
University of the Aegean
Department of Information and Communication Systems Engineering

Artificial Intelligence Laboratory

Adaptive Strategies for Solving Constraint
Satisfaction Problems

Thanasis Balafoutis

Submitted in total fulfilment of the requirements
of the degree of Doctor of Philosophy

June 2011

Abstract
A major challenge in constraint programming is to develop efficient

generic approaches to solve instances of the constraint satisfaction prob-
lem (CSP). In recent years, adaptive approaches for solving CSPs have at-
tracted the interest of many researchers. General speaking, a strategy that
uses the results of its own search experience to modify its subsequent be-
havior does adaptive search.

In this dissertation we explore adaptive strategies for backtracking search
on various levels. First, we investigate adaptive search-guiding heuristics
for ordering variables in CSPs. These adaptive heuristics learn and use
information from every node explored in the search tree, whereas tradi-
tional static and dynamic heuristics only use information about the initial
and current nodes. We then perform a wide empirical evaluation of the
proposed variable ordering heuristics and compare them with the current
state-of-the-art variable ordering strategies.

Concerning constraint propagation which is used as an inference mech-
anism in order to simplify a problem so as to make it easier to solve, we
explore adaptive strategies for ordering the different revisions performed
when enforcing arc consistency algorithms.

Next, we propose adaptive branching heuristics for splitting the search
tree. The application of these heuristics results in an adaptive branching
scheme. Experiments with instantiations of the proposed generic heuris-
tics confirm that search with adaptive branching outperforms search with
a fixed branching scheme on a wide range of problem.

Finally, we propose a new a generic approach for branching where the
variable’s domains are grouped into sets by using the scores assigned to
values by a value ordering heuristic, and a clustering algorithm from ma-
chine learning.

In general, this dissertation contributes to the design and implementa-
tion of adaptive and autonomous constraint solvers that have the ability to
advantageously modify modelers decisions that typically in mainstream
CP solvers are taken prior to search.

Acknowledgements
First of all, I would like to express my deeply felt gratitude to my super-

visor Professor Kostas Stergiou for his warm encouragement, thoughtful
guidance and friendship. I feel blessed to have worked with him and I
have greatly benefited from his knowledge, experience and personality.

My special thanks go also to Professor Efstathios Stamatatos for his
kindly help on many procedural issues concerning my PhD studies and
for his helpful discussion on clustering algorithms.

I am grateful to Professors fr. George Anagnostopoulos, George Pav-
los and Emmanuel Sarris from Democritus University of Thrace for their
unselfish hospitality in their laboratories during my stay in Xanthi.

I also warmly thank my fellow student Anastasia Paparrizou for her
help and support.

Finally, I thank the Greek Ministry of Education for their generous sup-
port.

This work is dedicated to my wife Christina and to our children. With-
out their love and support it would not have been possible.

Declarations
Part of the material presented in this thesis has been previously pub-

lished in conference, journal and workshop papers. We now give details.

Parts of Chapter 3 are included in the following papers:

[1] T. Balafoutis and K. Stergiou. On conflict-driven variable ordering
heuristucs. In Proceedings of the ERCIM workshop - CSCLP, 2008.

[2] T. Balafoutis and K. Stergiou. Conflict directed variable selection
strategies for constraint satisfaction problems. In Proceedings of the
6th Hellenic Conference on Artificial Intelligence (SETN), pages 29–38,
2010.

Parts of Chapter 4 are included in the following papers:

[3] T. Balafoutis and K. Stergiou. Experimental evaluation of modern
variable selection strategies in constraint satisfaction problems. In
Proceedings of the 15th RCRA workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion., 2008.

[4] T. Balafoutis and K. Stergiou. Evaluating and Improving Modern
Variable and Revision Ordering Strategies in CSPs. Fundamenta In-
formaticae, 102(3-4):229–261, 2010.

Parts of Chapter 5 are included in the following papers:

[5] T. Balafoutis and K. Stergiou. Exploiting constraint weights for
revision ordering in arc consistency algorithms. In Proceedings of
the ECAI-2008 workshop on Modeling and Solving Problems with Con-
straints, 2008.

[4] T. Balafoutis and K. Stergiou. Evaluating and Improving Modern
Variable and Revision Ordering Strategies in CSPs. Fundamenta In-
formaticae, 102(3-4):229–261, 2010.

Parts of Chapter 6 can be found in:

[6] T. Balafoutis and K. Stergiou. Adaptive branching for constraint
satisfaction problems. In Proceedings of the ECAI’10, pages 855–860,
2010.

Parts of Chapter 7 can be found in:

[7] T. Balafoutis, A. Paparrizou, and K. Stergiou. Experimental Evalu-
ation of Branching Schemes for the CSP. In Proceedings of the TRICS
workshop at CP-2010, pages 1–12, 2010.

LIST OF KNOWN CITATIONS

Citations for paper [1]:

1. J.Vion and S. Piechowiak. Handling Heterogeneous Constraints in
Revision Ordering Heuristics. In Proceedings of the TRICS workshop at
CP-2010, 2010.

2. B. Bontoux. Techniques hybrides de recherche exacte et approcheé:
application à des problèmes de transport. PhD Thesis, Universiti
D’Avignon, France, 2008.

3. C. Lecoutre. Constraint Networks Techniques and Algorithms. IS-
TE/Wiley 2009.

Citations for paper [5]:

1. A. Zanarini. Exploiting global constraints for search and propaga-
tion. PhD Thesis, Université de Montréal, Canada, 2010.

2. M. D. Moffitt. On the modelling and optimization of preferences in
constraint-based temporal reasoning. Artificial Intelligence, 2010.

3. C. Lecoutre. Constraint Networks Techniques and Algorithms. IS-
TE/Wiley 2009.

ii

Citation for paper [3]:

1. A. Zanarini. Exploiting global constraints for search and propaga-
tion. PhD Thesis, Université de Montréal, Canada, 2010.

Other Publications

1. T. Balafoutis, and K. Stergiou. Algorithms for stochastic CSPs. In
Proceedings of CP-2006, pages 44–58, 2006.

2. T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh. Improving
the Performance of maxRPC. In Proceedings of CP-2010, pages 69–83,
2010.

3. T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh. New Algo-
rithms for of max Restricted Path Consistency. Constraints (accepted
with minor revisions).

iii

Contents

1 Introduction 1
1.1 Our contributions . 4
1.2 Structure and content . 5

2 Formal Background 8
2.1 Constraint satisfaction problems 8
2.2 Constraint propagation . 9

2.2.1 Arc Consistency . 10
2.2.2 Max Restricted Path Consistency 12

2.3 Backtracking search algorithms 13
2.4 Variable and value ordering heuristics 16
2.5 Branching schemes . 17
2.6 Restarts . 18
2.7 Modern complete CP solvers 18
2.8 Our complete and generic CSP solver 20

2.8.1 The architecture . 21

3 Variable Selection Strategies 23
3.1 Static ordering . 23
3.2 Dynamic ordering . 24
3.3 Impact-based search strategies 26
3.4 Conflict-driven variable selection strategies 27

3.4.1 Using constraint weighting 27
3.4.2 Random probing . 28
3.4.3 Discussion . 29
3.4.4 Constraints responsible for value deletions 31
3.4.5 Constraint weight aging 33
3.4.6 Fully assigned weights 34

4 Empirical Evaluation of Variable Selection Strategies 38
4.1 Benchmarks’ description . 38

4.1.1 Real-world Instances 39
4.1.2 Patterned instances . 40

CONTENTS

4.1.3 Academic instances . 41
4.1.4 Boolean instances . 43
4.1.5 Quasi-random instances 43
4.1.6 Random instances . 44

4.2 Experiments with conflict-driven VOHs 45
4.3 Experimental Evaluation of modern VOHs 50

4.3.1 Details on the evaluated heuristics 51
4.3.2 RLFAP instances . 52
4.3.3 Structured and patterned instances 54
4.3.4 Random instances . 56
4.3.5 Non-binary instances 57
4.3.6 Boolean instances . 57
4.3.7 The effect of restarts on the results 59
4.3.8 Using random value ordering 62

4.4 A general summary of the results 63

5 Adaptive Revision Ordering in Propagation Algorithms 66
5.1 Introduction . 67
5.2 Background . 68

5.2.1 AC-3 variants . 69
5.2.2 Overview of revision ordering heuristics 72

5.3 Revision ordering heuristics based on constraint weights . . 74
5.4 Experiments with revision ordering heuristics 77
5.5 Dependency of conflict-driven heuristics on the revision or-

dering . 81

6 Adaptive Branching for CSPs 85
6.1 Introduction . 86
6.2 Branching schemes . 87
6.3 Comparing 2-way to d-way Branching 90

