacy reasons very few

concentrate on the analysis of VoIP audit trails to identify and distinguish uncommon

or suspicious traffic. Actually, a straightforward method to analyze audit trail data is

to use Entropy. For instance, the authors in [199] employ Entropy theory to detect IP

spoofing DoS attacks. This is done by monitoring the distribution of destination/source

IP addresses of packets entering or leaving the network. Analogous methods can be uti-

lized in VoIP ecosystem to analyse audit trails (or realtime traffic), but so far their scope

is confined to the IP level only. On the other hand, data coming from the application

layer are usually rich of information that can be processed towards identifying security

incidents. The authors in [129] have identified this potential in theoretical level, but un-

fortunately the results they provide solely stem from offline analysis using predetermined

patterns of SIP traffic.

72
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5.1 Detection of DoS attacks in SIP using Entropy theory

5.1.1 Overview

According to the Entropy theory, symbol redundancy indicates lower Entropy values.

This means that symbols having greater frequency occurrence correspond to less “dis-

order” compared to others coexisting in the same set of messages. In the ideal case,

an audit trail should not contain message redundancies, except those that take place

due to retransmisions, subscribers peculiarities or habits (a given user calls another very

often), and/or other random causes as noted in section 5.1.2. Following this observation,

we rely on Entropy to quantify the level of disparity among messages belonging to the

same audit trail as well as ones recorded in different log files, and determine whether

they contain intrusive records or not. This is because Entropy provides a single-quantity

measurement, which corresponds to the randomness of a given audit trail. Note that this

quality allow us to even compare audit trails belonging to different multimedia providers,

which may be very handy when investigating large-scale distributed DoS (DDoS).

Figure 5.1 offers an overview of the proposed solution to identify DoS incidents in SIP

networks. As observed from the figure 5.1, all log files are anonymized before any process-

ing can take place (1). Next, for each message contained in the audit trail, an Entropy

value is computed based on the headers of interest and compared against that derived

from a reference (attack-free) file (2). If a predetermined threshold is exceeded, then the

message is classified as malicious (3). Additionally, if one needs to obtain an estimate on

whether the examined audit trail as a whole is suspicious, she can calculate its overall

Entropy and have it compared with the value corresponding to the reference file. This

means that our scheme allows for auditing the security level of a given audit trail in both

per message and per set basis.

It is therefore implied that before we are able to decide whether an audit trail contains

a DoS, we require that one of the cross-evaluated audit trail sets is attack-free. Putting

it another way, this set is used as a reference (training set) during the detection phase.

Hence, the existence of such an attack-free audit trail along with the quality of the

latter in terms of proper characterization of the service is of major importance. Actually,

this is a well-known issue in intrusion detection, as semi-supervised anomaly detection

techniques are able to detect anomalies after being trained by a dataset that has only the
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normal instances labeled. Generally, (semi)-supervised detectors rely on the existence of

pre-labeled data to build their predictive models for both normal and anomalous classes

during the training phase. Newly fed data instances are evaluated against this pre-

constructed model, in deployment phase, so that they are categorized in normal or one

of the intrusive classes. Realistically, data labeling is not always possible, either due to

the high cost of the labeling process, or the sensitive nature of the data. Generally, it is

much easier to construct a dataset with normal instances as in most situations normality

is the rule. In the case of SIP the correct labeling (identification) of messages can be

decisively seconded by the billing service, because these logs are supposed to be accurate

and valid.

Entropy is a metric of uncertainty based on the mathematical theory of communica-

tion [200] introduced by Shannon. Putting it another way, Entropy quantifies the ex-

pected value of the information contained in a message. That is, a reduced uncertainty

is quantified in a lower Entropy and vice versa. Hence, the probability of occurrence

(certainty of an outcome) of a symbol contained in a SIP message can provide one with

knowledge about hidden redundancy in the information received.

Specifically, considering that a symbol Si in a specific message set (Mset) has probability

PSi , then the itself information included in this symbol is by definition:

ISi = − logb PSi (5.1)

The average of itself information with reference to the message set (Mset) is called

Entropy and is computed using the following formula:

Figure 5.1: Abstract view of the proposed audit-trail analysis model
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H(Mset) = −
n∑

i=1

PSi ∗ logb PSi (5.2)

The Entropy of a source setMset maximizes when all instances (e.g., messages) contained

in that set have equal probability of occurrence (PSi = 1/n). This means that the un-

certainty of the outcome is augmented, while the redundancy in Mset is reduced. With

respect to itself information this fact indicates that all messages (or symbols correspond-

ing to certain fields of a given message) contain the same amount of information. Note

that the greater the probability of a specific message the less information is included in

it. Furthermore, in case where two symbols are independent of each other, then the itself

information and the Entropy metrics are calculated using the formulas (5.3) and (5.4),

respectively.

I(A,B) = I(A) + I(B) (5.3)

H(A,B) = H(A) +H(B) (5.4)

Figure 5.2: Symbols of interest in a typical SIP INVITE request
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5.1.2 Symbol definition

To apply the above mentioned principles of information theory in the context of a SIP

auditing service, we define certain parts of a SIP message (headers) as the symbols of

interest, as shown in the right side of figure 5.2. The selection of these symbols reflects the

different parts of a SIP message that an attacker could craft in order to launch a resource

consumption or other type of attack. In fact, this method of assault is well-documented

and evaluated in various researches so far [9, 10, 11, 66]. For instance, a malicious actor

could fabricate different SIP messages by modifying some of their parts such as the

Request-Line, <Via>, <From>, <To>, <Call-ID> headers (corresponding to symbols

S2 – S5, and S1 in figure 5.2) depending on the situation at hand. The last two headers,

namely <CSeq>, <Content-Type> shown in figure 5.2 are left out because they bare

minimum information regarding message Entropy. That is, their values remain the same

across different messages. For example, the latter header will always get the same values

corresponding to the session (“application/sdp”) parameters of the SIP phone in use. It

is to be noted that excluding malicious SIP message tampering, replicated traffic can

be also generated due to device misconfiguration or any other random cause. However,

this situation is anticipated to happen mostly in small-scale, have short duration, and

produce low-volume of extra traffic.

5.1.3 Metrics definition

This section details on the metrics used by the proposed detection scheme.

Actual Information (AI): quantifies the randomness of a message in relation to all the

other ones contained in the same set. Recall that in the proposed model, a SIP message

is consisted of S1 to S6 symbols and the itself information of each one is calculated

using equation (5.1). So, we compute the randomness of each individual message using

formula (5.5).

AI(M) =

n∑
i=1

ISi (5.5)

Theoretical Maximum (TM): defines the theoretical maximum randomness value

that a message can hold vis-a-vis a particular set of messages (Mset). This value is
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computed using formula (5.6), where k is the number of symbols defined (6 in our case)

and n is the total number of messages existing in that set (Mset). Keep in mind that in

the case of SIP ACK and BYE messages, the corresponding number of symbols is 5 due

to the absence of the <Contact> header.

TM = −k ∗ logb 1/n (5.6)

Normal Average Distance (NAD): represents the average randomness distance of

an attack-free traffic from its theoretical maximum value. Its value is computed using

formula (5.7).

NAD = Avg(TM −AI) (5.7)

Actual Information Distance (AID): measures the distance of an examined audit

trail message from its theoretical maximum. Its value is computed by formula (5.8).

AID = TM −AI (5.8)

Normal Threshold (NT): defines the threshold that should not be exceeded by

the AID of an examined message in order this message to be classified as normal.

The NT value relies on NAD adjusted by a parameter δ, which in turn relies on the

characteristics of the examined traffic, NT = NAD + δ.

Audit Trail Entropy (ATE): this metric represents the overall randomness included

in an audit trail. It is based on the sum of AI values of all the messages contained in a

given Mset, and it is computed using formula (5.9).

ATE(Mset) =

n∑
i=1

HSi (5.9)
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5.1.4 Theoretical example

To exemplify the above metrics, in Table 5.1 we present a simple artificially-created audit

trail consisted of 10 messages with different symbols. For instance, the M1 message

is comprised of symbols A1, E1, I1, K1, Q1 and U1 corresponding to some of SIP

headers existing in the right side of figure 5.2. In this case, the itself information for

A1, as calculated by equation (5.1), is 3.32. Also, by using formula (5.5), the AI for

M1 is 3.32 + 1 + 0.73 + 0.15 + 1.73 + 2.32 = 9.25. If we consider this audit trail to

be attack-free, and considering that TM is −6 ∗ log2 (0.16) = 15.84, then NAD will be

(15.84− 9.25)/10 = 0.65 according to equation (5.7). Moreover, the Entropy values for

each symbol S1 to S6 are 3.32, 1, 1.77, 0.46, 1.89 and 1.92 respectively, while the Entropy

calculated over the whole set of messages contained in the audit trail is 10.36. The lower

the ATE value is, the less the randomness contained in the examined set.

Table 5.1: Entropy method: Example

Msg. Symbols AI
S1 S2 S3 S4 S5 S6 –

M1 A1 E1 I1 K1 Q1 U1 9.25
M2 A2 E2 I1 K1 Q2 U2 9.25
M3 A3 E1 I1 K1 Q3 U3 9.25
M4 A4 E2 I1 K1 Q1 U4 8.25
M5 A5 E1 I1 K1 Q2 U4 8.25
M6 A6 E2 I1 K1 Q3 U4 8.25
M7 A7 E1 I2 K1 Q1 U4 8.25
M8 A8 E2 I3 K1 Q2 U1 11.84
M9 A9 E1 I4 K1 Q3 U2 11.84
M10 A10 E2 I5 K2 Q4 U3 16.6
ATE 3.32 1 1.77 0.46 1.89 1.92 –

So, it is straightforward that whenever one wishes to identify whether a message con-

tained in any given audit trail is malicious or not, requires her to compute its AI and

AID (subsequently) and then compare the latter against the NT computed over the

attack-free audit trail.

5.1.5 The proposed scheme

Initially, the data contained in the audit trail files are anonymized to obfuscate user

specific information contained in SIP headers. As already pointed out in section 2.5, this

is done by creating a keyed hash (HMAC) [201] value for each header of interest. Bear in
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mind that this information corresponds to the symbols S1 to S6 defined in figure 5.2 and

detailed in Table 5.2. This (keyed) hashing phase allows one to retain symbols frequency

while obscuring the initial values. That is, due to the intrinsic properties of HMAC

functions, the chances for someone to reverse the hash is almost non-existent, while the

output produced allows for exchanging the data among providers or between a provider

and a public data analysis service. Also, it should be noted that even if the key (k) is

compromised the original values (x) cannot be reversed engineered from HMAC(k, x)

= value. However, such a situation will constitute the data vulnerable to brute force

attacks. This observation also applies to cases where the access to the original data and

the secret key used to create the corresponding HMAC is managed by different entities.

Thus, as shown in figure 5.1, in case there is a need to identify each one message classified

as malicious by the framework, the service provider searches for its hash in the already

anonymized audit trail. If a match is found, then the initial message can be retrieved

from the original data for further examination. Of course, another possibility is for the

detection framework to send back to the service provider only the serial number of the

messages detected to be suspicious. This way, we can publicize information and outsource

data for security related analysis that otherwise would remain private.

Recall from section 2.5, however, that while this HMAC-powered anonymization scheme

is very fast, it is only fair when it comes to unlinkability [202]. That is, the hash values

of two headers pertaining to the same user, say, the caller in an INVITE request, will be

identical. Therefore, a person having access to the anonymized data is able to deduce

certain relationships among the data, even if the real identities of the corresponding

persons remain hidden.

Table 5.2: Symbols of interest contained in a SIP message

Symbol Corresponds To Symbol Corresponds To

S1 Request-Line (requested resource) S2 Via header

S3 FROM header S4 TO header

S5 Call-ID header S6 Contact header

S7 entire SIP message - -
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After the obfuscation phase, the randomness included in the audit trail of interest is

quantified. Having in mind the metrics defined in section 5.1.3, we calculate (a) the

AI per message, (b) the AID for the examined set, and (c) the ATE over the whole

set of messages contained in the audit trail file. As already pointed out, to identify

abnormalities (which may denote a DoS attack) it is assumed that there exists at least

one attack-free audit trail, to be used as a training set for calculating the NAD and

(consequently) the NT metric. The latter value is used to decide if a given message is

intrusive or not. This procedure is presented in detail in Appendix A.1, algorithm 1.

5.1.6 First-level offline evaluation

For assessing the effectiveness of the proposed method in detecting abnormalities in

SIP traffic we used the well-known open source Kamailio (http://www.kamailio.org/w/)

as a VoIP server. For generating the background and attack traffic we employed sipp

(http://sipp.sourceforge.net/) and sipsak (http://sipsak.org/) respectively. The

VoIP server records all the traffic, which will be used for offline analysis by the proposed

framework.

In an effort to assess the effectiveness of our scheme to identify DoS and traffic abnormal-

ities in general, we implemented fourteen scenarios summarized in Table 5.3. Each one

was executed for a period of 120 sec. In all the scenarios it is introduced different (legiti-

mate) background traffic, while various attacks have been simulated in order to examine

if they can be traced by the proposed solution and to which degree. We should also

stress out that the rate of traffic used in each scenario included in Table 5.3 corresponds

to the rate the tools (sipp, sipsak) are pre-configured to operate with. Scenarios SN-1,

SN-2 and SN-3 serve as references for attack-free traffic in order to assess the proposed

solution under different traffic patterns, and therefore are used for calculating the NT as

well as the NAD metrics for the sub-scenarios.

5.1.7 First-level offline detection

Initially, we anonymize the audit trail data by hashing the pre-defined symbols per

message. Specifically, for each message contained in the audit trail, we employ SHA-1 to

obtain the hash of every symbol defined in Table 5.2. Hashing allow us to keep symbol

http://sipp.sourceforge.net/
http://sipsak.org/
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Table 5.3: First-level evaluation: Description of the scenarios evaluated

Scenario Number Description

SN-1
30 legitimate users establishing 5 calls/sec. The
maximum number of calls per user/sec is 2. This

scenario contains no attack traffic.

SN-1-1, SN-1-2, SN-1-3
These 3 sub-scenarios use the background traffic of
SN-1 and single source SIP INVITE flood attack

traffic with a rate of 5, 12 and 30 calls/sec.

SN-2
30 legitimate users establishing 5 calls/sec. The
maximum number of calls per user/sec is 5. This

scenario contains no attack traffic.

SN-2-1, SN-2-2, SN-2-3, SN-2-4
These 4 sub-scenarios use the background traffic of
SN-2 and single source SIP INVITE flood attack
traffic with a rate of 8, 20, 40 and 80 calls/sec.

SN-3 30 legitimate users establishing 2 calls/sec. The
maximum number of calls per user/sec is 600.

SN3.1, SN-3-2, SN-3-3, SN-3-4

The last 4 sub-scenarios use the background traffic
of SN-3 and multiple source SIP INVITE flood
attack traffic with a rate of 25, 50, 175, 350

calls/sec.

frequency unmodified, while obscuring the initial values. This means that the initial

information (i.e., the whole message) can be retrieved only if the audit trail becomes

available. In case that it is needed to identify the exact initial messages, the audit trail

is anomyzed and each of the attack messages is compared against the anonymized ones.

If there is a match then we extract the initial message for further examination.

Naturally, other anonymization techniques [203], discussed already in Chapter 2, and

detailed in section 2.5, such as hiding, permutation or enumeration can also be utilized

here. However, such approaches require keeping metadata information in secure storage

for the case where the initial messages need to be retrieved. This fact constitutes these

schemes more complex, and of course vulnerable to attacks, as this additional information

is required to be stored in a secure manner. Also, as reported in [56], anonymization can

have severe undesirable outcomes if implemented incorrectly.

Next, security analysis is applied to the anonymized data for measuring the uncertainty

included in the audit trail. More specifically, in the proposed model we compute: (a) the

AI per message, (b) the AID for the examined set, and (c) the ATE over the whole set of
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messages contained in the audit trail file. In order to identify abnormalities (which may

indicate a DoS attack) we assume that there exist at least one attackfree audit trail, to be

used as a training set for calculating the NT as well as the NADmetrics (see section 5.1.3).

Then, the computed values are checked against the corresponding thresholds in order to

have the messages classified as attack or normal traffic. To extract the exact message

details and reveal additional information related to the attack message(s) we use the

hash values included in the malicious set and search for the corresponding values in the

audit trail. It should be noted that there is no need to access the initial values since

there is no match between these values. The initial values are retrieved only if the hash

values match. This way, we can publicize information and outsource data for security

related analysis that otherwise are considered private.

Figure 5.3 illustrate snapshots of the distribution of the AI metric for scenarios SN-1,

SN-1-1, SN-1-2 and SN-1-3. Note that similar distributions have been recorded for the

remaining scenarios. When compared to the other scenarios, the AI in SN-1 is closer

to its TM value due to many retransmittions and the call pattern used. That is, many

retransmissions occurring in a short period of time may falsely indicate DoS traffic.

Although, we rely on a simulated environment, this is also the case for real architectures,

where users build a specific call pattern during a particular period of time [204], [205].

In all the attack sub-scenarios the AI metric obtains lower values due to excessive symbol

repetitions in the examined set of messages. This behavior is distinctively depicted in

figure 5.3, as the attack traffic is increased gradually for scenarios SN-1-1 to SN-1-3

respectively. For instance, in SN-1, the TM is 46.06 and the average AI 31.78, while in

attack sub-scenarios, say SN-1-1, both the TM and average are increased to 67.78 and

36.75 respectively. Recall that lower values in AI is a strong indication of uncommon

behavior. This indication can be used also in cases where an attack-free audit trail is not

available. However, as already explained in 5.1.6, in such an unusual case, we should take

into account either the theoretical users’ behavior or employ other techniques aiming to

estimate the appropriate threshold. It is also relevant to note here that the values related

to TM vary among different scenarios, since the examined set includes different number

of recorded messages.

For all the scenarios the NT metric is adjusted to the corresponding traffic pattern using

the δ parameter. In our case, this parameter is equal to the St. Dev. value calculated
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Figure 5.3: Sample of actual info (AI) for scenarios SN-1, SN-1-1, SN-1-2 and SN-1-3

over the messages that consist the corresponding normal traffic set. This means that

in order to deduce if a particular message is part of an uncommon traffic pattern we

compute its AI (according to equation 5.5) and compare it with the NT value. The

statistics for all the scenarios are summarized in Table 5.4.

To evaluate the accuracy of the proposed solution in identifying DoS attacks we use

legacy IDS error assessment metrics, namely False Positive (FP) and False Negative

(FN) [206]. In this context, the attack traffic is logged in parallel and independently in

order to use it on a later stage to validate the correctness of our proposal to classify a

message as malicious or not. The results of this analysis are summarized in Table 5.4 as

well. To further validate the outcomes, we also analyse considerable volume of legitimate

traffic having similar patterns to SN-1, SN-2, SN-3. In all these cases, no false alarm

was detected meaning that our solution is sound. Regarding the results derived from the

rest of the scenarios we were able to detect only FP. Particularly, in all the scenarios,

we identify accurately all the attack traffic, while the FP value for all SN-1 to SN-3

sub-scenarios fluctuates between 1% to 3.5%. Bear in mind that the rate of FP is highly

affected by possible retransmissions and users’ call behavior depending on the case.