6.3.1 Using dom and dom/ddeg as VOHs 92
6.3.2 Using conflict-driven VOHs 94
6.3.3 Using the impact VOH 99
6.3.4 Maintaining a Stronger Level of Consistency 99
6.3.5 General discussion . 105

ii

CONTENTS

6.4 Heuristics for Adaptive Branching 107
6.5 Experiments with Adaptive Branching 109

6.5.1 Tuning Heuristic Hsdiff (e) 110
6.5.2 MAC with dom/wdeg 112
6.5.3 MAC with dom/wdeg + aging 116
6.5.4 MAC with impact . 117
6.5.5 MmaxRPC with dom/wdeg 122
6.5.6 Statistical analysis . 126

6.6 Conclusions . 127

7 Set Branching 129
7.1 Introduction . 129
7.2 Alternative branching schemes 131
7.3 Clustering for Set Branching 133
7.4 Empirical evaluation . 134
7.5 Conclusions . 141

8 Conclusions and Future Work 142
8.1 Conclusions . 142
8.2 Future Work . 144

iii

List of Figures

2.1 Search tree for the 4-queens problem using simple backtrack. 14

4.1 A summary view of run times (left figures) and nodes vis-
ited (right figures), for dom/wdeg and impact heuristics (fig-
ures (a),(b)), “alldell” and impact heuristics (figures (c),(d)),
“fully assigned” and impact heuristics (figures (e),(f)). 65

6.1 Examples of search trees for the three branching schemes. . . 89
6.2 Mean search cost of solving the random instances as tight-

ness is increased. 2-way and d-way branching are compar-
atively depicted. In (a) with MAC and in (b) with MmaxRPC.103

6.3 Comparison of restricted 2-way and d-way branching. (a)
Solving time for the 100 random instance with tightness =
0.65, shorted in ascending order when MAC is used. (b)
Solving time for the 100 random instance with tightness =
0.1, 0.2 and 0.35 when MmaxRPC is used. 103

6.4 Visited nodes over increasing values of e for (a) scen11 RL-
FAP, (b) the series 12 instance and (c) the haystacks-05. (d)
the decline in the number of variable changes over increas-
ing values of e for the scen11 RLFAP. 111

6.5 (a) Mean search cost of solving random instances as tight-
ness is increased. 2-way and Hsdiff (0.1) are comparatively
depicted.(b) Comparison of the Hsdiff (0.1) and Hcadv(wdeg)

adaptive branching schemes. Solving time for the 100 ran-
dom instance with tightness = 0.5, shorted in ascending order.123

7.1 Examples of search trees for the three branching schemes. . . 132

List of Tables

4.1 Cpu times (t), and nodes (n) from frequency allocation prob-
lems. Best cpu time is in bold. 46

4.2 Results from the driver problem. Best cpu time is in bold. . . 47
4.3 Results from non-binary problems. Best cpu time is in bold. 47
4.4 Results from random problems. Best cpu time is in bold. . . 48
4.5 Averaged values for Cpu times (t), and nodes (n) from 6

different problem classes. Best cpu time is in bold. 48
4.6 Cpu times (t) from frequency allocation problems. Best cpu

time is in bold. The s and g prefixes stand for scen and
graph respectively. 53

4.7 Cpu times (t), and nodes (n) from structured and patterned
problems. Best cpu time is in bold. 55

4.8 Cpu times (t), and nodes (n) from random problems. Best
cpu time is in bold. 56

4.9 Cpu times (t), and nodes (n) from problems with non-binary
constraints. Best cpu time is in bold. 58

4.10 Cpu times (t), and nodes (n) from boolean problems. Best
cpu time is in bold. 59

4.11 Cpu times for the three selected restart policies: without
restarts, arithmetic restarts and geometric restarts. Best cpu
time is in bold. 61

4.12 Cpu times for the two different value orderings: lexicographic
and random. Best cpu time for each ordering is in bold. . . . 62

5.1 Cpu times (t), constraint checks (c), number of list revisions
(r) and nodes (n) from frequency allocation problems (hard
instances) using arc oriented propagation. The s prefix stands
for scen instances. Best cpu time is in bold. 79

5.2 Cpu times (t), constraint checks (c), number of list revisions
(r) and nodes (n) from frequency allocation problems (hard
instances) using variable oriented propagation. The s prefix
stands for scen instances. Best cpu time is in bold. 80

LIST OF TABLES

5.3 Cpu times (t), constraint checks (c), number of list revisions
(r) and nodes (n) from structured problems using variable
oriented propagation. Best cpu time is in bold. 81

5.4 Cpu times (t), constraint checks (c), number of list revisions
(r) and nodes (n) from random problems using variable ori-
ented propagation. Best cpu time is in bold. 82

5.5 The computed variances for the three conflict-driven heuris-
tics. Best values is in bold. 84

6.1 CPU times(t) in seconds and nodes(n) for the three branch-
ing schemes using the VOH dom. 92

6.2 CPU times(t) in seconds and nodes(n) for the three branch-
ing schemes using the VOH dom/ddeg. 93

6.3 Cpu times (t), and nodes (n) from indicative instances when
MAC is used with dom/wdeg and dom/wdeg + aging. Best cpu
time is in bold. 95

6.4 Mean cpu times (t), and nodes (n) from binary structured
and patterned problems using MAC with dom/wdeg and dom/wdeg
+ aging. Best cpu time is in bold. 97

6.5 Mean cpu times (t), and nodes (n) from non-binary struc-
tured problems using MAC with dom/wdeg and dom/wdeg +
aging. Best cpu time is in bold. 98

6.6 Cpu times (t), and nodes (n) from indicative instances when
MAC is used with impact. Best cpu time is in bold. 100

6.7 Mean cpu times (t), and nodes (n) from binary structured
and random problems using MAC with impact. Best cpu
time is in bold. 101

6.8 Mean cpu times (t), and nodes (n) from non-binary struc-
tured problems using MAC with impact as VOH. Best cpu
time is in bold. 101

6.9 Cpu times (t), and nodes (n) from indicative instances using
MAC and MmaxRPC with dom/wdeg as VOH. Best cpu
times are in bold. 104

vi

LIST OF TABLES

6.10 Mean cpu times (t), and nodes (n) from binary structured
and patterned problems using MAC and MmaxRPC with
dom/wdeg as VOH. Best cpu times are in bold. 106

6.11 CPU times (t) in seconds, nodes (n), and variable changes
(vc) for 2-way, restricted 2-way, and the adaptive branching
schemes with the dom/wdeg VOH. 113

6.12 Mean cpu times (t), and nodes (n) from binary structured
and patterned problems using MAC with dom/wdeg. The
best cpu time is given in bold. 115

6.13 Mean cpu times (t), and nodes (n) from non-binary struc-
tured problems using MAC with dom/wdeg as VOH. Best
cpu time is in bold. 116

6.14 CPU times (t) in seconds, nodes (n) and variable changes
(vc) for 2-way and the adaptive branching schemes using
the dom/wdeg + aging VOH. 118

6.15 Mean cpu times (t), and nodes (n) from binary structured
and patterned problems using MAC with dom/wdeg + aging
as VOH. Best cpu time is in bold. 119

6.16 Mean cpu times (t), and nodes (n) from non-binary struc-
tured problems using MAC with dom/wdeg + aging as VOH.
Best cpu time is in bold. 119

6.17 CPU times (t) in seconds, nodes (n) and variable changes
(vc) for 2-way and the adaptive branching schemes using
the impact VOH. 120

6.18 Mean cpu times (t), and nodes (n) from binary structured
and random problems using MAC with impact. Best cpu
time is in bold. 121

6.19 Mean cpu times (t), and nodes (n) from non-binary struc-
tured problems using MAC with impact. Best cpu time is in
bold. 122

6.20 CPU times (t) in seconds, nodes (n) and variable changes
(vc) for 2-way and the adaptive branching schemes using
MmaxRPC with dom/wdeg as VOH. 124

vii

LIST OF TABLES

6.21 Mean cpu times (t), and nodes (n) from binary structured
and patterned problems using MmaxRPC with dom/wdeg
as VOH. Best cpu times are in bold. 125

6.22 Paired t-test measurements for evaluation of the significance
of the experimental results. The first group corresponds al-
ways to 2-way branching, while the second group is the
Hsdiff or the Hcadv. Statistically significant t-values are in
bold. 127

7.1 Cpu times (t), and nodes (n) from specific instances. Cpu
times are in seconds. The best result for each instance is
given in bold. 137

7.2 Average speed-up (positive values) or slow-down (negative
values) achieved by 2-way branching compared to the other
branching methods. Cpu time (t) in seconds and visited
nodes (n) have been measured. 138

7.3 % categorization of all tried instances according to the per-
formance of the branching methods compared to 2-way branch-
ing. 139

7.4 Paired t-test measurements for evaluation of the significance
of the experimental results. 2-way branching is compared
with the other branching schemes. 140

viii

If your daily life seems poor, do not
blame it; blame yourself, tell yourself that
you are not poet enough to call forth its
riches.