In this point, one might argue that an FP of 3.5% is quite significant. However, in

forensic analysis, privacy-preserving solutions need to always balance between security

and privacy. We argue that this percentage is very promising; however, along with
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the calibration of the metrics currently used in our model, there might exist additional

parameters that may affect its behavior and thus lead to better results. This is an

issue worth of investigating in a future work. It is also important to note that if we

solely consider the whole message as an independent symbol (S7), then the AI will

receive the maximum theoretical TM value of this set. This happens because every SIP

message, either legitimate or not, always presents some additional fields or parameters

that uniquely differentiate it from any other. Obviously, if doing so, one will end-up

believing that the audit trail under investigation is attack-free. Thus, our model makes

use of the AI metric which involves information stemming from different, but clearly

defined, symbols of the SIP message structure.

5.1.8 Second-level offline evaluation

This subsection details on the second-level evaluation of the proposed scheme. The

second-level evaluation differs from the first-level in the number of the examined scenarios

and the side-by-side comparison it offers, with respect to the offline and the realtime

analysis.

The proposed detection scheme was implemented as two independent software modules;

one for contacting offline analysis of audit trail data, and the other for inspecting SIP

messages in realtime. Both modules were programmed in C language and are capable of

processing any type of SIP message either request or response. The realtime module is

built as an extension of the well-known SIP server Kamailio [207].

For both modules, before doing any security analysis, the data are anonymized through

the HMAC-SHA256 function [208] and stored in a hash table. In fact, the hash table

structure stores a different record per unique SIP symbol found in the examined messages.

The SIP symbol is the alias-key which is used to retrieve the corresponding value from

the hash table.

As detailed later in section 5.1.11 and summarized in algorithm 1, in the case of realtime

detection, the data remain in the hash table for a predefined message-window Mw. As

soon as the Mw expires, the module calculates the NT, NAD metrics over the received

messages up to that moment and compares the AID of every next incoming message

against that of NAD.
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Table 5.4: First-level evaluation: False alarm ratio and statistics for all the scenarios

Scen.
Traf. FP Stats.

RC AC In. % TM St. Dev Thrsh. AI MV

SN-1 219 - - - 46.60 4.78 14.88 31.78

SN-1-1 443 199 0 - 52.70 4.88 19.76 36.60

SN-1-2 715 464 8 1.1 56.89 5.54 20.42 35.76

SN-1-3 963 721 - - 59.46 5.79 20.67 35.54

SN-2 891 - - - 52.80 4.76 13.04 40.13

SN-2-1 892 438 32 3.5 58.80 5.21 18.25 39.43

SN-2-2 1095 644 33 3.0 60.58 5.55 18.59 38.97

SN-2-3 2683 895 28 1.0 62.34 5.78 18.82 38.60

SN-2-4 3655 1389 29 - 65.01 5.94 18.98 38.22

SN-3 2275 - - - 60.91 4.39 14.39 46.51

SN-3-1 5031 1422 39 0.7 67.78 4.43 18.82 45.85

SN-3-2 5769 1798 35 0.6 68.96 4.53 18.92 45.70

SN-3-3 9683 3899 32 0.33 73.44 4.81 19.2 45.03

SN-3-4 17317 7800 41 0.23 78.47 5.10 19.49 44.75

For offline analysis the exact same metrics are calculated, but this time over the whole

traffic corresponding to the audit trail at hand. This procedure is summarized in al-

gorithms 2, 3. However, if one needs to obtain a security assessment of the messages

received during a specific period of time, the audit trail can be split into segments over

which the metrics can be calculated. By doing so, one is able to achieve a similar ap-

proach to the Mw used in realtime analysis. Algorithm 5, presented in Appendix A.1,

exemplifies this procedure.

5.1.9 Testbed setup

To evaluate the effectiveness of the proposed scheme in detecting abnormalities in SIP

traffic we used a properly designed testbed as shown in figure 5.4. To simulate different
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types of both legitimate and attack (flood) traffic we employed sipp v.3.2 1 and sipsak2

tools respectively. Table 5.5 summarizes all the scenarios used for the evaluation of our

scheme. The main scenarios, namely SN-1 to SN-5, serve as references for attack-free

traffic and therefore are used for calculating the base-value of NAD and subsequently the

NT metric. The latter will be compared against that of AID calculated per message for

every sub-scenario. To simulate legitimate traffic in terms of incoming calls in a realistic

manner we employed an exponential inter-arrival time distribution (λ = 100), similar to

that used in evaluating SIP server performance [209].

Apart from assessing the effectiveness of the modules to detect suspicious traffic, we

also measure the introduced overhead of the one destined to realtime operation. For the

latter, the SIP server has been configured to operate in single-thread mode, representing

a worst case scenario. The server was running on an i7 2.2 GHz machine having 6 GB

of RAM.

Figure 5.4: Deployed testbed

5.1.10 Second-level offline detection

Figure 5.5 illustrates a snapshot of the AI metric distribution for the main scenarios SN-1

and SN-2. It can be observed that this metric follows a nearly similar pattern for both

scenarios. Analogous distributions are perceived for the remaining attack-free scenarios

as well. In fact, this slight difference is due to the disparate rate in calls per second each

scenario incorporates. This call distribution represents the calls initiated by legitimate

users in a typical SIP ecosystem as explained in [204, 210]. Contrary to that, as observed

from figures 5.6 and 5.7, the AI produced in attack scenarios SN-1-2 and SN-2-2 exhibits
1http://sipp.sourceforge.net/
2http://sipsak.org/

http://sipp.sourceforge.net/
http://sipsak.org/
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Table 5.5: Second-level evaluation: Description of the scenarios evaluated

Scenario Number Description

SN-1 This attack-free scenario simulates 30 legitimate users
establishing 5 calls/sec.

SN-1-1, SN-1-2, SN-1-3
These sub-scenarios use the background traffic of SN1 and
simulate a single source SIP INVITE flood attack with a

rate of 20, 40, 80 calls/sec respectively.

SN-2 It simulates 30 legitimate users establishing 2 calls/sec.
This is an attack-free scenario as well.

SN-2-1, SN-2-2, SN-2-3
These sub-scenarios use the background traffic of SN2 and
simulate multiple sources of SIP INVITE flood attack with

rates of 50, 175, 350 calls/sec respectively.

SN-3 It simulates 50 legitimate users establishing 120 calls/sec.
This scenario contains no attack traffic.

SN-3-1, SN-3-2
These sub-scenarios employ the background traffic of SN3
and simulate a single source SIP INVITE flood attack of

400, 1200 calls/sec respectively.

SN-4 This attack-free scenario incorporates 50 legitimate users
establishing 120 calls/sec.

SN-4-1
It relies on the background traffic of SN-4 and simulates 24

single source SIP INVITE floods each one with 800
calls/sec.

SN-5 This last attack-free scenario incorporates 50 legitimate
users establishing 20 calls/sec.

SN-5-1
It relies on background traffic of SN-5 and simulates 16
single source SIP INVITE floods each one with 266

calls/sec.

high fluctuations. The calculated statistical results for all the scenarios are summarized

in Table 5.6.

It should be noted that in all the attack sub-scenarios the AI obtains greater values due

to the higher number of messages existing in the corresponding audit trails. However,

when an attack unfolds, the AI for messages belonging to the attack traffic receives

lower values. Thus, the NAD metric needs to be adjusted according to the parameter
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δ (see section 5.1.3) for calibrating it to the current traffic pattern. In our case, the δ

parameter is equal to the Standard Deviation value calculated over the messages that

consist the corresponding normal traffic set. This means that in order to deduce if a

particular message is part of an uncommon traffic stream, we compute its AID (according

to equation 5.8) and compare it against the NT value. If the latter is exceeded, the

message is characterized as suspicious.

Generally, the existence of excessive symbol repetition in any given audit trail is a high

indication of uncommon user behavior because legitimate users are not capable of gen-

erating high volumes of traffic in a short period of time, unless, for example, their device

is infected by a malware. In opposite to that, low values in symbol (Si) recurrence is a

strong indication of normal traffic, and thus it can be used in cases where an attack-free

audit trail is not available. However, in such an unusual case, one should take into ac-

count either the theoretical users’ behavior or employ other techniques (as in [211, 210])

aiming to estimate the appropriate threshold.

To evaluate the accuracy of this detection module in identifying DoS attacks we use

legacy IDS error assessment metrics, namely False Positive (FP) and False Negative

(FN) [206]. The first one is related with messages detected as abnormal but they belong

to the legitimate traffic, while the latter involves messages detected as normal but they
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Figure 5.5: A snapshot of the AI for scenarios SN-1, SN-2 (normal traffic only)
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Figure 5.6: A (random) snapshot of the AI for scenario SN-1-2
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Figure 5.7: A (random) snapshot of the AI for scenario SN-2-2

belong to abnormal traffic. To further validate the outcomes at a later stage, we mandate

all the attack traffic to be recorded in a separate log file.

The FP and FN results for all the scenarios are summarized in Table 5.7. It is observed

that the FP percentage varies from 0.3% to 10.6%, while that of FN reaches 1.8%. For

instance, in SN-1-1 to SN-1-3 the FP fluctuates between 7.5% and 10.6%. This is because

aggressors usually do not solely rely on random messages to cause DoS, but employ smart
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spoofing schemes where the attack messages are crafted to contain legitimate SIP ad-

dresses/headers. So, some of these specially manipulated messages would remain hidden

under the normal traffic, while other pertaining to normal traffic are being classified as

malicious, generating FP alarms. In this respect, it can be said that such an FP is rather

expected since it corresponds to spoofing attacks which is very difficult to defend at least

in their early stages or in cases the attacker uses “low and slow” attack techniques. On

the other hand, the FN percentage is almost negligible, around 2% in the worst case.

This result is particularly encouraging as it makes harder for an attack to go totally

undetected.

It is also worth noting that if we solely consider the whole message as an independent

symbol, then the AI obtains the maximum theoretical TM value. This happens because

every SIP message, either legitimate or not, always presents some additional fields or

parameters that uniquely differentiate it from any other. Obviously, if doing so, one

will end-up believing that the audit trail under investigation is attack-free. Thus, our

model makes use of the AI metric which involves information stemming from different,

but clearly defined, symbols of the SIP message structure. Of course, more SIP headers

can be added or removed depending on the case.

Table 5.6: Second-level evaluation: Statistics for all the scenarios

Scenario TM St. Deviation (δ) Threshold AI mean value
SN-1 69.94 3.83 33.3 43.47
SN-1-1 80.75 7.14 43.94 43.95
SN-1-2 81.85 7.01 44.12 44.74
SN-1-3 83.80 6.60 44.92 45.48
SN-2 61.93 3.83 26.87 38.89
SN-2-1 79.67 7.08 45.43 41.32
SN-2-2 83.43 6.83 47.86 42.40
SN-2-3 86.71 5.32 47.18 44.85
SN-3 96.88 4.02 45.88 55.02
SN-3-1 108.92 5.16 56 58.08
SN-3-2 117.15 4.48 61.65 59.98
SN-4 99.80 3.85 46.87 56.78
SN-4-1 117.23 4.95 61.2 60.98
SN-5 89.73 4.09 44.23 49.58
SN-5-1 105.51 4.77 55.31 54.97
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Table 5.7: Second-level evaluation: False alarm ratio

Scenario Traffic FP FN
Total calls Attack calls Instances % Instances %

SN-1 3,230 0 0 0 0 0
SN-1-1 11,263 7,204 1,195 10.6% 0 0
SN-1-2 12,790 8,523 1,132 8.8% 0 0
SN-1-3 16,019 11,763 1,203 7.5% 0 0
SN-2 1280 0 0 0 0 0
SN-2-1 9,936 8,291 391 3.9% 0 0
SN-2-2 15,340 13,657 458 2.9% 0 0
SN-2-3 22,420 20,799 496 2.2% 0 0
SN-3 72,553 0 0 0 0 0
SN-3-1 291,634 228,432 3,104 1.0% 4,111 1.4%
SN-3-2 754,510 705,936 12,182 1.6% 7,274 0.9%
SN-4 101,762 0 0 0 0 0
SN-4-1 761,963 694,788 2,479 0.3% 6,873 0.9%
SN-5 31,775 0 0 0 0 0
SN-5-1 196,761 168,470 5,835 2.9% 3,696 1.8%

5.1.11 Second-level realtime detection

This section reports on the results obtained from the realtime detection module running

on Kamailio SIP server. The evaluation scenarios remain the same as in the case of offline

analysis in an effort not only to assess the accuracy of the realtime module but also to

cross-evaluate their outcomes. These scenarios are presented in detail in Table 5.5. It

is to be noted that the main difference between the realtime and offline modules is the

amount of traffic that is available to the realtime module at a given time. This is because

the offline module works based on statistical metrics derived from all the available traffic,

which naturally is not the case for the realtime one. Thus, as already pointed out, a

Mw is used as a training phase to provide an estimation of NT and NAD metrics. This

procedure is illustrated in figure 5.8. Of course, these metrics can be automatically

readjusted as further traffic is available, similar to the offline approach. However, the

adjustment of TM and NADmetrics needs to take into account theMw parameter as well.

This also means that the selection ofMw is critical to the accuracy of realtime detection.

To our knowledge, there is no direct approach to formally define these parameters, mainly

because they are highly contextual, i.e., closely bound to the characteristics of the service

and underlying network. Therefore, similar to other anomaly-based approaches [32], we

adopted an error-trial approach to balance between the Mw parameter and the false

alarm rate.
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In a nutshell, as the Mw expires, the module starts to monitor every incoming SIP

message to decide if it is normal or not. This is done by computing its AID according

to equation (5.8) and comparing it against the NT value.

Table 5.8 overviews the average processing time per message introduced in SIP server

as well as other statistical metrics (min, max, st.dev) for realtime operation for all the

scenarios. Note that the table contains the overhead induced when a SHA256 or HMAC-

SHA256 operation is involved for data anonymization. This is done to acquire a cleaner

view of the applicability of each method in terms of performance. As illustrated in the

Table, for the HMAC-SHA256 case, this time penalty remains low at ≈ 3.9 and 1.8 msec

considering the first two attack-free scenarios, namely SN-1, SN-2. This is expected as

these scenarios have the lowest call rate of 5, 2 calls per second respectively.

However, as the volume and the arrival rate of messages increases, the introduced over-

head is expected to augment as well. For example, the average overhead in SN-4 is ≈ 16.3

msec, while for SN-5 is ≈ 14.9 msec. Even in the worst case scenario of SN-3-2, the mean

value of this metric is ≈ 16.8 msec. This observation is further supported by the standard

deviation per scenario, which fluctuates between 2.8 and 9.7 msec. Therefore, it can be

safely argued that the use of HMAC-SHA256 does not generate a significant increase in

overhead. So, as already discussed in Chapter 2, and more specifically in section 2.5, this

stronger anonymization method is definitely to be preferred over that of a hash function.

To assess the effectiveness of the realtime module in terms of false alarms we use different

values for the Mw, ranging from 100 to 1000 messages. This will allow for fine-tuning

of the Mw parameter based on the recorded FP, FN metrics, and provide a general

estimation on how the Mw affects these metrics. Figure 5.9 illustrates the variation of

FP for all the scenarios. Taking SN-1-1 to SN-1-3 as examples, no FP is observed when

the Mw varies from 100 to 1000 messages. However, for scenarios SN-2-1 and SN-2-2,

when the Mw is set to 1000 messages, a rather negligible FP of ≈ 1.9% is perceived. A

Figure 5.8: Abstract view of the Message window (Mw)
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Table 5.8: SIP server overhead (in msec)

Scenario SHA256 / HMAC-SHA256
Min Max Average St. Deviation

SN-1 0.440 / 0.423 36.079 / 44.711 3.812 / 3.899 6.929 / 7.274
SN-1-1 0.325 / 0.413 40.869 / 40.800 15.354 / 15.700 9.311 / 9.251
SN-1-2 0.330 / 0.295 48.262 / 43.710 15.201 / 15.627 9.274 / 9.156
SN-1-3 0.338 / 0.312 43.873 / 43.324 15.658 / 15.951 9.186 / 9.383
SN-2 0.464 / 0.422 32.233 / 28.354 2.124 / 1.837 2.731 / 2.867
SN-2-1 0.396 / 0.342 59.128 / 65.678 15.113 / 15.426 9.290 / 9.429
SN-2-2 0.395 / 0.449 44.651 / 51.038 15.315 / 15.328 9.384 / 9.303
SN-2-3 0.395 / 0.344 178.276 / 58.846 15.476 / 15.510 10.645 / 9.745
SN-3 0.346 / 0.373 45.720 / 124.347 15.874 / 16.028 8.385 / 8.765
SN-3-1 0.308 / 0.276 72.268 / 68.205 16.601 / 16.597 8.537 / 8.678
SN-3-2 0.295 / 0.349 60.860 / 62.937 16.806 / 16.841 8.365 / 8.516
SN-4 0.295 / 0.330 155.355 / 511.134 16.167 / 16.256 8.849 / 8.173
SN-4-1 0.209 / 0.440 300.404 / 56.473 16.511 / 16.744 8.560 / 8.067
SN-5 0.307 / 0.291 36.196 / 47.506 14.734 / 14.894 8.236 / 8.383
SN-5-1 0.319 / 0.320 55.762 / 65.981 15.534 / 15.668 8.722 / 9.090

similar FP distribution is recorded for scenarios SN-4-1 and SN-5-1, showing in all cases

an FP percentage below 2%.

It is also important to note that while in the case of offline analysis the FP was ap-

proximately 10%, here is much smaller (≈ 2%). This betterment is because the realtime

module is able to detect bursts of DoS traffic taking place within the predefinedMw (due
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to the decrease of the AI that in turn triggers the threshold). This includes spoofing at-

tacks exploiting IP addresses belonging to legitimate users. Contrary to that, the offline

module cannot detect such cases as the attacks are spread along the entire audit trail. In

any case, as mentioned previously, if the audit trail is split into multiple data segments

one can achieve similar results for the offline module as well. Nevertheless, in that case,

the threshold needs to be adjusted to the appropriate segment following a normalization

procedure.

Figures 5.10 and 5.11 offer an overview of FN percentage under different configurations

of the Mw parameter. As illustrated in the figure 5.10, when the Mw is configured to

a low value it produces high FN percentages in almost every scenario. For instance, in

SN-2-* sub-scenarios as the Mw augments from 100 to 1000 messages causes the FN to

be decreased rapidly. Particularly, in these sub-scenarios the FN is decreased highly from

almost 30% down to ≈ 2% as theMw increases. In SN-1-*, where the legitimate traffic is

slightly increased, compared to that of SN-2-*, the FN mean value is ≈ 5.5% for all the

variations ofMw. Note that as the legitimate traffic accumulates, e.g., in SN-3-*, SN-4-*

and SN-5-*, the FN is also increased considering the same values of Mw. This behavior

is actually expected because the detection engine makes decisions based on a limited

volume of incoming traffic. To further verify this result, we experimented with sizes of

Mw greater than 1000 messages. It is therefore not surprising that for scenario SN-4-1

when the Mw is set to 4000 messages, an FN of 3.7% is generated (an improvement of

10.6%). Overall, for all the scenarios included in figure 5.11, when theMw is equal to 1000

we perceive a minimum and maximum FN percentage of 4.8% and 24.5% respectively.

On the other hand, when the Mw is increased to 2000, the corresponding values drop to

4.2% and 19.1% respectively. Generally, the results designate that if the Mw is adjusted

to the corresponding normal traffic, then the generated FP and (especially) FN alarms

can be greatly optimized.