R. M. Rilke 1
Introduction

Constraint Satisfaction Problems (CSPs) involve finding a value for each
one of a set of problem variables where constraints specify that some sub-
sets of values cannot be used together. They can model a wide range of
combinatorial problems and have many applications in artificial intelli-
gence, operations research, programming languages, databases and other
areas of computer science. Common applications include scheduling, ver-
ification, design, configuration and games [38].

As a simple example of constraint satisfaction, consider a sports league
scheduling problem, where we try to build the schedule of matches be-
tween teams (e.g. football teams). In this problem various constraints are
naturally revealed: i) Each team must play each other exactly twice (once
home and once away), ii) No team can play more than two consecutive
home or away matches, iii) The number of times that a team plays two
consecutive home or away matches must be minimum, iv) Teams that use
the same stadium cannot play home games at the same date, v) Games
between top teams must occur at certain dates (due to TV coverage).

Constraint solvers take a real-world problem like this, represented in
terms of decision variables and constraints, and search for a solution. A
solution is an assignment of a single value from its domain to each variable
such than no constraint is violated. A problem may have one, many, or
no solutions. A problem that has one or more solutions is satisfiable or
consistent. If there is no possible assignment of values to variables that
satisfies all the constraints, then the problem is unsatisfiable or inconsistent.

It has been shown that the CSP, in its general form, is NP-hard [59].

CHAPTER 1. INTRODUCTION

This means that it is unlikely that an efficient general-purpose algorithm
exists that does not have a worst-case time complexity exponential in the
size of the problem. However, in many practical applications, the in-
stances that arise have special structure that enable them to be solved more
efficiently [23].

Once a CSP has been identified and modeled there is a whole host of
problem solving techniques that have been developed for solving it [83].
In general, a CSP can be solved either systematically, as with backtrack-
ing, or using forms of local search which are typically incomplete. A back-
tracking search algorithm performs a depth-first traversal of a search tree,
where the branches out of a node represent alternative choices that may
have to be examined in order to find a solution, and the constraints are
used to prune subtrees containing no solutions. Basic backtrack search
builds up a partial solution by choosing values for variables until it reaches
a dead end, where the partial solution cannot be consistently extended.
When it reaches a dead end it undoes the last choice it made and tries an-
other. This is done in a systematic manner that guarantees that all possi-
bilities will be tried. It improves on simply enumerating and testing of all
candidate solutions by brute force in that it checks to see if the constraints
are satisfied each time it makes a new choice, rather than waiting until a
complete solution candidate containing values for all variables is gener-
ated. The backtrack search process is often represented as a search tree,
where each node (below the root) represents a choice of a value for a vari-
able, and each branch represents a candidate partial solution. Discovering
that a partial solution cannot be extended then corresponds to pruning a
subtree from consideration. Backtracking search algorithms typically are
complete. That is they guarantee that a solution will be found if one exists,
and can be used to show that a CSP does not have a solution or to find a
provably optimal solution.

Since backtracking search is not guaranteed to terminate within poly-
nomial time - in general there is no polynomial algorithm for CSPs - the
research community has spent a considerable amount of effort on maxi-
mizing the practical efficiency of backtracking search. Usually this is done
by combining backtracking search with constraint propagation mecha-

2

CHAPTER 1. INTRODUCTION

nisms to filter inconsistent values, and by making use of effective heuris-
tics to guide search. Regarding the latter, backtracking algorithms are typ-
ically guided by variable and value ordering heuristics and make use of a
branching scheme to divide the search tree while the algorithm traverses
it.

The objective of the work presented in this thesis is to investigate adap-
tive search strategies in order to increase the practical efficiency of back-
tracking search. General speaking, a strategy that uses the results of its
own search experience to modify its subsequent behavior does adaptive
search. In other words, a search-guiding strategy is said to be adaptive
when it makes choices that depend on the current state of the problem in-
stance an well as previous states. Thus, an adaptive strategy learns, in the
sense that it takes account of information concerning the subtrees already
been explored.

In problem solving, there exist several pure adaptive approaches which
are based on computational intelligence methods and techniques like ge-
netic algorithms, ant colony optimization, swarm intelligence, e.t.c. Also,
for local search, there exist some adaptive meta-heuristic approaches like
simulated annealing. But all these techniques are suitable and working
well only for specific problem classes like scheduling and timetabling.
None of these methods has been accepted as a robust general-purpose
method for CSPs. Therefore, their applicability is limited to specific prob-
lems. In addition, these methods are incomplete. That is they cannot guar-
antee that a solution will be found even if one exists and prove insolvabil-
ity.

On the other hand, general purpose constraint programming (CP) solvers
are based on backtracking search and they can be efficiently used to solve
a wide range of problems in AI and other areas of computer science. But
the mainstream CP solvers (like Ilog Solver [48], Gecode [74], Choco [52],
e.t.c.) do not include adaptive components in their search mechanisms.
The notion of adaptiveness, in these solvers, is restricted only to the usage
of certain variable ordering heuristics (like dom/wdeg and impacts).

Most of the CSP solvers are composed of three main components: i) a
modeling language, ii) a set of filtering algorithms for specialized (global)

3

CHAPTER 1. INTRODUCTION

constraints and iii) search strategies (algorithms and heuristics). Modeling
languages are used by the CSP solvers in order to provide a representation
of CP problems. That is, defining problem variables and their values, ex-
pressing the constraints, handling symmetries, defining viewpoints, e.t.c.
Filtering algorithms are based on properties of constraint networks. The
idea is to exploit such properties in order to identify some nogoods, where
a nogood corresponds to a partial assignment (i.e. a set of variable assign-
ments) that can not lead to any solution. Properties that allow identifying
nogoods of size 1 are called domain filtering consistencies. Search is used
to traverse the search space of a CSP in order to find a solution. For most of
the complete CSP solvers, it respectively corresponds to constraint prop-
agation and depth-first search with backtracking guided by some heuris-
tics. Our thesis is concerned with the third component of CSP solvers,
namely search strategies.

1.1 Our contributions

As we already mentioned, a search strategy for solving a CSP, use variable
and value ordering heuristics to guide search, and make use of a branching
scheme to divide the search tree. Also, it interacts with a propagation
queue for making inference and filtering the domains. These are, in a few
words, the topics that our work is concerned (except value ordering).

In this dissertation we explore adaptive strategies for backtracking search
on various levels. First, we investigate adaptive search-guiding heuris-
tics for ordering variables in CSPs [6], [8]. These adaptive heuristics learn
and use information from every node explored in the search tree, whereas
traditional static and dynamic heuristics only use information about the
initial and current nodes. We then perform a wide empirical evaluation
of the proposed variable ordering heuristic and compare them with the
current state-of-the-art variable ordering strategies [4], [9].

Concerning constraint propagation which is used as an inference mech-
anism in order to simplify a problem so as to make it easier to solve, we
explore adaptive strategies for ordering the different revisions performed
when performing constraint propagation [5], [9].

4

CHAPTER 1. INTRODUCTION

Next, we propose adaptive branching heuristics for splitting the search
tree. The application of these heuristics results in an adaptive branching
scheme. Experiments with instantiations of the proposed generic heuris-
tics confirm that search with adaptive branching outperforms search with
a fixed branching scheme on a wide range of problem [7].

Finally, we propose a new a generic approach for branching where the
variable’s domains are grouped into sets by using the scores assigned to
values by a value ordering heuristic, and a clustering algorithm from ma-
chine learning [2].

In general, the work of this thesis contributes to the design and im-
plementation of adaptive and autonomous constraint solvers that have
the ability to advantageously modify modeler’s decisions that typically
in mainstream CP solvers are taken prior to search.

1.2 Structure and content

The remainder of this thesis is divided into six Chapters. Chapter 2 con-
tains the basic core information for understanding this thesis. We formally
introduce Constraint Satisfaction Problems with the formalism that sur-
rounds them. We then introduce some basic constraint propagation con-
cepts that will be used in the following Chapters. These are generalized
arc consistency and max-restricted path consistency. Finally we present
lookahead backtracking search algorithms that apply different levels of
filtering after each decision.

In Chapter 3 we survey the literature on search-guiding heuristics. We
start with the static, or fixed, variable ordering heuristics that keep the
same ordering throughout search and then, we review dynamic variable
ordering heuristics. These heuristics take account of the current state of
the instance being solved. Next we present two adaptive heuristics that
are widely considered to be state-of-the-art. The first uses the concept of
impacts which measure the importance of a value assignment in terms of
the search space trimming caused through propagation, while the second
is based on recording information about failures in the form of constraint
weights. Finally, we introduce new adaptive conflict-directed heuristics

5

CHAPTER 1. INTRODUCTION

for complete backtrack search algorithms. By noting the constraint respon-
sible for each value deletion, it is possible to implement different weight-
ing strategies. We also use an aging mechanism, as in some SAT solvers,
which periodically divides the value of all weights by a constant, thereby
giving greater importance to conflicts discovered recently. Our last heuris-
tic tries to better identify contentious constraints by detecting all the pos-
sible conflicts after a failure.

In Chapter 4, we experimentally evaluate the most recent and power-
ful variable ordering heuristics, and new variants of them, over a wide
range of benchmarks. This experimental analysis is divided in two parts.
In the first part, we evaluate our new proposed conflict-driven adaptive
heuristics. Results from various random, academic and real world prob-
lems show that some of the proposed heuristics are quite competitive com-
pared to existing ones and in some cases they can increase efficiency. In
the second part, we experimentally evaluate the performance of the most
recent and powerful heuristics over a wide range of benchmarks, in order
to reveal their strengths and weaknesses. All these new heuristics have
been tested over a narrow set of problems in their original papers and
they have been compared mainly with older heuristics. Hence, there is
no comprehensive view of the relative strengths and weaknesses of these
heuristics.

The main propagation method used by CP solvers is arc consistency.
Coarse grained arc consistency algorithms operate by maintaining a list of
arcs (or variables) that records the revisions that are still to be performed.
It is well known that the performance of such algorithms is affected by the
order in which revisions are carried out. Based on our observation con-
cerning the interaction between conflict-driven variable ordering heuris-
tics and revision ordering heuristics, in Chapter 5, we extend the use of
failures discovered during search to devise new, efficient and adaptive
revision ordering heuristics. We show that these adaptive heuristics can
not only reduce the numbers of constraints checks and list operations, but
also cut down the size of the explored search tree. Results from various
benchmarks demonstrate that some of the proposed heuristics can boost
the performance of the conflict-driven heuristics up to 5 times.

6

CHAPTER 1. INTRODUCTION

In Chapter 6, we consider branching schemes for the CSP. Branch-
ing decisions repeatedly split the search tree into two or more subtrees.
We first make a detailed experimental comparison between the existing
fixed branching schemes under a variety of different variable ordering
heuristics. Next, we develop two generic heuristics that can be applied at
successful right branches once the variable ordering heuristic chooses to
branch on a variable other than the current one. At this point the heuristics
are used to decide whether the advice of the variable ordering heuristic
will be followed or not. The application of these heuristics results in an
adaptive branching scheme that dynamically switches between the fixed
branching schemes. Both of our heuristics can be used in tandem with
any backtracking search algorithm and variable ordering heuristic. The
first heuristic is based on measuring the difference between the scores that
the variable ordering heuristic assigns to its selected variable and the cur-
rent variable. The second heuristic is based on the use of a secondary
advisor to decide if the variable ordering heuristic will be followed or not.
Experiments with instantiations of the two generic heuristics confirm that
search with adaptive branching outperforms search with a fixed branch-
ing scheme on a wide range of problems.

In Chapter 7, we propose and study a generic set branching method
where the partition of a domain into sets is created using the scores as-
signed to values by a value ordering heuristic, and a machine learning
clustering algorithm.

Finally, we conclude in Chapter 8 with a recapitulation of the contribu-
tions of this thesis and the opportunities it presents for further research.

7

Do not spoil what you have by desiring
what you have not; but remember that
what you now have was once among the
things you only hoped for.

Epicurus 2
Formal Background

In this chapter we formally introduce Constraint Satisfaction Problems
with the formalism that surrounds them. We then introduce some basic
constraint propagation concepts that will be used throughout this thesis.
These are generalized arc consistency and max-restricted path consistency.
Finally we present lookahead backtracking search algorithms that apply
different levels of filtering after each decision.

2.1 Constraint satisfaction problems

A Constraint Satisfaction Problem (CSP) is defined as a tuple (X, D,C) where:
X = {x1, . . . , xn} is a set of n variables, D = {D(x1), . . . , D(xn)} is a set
of domains, one for each variable, with maximum cardinality d, and C =

{c1, . . . , ce} is a set of e constraints. Each constraint c is a pair (var(c), rel(c)),
where var(c) = {x1, . . . , xm} is an ordered subset of X , and rel(c) is a sub-
set of the Cartesian product D(x1)× . . .×D(xm) that specifies the allowed
combinations of values for the variables in var(c). Each constraint c, has
a scope which is the set of variables in the constraint. In this thesis, a bi-
nary constraint c with var(c) = {xi, xj} will be denoted by cij , and D(xi)

will denote the current domain of variable xi. A global constraint is a con-
straint that captures a relation between a non-fixed number of variables.
Each tuple τ ∈ rel(c) is an ordered list of values (a1, . . . , am) such that
aj ∈ D(xj),j = 1, . . . ,m. A tuple τ ∈ rel(ci) is valid iff none of the val-
ues in the tuple has been removed from the domain of the corresponding

CHAPTER 2. FORMAL BACKGROUND

variable.
The arity of a constraint is the number of variables in the scope of the

constraint. The degree of a variable xi, denoted by Γ(xi), is the number of
constraints in which xi participates.

A partial assignment is a tuple consisting pairs, each pair consisting of
an instantiated variable and the value that is assigned to it in the current
search node. A full assignment is one containing all n variables. A solution
to a CSP is a full assignment such that no constraint is violated.

The CSP is a generalization of the propositional satisfiability (SAT)
problem. SAT is the general problem of deciding whether or not a given
conjunctive normal form (CNF), called a SAT instance, is satisfiable. This
is one of the most studied problems because of its theoretical and practical
importance. SAT was also the first problem shown to be NP-complete.

2.2 Constraint propagation

Techniques and algorithms for solving CSPs belong mainly to two main
categories: inference and search [28, 34]. Inference methods aim to sim-
plify a problem so as to make it easier to solve, while preserving its se-
mantics, i.e. its set of solutions. Simplification can be achieved by trans-
forming the set of variables and constraints, or by discarding incompatible
combinations of values.

To apply inference methods on a CSP, local deductions are iteratively
performed until a fixed point is reached or more generally, a certain stop-
ping condition is met. Quite often in practice, a local inference is made
possible by reasoning from a single constraint, and corresponds to the re-
moval of a value belonging to the domain of a variable involved in this
constraint. Interestingly, as soon as a local inference is performed, the con-
ditions to trigger new inferences may hold, since variables are typically
shared by several constraints. This mechanism of propagating the results
of local inferences from constraints is called constraint propagation and is
achieved by filtering algorithms.

At the core of a finite domain constraint programming solver is a con-
straint propagation engine. Classically, constraint propagation is guided

9

CHAPTER 2. FORMAL BACKGROUND

by events concerning variables or constraints. In the context of generic fil-
tering, where a unique procedure is used no mater what the constraints
are, the only kind of events considered are when the domain of a variable
changes (i.e. when it loses one or more values). In the context of special-
ized filtering, CP solvers are using propagators for particular constraints.
They are usually implemented as specialized algorithms. The constraint
solver computes a fixed point of all propagators, maximizing the amount
of inference they can contribute. It then splits the problem and solves the
resulting smaller problems recursively.

2.2.1 Arc Consistency

A consistency, which is a general property of a constraint network, usually
indicates a certain level of local coherence. In most cases, a local consis-
tency is a property defined from particular subsets of variables and con-
straints. In contrast, global consistency is a precise property that refers to
the entire network, guaranteeing in particular that a solution exists.

Arc consistency is the oldest and most well-known way of propagating
constraints. This is indeed a very simple and natural concept that guaran-
tees every value in a domain to be consistent with every constraint.

Given a binary CSP (X,D,C) and a variable xi ∈ X , a value ai ∈ D(xi)

is arc consistent (AC) iff for every variable xj ∈ X , s.t. cij ∈ C, there exists
at least one value aj ∈ D(xj) s.t. the pair (ai,aj) satisfies cij . In this case we
say that aj is a support of ai on cij . That is, a support on a constraint is a tuple
that is both valid (i.e. can be build from current domains) and allowed by
this constraint. A variable is AC iff all values in its domain are AC. A
problem is AC iff there is no empty domain in D and all variables are AC.
Enforcing AC on a problem results in the removal of all non-supported
values from the domains of the variables.

The definition of arc consistency for non-binary constraints, usually
called generalized arc consistency (GAC) or domain consistency, is a direct
extension of the definition of AC. In a non-binary CSP a value ai ∈ D(xi)

is GAC iff for every constraint c, s.t. xi ∈ vars(c), there exists a valid tuple
τ ∈ rel(c) that includes the assignment of ai to xi [62, 60]. In this case τ

10

CHAPTER 2. FORMAL BACKGROUND

is a support of ai on constraint c. A variable is GAC iff all values in its
domain are AC. A problem is GAC iff there is no empty domain in D and
all variables are GAC.