When comparing the FN values outputted by this module against those of the offline

one, we can make the following remarks: (a) the minimum value in both cases is very

low at about 1%, (b) the maximum values however present a significant difference of

≈ 27% (29-1.8), thus further verifying the above mentioned rule “the larger the Mw the

better the FN”, (c) elaborating on the latter point, from the results obtained, offline

detection seems to be far more robust due to the great mass of information available;
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on the downside, the online detection module is easily adjustable, performs sufficiently

well, and comes very handy in cases where a timely reaction is desired.
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5.2 Detection of DoS attacks in SIP using Hellinger distance

DoS attacks of high volume are sure to quickly attract the attention of the security guards.

But what happens with other security incidents that are of low-volume and usually evade

detection? Say, for example, that the aggressor sends out spoofed SIP requests having

unresolved IP addresses, but does this at a slow pace and following a carefully designed

wake/sleep strategy. Such stealthy incidents may gradually affect the availability of the

provided service, mostly reflected to reduced bandwidth, which in turn causes users’

dissatisfaction and reduced market share for the provider. To better highlight on this

issue we executed a single DoS attack to a standard SIP server with a rate of only 10

INVITE messages per second. Figure 5.12 shows the percentage of memory allocation

at the server side during the attack. As observed, under normal operation, the memory

consumption induced by the SIP server process is about 35%. However, as this simple

attack unfolds, causes the corresponding percentage to increase to around 80%.

It is well-known that depending on the legislation of different countries, Telcos and service

providers in general retain signaling data for a certain period of time for billing, auditing

and network management and planning purposes. Therefore, these logs can be proved

a valuable source of information toward identifying whether or not a given provider

has been the target of a DoS. Generally, the analysis of such data could help one to (a)

prove the security level of the provided services and investigate the related incidents, and

(b) highlight the need of employing additional security protection measures to enhance

service availability, say, due to attacks that managed to bypass the already deployed

countermeasures.

5.2.1 Overview

We rely on Hellinger distance [36] with the aim to identify abnormal traffic. Hellinger

distance is a well-known metric to calculate the deviation between two probability distri-

butions. More specifically, we define as features of the distributions the symbols S1 to S6

discussed in 5.1.2 (Entropy) (i.e., Request-Line, <Via>, <From>, <To>, <Call-ID>,

<Contact>). These symbols answer to different headers of a SIP message that could be

maliciously changed by an adversary.

The distributions are defined according to equation 5.10
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Figure 5.12: Memory usage during an attack

P = (p1/N1 + p2/N1 + ...+ pK/N1)

Q = (q1/N2 + q2/N2 + ...+ qK/N2)
(5.10)

N =
K∑
i=1

pi (5.11)

HD2 = 1/2
K∑
i=1

(
√
pi −

√
qi)

2 (5.12)

N is calculated by equation 5.11 in order to normalize the probabilities of the two dis-

tributions. Finally, HD can be calculated using formula 5.12.

We take for granted that each distribution consists ofK features. In our case this number

will vary from 5 to 6 according to the headers of the processed SIP message (request or

response). We know that if the two distributions are identical then the HD value will be

equal to 0, while the maximum deviation will provide a value of 1.

We assume a training and a testing period. We split the audit trail in segments based

on a predefined message window equal to 1000.
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Initially, for the training period, after the segmentation of an attack free audit trail,

we obtain the frequency occurence for every feature-header (symbol) of a SIP message.

After that, we compute the mean HD between this “normal” message and the messages

included in the attack free audit trail (1000 messages). The detection threshold will be

equal to the mean value plus the standard deviation (we don’t use st. dev for the first

two scenarios). As soon as we have computed the detection threshold, we calculate the

HD value between the normal message and every single message. If the HD value is

greater than the predefined threshold then an alert is raised and the message is classified

as malicious.

5.2.2 Detection service

To implement a detection service that relies on the Hellinger distance metric to identify

traffic abnormalities, one needs to choose certain parts of SIP message as the symbols

of interest. By observing figure 5.2 one can conclude that the most important parts

of a SIP message are the first 6 lines (headers) corresponding to symbols S1 to S6.

According to the literature, these symbols reflect the different types of SIP messages that

an aggressor could craft in order to launch a resource consumption attack. For instance,

a malicious entity could select to replay the same message or fabricate dissimilar SIP

messages by modifying certain segments, including the Request-Line, <Via>, <From>,

<To>, <Call-ID>, <Contact> (corresponding to the fourteen different SIP methods)

depending on the case. While a detailed analysis of SIP flooding attacks is out of the

scope of this work the interested reader could refer to [30, 212].

After the symbols of interest have been selected, the detection service has to be fed

with P distribution. That is, a training phase is required taking as input an attack-free

log file. Note that P distribution can be updated less or more frequently depending on

the provider’s needs. On the other hand, the Q distribution is calculated on unknown

traffic. Note that contrary to other approaches, P and Q distributions are generated for

all the possible types of SIP methods. This has the advantage that it allows one not only

to detect an attack incident but also identify its exact type (e.g., an INVITE or BYE

flooding). To sum up, for every possible type of message there exists a pair of P and Q

distributions. Depending on the case at hand, the audit trail file can be split into several
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message segments based on a predefined message window, say, equal to 1000. If so, P

and Q have to be computed on the basis of this message window.

Specifically, to train the model we calculate the mean distribution value of every sym-

bol included in the reference sample traffic. This procedure is given in Appendix A.2,

algorithm 6. The main role of the training period is to compute the threshold, which is

adjusted to the examined traffic by a parameter d, using equation (5.13). In fact, the

parameter d coincides to a standard deviation metric, which is equal to the square root

of the variance computed over a specific message type in the normal traffic set based on

the mean value of HD.

Threshold =MeanHD + d (5.13)

An unknown log file is examined for its conformity with the already determined normal

model. That is, similar to the calculation of P, we reckon symbols distribution for the

different requests and responses that formulate the corresponding Q distributions per

message type. After that, P and Q distributions for the message type of interest are

compared, as detailed in Appendix A.2, algorithm 7. In case that the HD value of the

examined message is greater than the predefined threshold, then an alert is raised and

the message is classified as malicious.

5.2.3 Theoretical example

To elaborate on the above metric we present an example which is based on two normal

messages M1, M2 and one malicious M3, as presented in Table 5.9. The numbers denote

the frequency occurence of each symbol in every message.

To calculate the HD of the first two messages (i.e., M1, M2) we will use formu-

las 5.11 and 5.12.

N1 = 32 + 3 + 6 + 38 + 6 + 38 = 123, N2 = 6 + 1 + 6 + 38 + 6 + 38 = 95

HD = 1/2 ∗ ((
√
32/123 −

√
6/95)2 + (

√
3/123 −

√
1/95)2 + (

√
6/123 −

√
6/95)2 +

(
√

38/123−
√

38/95)2 + (
√

6/123−
√
6/95)2 + (

√
38/123−

√
38/95)2) = 0.03



Chapter 5. Detection of DoS attacks in SIP using statistical means 100

We will follow the same steps in order to calculate HD for the messages M1, M3.

HD will be equal to HD = 0.08. If we additionally calculate the HD between M2, M3

this will provide a value of HD = 0.16.

Table 5.9: Hellinger distance method: Example

Msg. Features
S1 S2 S3 S4 S5 S6

M1 32 3 6 38 6 38
M2 6 1 6 38 6 38
M3 993 1 993 1 1 993

5.2.4 Evaluation

The detection accuracy of the proposed scheme has been tested under fifteen different

scenarios briefly described in Table 5.10. We simulated distinct patterns for both legit-

imate and attack traffic using sipp v.3.2 3 and sipsak4 tools respectively. Also, for the

needs of the experiments, and in order to reproduce realistic call rate conditions, we

employed an exponential inter-arrival time distribution (λ = 100) for legitimate traffic

similar to that used in evaluating SIP server performance [209]. The experiments were

conducted on an i7 processor 2.2 GHz machine having 6 GB of RAM.

Table 5.11 summarizes the FP and FN results for all the scenarios. As observed, the FP

fluctuates between 0.2% and 7.6%, whereas FN reaches a maximum value of 0.002%.

To exemplify the results obtained above, figures 5.13 to 5.16 depict a fragment of HD

distribution for scenarios SN-1, SN-1-1, SN-2, SN-2-3, SN-3, SN-3-1, and SN-4, SN-4-1

accordingly. Note that for easy reference and comparison the figures also include HD

distribution for the corresponding attack-free traffic scenarios (i.e., SN-1, SN-2, SN-3,

SN-4). This is to better conceptualize the fluctuations (increment in our case) exhibited

in HD line between normal and intrusive traffic. Taking figure 5.13 and SN-1-1 as an

example, one can easily observe that HD values remain as low as ≈ 0.01, while for

SN-1-1 the HD fluctuates between ≈ 0.04 and ≈ 0.25. A similar situation is depicted

in figures 5.15 and 5.16. Specifically, HD line for SN-3-1 and SN-4-1 abruptly reaches

≈ 0.25 when the attack is initiated. Note that in all the attack scenarios, normal and

attack traffic take turns. Naturally, this sudden increase in HD value is due to the
3http://sipp.sourceforge.net/
4http://sipsak.org/

http://sipp.sourceforge.net/
http://sipsak.org/


Chapter 5. Detection of DoS attacks in SIP using statistical means 101

Table 5.10: Description of scenarios used for the Hellinger distance method evaluation

Scenario Number Description

SN-1 It simulates 30 legitimate users establishing 2 calls/sec.
This is an attack-free scenario.

SN-1-1, SN-1-2, SN-1-3
These sub-scenarios use the background traffic of SN2 and
simulate multiple sources of SIP INVITE flood attack with

rates of 50, 175, 350 calls/sec respectively.

SN-2 This attack-free scenario simulates 30 legitimate users
establishing 5 calls/sec.

SN-2-1, SN-2-2, SN-2-3
These sub-scenarios use the background traffic of SN-1 and
simulate a single source SIP INVITE flood attack with a

rate of 20, 40, 80 calls/sec respectively.

SN-3 This last attack-free scenario incorporates 50 legitimate
users establishing 20 calls/sec.

SN-3-1
It relies on background traffic of SN-3 and simulates 16
single source SIP INVITE floods each one with 266

calls/sec.

SN-4 This attack-free scenario incorporates 50 legitimate users
establishing 120 calls/sec.

SN-4-1
It relies on the background traffic of SN-4 and simulates 24

single source SIP INVITE floods each one with 800
calls/sec.

SN-5 It simulates 50 legitimate users establishing 120 calls/sec.
This scenario contains no attack traffic.

SN-5-1, SN-5-2
These sub-scenarios employ the background traffic of SN-5
and simulate a single source SIP INVITE flood attack of

400, 1200 calls/sec respectively.

attack traffic contained in scenario SN-1-1, which in turn is translated into excessive

symbol repetition, thus exceeding the predefined threshold. Nevertheless, if the attacker

manages to generate traffic that has congruent characteristics to that of normal traffic

she may be able to evade detection. On the opposite, however, the impact of the attack

is anticipated to be much smaller in terms of probability of occurrence. Also, taking

a SIP INVITE method as an example, the aggressor is not able to randomly generate

headers of the following format: INVITE sip:x@y:port, where x the username and y the

host (domain or IP). This is because the IP used must correspond to an existent address



Chapter 5. Detection of DoS attacks in SIP using statistical means 102

Table 5.11: Summary of evaluation metrics

SN Traffic (Calls) FP FN Stats (HD)
Rec. Attack Inst % Inst % Mean St. Dev.

SN-1 1426 - - - - - 0.002 0
SN-1-1 12000 5574 120 1 0 0 - -
SN-1-2 13000 7238 87 0.6 0 0 - -
SN-1-3 24530 19622 120 0.4 0 0 - -
SN-2 3598 - - - - - 0.041 0.061
SN-2-1 11000 6516 566 5.1 2 0 - -
SN-2-2 14000 9327 592 4.2 0 0 - -
SN-2-3 15409 10802 1179 7.6 1 0 - -
SN-3 12435 - - - - - 0.161 0.155
SN-3-1 667047 563705 5864 0.8 959 0.001 - -
SN-4 2505 - - - - - 0.025 0.028
SN-4-1 178438 168073 8808 4.9 0 0 - -
SN-5 2004 - - - 0 0 0.018 0.021
SN-5-1 261999 195050 1468 0.5 752 0.002 - -
SN-5-2 667769 601798 1463 0.2 788 0.001 - -

of the internal network. Otherwise, due to packet filtering rules, the packet will be most

likely dropped at the perimeter. If the attacker uses only legitimate IPs to perform the

flooding attack, then due to the limited sip URI space, she is not in position to sent too

many identical messages.

Generally, the occasional resemblance in terms of probability of occurrence between

normal and attack messages is the most prevalent cause of FP alarms. More specifically,

FPs are mainly the result of arbitrary device retransmissions or repetitive patterns in

user’s (call) behavior (e.g., a user calls another one very often). On the other hand,

attack messages that appear seldom during the attack incident may generate an FN.

As discussed in the previous section, the threshold for all the scenarios - represented

as a flat line in each of the figures - is calculated as the sum of the last two columns

of Table 5.11 for all normal traffic scenarios. So, depending on the uniformity of the

messages included in each scenario with their mean value, the threshold is expected to

set a boundary above which a message is categorized as suspicious. For example, for

scenario SN-1 the threshold is nearly zero while for SN-3 is 0.316. Lastly, the scarce

upward peaks observed in the normal traffic (blue) line belong to messages that differ

considerably from all the others contained in the normal traffic set. That is, their headers

appear very frequently causing HD to suddenly spring up. As already pointed out, this

may happen due to, say, device retransmissions. On the other hand, the downward
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pointing peaks observed in the HD line belong to normal messages that are interposed

between the attack ones.
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Figure 5.13: A fragment of the HD values for scenarios SN-1 and SN-1-1
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Figure 5.15: A fragment of the HD values for scenarios SN-3 and SN-3-1
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Chapter 6

Detection of DDoS attacks in SIP

using machine learning

6.1 Machine learning techniques

In network intrusion detection, a typical method for exposing attacks is by tracking the

network activity for any anomaly. That is, any discrepancy from a previously learned

normal profile is identified as suspicious. This procedure is usually done using methods

borrowed from the machine learning realm. So far, this potential have been examined

in the literature in a great extend. However, as already discussed in Chapter 4 in the

case of VoIP in general and SIP in particular, works on this topic are not only scarce

but also incomplete. To fill this striking gap, in this Chapter, we try to better assess

the power of ML-based techniques to identify DDoS incidents that capitalize on the

use of SIP signaling. We consider 5 different popular ML detectors and a plethora of

realistically simulated SIP traffic scenarios representing different flavors of DDoS. The

results indicate that specific classifiers present high accuracy even in cases of low-rate

DoS attacks.

The ML classifiers we touched in the context of this PhD thesis are the following ones:

SMO, NaiveBayes, Random Forest, J48, and Neural Networks. Moreover, these clas-

sifiers are included in the WEKA tool [213]. We selected these classifiers due to the

fact that various researches highlighted their advantages in datasets including numerical

data [214], [215].

105
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Based on the classifiers we picked in the context of this PhD thesis, 6 features have been

selected for the training and the testing operations. Additionally, we analyzed the audit

trails containing the SIP traffic using the software module given in [216]. The analysis

has been done with the “ML-train” choice, presented in the corresponding GUI. The

analysis of log files resulted in the extraction of several “arff” files, which were finally

used for training each one of the selected classifiers.

6.2 ML techniques in audit trail forensic analysis

By examining the rather rich literature on SIP security, one can distinguish several cate-

gories of assaults ranging from SQL injection to Denial of Service (DoS) [24, 25, 26, 27].

It can be safely argued that the latter category attracts the greater attention, and seems

to be the most perilous and difficult to confront since it is closely related with the sig-

naling nature of the protocol per se. So, focusing on this kind of attacks, so far, several

protection and detection methods have been proposed. Roughly, we can categorize them

into misuse-detection and anomaly-detection ones. Generally, the first family of meth-

ods monitors network activity with exact signatures of known malicious behavior (e.g.,

observe the network traffic for singular byte sequences), while the second possess a knowl-

edge of normal activity and warns against any deviation from that profile. The latter

category of methods, which is the focus of this PhD thesis, is usually realized by means

of tools borrowed from the Machine Learning (ML) community. This refers to algorithms

that are first get trained in an either supervised or unsupervised manner with reference

input to learn its particulars, and then are fed with unknown input for accomplishing the

real detection process. Specifically for SIP, although the DoS threat has been stressed out

and dealt by a significant number of researches [9, 28], the applicability and effectiveness

of ML techniques to cope against such incidents is still being assessed and certainly in

need for further development.

Naturally, this is mainly due to the increased overhead that these methods may bear

- especially when it comes to realtime detection and a training phase is required - in

comparison to misuse-based or purely statistical ones. Nevertheless, in this PhD thesis

we argue that ML techniques can be particularly fruitful for examining the high-volume

log files of a given VoIP realm in an offline fashion if they contain DoS incidents. Also, this

category of methods may show better results when used for the detection of low-rate DoS
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(also known with the term “low and slow”), which although is not used to paralyze the

target system at a fast pace, it consumes valuable network, CPU and memory resources.

Ultimately, this results to service delays which in turn cause customer dissatisfaction

with direct negative results to the provider’s market share.

Taking the above into consideration, the focus of the PhD thesis at hand is on the

applicability of ML techniques to track down DoS incidents, paying special attention to

DDoS and low-rate ones.

6.2.1 Classification features

As already mentioned in Chapter 4, to avoid DoS attacks in SIP several solutions have

been proposed [32, 30, 34]. Given that this type of attack is as a rule of thumb executed

in a distributed manner and may be quite sophisticated regarding its implementation,

simple anomaly-detection approaches that rely on the sudden and fast-paced increment

of SIP traffic may be not enough. In this regard, ML-powered methods can be a potent

ally towards the detection of such perilous events. The key factor here is the log files

on the provider side, which can be used to feed a ML classifier in realtime or offline (in

case, say, the investigation of an attack aftermath is required). This section elaborates

on the use of such techniques in an SIP environment.

In our experiments, we utilize and evaluate the effectiveness of 5 well-known classifiers

tested under 15 different attack scenarios. Specifically, we use the SMO, Naive Bayes,

Neural Networks, Decision Trees (J48) and Random Forest classifiers. This selection has

been made based on the ability of these classifiers to perform better in terms of decision

accuracy and speed when it comes to numerical data [217], [214], [215].

In order to take advantage of the aforementioned performance characteristics, we utilize

algorithm 8, given in Appendix A.3. Its purpose is twofold. On the one hand, it aims to

deal with the sensitive nature of the communication transactions residing in an audit trail

by providing an anonymization scheme [34], while on the other allows for automatically

extracting the classification features to be used by the classifiers into a numerical form.

The anonymization goal is met using HMAC [218]. HMAC enables one to preserve the

anonymity of the communication entities appearing in the underlying audit trail, while

the Entropy of messages is preserved leading the subsequent calculations to remain intact.



Chapter 6. Detection of DDoS attacks in SIP using machine learning 108

In fact, revealing the hidden UA identities is as hard as reversing the HMAC procedure

itself. The cryptographic key is kept secret and in possession of the entity, who is the

legitimate owner of the audit trail. According to the transformation procedure, a log file

is examined line-by-line and every privacy-sensitive SIP message header (e.g., <Via>,

<From>, <To>, etc) becomes input for the HMAC function (lines 2-4). The algorithm

considers only the SIP message headers S1 to S6 as given in figure 6.1. More precisely, the

hash function used in our case is the HMAC-SHA256 one combined with a cryptographic

key of 256 bits (line 4).