A support check (consistency check) is a test to find out if a tuple sup-
ports a given value. In the case of binary CSPs a support check simply
verifies if two values support each other or not. The revision of a variable-
constraint pair (c, xi), with xi ∈ vars(c), verifies if all values in D(xi) have
support on c. In the binary case the revision of an arc (xi,xj) verifies if all
values in D(xi) have supports in D(xj). We say that a revision is fruitful if
it deletes at least one value, while it is redundant if it achieves no pruning.
A DWO-revision is one that causes a domain wipeout (DWO). That is, it
removes the last remaining value(s) from a domain.

AC-3

The most well-known algorithm for arc consistency is the one proposed
by Mackworth in [59] under the name AC3. It was initially proposed for
binary normalized networks (networks in which all constraints that share
the same scope are merged) but in [60] it was extended for GAC in arbi-
trary networks.

AC3 is the most commonly presented and used algorithm because of
its simple and natural structure. Algorithm 1 depicts the main procedure.
An arc is a variable pair (xi, xj) which corresponds to a directed constraint.
Hence, for each binary constraint cij involving variables xi and xj there
are two arcs, (xi, xj) and (xj, xi). Initially, the algorithm inserts all arcs in
the revision list Q. This list is usually implemented as a FIFO queue. Then,
each arc (xi, xj) is removed from the list and revised in turn. If any value in
D(xi) is removed when revising (xi, xj), all arcs pointing to xi (i.e. having
xi as second element in the pair), except (xi, xj), will be inserted in Q (if
not already there) to be revised. Algorithm 2 depicts function revise(xi, xj)
which seeks supports for the values of xi in D(xj). It removes those values
in D(xi) that do not have any support in D(xj). The algorithm terminates
when the list Q becomes empty.

In all the modern CP solvers the constraint propagation engine main-
tains a propagation list. However, the elements of the list may not be arc,

11

CHAPTER 2. FORMAL BACKGROUND

Algorithm 1 AC3
1: Q←{(xi, xj)} | cij ∈ C or cji ∈ C, i 6= j

2: while Q 6= ∅ do
3: select and delete an arc (xi, xj) from Q
4: if REVISE(xi, xj) then
5: Q← Q ∪ {(xk, xi)} | cki ∈ C, k 6= j

6: end if
7: end while

Algorithm 2 REVISE-3(xi, xj)

1: DELETE← false
2: for each a ∈ D(xi) do
3: if @ b ∈ D(xj) such that (a, b) satisfies cij then
4: delete a from D(xi)

5: DELETE← true
6: end if
7: end for
8: return DELETE

variables or constraints, like in the list Q presented in Algorithm 1. They
may be propagators for particular constraints (i.e. in solvers ILog [48] and
Gecode [74]). A propagator is a specialized filtering algorithm that may
be different for each constraint.

2.2.2 Max Restricted Path Consistency

Various local consistencies stronger than (G)AC have been proposed for
both binary and non-binary constraints [27, 11, 16]. One such example is
Max Restricted Path Consistency (maxRPC), a strong local consistency for
binary constraints introduced in 1997 by Debruyne and Bessiere [25]. A
value ai ∈ D(xi) is max restricted path consistent (maxRPC) iff it is AC and
for each constraint cij ∈ C there exists a value aj ∈ D(xj) that is an AC-
support of ai s.t. the pair of values (ai, aj) is path consistent (PC) [25]. A
pair of values (ai, aj) is PC iff for any third variable xk there exists a value

12

CHAPTER 2. FORMAL BACKGROUND

ak ∈ D(xk) s.t. ak is an AC-support of both ai and aj . In this case aj is a
PC-support of ai in xj and ak is a PC-witness for the pair (ai, aj) in xk. A
variable is maxRPC iff all its values are maxRPC. A problem is maxRPC
iff there is no empty domain in D and all variables are maxRPC.

Another consistency, which is build upon GAC and is stronger than
maxRPC, is the Singleton Arc Consistency (SAC) [26]. In SAC, each value
it turn is assigned to each variable in turn. After each assignment, GAC is
enforced and the satisfiability of the resulting constraint network is checked.

2.3 Backtracking search algorithms

An attempt to solve a constraint satisfaction problem instance generally
requires search. Complete solution methods for CSPs are based on depth-
first backtracking search. These methods explore the search space in a
systematic way and guarantee that a solution will be found if one exists,
or that unsatisfiability will be proved, if no solution exists.

To solve CSP instances, backtrack search has become the standard ap-
proach, mainly because it requires only a polynomial amount of space.
Backtrack search only needs to store the current search path being ex-
plored, because it seeks one solution at a time.

In the backtracking algorithm, the current variable is assigned a value
from its domain. This assignment is then checked against the current par-
tial solution; if any of the constraints between this variable and the past
variables is violated, the assignment is abandoned and another value for
the current variable is chosen. If all values for the current variable have
been tried, the algorithm backtracks to the previous variable and assigns it
a new value. If a complete solution is found, i.e. a value has been assigned
to every variable, the algorithm may terminate. If there are no solutions,
the algorithm terminates when all possibilities have been considered.

An example of a search tree built by the backtracking algorithm is
shown in Figure 2.1, using the 4-queens problem. The n-queens problem
requires placing n queens on an n × n chessboard in such a way that no
queen can take any other. Hence no two queens can be on the same row,
the same column or the same diagonal of the board. As a CSP, this problem

13

CHAPTER 2. FORMAL BACKGROUND

Figure 2.1: Search tree for the 4-queens problem using simple backtrack.

has 4 variables, representing the rows of the chessboard, and each variable
has domain {1, .., 4} representing the 4 columns. However, it is easier to
follow the progress of the search if the chessboard representation is used:
a Q on a particular square should be taken as meaning that the variable
corresponding to that row has been assigned the value corresponding to
that column. Deadends, where the algorithm has to backtrack to a previ-
ous choice, are marked by crosses, and the solution eventually found is
marked by a tick.

The backtracking algorithm only checks the constraints between the
current variable and the past variables.

An important technique for improving efficiency is to maintain a level
of local consistency during the backtracking search by performing con-
straint propagation at each node in the search tree. Whenever a new sub-
problem is created, by removing values from the domains of future vari-
ables which are inconsistent with the current assignment, the subproblem
is made arc consistent. This will remove further values from the domains
of future variables. This has two important benefits. First, removing in-

14

CHAPTER 2. FORMAL BACKGROUND

consistencies during search can dramatically prune the search tree by re-
moving many dead ends and by simplifying the remaining subproblem.
In some cases, a variable will have an empty domain after constraint prop-
agation; i.e., no value satisfies the unary constraints over that variable. In
this case, backtracking can be initiated as there is no solution along this
branch of the search tree. In other cases, the variables will have their do-
mains reduced. If a domain is reduced to a single value, the value of the
variable is forced and it does not need to be branched on in the future.
Thus, it can be much easier to find a solution to a CSP after constraint
propagation or to show that the CSP does not have a solution. Second,
some of the most important variable ordering heuristics make use of the
information gathered by constraint propagation to make effective variable
ordering decisions. As a result of these benefits, it is now standard for a
backtracking algorithm to incorporate some form of constraint propaga-
tion.

MAC [72], which is the backtrack search algorithm that maintains (gen-
eralized) arc consistency during search, is currently considered to be the
most efficient complete general-purpose approach to solving CSP instances.

Within MAC the solution process proceeds by iteratively interleaving
search phases and propagation phases. During the search phase a vari-
able is instantiated to a value of its domain. Then, in the propagation
phase, each constraint checks its consistency (i.e. whether it is feasible or
not). In case the constraint is not satisfied, it fails and backtrack occurs;
otherwise, constraint inference is performed and reflected on variable do-
mains. Constraint inference removes values from the variables domains
that are inconsistent with respect to the partial assignment built so far.
Every time a constraint reduces a variable domain, the other constraints
that include that variable have to propagate again until the fixed point is
reached, that is, no further can be inferred [30]. If, while achieving the
fixed point, one of the variables domains becomes empty, then the search
fails and it backtracks to reconsider the branching decision. After achiev-
ing the fixed point, a new search step is performed. The solution process
finishes when a solution is found, that is, a value is assigned to each vari-
able, or when one of the following conditions is achieved: the tree has

15

CHAPTER 2. FORMAL BACKGROUND

been fully explored without finding a solution, a time or a backtrack limit
has been reached.

Arc consistency is not the only propagation mechanism that can be
maintained during search. Stronger level of consistencies can also be used.
As an example, we will refer here the MmaxRPC search algorithm which
maintains maxRPC throughout search.

2.4 Variable and value ordering heuristics

A tree search algorithm for constraint satisfaction requires the order in
which variables are to be considered to be specified. Using different vari-
able ordering heuristics can drastically effect the efficiency of algorithms
solving a CSP instance. The ordering may be either a static ordering, in
which the order of the variables is specified before the search begins, and
is not changed thereafter, or a dynamic ordering, in which the choice of
next variable to be considered at any point depends on the current state of
the search.