The next stage is to generate the classification features. The steps to achieve this are

summarized in lines 5-14 of algorithm 8. The anonymized unique headers are kept

in a Hash table data structure (line 5). This table is populated with the number of

occurrences of every single header checksum. That is, if a checksum occurs for the first

time, then a new instance is generated in the table (lines 8-9). If it is a repeating header,

its number of occurrences is increased by 1 (line 6). This procedure is repeated until

a certain message window Mw is met (line 11). In our case, the Mw is set to 1,000,

but this parameter can be adjusted by the service provider itself, say, according to the

average call rates. To our knowledge, there is no foolproof approach to formally define

this parameter, mainly because it is eminently contextual. That is, it is closely connected

to the characteristics of the service and underlying network. As a result, similar to other

anomaly-based approaches, one can follow an error-trial approach to equilibrate between

the Mw parameter and the false alarm rate.

S1 INVITE sip: zisis@83.212.120.153 SIP/2.0.

S2 Call-ID: a306a24825b11345a79eee1ed9450120@0:0:0.

CSeq: 1 INVITE.

S3 From: "alfa" <sip:alfa@83.212.120.153>;tag=61460cc9.

S4 To: <sip:zisis@83.212.120.153>.

S5 Via: SIP/2.0/UDP 85.74.157.139:5060;branch=z9hG4bK

Max-Forwards: 70.

S6 Contact: "dpapamartz" <sip:dpapamartz@85.74.157.139:5060

User-Agent: Jitsi2.2.4603.9615Windows 7.

Content-Type: application/sdp.
.
v=0.
o=scype2 0 0 IN IP4 85.74.157.139.
s=-.
c=IN IP4 192.168.1.52.

t=0 0.

Figure 6.1: Symbols s1 to s6 used for ML classification
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The result of applying algorithm 8 to an audit trail is a number of specially formatted

.arff files (one per Mw), which are afterwards used in the classification process. Each

.arff file contains classification vectors, i.e., one vector per SIP message found in the log

file being examined. Two instances of such a classification vector follows.

Vattack = {926, 4, 988, 4, 4, 3, attack}

Vnormal = {12, 4, 6, 4, 3, 8, normal}

The first 6 values of each vector represent the occurrences of S1 to S6 SIP headers

respectively, and the last one characterizes the class in which the vector belongs. One

can easily observe that the first vector introduces a higher number of occurrences in S1

and S3 headers, while the rest remain low, close to those contained in Vnormal.

6.2.2 Evaluation

In order to evaluate the effectiveness of the aforementioned classifiers in detecting DoS

incidents we created a testbed, depicted in figure 6.2. Three different Virtual Machines

(VMs) have been used for the SIP proxy, the legitimate users, and the generation of

the attack traffic depending on the scenario. All VMs run on an i7 processor 2.2 GHz

machine having 6 GB of RAM. For the SIP proxy we employed the widely-known VoIP

server Kamailio [207]. We simulated distinct patterns for both legitimate and DoS attack

traffic using sipp v.3.2 1 and sipsak2 tools respectively. Furthermore, for the simulation

of DDoS attack, the SIPp-DD tool has been used [151]. The well-known Weka tool [213]

has been employed for ML analysis.

As already pointed out in section 6.2.1, we assessed 5 classifiers under 15 different sce-

narios the results of which is provided in Table 6.2. It is stressed that both the training

and testing scenarios include legitimate and attack traffic. For example, the training

scenario is SN-1 and its testing scenarios are SN-1-1, SN-1-2, SN-1-3, and so on. The

legitimate traffic for DoS testing scenarios was created using the same call rate as that

of the corresponding training scenario. On the other hand, for DDoS we used a range

of different call rates aiming to better simulate the possible variations that may appear

in a real VoIP service. For example, as observed in Table 6.1, the call rate for SN-6-1
1http://sipp.sourceforge.net/
2http://sipsak.org/

http://sipp.sourceforge.net/
http://sipsak.org/
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is given as 20-120, where the first number indicates the call rate of the attack, and the

second corresponds to the call rate of the legitimate traffic both occurring in parallel.

Keep in mind that for DDoS scenarios about half of the registered users were generating

the normal traffic, while the other half were launching the actual attack. Moreover, for

all the scenarios, we employed an exponential inter-arrival time distribution (λ = 100),

for producing the legitimate traffic similar to that used in evaluating SIP server perfor-

mance [209]. The attack traffic for DoS training scenarios was created using randomly

generated attacks with call rates varied between 20 to 10,000 calls/sec and time pauses

between them spanning from 15 to 360 secs. The same method was used for creating the

DDoS training scenarios that is, seven variants were launched in total, having different

call rates spanning between 2,000 to 15,000 calls/sec and pauses between them set to 10

to 800 secs.

Kamailio SIP Proxy

Caller Calee

Attack Traffic 

Generator for 

DDoS (SIPp-DD)

Background 

Traffic 

Generator (SIPp)

Attack Traffic 

Generator for 

DoS (sipsak)

Figure 6.2: Offline ML detection: Deployed testbed for DDoS simulations

6.2.3 Results

The obtained results for all the scenarios are given in Table 6.2. This section firstly

refers to the DoS attack scenarios and then to DDoS ones. As shown in Table 6.2, we

use legacy intrusion detection metrics, namely False Positive (FP) and False Negative

(FN) to assess the performance of each algorithm. One can easily observe that in the

case of DoS involving scenarios SN-1-1 to SN-5-2, the maximum FP value is equal to

3.7%, scored by both SMO and Neural Networks detectors. For the same scenarios, the

FN metric remains low, presenting an average value of 0.02% and a maximum one of
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Table 6.1: ML techniques: Description of scenarios

Scen. Num.of Users Calls/Sec. Train Scen. Type of Attack
SN-1 30 2 X DoS
SN-1-1 30 50 - DoS
SN-1-2 30 175 - DoS
SN-1-3 30 350 - DoS
SN-2 30 5 X DoS
SN-2-1 30 20 - DoS
SN-2-2 30 40 - DoS
SN-2-3 30 80 - DoS
SN-3 30 20 X DoS
SN-3-1 30 266 - DoS
SN-4 30 120 X DoS
SN-4-1 30 800 - DoS
SN-5 50 120 X DoS
SN-5-1 50 400 - DoS
SN-5-2 50 1200 - DoS
SN-6 60 20 X DDoS
SN-6-1 60 20-120 - low-rate DDoS
SN-6-2 60 120-20 - high-rate DDoS
SN-7 500 100 X DDoS
SN-7-1 500 10-200 - low-rate DDoS
SN-7-2 500 100-40 - high-rate DDoS
SN-7-3 500 30-50 - low-rate DDoS

0.85%. Generally, the best results in the DoS case are obtained by J48 and Random

Forest classifiers. The results also indicate that as the attack traffic volume increases the

FP and FN rates decrease. For instance, taking SN-3-1 and SN-4-1 as an example, the

FP metric decreases significantly when compared to the first three subscenarios, namely

SN-1-1 to SN-1-3.

On the downside, the false alarms per classifier augment for scenarios SN-6-1 to SN-7-3

representing a DDoS case. This is rather expected as the occurrences per message header

decrease significantly due to the multiple spoofed IPs - that in turn affect headers S3,

S5 and S6 of virtually every transmitted SIP message - thus leading to a more difficult

separation between the attack and normal messages.

Among all the classifiers the worst results for DDoS scenarios in terms of FP are obtained

by SMO and Naive Bayes. Note that FP percentage rates scored in DDoS scenarios for

all the algorithms are generally considerably higher than those obtained by the corre-

sponding DoS ones. Taking SN-6-1 for example, FP fluctuates between 0.04% and 17.7%,
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having an average value of 6.86%. Similar results are recorded for SN-7-1, with FP vary-

ing between 5.2% and 11.3%. When the attack traffic increases, i.e., when the high-rate

DDoS scenarios are involved, all the results are improved significantly. This is because

the portion of the attack messages inside the same Mw increases proportionally to the

rate of the attack. For instance, for scenario SN-6-2, the maximum FP value is rather

negligible, equal to 0.55%, while FN is zeroed. Similar results are obtained in the case of

the other high-rate DDoS scenario, namely SN7.2, demonstrating a maximum FP value

equal to 1%. Finally, SN-7-3 corresponds to a moderate attack rate scenario and presents

similar results to the four previously mentioned ones.

Specifically for DDoS scenarios, we compare the results scored by ML detectors against

those obtained for the same scenarios but with two other anomaly-detection methods,

namely Entropy [200] and Hellinger Distance [36]. More specifically, we compare the

results obtained from the ML-driven detection, to those obtained from previous re-

searches [34], [128], employing the previously-mentioned statistical methods. Table 6.3

summarizes the FP and FN results obtained by the two aforementioned schemes. To

help the reader compare between the various algorithms, the rightmost columns of the

same table contain the corresponding false alarm values as scored by the top ML-based

performer. Bear in mind that in contrast to ML techniques the training scenarios (SN-6

and SN-7) used for Entropy and Hellinger Distance do not include attack traffic. This

is sensible because non-machine learning approaches rely on deviations between the le-

gitimate messages in order to compute the corresponding thresholds. If an examined

message exceeds the predefined threshold, then the message is classified as abnormal.

We can safely argue that the non-machine learning schemes score worse results in com-

parison with ML-based ones. More precisely, in the case of Entropy metric and for all the

five DDoS scenarios, the FP rate reaches the maximum value of 18.1%, while FN varies

between 5.41% and 43.5% (and especially for the Entropy metric scores exceedingly high

values for all the scenarios but one). Further, the FP for Hellinger Distance fluctuates

between 1.8% to 36%. The maximum FN value for the two aforementioned methods is

the same, equal to 43.1% perceived in both cases for scenario SN-6-2.

To sum up, the results obtained from Table 6.3 imply that ML-based detectors outper-

form the non-machine learning ones especially in terms of FN, for all DDoS incidents. In

fact, the same category of detectors are overall competitive, presenting high accuracy in
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DoS scenarios as well. This is because these schemes learn from a mixed traffic including

both normal and attack messages, and thus it is easier for them to separate between the

two classes, even with slight differences in header occurrences.

In general, anomaly-detection schemes must cope with a number of issues [219]: (i) A

considerable number of false alarms (especially false positives) is normally expected by

most classifiers. In our case, this statement seems to be confirmed in its entirety for the

Entropy and Hellinger Distance metrics. For the ML ones, we can assert that the same

statement stands half-true for FP, and false for FN. Specifically, ML-based detection

largely fails in the case of low-rate DDoS (except for Neural Networks, and partially for

Decision Trees), but it is effective across all algorithms for high-rate DDoS. This however

hardly comes as a surprise as low-rate attacks are generally much harder to detect. (ii)

Acquiring attack-free data for training may be a problem. In our case, this point can be

dealt with if a VoIP billing system is in place. This will allow the correct labeling of each

message because these logs are supposed to be accurate and valid. (iii) Smart aggressors

may try to elude detection by increasingly teaching a system to identify intrusive activity

as legitimate. To tackle this third point, one can vary theMw based on mid or long-term

statistical observations regarding SIP traffic.

A last point to be emphasized is that in terms of complexity ML-based classifiers require

a different and usually significant amount of time to build a model from the given training

set. Note that this time does not include that needed to generate an .arff data file from

the given log file. For instance, taking SN-4 as an example the training process spans

between 0.01 to 154.95 secs for all the classifiers when fed with a file containing 261k

records of SIP messages.

6.3 Realtime DDoS detection

In this section we assess the potential of using techniques borrowed from the ML realm

to detect DDoS incidents in SIP services. In contrast to the solution presented in sec-

tion 6.2, the evaluation of the various classifiers is done in realtime in the SIP proxy.

Our experiments involve 5 different well-known classifiers and a large variety of attack

scenarios ranging from simple DoS to slow and high-rate DDoS. The evaluation is done

in terms of both detection accuracy and processing time.
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6.3.1 Detection engine

This section elaborates on the architecture of the proposed IDS, which as observed from

figure 6.3, is composed of 3 modules. The first module is occupied with the extraction

of the required classification features from the headers of the incoming SIP messages.

The selected features are forwarded to an anonymisation module, and finally are fed to

the classification engine. After a training phase, the latter module can be configured to

operate in realtime using an ML algorithm of choice. The subsequent sections elaborate

on each of the aforementioned IDS modules.
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Figure 6.3: Detection engine architecture

6.3.2 Feature exctraction and anonymization of data

As already mentioned, the feature extraction module operating on the SIP server exam-

ines the incoming SIP traffic for any request, say, INVITE, REGISTER. Next, the re-

quest is parsed to isolate the headers of interest, namely, Request-Line, <Via>, <From>,

<To>, <Call-ID>, and <Contact>. The extracted headers are anomymized with the

help of HMAC-SHA256. The latter aims at preserving end-user privacy in cases where

the detection task is outsourced to a third party. Also, it has the dual benefit of preserv-

ing the Entropy of the original headers and making deanonymization as hard as reversing
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the HMAC-SHA256. The anonymized features along with its frequency of appearance

are stored in a hash table data structure.

As described in Appendix A.3, algorithm 9, every time a new (different) feature is ex-

tracted from an incoming SIP request a new record is inserted in the hash table with

its corresponding value equal to 1. In case an already existing key is inserted in the

table the corresponding frequency value is increased by 1. This procedure continues

until the number of messages reaches a certain predefined Message Window Mw. For

the needs of our experiments we picked arbitrarily a Mw equal to 1,000. Therefore, the

detection engine starts the classification process from message 1001. That is, the hash

values of the headers of this message will update the corresponding cells of the hash

table and the resulting numbers will be fed to the classifier. This process is done in a

message-by-message manner for every SIP request arriving after the 1000th.

Obviously, the value ofMw parameter is sure to affect the detection accuracy. Naturally,

this parameter can be adjusted by the service provider itself, say, according to the average

call rates. Nevertheless, to our knowledge, there is no foolproof approach to formally

define this parameter, mainly because it is eminently contextual. That is, it is closely

connected to the local characteristics of the service and underlying network. As a result,

similar to other anomaly-based approaches, one can follow an error-trial approach to

equilibrate between the Mw parameter and the false alarm rate.

6.3.3 Training and operation

Similar to any other ML-powered approach, the detection engine requires the training of

the classifier in order to be able to detect anomalies in the incoming traffic. This means

that during service initialization, the classifier of choice must be trained based on some

pregenerated training data. The creation of such a training set is up to the provider

because it mainly depends on the particular services it offers and the characteristics of

the underlying network. Also, a renewal and/or amendment of the training set is required

as soon the network and/or service operating conditions change. In this PhD thesis, we

opt not to address the two aforementioned issues which are left for future work.

Nevertheless, it should be stressed that the training data must contain both legitimate

and attack traffic. This is necessary because in order for the classifier to build a realistic
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traffic model, the training data must contain classes of both attack and normal traffic.

As soon as the training phase is completed, the detection engine starts on the SIP server

as a realtime service.

6.3.4 Implementation

The realtime detection service has been implemented as a plug-in module of the well-

known SIP proxy Kamailio [207]. Specifically, the module [216] is written in C program-

ming language and is capable of processing any incoming SIP request as described in the

previous subsection.

The feature extraction module stores temporarily the processed data to a hash table,

while classification relies on Weka [213] a well-known framework for ML analysis. Given

that Weka provides a Java interface, we use Java Native Interface (JNI) [220] to make

possible the integration between the feature extraction and classification module. In this

way, one can easily configure the employment of the appropriate classifier depending on

the requirements at hand.

The implementation has been tested for possible memory leaks following an error-trial

approach and monitoring the Linux OS memory consumption under various scenarios.

This is because JNI implementation should be protected against potential out-of-memory

conditions [221]. As already pointed out, our implementation is freely available [216] for

further development and experimentation.

6.3.5 Results

This section details on the testbed used and presents the results in terms of both false

alarms and processing overhead on the SIP server.

6.3.6 Testbed Setup

As illustrated in figure 6.4, we employed a virtualised testbed running over an i7 processor

at 2.2 GHz. Three Virtual Machines (VMs) were created, each one equiped with 6 GB

of RAM. These VMs respectively host the SIP proxy, the UAs, and the attack traffic
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generator. We created distinct patterns of legitimate, single source DoS and DDoS traffic

using sipp v.3.2 [222], sipsak [223], and SIPp-DD [151] tools respectively.

As observed from Table 6.1, twenty two disparate scenarios were created in total to

replicate different DDoS incidents. Seven basic scenarios were used for training, while

the others represent an attack incident. For all the scenarios, an exponential inter-arrival

time distribution (λ = 100) is followed to produce the legitimate traffic. Note that

this kind of distribution inherently presents the “lack-of-memory” property. Specifically,

this property considers that the probability of a future event (call arrival) is the same

regardless of the previous events that took place in a series of time frames. In our case

this is analogous to the traffic used for assessing VoIP systems’ performance [209].

Furthermore, a range of different call rates has been used in the cases of DoS and DDoS,

with the aim to simulate various call rates which may approximate the traffic patterns

of a real VoIP provider. For example, as observed in Table 6.1, the call rate for SN-6-1

is given as 20-120, where the first number indicates the call rate of the attack, and the

second designates the call rate of the legitimate traffic both occurring in parallel. Keep

in mind that for DDoS scenarios about half of the registered users were generating the

normal traffic, while the other half were acting maliciously.

6.3.7 Detection accuracy

In the context of our experiments, we employed 5 well-known classifiers, namely SMO,

Naive Bayes, Neural Networks, Decision Trees (J48), and Random Forest. This partic-

ular choice has been done because these classifiers present a better detection accuracy

when it comes to numerical data [224]. The detection accuracy of each classifier in terms

of False Positives (FP) and False Negatives (FN) is estimated and the results are included

in Table 6.4. Also, to ease the reading of the table, the mean, minimum, and maximum

FN values per classifier and collectively per attack type (DoS/DDoS) are depicted in fig-

ures 6.5 and 6.6. From these figures it can be seen that the FN metric fluctuates between

0.9% and 23.7% for DoS scenarios having an average of 14%, while the corresponding

values for DDoS are 2%, 62%, and 16%.

Focusing on Table 6.4 and on its lines containing the average values of FN metric, one

can conclude that SMO produces the worst results and therefore should be avoided.
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Figure 6.4: Realtime ML detection: Deployed testbed for DDoS simulations

The same observation applies to Random Forest but only for DoS scenarios. J48 on the

other hand scores an average FN of 11.8% but largely fails in terms of FP (interestingly,

the FP metric is almost non-existent for all the algorithms but J48). It can be safely

argued that the most reliable classifier across all scenarios and for both FN and FP

metrics seems to be Naive Bayes followed by Random Forest. In any case, the FN

percentages scored by both the aforementioned algorithms especially for DoS scenarios

are not favorable for any real-world IDS. Putting aside SMO and Neural Networks, the

rest of the classifiers produce an average FN lesser than 8.5% for DDoS scenarios only. It

can be therefore estimated that ML-driven detection shows greater potential in detecting

more sophisticated attacks of this kind.

Having a complete view of the results, we consider that further experimentation is needed

to obtain a better approximation of the power of ML-driven DDoS detection in SIP

realms. In this direction, a future work could concentrate on testing more classifiers and

tuning the Mw parameter based on the specific needs of the VoIP service provider.



Chapter 6. Detection of DDoS attacks in SIP using machine learning 119

 0

 5

 10

 15

 20

 25

 30

SMO NB NN DT RF

F
a
ls

e
 N

e
g
a
ti
v
e
 (

F
N

)

Classifier

Min
Agv.
Max
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fier

6.3.8 Performance

Putting aside its effectiveness, the other decisive factor for any IDS is that of performance

in terms of service time. This section elaborates on the per message (SIP request)

processing time introduced by the realtime detection engine on the SIP server. It is to
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be noted that all the time measurements included in this section correspond to a worst

case scenario as the SIP proxy for all the tests was configured with one serving thread.