A common variable ordering heuristic is based on what Haralick and
Elliott [44] termed the “fail-first” principle, which they explained as ”To
succeed, try first where you are most likely to fail”.

Having selected the next variable to assign a value to, a search algo-
rithm has to select a value to assign. As with variable ordering, unless
values are to be assigned simply in the order in which they appear in
the domain of each variable, we should decide how to choose the order
in which values should be assigned. A different value ordering will rear-
range the branches emanating from each node of the search tree. This is an
advantage if it ensures that a branch which leads to a solution is searched
earlier than branches which lead to dead ends, provided that only one so-
lution is required. If all solutions are required, or if the whole tree has to
be searched because there are no solutions, then the order in which the
branches are searched is immaterial.

In the example of Figure 2.1, where the search tree of the 4-queens
problem is depicted, variable ordering heuristic select variables in lexico-
graphic order. That is, initially put the first queen in the first row, then the

16

CHAPTER 2. FORMAL BACKGROUND

second queen in the second row and so on. The same lexicographic order-
ing is also used for ordering values. After a variable assignment, always
the first column is tried for placing the queen. If a constraint is violated,
the second column is tried next e.t.c. Using a different variable ordering
heuristic, simply means that at the top of the search tree the first queen is
tried to be placed in a row different than the first. Respectively, using a
different value ordering heuristic, a column different than the first will be
selected.

2.5 Branching schemes

From the early days of CSP research, search algorithms were usually im-
plemented using either a d-way or a 2-way branching scheme.

In 2-way branching, after a variable x with domain {a1, . . . , ad} is cho-
sen, its values are assigned through a sequence of binary choices [73]. The
first choice point creates two branches, corresponding to the assignment
of a1 to x (left branch) and the removal of a1 from the domain of x (right
branch).

An alternative branching scheme which was extensively used in the
past, and is still used by some solvers, is d-way branching. In this case,
after variable x is selected, d branches are built, each one corresponding to
one of the d possible value assignments of x. For example, the branching
scheme that is used in the 4-queens problem depicted in Figure 2.1 is the
d-way branching scheme.

Another technique that is sometimes used is dichotomic domain split-
ting [31]. This method proceeds by splitting the current domain of the se-
lected variable into two sets, usually based on the lexicographical ordering
of the values. In this way branching is performed on the two created sets
and the branching factor is reduced to two. Domain splitting is mostly
used on optimization problems and especially when the domains of the
variables are very large. Although domain splitting drastically reduces
the branching factor, it can result in a much deeper search tree since the
effects of propagation after a branching decision may be diminished.

17

CHAPTER 2. FORMAL BACKGROUND

2.6 Restarts

Restarting the search is an effective strategy in which the search process is
stopping and restarting from the scratch. A cutoff is usually used in order
to specify the stopping process. This may be the number of backtracks, the
number of wrong decisions, the number of seconds or any other relevant
measure.

Restart has been used to solve Boolean satisfaction problems. In par-
ticular it is used in the SAT solver Chaff [64] where variable and value
choices at the top of the tree are made randomly until a certain depth.

The basic idea behind the association of restart is to give equal chances
to all parts of the search space to be explored at the beginning of the search.

2.7 Modern complete CP solvers

A CSP solver is a program which deals with satisfiability of CSP instances.
It is said complete when it can prove that an instance is either satisfiable or
unsatisfiable. Most of the CSP solvers are composed of two main compo-
nents: Inference and Search. Inference is used to transform an instance into
an equivalent form which is simpler than the original one, while search is
used to traverse the search space of the instance in order to find a solu-
tion. For (most of the) complete CSP solvers, it respectively corresponds
to constraint propagation and depth-first search with backtracking guided
by some heuristics.

Modern complete CSP solvers like ILog solver [48], Gecode [74] and
Choco [52] offer a high-level modeling language and rich libraries of fil-
tering algorithms for specialized global constraints, search heuristics, sym-
metry breaking methods, etc. They also offer a clear separation between
the model and the solving machinery (providing both modeling tools and
innovative solving tools).

As an example of how a CSP problem can be modeled and solved with
a modern complete CSP solver, we will describe the well known 4-queens
problem using the Choco solver (which is written in Java). This model
for the 4-queens problem only involves binary constraints of differences

18

CHAPTER 2. FORMAL BACKGROUND

between integer variables. One can immediately recognize the 4 main ele-
ments of any Choco code. First of all, create the model object. Then create
the variables by using the Choco API (One variable per queen giving the
row (or the column) where the queen will be placed). Finally, add the
constraints and solve the problem.

Listing 2.1: The 4-queens problem modeled with Choco solver

i n t nbQ = 4 ;
/ / 1− C r e a t e t h e model
CPModel m = new CPModel () ;
/ / 2− C r e a t e t h e v a r i a b l e s
I n t e g e r V a r i a b l e [] q = Choco . makeIntVarArray (”Q” , nbQ , 1 , nbQ) ;
/ / 3− Pos t c o n s t r a i n t s
for (i n t i = 0 ; i < nbQ ; i ++) {

for (i n t j = i + 1 ; j < nbQ ; j ++) {
i n t k = j − i ;

m. addConstraint (Choco . neq (q [i] , q [j])) ;
m. addConstraint (Choco . neq (q [i] , Choco . plus (q [j] , k))) ;
m. addConstraint (Choco . neq (q [i] , Choco . minus (q [j] , k))) ;

}
}
/ / 4− C r e a t e t h e s o l v e r
CPSolver s = new CPSolver () ;
s . read (m) ;
s . se tGeometr i cRes tar t (1 4 , 1 . 5 d) ;
s . s e t F i r s t S o l u t i o n (t rue) ;
s . genera teSearchSt ra tegy () ;
s . a t tachGoal (new DomOverWDegBranchingNew (s , new IncreasingDomain ())) ;
s . launch () ;

Taking a closer look at the Listing 2.1, we can mention that the de-
cisions that modeler has to take are all static. They cannot change during
search. For example the java class DomOverWDegBranchingNew() selects
the dom/wdeg as variable ordering heuristic and 2-way branching as the
default branching scheme. These selections will be followed throughout
search.

19

CHAPTER 2. FORMAL BACKGROUND

A way to solve this problem, which is also a novel contribution of our
thesis, is to use adaptive methods that can adaptively change modeler de-
cisions throughout search. Modern CSP solvers in general they do not
use this kind of adaptive methods. The notion of adaptiveness is only
restricted to the selection of adaptive variable ordering heuristics.

2.8 Our complete and generic CSP solver

The constraint problem solving library used in all the experimental stud-
ies presented in this thesis is not an adaption or extension of an existing
solver, but a solver built from scratch. Various reasons led to the decision
to implement a new constraint programming system.

The existing constraint solvers have implemented a wide set of exist-
ing techniques and algorithms for handling and solving CSPs. A list of
constraint problem languages and solvers can be found at http://4c.ucc.ie
/web/ archive/solver.jsp. But in order to experimentally test and try new
research algorithms and ideas these solvers cannot directly be used. There-
fore, any existing solver would have to be modified.

Modification of the existing code is only possible for the constraint
problem solvers with an open source license. Most of those are very com-
plex systems with large amounts of code and features which are not rele-
vant to the requirements of our needs. To modify the code, one needs to
be familiar with it. Gaining familiarity with the code of any of the existing
implementations would be a huge and difficult task. Most of the surveyed
solvers do not have comprehensive documentation of the employed con-
cepts, algorithms, and implementation details. Often unit tests, which aid
understanding and enable regression testing, do not exist. Sometimes, the
documentation is outdated and the solver not actively maintained any-
more.

Choosing a solver to extend to fulfil the requirements at hand is not a
trivial task as well. This decision can only be made after evaluating the
code of the implementations and estimating the effort of implementing
the additional features. Gathering all the required information is a very
labor-intensive and time-consuming task.

20

CHAPTER 2. FORMAL BACKGROUND

The reasons stated above had the biggest influence on the decision to
implement a new solver from scratch. The basic data structures and algo-
rithms are easy to implement and not all of the sophisticated and difficult
algorithms are required. A custom implementation can furthermore be
integrated into the overall system architecture more easily. Different al-
gorithms can be evaluated and new concepts explored without needing
to investigate possible hidden effects of local changes on the solver as a
whole.

2.8.1 The architecture

Our solver is implemented as an object-oriented system, with classes rep-
resenting the core entities and concepts. Only the methods which are di-
rectly needed to interact are exposed, everything else is kept private to
the class. Where possible, interfaces are implemented to abstract concepts
from particular instantiations of them. The complexity of performing a
particular task is hidden in the implementation of the class performing it,
other classes which need it done do not need to worry about how it gets
done.

The object-oriented nature of the Java programming language, which
we have used, makes it possible to take advantage of all the points men-
tioned above. It is not intended to give here an exhaustive overview of the
classes or their methods, but rather to illustrate the general capabilities of
the system.