Figures 6.7 and 6.8 illustrate a random snapshot of the processing time introduced by

our architecture, while Table 6.5 includes the average, max, min, and standard deviation

processing times per classifier for all the 15 attack scenarios. As observed from the table,

the average processing time remain under 4ms, while it is easily seen that all classifiers

follow a similar tendency. As the SIP proxy is configured in single-thread mode it can

be safely argued that the induced overhead is negligible. The maximum values of, say,

300 ms contained in Table 6.5, are unique or very scarce and are due to the activation of

single-thread mode at SIP proxy side and the traffic pattern of the examined scenario.

For instance, while in SN-1-2 the normal traffic rate is 2 calls/sec, in SN-7-1 is 200

calls/sec resulting to an increment in the classifiers, average processing time.
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Table 6.2: Offline ML detection: Summary of results for all the scenarios (The best
performer per scenario in terms of FP is in bold).
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Table 6.3: Summary of evaluation metrics for Statistical Schemes in DDoS scenarios
(Mw = 1, 000).

SN Low-rate
Entropy Hellinger Distance ML Techniques (Top performer)
FP FN FP FN FP FN
% % % % % %

SN-6-1 X 0 13.3 36 0.01 0.04 0
SN-6-2 0.97 43.5 1.8 0 0 0
SN-7-1 X 4.4 5.41 8 5.41 5.2 0
SN-7-2 18.1 34.5 3.38 0 0.25 0
SN-7-3 X 0 25.7 2.49 5.45 0.24 0
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Table 6.4: Realtime ML detection: Summary of results for all the scenarios (The best
performer per scenario in terms of FN is in bold).
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Table 6.5: Summary of classification time overhead for all the scenarios (msec)

Classifier Min. Max. Avg. St. Dev.

SMO 0.08 123.78 3.37 7.73

Naive Bayes 0.15 171.13 3.48 7.76

Neural Networks 0.10 129.20 3.42 7.74

Decision Trees (J48) 0.08 388.01 3.28 7.91

Random Forest 0.08 91.74 3.56 7.72



Chapter 7

Misuse-based detection of attacks

against SDP

7.1 Introduction

During the last decade, VoIP services have exhibited a remarkable expansion. As a mat-

ter of fact, recent reports [2] indicate that IP multimedia communication services gain

ground against the Public Switched Telephone Network (PSTN) ones. This is because

VoIP services provide more flexible and inexpensive models, and thus they gradually

dominate the market. Among others, multimedia session establishment and management

constitutes a fundamental operation in VoIP networks. Nowadays, Session Initiation Pro-

tocol (SIP) has been adopted as the prevalent signaling protocol for handling multimedia

sessions over the Internet and 3rd Generation partnership Project (3GPP) realms. On

INVITE sip: sozon@83.212.120.153 SIP/2.0.

Call-ID: a306a24825b11345a79eee1ed9450120@0:0:0.

CSeq: 1 INVITE.

From: "zisis" <sip:@83.212.120.153>;tag=61460cc9.

To: <sip:sozon@83.212.120.153>.

Via: SIP/2.0/UDP 85.74.157.139:5060;branch=z9hG4bK

Max-Forwards: 70

Contact: "managn" <sip:managn@85.74.157.139:5060

User-Agent: Jitsi2.2.4603.9615Windows 7.

Content-Type: application/sdp.
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c=IN IP4 192.168.1.52.
t=0 0 
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU /8000
a=rtpmap:4 G732/7000

a=ptime:40

Figure 7.1: A typical SIP INVITE request. The SDP segment has been placed in the
right side of the figure
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the downside, SIP is inherently susceptible to different kinds of attacks [11, 72]. One

of them lies in its exploitation as a covert channel. Adversaries usually employ covert

channels aiming to communicate information over legitimate data flows. In fact, the

text-based nature of SIP fosters such types of attacks. An adversary could easily craft

specific parts of the message in order to deliver data with special meaning over legitimate

SIP requests. The only requirement for such an attack would be to conform to SIP syn-

tax, otherwise the message parser module at the receiver side would possibly drop the

request as malformed. In any case, the exploitation of fields which do not fully comply

with the RFC [1] is possible in the context of a C&C. Using this approach an aggressor

is in position to create an army of noiseless devices (bots). This case is further discussed

in section 7.3.2.

On the downside, as reported in various research works [48, 225, 9] and software flaw

databases1, SIP is well-known to be susceptible to a plethora of attacks ranging from

Denial of Service (DoS), SQL injection, and signalling manipulation. In a typical DoS

assault, the attacker tries to paralyze the victim by either sending against it a surge of

SIP requests or a number of malformed messages. In the former case, the victim is unable

to serve the voluminous number of incoming requests, while in the latter the sufferer is

incapable of parsing or handling properly the incoming request, and the service crashes.

So far, SIP-based covert channels are scarcely addressed in the literature, and to our

knowledge, no implementation exists. That is, the majority of the existing works con-

centrates on the applicability of information hiding techniques in VoIP-related protocols

in general. This includes SIP, Real Time Protocol (RTP) and RTP Control Protocol

(RTCP). The delivered channels may be used in a variety of ways, aiming to establish

secret paths of communication. In this PhD thesis, we examine the feasibility of exploit-

ing SIP as a Command and Control (C&C) channel aiming to deliver commands to a

SIP botnet and launch attacks.

Bearing the above in mind, the goal of the work at hand is dual; first to provide proofs of

the pernicious nature of these types of attacks, on real-life SIP clients and servers, and

second to introduce a lightweight and flexible filtering mechanism for effectively copying

with them. Our defensive solution comes in the form of a SDP parser software module

either embedded in the SIP server or running in a separate machine in front of the former.
1Common Vulnerabilities and Exposures https://cve.mitre.org
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In this way, the defender is able to timely detect and silently drop messages that do not

fully comply with the standard [1]. Also, as a side advantage, the parser is capable of

rejecting SIP requests that are found suspicious to carry information that may be part

of a covert communication channel.

We evaluated our solution in terms of service time overhead using a custom made ar-

chitecture, in which we simulate several scenarios involving a mix of normal and attack

traffic. The results indicate that the proposed mechanism introduces negligible overhead

to the processing of incoming and outgoing SIP messages. To the best of our knowledge,

this is the first work that specifically focuses on SDP message manipulations. As already

mentioned, this is in contrary to other works in the literature [25, 226], which solely deal

with deliberate malicious manipulations in SIP message headers. The main contributions

of this PhD thesis with respect to SDP-driven attacks are summarized as follows:

• We present a simple but powerful in terms of stealthiness covert communication

protocol to exchange botnet C&C messages over SDP data in SIP requests.

• We evaluate the effectiveness of the covert channel by controlling several bots and

launching two different Denial of Service (DoS) type of attacks.

• An assessment of the attack impact in terms of resource consumption at the victim

side is also included.

• We study the impact of SDP malformed messages on a variety of SIP software and

hardware phones, and servers.

• We offer a publicly available open-source software module capable of detecting

malformed SDP messages lurking in SIP requests. Message parsing is done based

on RFC 4566 [1], while the implemented software can work alongside the SIP server

or independently in a separate machine.

• We extensively assess the performance of the proposed scheme in terms of service

time.
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7.2 SDP C&C channels

A SIP message comprises of several headers and a message body. It is text-based and

presents similar structure to that of HTTP. Figure 7.1 depicts a typical SIP INVITE

request. As observed from the figure, the various headers contain information related to

the sender and the recipient of the message, and also the communication path. Also,

as seen in the figure, such a message is comprised of two parts; the left one containing

the various headers, and the message body describing streaming media initialization

parameters. The latter part is built following the SDP standard format [1]. Given the

text nature of the message an adversary could straightforwardly manipulate the data

contained in the SIP headers or SDP descriptors with the aim to build a covert channel

over the legitimate information. Note that if this is done in a SIP-oriented (natural)

way, the channel has many changes of going undetected. However, as explained further

down, care must be taken in order not to alter important information that are required

by the peers or the proxies to establish communication. Moreover, any manipulation in

the various headers or parameters must be syntactically neutral; otherwise, the message

could be dropped by the receiver’s message parser. One may also think of encrypting

the parts of the message to be used as the covert channel carrier. This however would

require the provision of some key management process, and more importantly, will attract

the attention of network defenses. So, the idea here is to hide the (C&C in our case)

information in plain sight by simply mimicking the values contained in the fields of a

normal SIP message.

To create a SIP-based covert channel one needs to choose specific parts of the message

and use them as data carriers. In fact, several SIP headers or SDP descriptors contained

in, say, a SIP request can be used to bear information with special meaning to the

communicating parties. In any case, the selection must fulfil the next two requirements.

On the one hand, it must be syntactically correct, otherwise the message will be most

likely dropped by the parsing process. On the other, it must preserve the communication

information at least regarding to the sender and the SIP proxy. Otherwise, the message

may never be delivered correctly.

In this work, we concentrate on fields contained in the message body of a SIP request

where the literature seems to be quite incomplete. As already pointed out and depicted

in the right part of figure 7.1, this part of the message follows the SDP data format.
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Precisely, these pieces of data contain information related to the media parameters of a

session and are comprized of 5 mandatory and 15 optional fields [1]. We make use of

only two descriptors namely as <o> and <a=ptime>. The first one is mandatory while

the second is optional. The <o> descriptor carries information in regards to the session

originator and it is composed of 5 fields. Among them, the first and the last one point out

the username and the IP address of the caller (“skype2” in figure 7.1), while the second

and the third indicate a unique session id and the session version. The fourth field is a

text string bearing the type of the network (“IN” (Internet) in the normal case). The

creation of session id and version fields are up to the creating tool. The RFC [1] suggests

that both these parameters must receive numerical string values of at least 10 digits each

created based on a Network Time Protocol (NTP) [227] format timestamp in order to

ensure uniqueness. Also, RFC states that the <a=ptime> descriptor bears the length of

time in msecs represented by the media in a packet. So, for example, any decimal value

representing time in msecs is considered normal. The selected fields are shown in red in

figure 7.1. The interested reader who wishes to get a deeper understanding of SDP can

refer to the corresponding RFC [1].

For exploiting the above mentioned fields aiming to deliver a covert channel over legiti-

mate SIP messages one has to set specific values. Table 7.2 summarizes these values in

the context of this work. As observed from the table, the protocol relies on three simple

commands related to the type, the parameters, and the execution and termination of an

attack. That is, the a=ptime:<packet time> descriptor can receive three values 20, 30

and 40. The first one triggers the UA to extract attack parameters and wait for further

commands. The other two values correspond to the initiation and termination of the

attack respectively. As shown in the table, the second and the third fields of the <o>

descriptor bear the first and the second half of the victim’s IPv4 accordingly. In the

example given in figure 7.1, the second and the third values of this descriptor are equal

to 2383212000 and 3312015300 respectively. So, the IP address can be extracted by a

bot as follows: Assuming a quad-dotted notation, the first two digits of each 10 digit

number represent the number of digits that this half of the address is consisted of. In the

example, the first two values of session id are 2 and 3 leading the bot to extract the first

half of the IP address, i.e., 83.212. In the same manner, session version starts with 33,

thus allowing the bot to extract the remaining half 120.153. The last two digits of the

second field of session version instruct the bot about the type of the attack. Specifically,
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a value of 00 means a SYN flooding, while 11 designates a PING one. Special care has

been taken for these values to appear as perfectly legitimate ones. To do so, both session

id and version numbers are appropriately padded with zeros to reach 10 digits, which is

the minimum length suggested by the SDP RFC [1].

Keep in mind that the selected SDP descriptors receive values that correspond to fields

which do not affect the session establishment, and thus the covert channel remains func-

tional. In this way, a botmaster is able to hide messages in plain sight without being

exposed. On the downside, the use of one optional descriptor for the creation of the

covert channel adds 10 extra bytes per message. However, it can be safely argued that

this presents a negligible increase in the network traffic to be noticed by the underlying

defense mechanisms. Even for a large population of bots, where the botmaster needs to

send one SIP request per bot, this augmentation shall be in the order of some tenths of

kilobytes (e.g., for 10,000 bots it would be ≈ 98 kilobytes).

It should be stressed out that the aforementioned descriptors and fields are not the only

ones that can be exploited for secretly communicating information between the two ends.

Several other selections and combinations are possible. However, each of them should

be done in such a way that will attract the minimum attention. For instance, the k=

descriptor is to be avoided because its use is not recommended by the RFC [1]. Also, the

employment of a large number of SDP optional fields for the needs of the covert channel

would not only raise suspicions, but also augment the volume of each SIP request. On

the other hand, the information carried by the a=ptime:<packet time> descriptor in our

protocol could be moved to the padded segment of the <o> descriptor as given above.

Another point of interest here is that the architecture is fully dynamic because it can

be used both by static and mobile UAs. That is, due to SIP intrinsic operation, each

bot is reachable from virtually anywhere. As explained in section 3.4, the IP of the

Registrar may change but the bots can become aware of this shift via a domain fluxing

scheme or otherwise by extending the C&C instruction repertoire. The reader would

likely notice that the communication protocol between the bot master and the bots is

one-way. That is, a bot does not send any messages toward its bot-herder. Actually,

from the botmaster’s point of view, this is not really a problem; as she is in control of

the SIP registrar she always knows which bot is alive (i.e., has been registered with the

Registrar). On the other hand, one can anticipate that this approach also contributes in
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keeping the communication channel as hidden as possible. Putting it another way, the

less information are transmitted towards a single receiver (the bot-herder) the less the

chances of revealing the channel.

7.2.1 TestBed setup

In order to evaluate the effectiveness of the C&C channel we created a testbed depicted

in figure 7.2. We used 7 SIP UAs, one of which was used as the Botmaster and the rest as

bots. The SIP UA were developed in JAVA language using the JAIN-SIP library [228].

Each UA runs on an Intel i3 3.3GHz processor with 4GB of RAM. The well-known SIP

proxy Kamailio [207] has been employed in the cloud as both a SIP server and Registrar.

The server machine was equipped with 1GB of RAM. Finally, the victim’s machine was

running on an Intel Pentium 4 2.8GHz processor having 1GB of RAM available.

SIP Proxy /  Registrar

SIP UA1 – Bot1

SIP UA2 – Bot2

SIP UAn – Botn

SIP UA - Botmaster

Invite Bot1-n

[contains 

attack parameters]

Location Database

Invite 

from Botmaster

to Bot1

Victim

Ping /  SYN flood

Botmaster – Registered 

Bot1 – Registered

Bot2 – Registered

Botn – Registered

Invite 

from Botmaster

to Bot2

Ping /  SYN flood

Figure 7.2: Deployed testbed and generic attack scenario

We created six different scenarios each one employing a variant number of attack threads

launched by each bot. We released both PING and SYN flooding assaults, each one with

different number of attack threads. The first three scenarios correspond to a SYN flooding

attack, while the rest to a PING one. For SYN flooding we used correspondingly 5, 15

and 30 attack threads per bot, while for PING 30, 80 and 160. This increased number of

attack threads in the second type of attack was used in an effort to augment the impact

of this particular attack. This is because a SYN flood is generally more powerful in
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contrast to a PING one. We used this simulation methodology aiming to grab a better

understanding of the attack impact, especially when its volume augments. We employed

three metrics to estimate the fallout of each type of attack on the victim’s machine;

network bandwidth utilization, memory consumption, and CPU usage.

7.2.2 Results

Figures 7.3 and 7.4 present snapshots of the received network traffic and CPU usage at

the victim side under a SYN and PING flood attack respectively. From the first figure,

one can easily observe that as the number of attack threads per bot remains low, the

incoming traffic at the victim’s side presents moderate fluctuations. On the downside,

when the number of threads increases significantly the incoming traffic doubles. For

example, when the threads per bot become equal to 30 the network volume doubles

reaching 6MB/sec.

Figure 7.4 depicts CPU usage at the target machine for a different number of PING

flooding threads. It is well perceivable that as the number of threads per bot increases,

the CPU utilization percentage augments notably. For example, when the number of the

attack threads per bot is set to 30 the CPU usage reaches a maximum value equal to

25%. On the other hand, when the number of threads per bot are sextupled (180), CPU

usage reaches a peak value of 30%.

Regarding the memory consumption at the victim’s side, we perceived a worst case

increment of ≈ 100% (from 12% to 24%) in the case of PING flooding, and ≈ 118%

(from 22% to 48%) for the SYN one.

7.3 SDP malformed message attacks

This section details on SDP attacks targeted at both SIP phones and servers. It also

offers a concrete example of a botmaster-to-bots covert communication channel realized

via SDP.
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Figure 7.3: Network utilization at victim’s side under a SYN flood attack

Figure 7.4: CPU usage at victim’s side under a PING flood attack

7.3.1 Preliminaries and dataset

During the last few years, the industry and research communities came across different

kinds of vulnerabilities pertaining to SDP [229, 230, 231]. These vulnerabilities have

been collected and categorized in databases [232], [233], and are mostly due to software

bugs in the respected products, either VoIP servers or UAs. Such weaknesses may lead



Chapter 7. Misuse-based detection of attacks against SDP 135

to attacks ranging from DoS to the execution of malicious code. It is therefore obvious

that SDP-based attacks can cause unpredictable behaviors on real-life software and/or

hardware systems of everyday use.

Attacks which exploit SDP are typically performed in the context of an offer/answer

media negotiation. Based on RFC 6337 [38], which describes the offer/answer model [1,

234], the SIP request messages that can contain a SDP segment are INVITE, ACK,

PRACK, UPDATE. Moreover, the following messages can be used to convey SDP data

in the context of a response: 2xx INVITE, 1xx-rel INVITE, 200 PRACK, 2xx UPDATE.

Also, there are some messages which may bear a SDP segment, but they are not part of

the offer/answer model. Such messages are for example the OPTIONS request and the

corresponding 200 OK answer.

A malformed SDP segment is likely to cause DoS to the SIP server or the UA at different

phases of the media negotiation process. That is, a malformed SDP segment which

appears in the “offer” phase of media negotiation, may go unnoticed by the SDP parser

in the SIP server. These messages target directly the end-user or they are used as vehicles

to convey information in the context of a hidden communication channel. On the other

hand, an attack against a SIP proxy usually happens in the context of an “answer” phase

of media negotiation. This typically occurs because as detailed further down, the message

parser in several SIP servers is stateful regarding the SDP parameters. This means that

it tries to match the SDP parameters contained in the “offer” phase against those carried

by the “answer”. In case of inconsistencies, and assuming a software bug, the parser may

crash. Bearing the above into mind, Table 7.3 summarizes the different facets of this ilk

of assault, the attacker’s goals, and the attack-affected victims.

To test both the SDP data hiding and attack capacity, we created a seemingly legitimate

SDP segment using only the G.711 PCMU codec. This selection appears in all messages

depicted in figures 7.5 and 7.6. That is, the corresponding codec is presented in the

<m=> line with code “0”. Keep in mind that this static payload does not necessarily

need additional information to be decoded. In this way, we guarantee that the phones

will not reject the message with a “488 not acceptable here” response. After that, as

in [33], we crafted specific parts of the SDP segment at will. Using this approach, we

have created a dataset of 12 representative malformed SDP message bodies depicted in

figures 7.5 and 7.6. Note that in the course of our experiments, we also tested many
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more SDP malformed messages and cherry-picked those included in the aforementioned

figures. To our knowledge, no such dataset containing a rich set of SDP malformed

messages exists, therefore the only option was to create one by crafting SDP messages

and performing an error-trial approach to observe the consequences on the various phones

and SIP servers.