Our CSP solver is a generic solver in the sense that it can handle con-
straints of any arity. This solver essentially implements the MAC and
MmaxRPC search algorithms and supports a wide range of branching
schemes, variable and value ordering heuristics.

We have implemented the three most important branching schemes,
namely 2-way, d-way and dichotomic branching. Variable ordering can
be done with the following heuristics: dom, dom/ddeg, the majority of the
conflict-driven heuristics (dom/wdeg, random probing and our new heuris-
tics described in Section 3.4). We also support the impacts variable order-
ing heuristic and the heuristic proposed by Correia and Barahona [24].

21

CHAPTER 2. FORMAL BACKGROUND

From the value ordering heuristics, except from the lexicographic order-
ing, we have also implemented the Geelen’s promise heuristic [37]. Our
solver also supports the geometric restart policy.

Concerning the local consistency algorithms, our solver includes two
implementations of a generic GAC algorithm (GAC3 [60] and GAC3rm

[55]) and an implementation of maxRPC (maxRPC3rm [3]). Also, it in-
cludes an efficient algorithm for handling table constraints of large arities
[54].

Concerning the performance of our solver compared to two state-of-
the-art solvers, like Abscon 109 [56] and Choco [52], some preliminary
results showed that all three solvers visited roughly the same amount of
nodes, our solver was consistently slower than Abscon, but sometimes
faster than Choco. Note that the aim of our study is to fairly compare the
various algorithms and heuristics within the same solver’s environment
and not to build a state-of-the-art constraint solver. Although our imple-
mentation is reasonably optimized for its purposes, it lacks important as-
pects of state-of-the-art constraint solvers such as specialized propagators
for global constraints and intricate data structures.

22

Only those who will risk going too far can
possibly find out how far one can go.

T. S. Eliot 3
Variable Selection Strategies

The order in which variables are assigned by a backtrack search algorithm
has been recognized as a key issue for a long time. Using different vari-
able ordering heuristics can drastically effect the efficiency of algorithms
solving CSP instances.

In this chapter, we survey the literature on search-guiding heuristics.
We start with the static, or fixed, variable ordering heuristics that keep
the same ordering throughout search and then, we overview the dynamic
variable ordering heuristics. Next we present two adaptive heuristics that
can reasonably be considered to be state-of-the-art. The first uses the con-
cept of impacts which measure the importance of a value assignment in
terms of the search space trimming caused through propagation, while
the second is based on constraint weighting. Finally, we introduce new
adaptive conflict-directed heuristics for complete backtrack search algo-
rithms.

3.1 Static ordering

Static, or fixed, variable ordering heuristics (SVOs) keep the same ordering
throughout the search, using only structural information about the initial
state of search. The simplest such heuristic is lexico which orders variables
lexicographically. When variables are indexed by integers, lexico is usually
implemented so as to order the variables according to the value of their
index. If vars(P) = {x1, x2, ..., xn}, then lexico will select first x1, then x2,...

CHAPTER 3. VARIABLE SELECTION STRATEGIES

and finally xn.
The heuristic deg, which is also known as max degree, orders variables

in sequence of decreasing degree [29]. So variables with the highest initial
size of their neighborhood are selected first.

Other known static variable ordering heuristics are the min width heuris-
tic which chooses an ordering that minimizes the width of the constraint
network [35] and the min bandwidth heuristic which minimizes the band-
width of the constraint graph [89].

Static variable ordering heuristics are weak heuristics and nowadays
they are used very rarely.

3.2 Dynamic ordering

Dynamic variable ordering heuristics (DVOs) are considerably more ef-
ficient and have thus received much attention in the literature. These
heuristics are dynamic because their choices take into account information
about the current state of the problem at each point in search. They often
obey the fail-first principle originally introduced by Haralick and Elliott in
[44] i.e. “To succeed, try first where you are most likely to fail”.

The first well known dynamic heuristic, introduced by Haralick and
Elliott, was dom [44]. This heuristic chooses the variable with the small-
est remaining domain. The dynamic variation of deg, called ddeg selects
the variable with largest dynamic degree. That is, the variable that is con-
strained with the largest number of unassigned variables. This principle
comes from the simple observation that to find a solution quickly, it is
better to move at each step to the most promising subtree, primarily by
selecting a value that is most likely to participate in a solution. It is prefer-
able to avoid branching on a value that is globally inconsistent, because
this implies exploration of a fruitless subtree, which is clearly a waste of
time if there is a solution elsewhere.

By combining dom and deg (or ddeg), the heuristics called dom/deg and
dom/ddeg [14, 80] were derived. These heuristics select the variable that
minimizes the ratio of current domain size to static degree (dynamic de-
gree) and can significantly improve the search performance. Other dy-

24

CHAPTER 3. VARIABLE SELECTION STRATEGIES

namic heuristics, based on measures such as the constrainedness of the
problem, include the ones proposed in [40, 46]. These heuristics, although
conceptually elegant, require extra computation and have only been tested
on random problems.

When using variable ordering heuristics, it is a common phenomenon
that ties can occur. A tie is a situation where a number of variables are
considered equivalent by a heuristic. Especially at the beginning of search,
where it is more likely that the domains of the variables are of equal size,
ties are frequently noticed. A common tie breaker for the dom heuristic is
lexico, (dom+lexico composed heuristic) which selects among the variables
with smallest domain size the lexicographically first. Other known com-
posed heuristics are dom+deg [36], dom+ddeg [19, 79] and BZ3 [79].

Bessière et al. [12], have proposed a general formulation of DVOs
which integrates in the selection function a measure of the constrained-
ness of the given variable. These heuristics (denoted as mDVO) take into
account the variable’s neighborhood and they can be considered as neigh-
borhood generalizations of the dom and dom/ddeg heuristics. For instance,
the selection function for variable Xi is described as follows:

H}
a (xi) =

∑
xj∈Γ(xi)

(α(xi) } α(xj))

|Γ(xi)|2
(3.1)

where α(xi) can be any simple syntactical property of the variable such
as |D(xi)| or |D(xi)|

|Γ(xi)| and } ∈ {+,×}. Neighborhood based heuristics have
shown to be quite promising.

Correia and Barahona [24] proposed variable orderings, by integrating
Singleton Consistency propagation procedures with look-ahead heuris-
tics. This heuristic computes the reduction in the search space after the
application of Restricted Singleton Consistency (RSC) [69], for every value
of the current variable. Although this heuristic was firstly introduced to
break ties in variables with current domain size equal to 2, it can also be
used as a tie breaker for any other variable ordering heuristic.

Cambazard and Jussien [21] went a step further by analyzing where the
reduction of the search space occurs and how past choices are involved in
this reduction. This is implemented through the use of explanations. An

25

CHAPTER 3. VARIABLE SELECTION STRATEGIES

explanation consists of a set of constraints C ′ (a subset of the set C of the
original constraints of the problem) and a set of decisions dc1, ..., dcn taken
during search. An explanation of the removal of value a from variable v

can be written as:

C ′ ∧ dc1 ∧ dc2 ∧ ... ∧ dcn ⇒ v 6= a

Finally, Zanarini and Pesant [90] proposed constraint-centered heuristics
which guide the exploration of the search space toward areas that are
likely to contain a high number of solutions. These heuristics are based
on solution counting information at the level of individual constraints.
Although the cost of computing the solution counting information is in
general high, it has been shown that for certain widely-used global con-
straints, such information can be computed efficiently.

3.3 Impact-based search strategies

Inspired by integer programming, Refalo introduced an impact measure
with the aim of detecting choices which result in the strongest search space
reduction [70]. An impact is an estimation of the importance of a value
assignment for reducing the search space. Refalo proposes to character-
ize the impact of a decision by computing the Cartesian product of the
domains before and after the considered decision. The impacts of assign-
ments for every value can be approximated by the use of averaged values
at the current level of observation. If K is the index set of impacts observed
so far for assignment xi = α, I is the averaged impact:

I(xi = α) =

∑
k∈K

Ik(xi = α)

|K|
(3.2)

where Ik is the observed value impact for any k ∈ K.
The impact of a variable xi can be computed by the following equation:

I(xi) =
∑

α∈D(xi)

1− I(xi = α) (3.3)

26

CHAPTER 3. VARIABLE SELECTION STRATEGIES

An interesting extension of the above heuristic is the use of “node im-
pacts” to break ties in a subset of variables that have equivalent impacts.
Node impacts are the accurate impact values which can be computed for
any variable by trying all possible assignments.

3.4 Conflict-driven variable selection strategies

Dynamic weighting is an efficient mechanism for identifying hard parts
of combinatorial problems. It was first introduced to improve the per-
formance of local search methods. The breakout method [63], simply in-
creases the weights of all current nogoods (tuples corresponding to un-
satisfied constraints) whenever a local minimum is encountered, and then
uses these weights to escape from local minima. Another method, de-
vised independently [76], increments the weight of all clauses not satisfied
by the current assignment. This weight strategy has been shown to en-
hance dramatically the applicability of a randomized greedy local search
procedure (GSAT) for propositional satisfiability testing. Thornton [82]
has studied constraint weighting in the context of applying local search
to solve CSP instances, and has shown this weighting to be effective on
structured problems.