All these 12 SDP bodies either miss or contain specific pieces of information, which

directly or indirectly violate RFCs 4566 [1] and 3551 [234]. More specifically, MalSDP1

lacks the mandatory <v=> descriptor. Moreover, it is inconsistent regarding the <t=>

descriptor. That is, the start time is greater than the end time. Finally, the a=rtpmap

attribute does not correspond to an already declared payload. MalSDP2 contains the

word “RANDOM” in the first <m=> line. This value is completely irrelevant to the

specification. Also, it contains the same media part twice. The <t=> descriptor of

MalSDP3 carries an end value which has a length of 11 digits. This number exceeds the

maximum allowed limit of 10 digit. Additionally, numbers 1 and 2 cannot be used as a

payload because they are reserved. Finally, the numbers 97, 98 correspond to dynamic

payloads [234], but they have not been declared in the media level. Keep in mind that

codecs which have been defined in “RTP Audio/Video profile”, do not require additional

information to be decoded. Nevertheless, the aforementioned session attribute lines (used

for dynamic codecs), may also be employed for the static ones.

The <o=> descriptor in MalSDP4 carries a session ID which violates the Network Time

Protocol (NTP) format as specified in RFC 4566. MalSDP5, conveys a cryptographic key

via the <k=> descriptor. However, the use of cryptographic keys in favor of supporting

older implementations are not recommended by RFC 4566. Finally, MalSDP6 makes use

of a very big number equal to 34, 567, 999 ∗ 1033, as a session-id in the <o=> descriptor.

Additionally, it conveys several voluminous strings. Moreover, all the 6 SDP bodies

depicted in figure 7.6 present significant fraudulent alterations in either the session or

the media part of their SDP segment. Last but not least, the media level part of these

bodies carry the numbers 5, 0, which are nevertheless used only with audio codecs.

7.3.2 Experimentation with real-life SIP equipment

The 6 malformed SDP bodies of figure 7.5 were used to test the robustness of 9 different

SIP softphones and 1 hardware phone. For selecting the softphones, we searched the
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Google play and Apple store, and cherry-picked some of the most popular ones [235],

namely Sipdroid v.4.1 beta, EVA Sip phone v.2.1, CSipSimple v.1.02.03, MizuDroid

v.2.4.0, Media5-fone v.4.25.4.13060, Linphone v.3.3.2, SessionChat v.6.0, VaxPhone

v.8.6.0.2, and rDialer v.1.1. Panasonic KX-HDV130 (with firmware HDV130/06.101)

has been used as the hardware SIP phone. This device is amongst the most popular in

the Unified Communications (UC) market [236]. All the above mentioned phones’ name,

model and type are summarized in Table 7.4.

SIP phones employ a set of audio and video codecs for establishing a multimedia session

with peer SIP components. Normally, the phone selects the codecs based on a config-

urable prioritization list. For instance, ITU-T G.711 [237] is one of the most commonly

used in VoIP realm. In this context, when the phone receives a SDP segment contain-

ing codecs which are incompatible, it will respond with “488 not acceptable here” SIP

response. This means that the call is not established. As observed from Table 7.4,

this error message was generated by phones 3, 5 after sending all MalSDPs depicted in

figure 7.5. Finally, the same error code was generated by the Panasonic phone, after

receiving MalSDP1 and MalSDP2. Obviously, this is an indication that the phone pro-

duces a generic - and in this case misleading - codec error message instead of a more

precise and detailed one pertaining to the specific SDP error. The rest of the phones

responded with different messages. Sipdroid produced a “403 forbidden” message. The

EVA Sip phone encountered a bug as it kept ringing continuously even after pressing the

response button. However, in this case, the corresponding logs showed that the rest of

the protocol messages (180 RINGING and 200 OK) have been exchanged successfully. A

similar behavior to the EVA SIP phone has been observed with the MizuDroid softphone.

Finally, the Linphone ringed normally and the call was answered, but for MalSDP2 and

MalSDP5 the call time counter had frozen.

We also sent 5 consecutive instances of MalSDP6 message to all the phones.The EVA Sip

phone, Sipdroid, CSipSimple, and Media5-fone showed the same behavior as previously.

On the other hand, Linphone and MizuDroid crashed, and additionally for MizuDroid,

the smartphone rebooted without a warning.

Regarding the softphones on the iOS platform, SessionChat responded with a “480 Tem-

porarily not available” for MalSDP2 to MalSDP5. For MalSDP1, the same softphone

displayed a “400 SDP parse error” message. VaxPhone and rDialer did not respond at



Chapter 7. Misuse-based detection of attacks against SDP 138

all. Finally, the Panasonic phone responded with a “488 Not acceptable here” error mes-

sage for MalSDP1 and MalSDP2. For the rest, the phone ringed normally and the call

was answered. Table 7.4 summarizes the behaviour of the tested software and hard-

ware phones. Generally, a SIP phone which receives a manipulated SDP request and it

responds normally, provides the attacker with beneficial information regarding an inher-

ent weakness of the SDP parsing process at the UA side. Then, using this information

gathered during a reconnaissance phase, the attacker knows which UAs are suitable for

hosting their bot(s). After infection (which is outside the scope of this PhD thesis), the

botmaster can uneventfully convey hidden commands toward their bots. An example

of this situation is the Panasonic device listed in Table 7.4, which does not produce

an error code for messages MalSDP3 to MalSDP5. Details on the creation of such a

communication channel are given further down in this section.

As the reader realizes, the root cause of this kind of attacks is that the SIP proxies

forwarding SIP messages between the peers do not inspect their SDP bodies for possible

inconsistencies. In our tests, we employed two of the most popular SIP servers in the

VoIP realm, namely Kamailio ver. 5.0.2 (former OpenSER) [207] and Asterisk ver.

14.6.0 [238]. Both these servers relayed the majority, if not all, of the crafted messages.

Precisely, Kamailio relayed all the messages depicted in figures 7.5 and 7.6, while Asterisk

only those included in figure 7.6. Generally, Asterisk presented a higher resiliency in

crafted SDP bodies, especially when the manipulation concerns the <m=> descriptor.

This is the main reason that the messages depicted in figure 7.5 were rejected by Asterisk.

In any case, this parsing negligence leaves plenty of room for creating covert communica-

tion channels. That is, as already mentioned, the attacker is able to uneventfully convey

“in plain sight” whatever information they wish, by simply altering the SDP segment of

certain SIP messages. Let’s say that a botmaster wishes to construct a simple communi-

cation channel consisting of 3 commands pertaining to the type, the parameters, and the

initiation/termination of an attack. To do so, they rely on, say, the <a=> and <t=>

descriptors, and exploit their respective fields included in red rectangles in Table 7.1.

For the former descriptor, the possible values are chosen to be 20 (notifies the receiving

UA-bot to extract the attack parameters and stand by for further instructions), and 30,

40 (correspondingly signify the initiation/termination of the attack. On the other hand,

the first and the second half of the victim’s IP are included in the second and third

fields of the <t=> descriptor. Say for example that the victim’s IPv4 is 212.120.83.153.
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Then, the second and third fields of the <t=> descriptor would be 3|3|212|120|00 and

2|3|83|153|110 respectively. Note that the vertical bar character has been included in the

numbers to ease the comprehension of the example. That is, assuming a quad-dotted

notation, the UA-bot will interpret the aforementioned numbers as follows: the first

2 digits of each number (3, 3 for the first number and 2, 3 for the second) carry the

number of digits that comprise this half of the IPv4 address, which immediately follows

(i.e., 212.120 for the first half and 83.153 for the second). Also, the type of the attack

is included in the first 2 of the last 3 digits (11) of the second number. Note that all

the selected values in both these descriptors seem perfectly legitimate. For instance, the

length of the 2 numbers, correspondingly denoting the session id and version, is 10 digits,

so as to fully comply with RFC 4566. Also, the channel remains functional because the

selected <a=>, <t=> descriptors receive values that correspond to fields which do not

affect the session establishment. Naturally, one has to also consider that each optional

descriptor adds ≈ 10 extra bytes per message, which however is insignificant and hardly

perceivable by the underlying defense mechanisms. Another point to consider is that the

above mentioned channel will be blocked by the SDP protection module detailed in the

next section. This is simply because the syntax of the <t=> descriptor infringes rule no.

62 as referred in Appendix B.

Lastly, more worrisome is the fact that apart from crafted messages, we managed to

relay a huge SDP segment using Kamailio. That is, we created a SDP segment with

size equal to 12,116 bytes. This segment passed through the SIP proxy intact without

returning an error code to the sender. This means that the SIP proxy could potentially

relay enormous SDP bodies without hesitation. This naturally renders both the SIP

server and registered UAs prone to simple volumetric DDoS attacks.

7.4 Mitigation

This section elaborates on our solution to bolster defense capabilities against SDP-driven

attacks.
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Figure 7.5: Malformed SDP bodies relayed from Kamailio (The malformed part is
shown in red font)

7.4.1 High-level description and network architecture

A SDP parser is a software module capable of analyzing SDP bodies. Normally, such

a module is present in every SIP server and UA. However, as already explained in sec-

tion 7.3, both these (real-life) entities largely fail when it comes to malformed SDP bodies.

So, from an attacker’s viewpoint, virtually all major SIP components, either servers or

end-user equipment are sitting targets. Also, more advanced attackers, say, botmasters

perceive the SIP infrastructure as an alluring means of building their C&C protocol.

Once more, as in the case of many other protocols or systems, it seems that security



Chapter 7. Misuse-based detection of attacks against SDP 141

v=0

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=0 0

m=audio 62462 RTP/AVP 9 8 120 0 84 101

a=rtpmap:120 opus/48000/2

a=fmtp:120 useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:84 speex/16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=REDUNDANT_INFORMATION-sendrecv

v=0

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=0 0

m=audio 62462 RTP/AVP 9 8 120 0 84 101 101 101 

101 101 101 101 101

a=rtpmap:120 opus/48000/2

a=fmtp:120 useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:84 speex/16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=REDUNDANT_INFORMATION-sendrecv

v=0

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=0111111111 077777777777777777

m=audio 62462 RTP/AVP 9 8 120 0 84 101 101 101 

101 101 101 101 101

a=rtpmap:120 opus/48000/2

a=fmtp:120 useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:84 speex/16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=REDUNDANT_INFORMATION-sendrecv

v=TZISIS-REDUNDANT_INFORMATION

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=0111111111 077777777777777777

m=audio 62462 RTP/AVP 9 8 120 0 84 101 101 101 

101 101 101 101 101

a=rtpmap:120 opus/48000/2

a=fmtp:120 useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:TZISIS-REDUNDANT_INFORMATION speex/

16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=REDUNDANT_INFORMATION-sendrecv

v=TZISIS-REDUNDANT_INFORMATION

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=9999999999 11111111111111111111

m=audio 62462 RTP/AVP 9 8 120 0 84 101 101 101 101 101 101 

101 101

a=rtpmap:!!!! opus/48000/2/44444/44444/44444/11111

a=fmtp:##### useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:TZISIS-REDUNDANT_INFORMATION speex/16000 

a=rtpmap:^^^^ telephone-event/8000

a=fmtp:123/123/123/123/123 0-

%%%%%%%%%%%%%%%%%%%%

a=REDUNDANT_INFORMATION-sendrecv

v=0

o=- 13147989122182925 1 IN IP4 192.168.10.98

s=X-Lite release 4.9.8 stamp 84253

c=IN IP4 192.168.10.98

t=0 0

m=audio 62462 RTP/AVP 9 8 120 0 84 101 97 125 127 

126 100

a=rtpmap:120 opus/48000/2

a=fmtp:120 useinbandfec=1; usedtx=1; 

maxaveragebitrate=64000

a=rtpmap:84 speex/16000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-15

a=REDUNDANT_INFORMATION-sendrecv

Figure 7.6: Malformed SDP bodies relayed from Kamailio and Asterisk (The mal-
formed part is shown in red font)

is not the first priority of the designers/implementors of SIP products and security-by-

design is still a far-fetched goal. The solution however is rather straightforward; the SDP

parser must be able to tell between a well-formed and malformed message in terms of

RFC 4566. Preferably, this must be done for both the incoming and outgoing traffic

to/from the SIP server.

To this end, this work introduces an autonomous open-source software module for SDP

messages that can be either physically co-located with the SIP proxy or reside in a
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different machine, say, in the perimeter of the network. In the context of this work, we

opt to select the latter configuration as it is entirely transparent to any SIP compliant

component. This option also enables one to integrate the SDP parser with, say, a next

generation firewall. The overall architecture of such a network configuration is illustrated

in figure 7.7.

Very similar to a firewall, the SDP parser protection module inspects each message based

on a parsing policy reflected to one or more sets of rules, and decides if it can be forwarded

to the SIP server or silently dropped. That is, the filtering operation starts by extracting

the message body from any incoming SIP request. Next, the SIP headers of the message

are stripped away and the remaining part containing the SDP message (descriptors) is

kept for further processing. Appendix A.4, algorithm 10, provides an overview of the

process flow and discrete operations of the SDP parser.

7.4.2 Filtering policy and parser rules

As per RFC 4566, the implemented rules have been divided into 4 major categories

(policies). Namely, we compiled a set of SDP parsing rules and we grouped them into

the following categories: “MUST”, “NOT RECOMMENDED”, “SHOULD NOT”. For the

remaining rules, i.e., those which do not fall within any of the above mentioned categories,

we created a fourth category, namely “GENERAL INCONSISTENCIES”. The “MUST”

policy can be further categorized into 3 sub-policies, namely “MUST APPEAR”, “MUST

NOT APPEAR”, and “MUST HAVE”. Until now, altogether the 4 chief categories contain

a total of 100 rules, which tackle the vast majority of inconsistencies that may exist in a

SDP message. Of course, one is able to add more rules at any time. The full list of the

implemented rules is given in Appendix B.

Note that all the rules have been created after grindingly extracting every single piece of

information which pertains to the standard syntax of SDP. For example, with reference

to figure 7.1, rule 63 describes the length of the <t=> descriptor. Based on RFC 4566,

the length of this descriptor must be equal to 2, meaning that if this descriptor appears

in a SDP session level part, it must have the form t=<start-time> <stop-time>. The

same logic has been followed for the rest of the implemented rules. Up to now, our

implementation covers all the mandatory descriptors, plus many of the optional ones.
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Full coverage is expected in a future version of the parser, which is publicly available

at [216].

The implemented rules can be categorized either by using the 4 above mentioned cate-

gories, or according to their relevance to the different SDP regions (i.e., with reference to

figure 2.2, session level and media level). This three-fold sub-categorization is described

under the “Filtering sub-policies” header in the Appendix B. For example, the manda-

tory descriptors reside only in the session level of the SDP segment. So, the first filtering

sub-policy in Appendix B, dictates that all the mandatory descriptors must be present

in an SDP message. Otherwise, the message is dropped. Overall, for every defined rule,

each time an inconsistency is found, the parser silently drops (and preferably logs) the

SIP message. On the contrary, if the message is found to be sound it is forwarded to the

SIP proxy.

7.4.3 Design considerations

Misuse detection systems (also known as signature-based detection) rely on known sig-

natures, that is, detection rules aiming to distinguish legitimate traffic instances from

the malicious ones. However, while these systems are able to detect known attacks, they

miss to recognize novel attacks or variations of known ones. Thus, the detection ability

of a misuse detection system, as the one proposed in this work, primarily depends on

the newness of the detection rules the system has been configured with. In this context,

we selected the specific rules based on the fact that, in the normal case, altogether the

mandatory descriptors, namely <v=>, <o=>, <s=>, <m=>, <t=> offer a limited

number of “variables” in contrast to the optional ones. The term “variable” refers to the

part of every descriptor which can be altered by the sending entity, either for benign or

malicious purposes. For example, with reference to the fourth column of Table 7.1, and

for the <o=> mandatory descriptor, the number of “variables” is equal to 6. In general,

altogether the mandatory descriptors but <m=> provide 13 “variables”, which can be

malignantly altered. In the normal case, <m=> carries 3 “variables” plus a number of

payloads, which ranges from 1 to n. Also, in certain cases, e.g., in an audio/video session,

there may be more than one instances of <m=>.

The 10 optional descriptors on the other hand provide a much larger “variable” space for

the assailant, simply because their number may be triple the quantum of the mandatory
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ones (some of them may even be repeated in the SDP segment), and pieces of information

conveyed by certain optional descriptors may not be critical or simply ignored by the SIP

proxy. Therefore, as shown in the example of section 7.3, the optional descriptors are low

hanging fruits for attackers who seek to hide information in a SDP body toward creating

a covert communication channel. Even worse, considering the offer/answer model (see

section 7.3) the UA is capable of renegotiating the SDP parameters at any time and each

time present a different SDP segment. For instance, if the caller wishes to put the callee

on hold, it needs to send them a re-INVITE carrying the SDP <a=inactive> attribute

(along with any other crafty SDP alterations).

All in all, the greater the number of “variables” the larger the attack vector the malformed

message may yield, because the aggressor is able to arm the message with several different

variations of malformed fields in an effort to inflict damage to the victim or pass through

a richer set of hidden information. Of course, as already touched upon in section 7.3, the

inclusion of many optional descriptors in the message is sure to increase its size (note

that any SIP implementation must be capable of handling messages up to the maximum

datagram packet size, e.g., for UDP this size is 65,535 bytes, including IP and UDP

headers). Also, it is to be noted that in order to avoid the fragmentation of messages

over UDP and offer congestion control for larger messages, RFC 3261 states that any

request within 200 bytes of the path Maximum Transmission Unit (MTU) or larger than

1,300 bytes if the path MTU is unknown, must be dispatched using TCP. This, on the

other hand, complicates the creation of large malformed SDP messages along with IP

spoofing at the attacker’s side.

Bearing the above in mind, we designed the SDP parser in such a way so the mandatory

descriptors - which are critical and cumulatively have the lesser number of “variables” -

are always filtered first. After that, the selection of the rules gradually covers the case

of voluminous SDP segments, where the parser possibly needs to go through a much

greater number of rules. More details regarding the time complexity of the parser are

given in the next section.

7.4.4 Implementation

The SDP message parser has been implemented as a standalone multi-threaded Java

application. Its first task is to intercept SIP requests and responses carrying a SDP
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Figure 7.7: Overview of the deployed testbed. The letters n, k, m represent the
number of rules per rule category

segment (see section 7.3) and destined to the SIP proxy. To do so, we employed the

well-known JAIN-SIP stack [239]. The JAIN architecture comprises 3 different layers.

The first layer corresponds to the protocol stack. The second refers to the JAIN layer, and

the last one to the actual application. Precisely, the latter layer provides the necessary

methods to format and send out SIP messages. Furthermore, it provides interfaces

capable of extracting and parsing specific message headers. As shown in figure 7.7, we

employed the well-known iptables linux utility program to redirect the traffic as follows:

for every incoming packet with destination TCP or UDP port equal to 5060 (the standard

SIP proxy port used for non-encrypted signaling traffic), we forwarded the packet to the

parser, listening on the corresponding TCP or UDP port 6090. If the message is found

to be well-formed, it is forwarded to the SIP proxy as normal. This is done with the help
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of the SendRequest method of the JAIN SIP API.

The parser allows the network administrator to select the descriptors to be filtered based

on a graphical user interface (GUI). Namely, the user is capable of selecting a specific

policy reflected to one or more categories of rules, as illustrated in figure 7.7 and described

in Appendix B. A screenshot of the parser’s GUI is presented in figure 7.8. As observed

from the figure, the various filtering policies (categories of rules) reside in the upper

left section of the GUI. Recall that the parser application is freely available for further

development and experimentation [216].

We also developed a Java attack tool capable of generating malformed SIP INVITE

messages carrying a SDP segment. The application produces a variety of malformed

SDP messages, including the ones described in section 4, as well as others with random

values in specific SDP fields. Also, the same tool allows one for sending a single or a

surge of malformed SDP requests towards a UA or the SIP proxy. While our experiments

make use of only SIP INVITE requests, the exact same methodology can be followed for

any other SIP request/response having a SDP segment, as detailed in section 7.3.

Figure 7.8: The front-end of the SDP parser
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7.4.5 Performance evaluation

This section reports on the performance evaluation of the proposed scheme. To this end,

we employed a SIP testbed architecture in which we launched various attack scenarios

to estimate the effectiveness of our SDP parser under different traffic conditions. We

assess our solution in terms of the introduced overhead for service provision. The follow-

ing subsections elaborate on the testbed architecture, the deployed scenarios, and the

obtained results.

7.4.6 Testbed

The employed testbed is depicted in figure 7.7. Specifically, 3 different Virtual Machines

(VM) have been used to host the UAC/UAS, the SDP malformed message attack tool

described in subsection 7.4.4, the SDP parser, and the SIP proxy. The physical machine

hosting the VMs is equipped with an Intel i5-4310m processor clocked at 2.7 GHz and 8

GB of RAM. The Kamailio SIP server in ver. 5.0.2 has been used as a SIP registrar and

proxy. We utilized the well-known Sipp tool [222] to test the performance of the parser

under stress, that is, by simulating legitimate SIP calls between a caller and a callee.

The UAC and the UAS operate on the same VM using different port numbers, namely

6040 and 8040 correspondingly. Keep in mind that the conveyed traffic must always be

filtered by a firewall.

As already pointed out, for launching the attacks, we used the Java tool already described

in subsection 7.4.4. This attack tool dispatches a number of SDP malformed requests

(those of figures 7.5, 7.6, plus the one with the huge SDP segment) depending on the

needs of each scenario. A detailed description for the employed scenarios can be found in

the next subsection. The SDP parser has been logically placed in front of the SIP proxy,

but both run on the same VM, sharing a dual-core CPU and 2 GB of RAM. Having the

SDP parser hosted by a separate physical machine is estimated to introduce negligible

time penalty in terms of communication time, given that the SIP proxy and the parser

will normally reside in the same subnetwork.
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7.4.7 Scenarios

For evaluating the performance of the parser, and consequently estimate the overhead

inflicted by our solution on the provided service, we created a set of 16 scenarios (SN)

divided in 4 categories as shown in Table 7.5. That is, as indicated in the third column of

the table, for each category of scenarios, we flooded the target proxy with 500, 1500, 2500,

and 4000 SIP INVITE requests, armed with malformed SDP segments, using random

time intervals of 3 to 10 sec between the flood bursts.

We selected random time intervals because the strategy of the attack (i.e., the use of a

certain distribution in the attack pattern) does not affect the detection accuracy. This

happens because a syntactically wrong message will be dropped independently of the

call distribution. Namely, in the worst case scenario, the system may loose some packets

due to lack of CPU resources, but statistically the SDP parser detection accuracy is not

affected as the arriving INVITE packets are mirrored to statistically independent events.

Moreover, as shown in the second column of Table 7.5, during the execution of the

attacks, the SDP and SIP proxies were stressed with legitimate traffic following a pace

of 10, 20, 40 and 80 calls per second (cps).

7.4.8 Performance evaluation

Given that the detection accuracy of the SDP parser depends solely on the implemented

rules (i.e., the parser had 100% detection accuracy against the malformed messages of

figures 7.5 and 7.6), the focus of this section is on service time provision. To this end,

we assess the overhead on both the SDP parser and SIP proxy in terms of message

processing time. This means that for each group of scenarios in Table 7.5 (SN-1-1 to

SN-1-4, SN-2-1 to SN-2-4, and so on), we measured the processing time per incoming

message in both the SDP parser and the SIP proxy. Next, we present the results per

group of scenarios using box-and-whisker plots in figure 7.9, where the lower hand edge

of the blue box corresponds to the 1st quartile, the upper hand edge of the red box to the

3rd quartile, and the line between the boxes is the median. For instance, in the upper

half of the figure, the distribution of message processing time for all scenarios (SN-1-x)

in group SN-1 for the SDP parser is marked as “SN-1” in the horizontal axis.
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For the last 4 sub-scenarios (SnN-4-x), we used the same number of SDP malformed IN-

VITE packets. As explained in subsection 7.4.7, this has been done because the detection

accuracy of the SDP parser is not affected by the number of packets. Nevertheless, we

used a different number of packets for the first 3 groups of scenarios (SN-1 to SN-3) for

the purpose of demonstrating that the SDP parser behavior remains stable independently

of the deviation in the rate of the incoming malformed packets. As expected, during the

experiments, we witnessed network performance issues expressed as packet loss. This

was due to the excessive attack traffic on top of the legitimate calls. Keep in mind that

this behavior is expected because of the connectionless nature of UDP, which is often

preferred over TCP, especially when the number of devices connecting to the SIP server

grows.

Focusing on the upper half of the figure, i.e., the SDP parser, we easily observe that

the average message processing (parsing) time per incoming message for all the scenarios

fluctuates between 30 to 50 msec. Also, the minimum and maximum values for all the

4 groups of scenarios are between 17 and 60 msec. Overall, we can safely argue that

the SDP parser adds a negligible time of the order of tenths of msecs. Even in the most

stressing group of scenarios (SN-3, SN-4) where the cps is 40 to 80, the average parsing

time does not exceed 60 msec. However, bear in mind that the aforementioned parsing

times are only indicative because they do not only depend on the volume and type of SIP

traffic, but also on the computing resources available at the parser side (i.e., processor

type, available memory, etc).

When comparing the first 3 groups of scenarios, one can also perceive an increment of

≈ 10msec in the average message parsing time proportionally to the cps parameter. That

is, from ≈ 30 msec for SN-1 to ≈ 40 for SN-2 and ≈ 50 for SN-3. SN-4 on the other hand,

showed faster message parsing times because the volume of the SDP malformed messages

sent in all SN-4-x was constant. This is verified by the corresponding Interquartile Range

(IQR = Q3-Q1), which is the smallest amongst all four group of scenarios.

In a nutshell, and as explained further in the next subsection, the parser introduces a

delay proportional to the number of rules. That is, in terms of asymptotic notation, the

parser’s upper bound is O(N), where N is the number of rules enabled in the parser. Of

course, this number is reflected to the currently activated SDP filtering policies as the

case may be.



Chapter 7. Misuse-based detection of attacks against SDP 150

To acquire a better understanding of the aforementioned results in terms of SDP parsing

penalization, we compare the previous times against those produced by Kamailio for

exactly the same 4 groups of scenarios. The results are depicted in the bottom half of

figure 7.9. From the figure, it is easily perceivable that Kamailio produces very fast and

stable message processing times in the order of msec even under excessive stress. This is

however highly expected as modern VoIP servers are developed for handling thousands

of cps [207]. Specifically, for all the 4 scenarios, the average processing time per message

fluctuates between 0.48 and 0.52 msec. This means that even with the addition of the

SDP parser in front of the SIP server, one would expect overall message processing times

in the order of 100 msec. Also, in the case of a volumetric attack leveraging SDP, the

SDP parser is expected to ease the burden of the SIP server because the malformed

messages will be dropped.

7.5 Discussion

As already pointed out, the SDP parser has been developed with a firewall-based logic.

That is, as shown in Algorithm 10, upon the arrival of a SIP message carrying SDP

information, the parser extracts the SDP segment and performs a linear search against

the list of the enabled rules, with the aim of detecting inconsistencies. Obviously, a

SDP malformed message will pass through the parser undetected in case it contains an

inconsistency that has not been implemented as a rule (or due to the current policy,

the corresponding set of rules is not enabled). As already mentioned, the SDP parser

performs a linear search, thus, assuming N active rules, the worst case will require the

examining of N rules, while the best only involves the first rule in the current set. Note

that the worst case applies also when the incoming message is well-formed. To put it

another way, the overall time required to detect a malformed message is always propor-

tional to the number of the enabled rules and does not depend on the specific set of rules

or the combination of the enabled set of rules as the case may be. Therefore, the time

complexity of the parser is O(N). On the other hand, the detection accuracy of the parser

will always reach 100%, assuming that the presented inconsistency has been addressed

in an already implemented rule, which is additionally enabled.

A separate note should be done regarding the selection of the Java programming language

for implementing the parser. Note that this was mainly done for the sake of portability. In
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this respect however, the parser’s performance may be negatively affected by a) the Java

Virtual Machine translation cost, and b) Java garbage collection process. Therefore,

if portability is not a priority, a C-based implementation of the parser may perform

faster given that (a) C code is directly compiled into native code, thus is expected to

surpass Java bytecode even in the case of Just-in-Time compilation [240], and (b) memory

management optimizations are possible when programming with C (but this may on the

other hand increase the software bug surface).
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Table 7.1: SDP descriptors. Some of the optional descriptors may be repeated across
the SDP message segment
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Table 7.2: Description of C&C protocol messages (character X corresponds to a single
digit of the victim’s IPv4 address, and Z refers to a digit used for another command or

it is zero-padded)

Descriptor Field Value Hidden Message
<o> sess-id 33XXXXXXZZ First half of Victim’s IP
<o> sess-version 33XXXXXXZZ Second half of Victim’s IP
<o> sess-version ZZZZZZZZ00 SYN Flood attack
<o> sess-version ZZZZZZZZ11 PING Flood attack

a=ptime:<packet time> - 20 Save attack parameters & wait
a=ptime:<packet time> - 30 Launch attack
a=ptime:<packet time> - 40 Stop attack

Table 7.3: Summary of attack types and impact on the victim

No Attack Type Attacker’s Goal Victim

1 Flooding with malformed messages Annoy the user, crash or paralyze the device SIP Proxy/Client
2 Malformed messages Crash, freeze the device or execute malicious code SIP Proxy/Client
3 Creation of covert communication channels Convey hidden commands Internal/External entities
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Table 7.4: SIP Phones used and results (Sw/Hw stands for softphone/hardware
phone)
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Table 7.5: Parameters of attack scenarios

Scenario Legitimate traffic (cps) Number of malicious INVITE sent
SN-1-1 10 500
SN-1-2 10 1500
SN-1-3 10 2500
SN-1-4 10 4000
SN-2-1 20 500
SN-2-2 20 1500
SN-2-3 20 2500
SN-2-4 20 4000
SN-3-1 40 500
SN-3-2 40 1500
SN-3-3 40 2500
SN-3-4 40 4000
SN-4-1 80 1500
SN-4-2 80 1500
SN-4-3 80 1500
SN-4-4 80 1500



Chapter 8

Conclusions and Future Directions

8.1 Conclusions

The proliferation of VoIP services, and especially those based on SIP is expected to sig-

nificantly augment in the years to come. However, SIP needs to confront several security

issues mainly due to its open and text-oriented nature. In this direction, researchers are

seeking novel proposals that are able to promptly identify security breaches and apply

effective methods of control.

All in all, based on the objectives that have been introduced in Chapter 1, this PhD

thesis offers an arsenal of statistical and ML-driven mechanisms to battle against SIP-

based application layer DDoS attacks. A side contribution of the PhD thesis lies on

the prevention of SDP-based malformed messages and the creation of C&C channels in

SDP. Table 8.1 presents an overview of the achievements of the PhD thesis at hand, with

respect to the literature.

Precisely, a first contribution of this PhD thesis builds over the idea proposed in [129],

that is, the use of Entropy theory to detect abnormalities in raw application data. Specif-

ically, through extensive experimentation, we extend, calibrate and throughly assess the

effectiveness of the initial idea, thus offering a complete formalized framework that can

be used to trace and detect application layer DDoS attacks in SIP networks. The pro-

posed solution can be used to assess and certify the security level of VoIP provider with

reference to application layer DoS attacks, based on the logged traffic without trampling

on end-user’s privacy. We assert that our framework exhibits several advantages over

156
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Table 8.1: Overall PhD Thesis Contribution

Objective Chapter Contribution Publication
Obj. 1 5 A Privacy-Preserving Entropy-Driven

Framework for Tracing DoS Attacks in
VoIP

[129]

Obj. 1 5 Exposing resource consumption attacks in
internet multimedia services

[128]

Obj. 1 5 An efficient and easily deployable method
for dealing with DoS in SIP services

[34]

Obj. 2 6 Battling against DDoS in SIP: Is Ma-
chine Learning-based detection an effec-
tive weapon?

[143]

Obj. 2 6 Realtime DDoS Detection in SIP Ecosys-
tems: Machine Learning Tools of the
Trade

[144]

Obj. 3 7 Hidden in plain sight. SDP-Based covert
channel for botnet communication

[186]

Obj. 3 7 The Devil is in the Detail: SDP-Driven
Malformed Message Attacks and Mitiga-
tion in SIP Ecosystems

[43]

those in earlier work. That is, it is lightweight, practical, privacy-preserving, and retains

full compatibility with the SIP standard operating effectively in both offline and realtime

fashion. It also presents a high degree of flexibility (through the tuning of its parameters)

depending on the everyday VoIP traffic each provider has to cope with. Chapter 5 along

with [129], [128], and [34] present in detail the solutions build on statistical schemes.

These contributions fulfill the requirements that have been set with respect to the first

objective (i.e., Obj. 1) of this PhD thesis.

In network intrusion detection, a typical method for exposing attacks is by tracking the

network activity for possible deviations from the normal profile. That is, any discrep-

ancy from a previously learned normal profile is identified as suspicious. This procedure

is usually done using methods borrowed from the machine learning realm. So far, this

potential have been examined in the literature in a great extend. However, as discussed

in Chapter 4, in the case of VoIP in general and SIP in particular, works on this topic are

not only scarce but also incomplete. To fill this striking gap, an important contribution

of this PhD thesis is devoted to the assessment of the power of ML-based techniques, to

identify DDoS incidents that capitalize on the use of SIP signaling. We consider 5 differ-

ent popular ML detectors and a plethora of realistically simulated SIP traffic scenarios

representing different flavors of DDoS. The results indicate that specific classifiers present
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high accuracy even in cases of low-rate DoS attacks. The best results for DDoS are ob-

tained for the classifier introducing the maximum overhead, and thus accuracy may at a

hefty price. To grab a better understanding of the effectiveness of this kind of detection,

we compare the obtained results against those generated by two other anomaly-based

methods, namely Entropy and Hellinger Distance. From this comparison one can safely

argue that ML techniques appreciably surpass non-machine learning ones in terms of FN

and up to a certain extend in terms of FP.

In the same direction, another contribution of this PhD thesis lies in the applicability

of several well-known ML techniques in detecting application layer DDoS attacks on the

fly. That is, we implemented a Kamailio software module to achieve attack detection

in realtime and tested both the detection accuracy and processing overhead of each

classifier under a significant number of different attack scenarios representing both DoS

and DDoS incidents. All the algorithms but one achieved desirable detection accuracy

in terms of FP, but only mediocre accuracy (for a real IDS product) when the FN metric

is considered. Therefore, further experimentation is needed to better appreciate this

potential. From a processing overhead viewpoint, it can be safely argued that realtime

operation is feasible as the induced time penalty is negligible even if the SIP server

operates in single-thread mode. Chapter 6 along with [143] and [144] detail on the

contributions which lie in the use of ML techniques and contribute toward addressing

the second objective of this PhD thesis (i.e., Obj. 2).

This PhD thesis also elaborates on the exploitation of SIP as a covert channel for building

botnet C&C. We demonstrate that with little effort an aggressor is able to tinker with

SDP data contained in SIP requests aiming to convey spurious information secretly.

This is also done in an straightforward and simple way, perfectly in line with SIP/SDP

standards, and without raising any suspicions or causing the messages to be dropped by

the receiving end as malformed. From a network defense viewpoint, little can be done; the

messages seem completely legitimate, they are sent only sporadically and do not augment

the network traffic significantly. So, even deep and continuous packet inspection at the

application or other layer would not reveal something suspicious. The only effective

counteraction is to monitor SIP transactions for requests without a matching response.

But on the other hand, this mismatch occurs for legitimate SIP transactions quite often

too, thus it is to be assumed that it will cause a high false alarm rate at the proxy-side

IDS. Overall, we argue that the simplest and more innocuous the covert channel the
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less the possibility of detecting it. Additionally, we provide results about the feasibility

of such a C&C deployment by implementing two kinds of flooding attacks executed by

bots.

Media negotiation comprises a fundamental operation in SIP ecosystems. However, the

text nature of SDP creates a fertile ground for attackers aiming to launch DoS attacks by

crafting the message bodies. So far, research has concentrated on malformed SIP message

headers, largely neglecting SDP bodies. Motivated by this fact, a last contribution of this

PhD thesis, is not only to demonstrate the magnitude of SDP-powered attacks to real-life

SIP equipment and the user, but also to offer a straightforward to implement and fully

compatible with SIP proxy-based method to solve it. The obtained results show that

our solution comes at a negligible cost in terms of service time provision while (as with

any misuse detection system) its detection accuracy depends solely on the freshness and

quality of the implemented rules. Also, it is directly extensible by simply contributing

additional rules to one or more of its categories pertaining to SDP message body filtering

policies. These policies can be enforced or disabled by the administrator at will. Also,

as explained in Chapter 7, and more specifically in section 7.5, each new rule added to

the list, affects linearly the parser performance. That is, in terms of algorithmic time

complexity, the search operation will always be equal to O(N) across the number of rules

included in the currently enabled policies. Chapter 7 along with [186] and [43] detail on

SDP-driven attacks. These contributions are the cornerstones toward fulfilling the last

objective of this PhD thesis (i.e., Obj. 3).
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8.2 Future directions

This PhD thesis provided solid clues for the applicability and efficiency of a set of both

statistical methods and ML techniques regarding the detection of application layer DDoS

attacks in SIP. Additionally, it elaborated on the prevention of SDP-based malformed

messages and C&C channels, using misuse detection and filtering policies. Still, a number

of research fields remain open for future work.

• In the case of log file analysis, open issues are towards providing more robust data

anonymization schemes for use, especially in cases where the exchange of log files

among providers or between a provider and a data analysis center is deemed nec-

essary. Particularly, focusing on offline analysis, one may be interested in schemes

that offer unlinkability along with anonymity. The employment of machine learn-

ing techniques on the audit trail data as a second more comprehensive layer of

analysis is another direction worthy of investigation in a future work.

• Regarding the Hellinger Distance statistical scheme, one can expand the solution

to work in realtime by inspecting each incoming message on-the-fly. This requires

the development of a software module destined to SIP proxies. The applicability of

the results of this work to similar services and protocols are also of great interest.

• Regarding ML techniques, a future direction involves extensive experimentation

with the Mw parameter in an effort to better assess its overall effect on the detec-

tion process. The last one pertains to the evaluation of more advanced classifiers

regarding its ability to cope with application layer DDoS attacks.

• With respect to SDP-driven malformed messages, the pointers for future work are

related to (a) calibrating the parser and populating it with more rules, (b) testing

the parser in other application domains, including Web RealTime Communication

(WebRTC) environments that leverage SIP as their signaling protocol, and (c)

implementing a dual-layer solution, which in addition to rule-based detection, will

employ machine learning techniques to cope with previously unseen instances of

SDP malicious alterations.

• Another future direction pertains to the enhancement of the SDP-driven C&C with

more options for the botmaster. An idea is to find a way to dynamically change
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the pattern of communication, that is, the places (message headers or descriptors)

where the bytes with special meaning are placed. This way, the detection of the

C&C channel would become even harder. On the downside, upon change, this

pattern must be communicated to the bot population. A second interesting issue to

consider in this context is the possibility of botnet partitioning. That is, in view of

what has been discussed in the latter half of section 3.4, having some bots registered

to a given public provider and the rest to another one(s). In this case, every bot

needs to be informed about which Registrar (domain or IP) must register with,

and the botmaster needs to keep and update a list of {bot-username, Registrar-

domain-name} for being able to correctly dispatch the SIP INVITE messages. This

naturally implies an extension of the covert channel to communicate a "Registrar

shift" message to the bots.

• Finally, the battle against DDoS attacks in SIP-based NG9-1-1 emergency calling

centers remain one of the most challenging and timely topics of research in VoIP,

which however is not efficiently tackled by this PhD thesis. These services need

to operate on a 24/7 basis, and thus the challenge in this case is related to the

classification between attack and normal traffic taking into account the legislation

requirements. A detailed analysis of this research problem is provided in the next

paragraphs.

Emergency calling services consist one of the most critical components of public safety.

The last years, many vendors extended their product portfolio to include emergency

calling solutions. Such solutions are mostly targeted on Session Border Controller

(SBC), Emergency Services Routing Proxy (ESRP), and/or Public Safety Answering

Point (PSAP) solutions. The types of attacks presented in Chapter 3 of this PhD thesis,

can be proven to be the single point of failure for emergency calling centers. Thus, the

vendors need to design and develop solutions which should classify on the fly the calls

entering the ESInet. The fulfillment of this requirement becomes even more challenging

in NG9-1-1 environments, which should accept voice, text, and video calls.

Lately, a number of researches [241], [242], [243] has highlighted the need for increased

security in NG9-1-1 environments. A major problem in this area has to do with the

different media which may be negotiated by the various network entities. For example,

if two network entities do not support the same codecs, then the proxy, in this case a
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emergency calling center entity, should trigger a transcoding operation. Assuming that

an attacker has already compromised a big number of telephony devices (i.e, an army of

zombies), then a quite slow-rate and thus silent attack in terms of bandwidth could be

launched in order to drain the victim’s resources.

Figure 8.1 provides an overview of the SIP-based Emergency services architecture. With

reference to the figure, it becomes apparent that emergency services provide an increased

attack surface. That is, ESInets receive a plethora of SIP messages which are initiated via

a number of different types of interconnected trunks. In this direction, SBC deployments

comprise the external guards of the SIP-based emergency calling centers. The latter

entities perform the main filtering and classification of SIP messages which enter the

ESInet. The message labeling is usually performed with respect to spam and simple

application layer DDoS attacks. In this context, more advanced IDS solutions should

be installed in order to combat (a) application layer DDoS attacks, (b) SDP-driven

malformed messages and, (c) SDP-based C&C channels.

The diversity of the interconnected trunks highlights the significance and the variety

of traffic that an emergency calling deployment can receive. Additionally, it gives an

overview of the different types of bots that an attacker could compromise in order to

launch a more advanced DDoS attack. That is, figure 8.1 depicts an army of infected

machines (zombies), which parasitize in different types of networks. After a DDoS attack

is launched by the botmaster, the generated attack traffic is directed to the ESInet.

According to suggestions from well-known vendors in the field, including IBM, security

should be designed and build into the devices [244]. In this respect, a security-by-

design approach should be followed, with the aim to eliminate application layer DDoS

attacks launched by botnets [245]. Lately, this approach is also presented in a number

of researches [242].
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Figure 8.1: DDoS attacks in the ESInet



Appendix A

Pseudocodes: Statistical means, ML

techniques, SDP parser

A.1 Pseudocodes for the entropy method

The next 5 pseudocodes describe the fundamental operations of the entropy method.

Algorithm 1: EntropyDetectionModule/RealtimeAnalysis

Input: SIPmessage

Output: MessageClassification

1 AlocateMemory(HashTable) ;

2 NAD ← Avg(AID);

3 SipHeaders← SplitSIPMessage(SIPMessage);

4 while (SipHeaders 6= NULL) do

5 HSi ← HMAC-SHA256(SipHeaders);

6 InsertToHashTable(HSi)

7 end

8 AID ← ComputeMetricsHashTable(SipMessage,HashTable);

9 if AID is greater than (NAD + δ) then

10 print(ALERT −AttackMessage)

11 else

12 print(LegitimateMessage)

13 end
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Algorithm 2: ComputeMetrics/OfflineAnalysis

Input: DataFile

Output: EntropyFile

1 OpenToRead(DataFile);

2 EntropySumArray[S1, S2, S3, S4, S5, S6];

3 i← 1;

4 SymbolCounter ← 1;

5 SUM ← 0;

6 while (DataFile 6= EOF) do

7 if Search(HSi , DataFile) then

8 Temp← readLine /*Locate “Ap” in line*/;

9 /*Ap(HSi) : Appearances of HSi*/;

10 Read(Ap);

11 Prob(HSi)← (Ap/N);

12 /*N : overall number of occurences*/ ;

13 Write I(HSi) in EntropyFile;

14 /*I(HSi):Itself Information of HSi*/ ;

15 SUM+← I(HSi);

16 EntropySumArray[Si]+← Prob(HSi) ∗ I(HSi);

17 end

18 if symbolCounter equals 4 or 6 then

19 ActualInfo(CurrentMessage)← SUM ;

20 symbolCounter ← 1;

21 SUM ← 0;

22 i← 1;

23 end

24 end
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Algorithm 3: ComputeSymbolFrequency/OfflineAnalysis

Input: TrafficFile

Output: DataFile

1 i← 1;

2 symbolCounter ← 1;

3 OpenToRead(TrafficFile);

4 while TrafficFile 6= EOF do

5 OSi← readLine;

6 /*OSi : Original Symbol*/;

7 if Search(OSi , HeaderSymbol) or Search(OSi , symbol[s1− s6]) then

8 HSi ← HMAC-SHA256(OSi);

9 /*HSi : Hash Symbol*/;

10 symbolCounter+← 1;

11 InsertToHashTable(HSi);

12 /*For insertToHashTable see algorithm 4*/

13 Write(Hash(OSi) : HSi);

14 else

15 if symbolCounter equals 4 or 6 then

16 i← 1

17 symbolCounter ← 1

18 end

19 end

20 end

21 OpenToWrite(TrafficFile);

22 while TrafficFile 6= EOF do

23 if SearchLine equals HSi then

24 if LookUpHashTable(HashTable) 6= 0 then

25 Write(HSi : Ap :: LookUpHashTable(HashTable,HSi))

26 end

27 end

28 end
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Algorithm 4: InsertToHashTable
Input: SIPHeader

Output: UpdateHashTable

1 if LookUpHashTable(SIPHeader, HashTable) equals 0 then

2 Insert(SIPHeader, 0)

3 else

4 Insert(SIPHeader,LookUpHashTable(SIPHeader,HashTable) + 1)

5 end

Algorithm 5: Timestamps/OfflineAnalysis

Input: TrafficFile
Output: EntropyFile/Interval

1 Interal← userChoice;
2 timestamp← Read(TrafficFile);
3 while (timestamp 6= timestamp+ Interval) do
4 TraficFile ← InsertToFile(HMAC-SHA256(SIPHeader))
5 end
6 ComputeMetrics(ComputeSymbolFrequency(TrafficFile))
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A.2 Pseudocodes for the Hellinger Distance method

The following 2 pseudocodes describe the fundamental operations of the Hellinger dis-

tance method with respect to the training and the detection phases.

Algorithm 6: Obtain Theoretical Messages
Input: Segmented-Attack-Free-File

Output: TheoreticalMessages

1 Normalization;

2 while (SegmentedF ile 6= NULL) do

3 Line ← ReadLine();

4 if Line is equal to FirstLine then

5 TypeOfMessage = ExtractTypeOfMessage();

6 TypeOfMessageCounter++;

7 else

8 Occurences ← ExtractOccurences(Line);

9 switch(TypeOfMessage);

10 TheoreticalMessages[TypeOfMessage][NumberOfHeader++]+ ← Occurences;

11 end

12 end

13 TheoreticalMessages[TypeOfMessage][NumberOfHeader]/ ← TypeOfMessageCounter;

14 while (TheoreticalMessages[TypeOfMessage][SipHeaders] 6= NULL) do

15 Occurences ← ExtractOccurences(SipHeaders);

16 Normalization+ ← Occurences;

17 end

18 THeoreticalMessages[TypeOfMessage][SipHeaders]/Normalization;

Algorithm 7: Compute Hellinger Distance
Input: TheoreticalMessages, ExaminedMessage
Output: Hellinger Distance

1 DistributionEx;
2 NormalizationEx;
3 SipHeaders ← ExtractSipHeaders(ExaminedMessage);
4 while (SipHeaders 6= NULL) do
5 Occurences ← ExtractOccurences(SipHeaders);
6 NormalizationEx+ ← Occurences;
7 end
8 DistributionEx ← Occurences(SipHeaders)/NormalizationEx;
9 while (SipHeaders 6= NULL) do

10 Sum+ ← (sqrt(DistributionEx[SipHeaders])−
sqrt(THeoreticalMessages[Type(Examinedmessage)][SipHeaders]))2;

11 end
12 HellingerDistance ← 0.5 ∗ Sum
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A.3 Pseudocodes for the ML techniques

The following 2 pseudocodes describe the fundamental operations of the ML techniques

with regards to the training and the classification phases.

Algorithm 8: Obtain Input Data for ML Classifiers
Input: Audit Trail
Output: Input File for Classifiers (.arff format)

1 while (AuditTrail 6= NULL) do
2 Line ← ReadLine();
3 SIPHeader ← ExtractSipHeader(Line);
4 HashedHeader ← HMAC-SHA256(SIPHeader);
5 if (InsertToHashTable(HashedHeader) 6= NULL) then
6 GetValueofHashTable(HashedHeader)++;
7 else
8 InsertToHashTable(HashedHeader);
9 SetValueInHashTable(HashedHeader) ← 1;

10 end
11 if (Message-Window = 1, 000) then
12 TotalMessages ← TotalMessages + Mw;
13 Re-Initialize(HashTable);
14 end
15 for (i=1; i ≤ TotalMessages; i++) do
16 PrintOccurences(GetValueofHashTable(HashedHeader));
17 end
18 end

Algorithm 9: Extraction of classification features
Input: Incoming SIP messages
Output: Classification result

1 SIPHeaders[N] ← ExtractSipHeader(SIP Request);
2 for (i=1; i ≤ N; i++) do
3 HashedHeader[i] ← HMAC-SHA256(SIPHeaders[i]);
4 if (InsertToHashTable(HashedHeaders[i]) 6= NULL) then
5 GetValueofHashTable(HashedHeader[i])++;
6 else
7 InsertToHashTable(HashedHeaders[i]);
8 SetValueInHashTable(HashedHeader[i]) ← 1;
9 end

10 end
11 classificationResult ← classify(#HashedHeaders[1],... ,#HashedHeaders[N]);
12 if (Mw = 1, 000) then
13 TotalMessages ← TotalMessages + Mw;
14 Re-Initialize(HashTable);
15 end
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A.4 Pseudocode for the SDP parser

The next pseudocode describes the main logic of the SDP parser filtering operation.

Algorithm 10: Filtering process in SDP parser
Input: SIP message
Output: SDP segment classification

1 for RuleSet i← 1 to k do
2 if RuleSet i is enabled then
3 for Rule j ← 1 to N do
4 if Rule j applies on SDPsegment then
5 Drop message;
6 return;

7 end
8 end
9 end

10 end
11 Forward message to the proxy;;



Appendix B

SDP Parser rules

This appendix contains the full list of the rules that have been implemented in our SDP

parser until now.

Filtering Categories (policies):

• Filter MUST descriptors.

• Filter NOT RECOMMENDED descriptors.

• Filter SHOULD NOT descriptors.

• Filter GENERAL INCONSISTENCIES.

Filtering Sub-policies:

• Examine the presence and location of mandatory descriptors in the session level of

SDP message. The included rules can be further categorized into 3 sub-policies,

namely “MUST APPEAR”, “MUST NOT APPEAR”, and “MUST HAVE”.

• Examine the number of elements per descriptor.

• Examine the length and/or the type of the elements per descriptor.
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Set of currently implemented rules in the SDP parser per policy and sub-

policy

MUST

1. “ =” A space Must Not appear in the left side of the equal sign.

2. “= ” A space Must Not appear in the right side of the equal sign.

3. “ = ” A space Must Not appear in the left and the right side of the equal sign.

4. The “c=” descriptor Must appear.

5. The “s= ” descriptor Must appear at most once in the session level.

6. The “i= ” descriptor Must appear at most once in the session level.

7. The “u= ” descriptor Must appear at most once in the session level.

8. The “H261” codec Must appear for video media.

9. The “H264” codec Must appear for video media.

10. The “H264-RCD0” codec Must appear for video media.

11. The “H264-SVC” codec Must appear for video media.

12. The “DV” codec Must appear for video media.

13. The “u= ” descriptor Must appear before the first “m” one.

14. The “e= ” descriptor Must appear before the first “m” one.

15. The “H261” codec Must have a clock rate equal to 90000.

16. The “H264” codec Must have a clock rate equal to 90000.

17. The “H264-RCD0” codec Must have a clock rate equal to 90000.

18. The “H264-SVC” codec Must have a clock rate equal to 90000.

19. The “DV” codec Must have a clock rate equal to 90000.
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SHOULD NOT & NOT RECOMMENDED

1. Permanent sessions Should Not be used.

2. Unbounded sessions Should Not be used.

3. “k=” descriptor is Not Recommended.

4. “b=X-” descriptor is Not Recommended.

GENERAL INCONSISTENCIES

1. RTP payload number “0” is used for audio.

2. No need for an “a=rtpmap:0” attribute.

3. No need for an “a=fmtp:0” attribute.

4. RTP payload number “1” is RESERVED. It cannot be used.

5. RTP payload number “2” is RESERVED. It cannot be used.

6. RTP payload number “3 to 18” is used only for audio.

7. No need for an “a=rtpmap:” attribute for RTP payloads with numbers “3-18”.

8. No need for an “a=fmtp:” attribute for RTP payloads with numbers “3-18”.

9. RTP payload numbers “19 to 24” are either RESERVED or UNASSIGNED. They

cannot be used.

10. RTP payload numbers “25 to 26” are used for video.

11. No need for an “a=rtpmap:” attribute for RTP payloads with numbers “25-26”.

12. No need for an “a=fmtp:” attribute for RTP payloads with numbers “25-26”.

13. RTP payload number “27” is either RESERVED or UNASSIGNED. It cannot be

used.

14. RTP payload numbers “28” is used for video.

15. No need for an “a=rtpmap:” attribute for RTP payloads with number “28”.
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16. No need for an “a=fmtp:” attribute for RTP payloads with numbers “28”.

17. RTP payload numbers “29” is used for video.

18. No need for an “a=rtpmap:” attribute for RTP payloads with number “29”.

19. No need for an “a=fmtp:” attribute for RTP payloads with numbers “29”.

20. RTP payload numbers “30” is used for video.

21. No need for an “a=rtpmap:” attribute for RTP payloads with number “30”.

22. No need for an “a=fmtp:” attribute for RTP payloads with numbers “30”.

23. RTP payload numbers “33” is used for audio/video.

24. No need for an “a=rtpmap:” attribute for RTP payloads with number “33”.

25. No need for an “a=fmtp:” attribute for RTP payloads with numbers “33”.

26. RTP payload numbers “31” is used for audio/video.

27. No need for an “a=rtpmap:” attribute for RTP payloads with number “31”.

28. No need for an “a=fmtp:” attribute for RTP payloads with numbers “31”.

29. RTP payload numbers “32” is used for audio/video.

30. No need for an “a=rtpmap:” attribute for RTP payloads with number “32”.

31. No need for an “a=fmtp:” attribute for RTP payloads with numbers “32”.

32. RTP payload numbers “34” is used for audio/video.

33. No need for an “a=rtpmap:” attribute for RTP payloads with number “34”.

34. No need for an “a=fmtp:” attribute for RTP payloads with numbers “34”.

35. Codec “G7291” must be used for audio.

36. Codec “VC1” must be used for video.

37. RTP payload numbers “35 to 71” are either RESERVED or UNASSIGNED. They

cannot be used.

38. RTP payload numbers “72 to 76” are either RESERVED or UNASSIGNED. They

cannot be used.
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39. RTP payload numbers “77 to 95” are either RESERVED or UNASSIGNED. They

cannot be used.

40. RTP payload numbers “96 to 127” a=rtpmap is not contained in the m line.

41. RTP payload numbers “96 to 127” fmtp is not contained in the m line.

42. The sixth argument in the “o” must exist in the SIP headers.

43. Codec “VC1” must have 2 arguments.

44. Codec “G7221” must have 2 arguments.

45. Check if “o” line contains 6 arguments.

46. RTP payload numbers “>127” are out of range.

47. If the “VC1 fmtp” attribute is present, it Must contain one of the following profile

values: “profile=0”, “profile=1”, “profile=2”.

48. If the “VC1 fmtp” attribute, is present, it Must contain one of the following level

values: “level=1”, “level=2”, “level=3”.

49. Codec “VC1” must have a clock rate equal to 90000.

50. Codec “G7221” clock rate is either equal to “16000” or “32000”.

51. Codec “G7221” must have a clock rate equal to “24000” “32000” assuming a sample

rate equal to “16000”.

52. Codec “G7221” must have a clock rate equal to “32000” “48000” assuming a sample

rate equal to “32000”.

53. Codec “G7221” must have a bit rate which is multiple of 400.

54. Codec “G7221” must have one of the values mentioned in rules 50, 51, 52 for the

clock rate. Otherwise the value is out of range.

55. The clock rate for codec “G7291” must be “8000”, “12000”, “14000”,“16000”, “18000”,

“20000”, “22000”, “24000”, “26000”, “28000”, “30000” or “32000”.

56. The clock rate for codec “L20” must be “8000”, “11025”, “16000”,“22050”, “24000”,

“32000”, “44100” or “48000”.
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57. The clock rate for codec “L24” must be “8000”, “11025”, “16000”,“22050”, “24000”,

“32000”, “44100” or “48000”.

58. A bigger number of “rtpmap” attributes than RTP payloads exists in the SIP body.

59. The “a=orient” attribute can receive the following values: “portrait”, “landscape”,

“seascape”.

60. Check the transport protocol in the m line. It should be equal to one of the

following values: “udp”, “RTP/AVP”, “RTP/SAVP”.

61. An m line should contain one of the following values: “audio”, “video”, “application”,

“text”, “message”.

62. Problem in the start and or end time in the “t” line.

63. The length of the “t” line must be equal to 2.

64. The length of the “c” line must be equal to 3.

65. The length of the “v” line must be equal to 1.

66. The length of the “s” line must be equal to 1.

67. The first argument in the “c” line must be equal to “IN”.

68. The second argument in the “c” line must be equal to “IP4”.

69. The second argument in the “v” line must be equal to “0”.

70. The first argument in the “o” line must be equal to the username or equal to “-”.

71. The second argument in the “o” line must be 10 digits.

72. The third argument in the “o” line must be 10 digits.

73. The fourth argument in the “o” line must be equal to “IN”.

74. The fifth argument in the “o” line must be equal to “IP4”.

75. The first argument in the “t” line must be 10 digits.

76. The second argument in the “t” line must be 10 digits.

77. The port number must be between “1024” and “65535”.
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