3.4.1 Using constraint weighting

Boussemart et al. [18], inspired from SAT (satisfiability testing) solvers
like Chaff [64], proposed conflict-driven variable ordering heuristics. In
these heuristics, a weight is assigned on every constraint. These constraint
weights are initialized to 1. And every time a constraint causes a failure
(i.e. a domain wipeout) during search, its weight is incremented by one.
Each variable has a weighted degree, which is the sum of the weights over
all constraints in which this variable participates. Formally, the weighted
degree of a variable is:

αwdeg(xi) =
∑
C∈C

weight[C] | xi ∈ V ars(C)∧ |FutV ars(C)| > 1 (3.4)

27

CHAPTER 3. VARIABLE SELECTION STRATEGIES

where FutV ars(C) denotes the uninstantiated variables of a constraint
C, weight[C] is its weight and V ars(C) the variables involved in C.

The weighted degree heuristic (wdeg) selects the variable with the largest
weighted degree. The current domain of the variable can also be incorpo-
rated to give the domain-over-weighted-degree heuristic (dom/wdeg) which
selects the variable with minimum ratio between current domain size and
weighted degree.

Both of these heuristics (especially dom/wdeg) have been shown to be
very effective on a wide range of problems. Their success is based on the
increment of the weights of constraints that are involved in hard subprob-
lems. Thus search will focus on the most important parts of the search
space.

3.4.2 Random probing

Grimes and Wallace in [43] and later in [86] proposed alternative conflict-
driven heuristics that consider value deletions as the basic propagation
events associated with constraint weights. These alternatives include the
following strategies:

• constraint weights are increased by the size of the domain reduction
leading to a DWO (alldel heuristic).

• whenever a domain is reduced in size during constraint propagation,
the weight of the constraint involved is incremented by 1.

• whenever a domain is reduced in size, the constraint weights are
increased by the size of domain reduction.

The last two heuristics record constraints responsible for value dele-
tions and use this information to increase weights.

They also used a sampling technique called random probing where sev-
eral short runs of the search algorithm are made to initialize the constraint
weights prior to the final run.

28

CHAPTER 3. VARIABLE SELECTION STRATEGIES

3.4.3 Discussion

As stated in Section 3.4.1, the wdeg and dom/wdeg heuristics associate a
counter, called weight, with each constraint of a problem. These counters
are updated during search whenever a DWO occurs. If, for example, the
MAC algorithm is used for systematic search and AC-3 is applied at every
step, a DWO for a variable xi will be identified inside the revise procedure
of Algorithm 3. In line 7, the weight of variable xi will be increased by one,
each time a DWO is detected.

Algorithm 3 REVICE-3(xi, xj) : boolean

1: for each a ∈ D(xi) do
2: if @b ∈ D(xj) such that cij(a, b) then
3: delete a from D(xi)

4: end if
5: end for
6: if D(xi) = ∅ then
7: weight[cij] + +

8: end if
9: return D(xi) 6= ∅

Although experimentally it has been shown that these heuristics are
extremely effective on a wide range of problems, in theory it seems quite
plausible that they may not always assign weights to constraints in an ac-
curate way. This has been noticed by Grimes and Wallace who proposed
alternative heuristics that increase the weight of a constraint whenever it
causes value deletions. However, the obtained heuristics did not demon-
strate any advantage compared to dom/wdeg in practice [43]. To better
illustrate our conjecture about the accuracy in assigning weights to con-
straints, we give the following example.

Example 1 Assume we are using MAC-3 (i.e. MAC with AC-3) to solve a
CSP (X, D,C) where X includes, among others, the three variables {xi, xj, xk},
all having the same domain {a, b, c, d, e}, and C includes, among others,
the two binary constraints cij , cik. Also assume that a conflict-driven vari-

29

CHAPTER 3. VARIABLE SELECTION STRATEGIES

able ordering heuristic (e.g. dom/wdeg) is used, and that at some point dur-
ing search AC tries to revise variable xi. That is, it tries to find supports for
the values in D(xi) in the constraints where xi participates. Suppose that
when xi is revised against cij), values {a, b, c, d} are removed from D(xi)

(i.e. they do not have a support in D(xj)). Also suppose that when xi is
revised against cik, value {e} is removed from D(xi) and hence a DWO oc-
curs. Then, the dom/wdeg heuristic will increase the weight of constraint
cik by one but it will not change the weight of cij .

It is obvious from this example that although constraint cij removes
more values from D(xi) than cik, its important indirect contribution to the
DWO is ignored by the heuristic. In contrast, note that the alldel heuris-
tic of [43] will indeed increase the weight of constraint cij as soon as this
constraint deletes values from D(xi).

A second point regarding potential inefficiencies of wdeg and dom/wdeg
has to do with the order in which revisions are made by the AC algorithm
used. Coarse-grained AC algorithms, like AC-3, use a revision list of arcs,
variables, or constraints, depending on the implementation, to propagate
the effects of variable assignments. It has been shown that the order in
which the elements of the list are selected for revision affects the over-
all cost of search. Hence a number of revision ordering heuristics have
been proposed [85, 17]. In general, revision ordering and variable ordering
heuristics have different tasks to perform when used in a search algorithm
like MAC. Before the appearance of conflict-driven heuristics there was no
way to achieve an interaction with each other, i.e. the order in which the
revision list was organized during the application of AC could not affect
the decision of which variable to select next (and vice versa). The contri-
bution of revision ordering heuristics to the solver’s efficiency was limited
to the reduction of list operations and constraint checks.

However, when a conflict-driven variable ordering heuristic like dom/weg
is used, then there are cases where the decision of which arc (or variable)
to revise first can affect the variable selection. To better illustrate this in-
teraction we give the following example.

Example 2 Assume that we want to solve a CSP (X, D,C) using a conflict-
driven variable ordering heuristic (e.g. dom/wdeg), and that at some

30

CHAPTER 3. VARIABLE SELECTION STRATEGIES

point during search the following AC revision list is formed: Q={(x1), (x3),
(x5)}. Suppose that revising x1 against constraint c12 leads to the DWO of
D(xi), i.e. the remaining values of x1 have no support in D(x2). Sup-
pose also that the revision of x5 against constraint c56 leads to the DWO
of D(x5), i.e. the remaining values of x5 have no support in D(x6). De-
pending on the order in which revisions are performed, one or the other
between the two possible DWOs will be detected. If a revision ordering
heuristic R1 selects x1 first then the DWO of D(x1) will be detected and
the weight of constraint c12 will increased by 1. If some other revision or-
dering heuristic R2 selects x5 first then the DWO of D(x5) will be detected,
but this time the weight of a different constraint (c56) will increased by 1.
Although the revision list includes two variables (x1, x5) that can cause
a DWO, and consequently two constraint weights can be increased (c12,
c56), dom/wdeg will increase the weight of only one constraint depending
on the choice of the revision heuristic. Since constraint weights affect the
choices of the variable ordering heuristic, R1 and R2 can lead to different
future decisions for variable instantiation. Thus, R1 and R2 may guide
search to different parts of the search space.

From the above example it becomes clear that known heuristics based
on constraint weights are quite sensitive to revision orderings and their
performance can be affected by them.

In order to overcome the above described weaknesses that the weighted
degree heuristics seem to have, we next describe a number of new variable
ordering heuristics which can be seen as variants of wdeg and dom/weg.

3.4.4 Constraints responsible for value deletions

The first enhancement to wdeg and dom/wdeg tries to alleviate the prob-
lem illustrated in Example 1. To achieve this, we propose to record the
constraint which is responsible for each value deletion from any variable
in the problem. In this way, once a DWO occurs during search we know
which constraints have, not only directly, but also indirectly contributed
to the DWO. Based on this idea, when a DWO occurs in a variable xi, con-
straint weights can be updated in the following three alternative ways:

31

CHAPTER 3. VARIABLE SELECTION STRATEGIES

• for every constraint that is responsible for any value deletion from
D(xi), we increase its weight by one.

• for every constraint that is responsible for any value deletion from
variable D(xi), we increase its weight by the number of value dele-
tions.

• for every constraint that is responsible for any value deletion from
variable D(xi), we increase its weight by the normalized number of
value deletions. That is, by the ratio between the number of value
deletions and the size of D(xi).

The new variable ordering heuristics derived will be referred to as H1,
H2 and H3 respectively. Using these alternative ways to increase con-
straint weights, we can compute the weighted degree of any variable xi as
in [18] using the following equation:

αwdeg(xi) =
∑

weightH1,2,3[C] | xi ∈ vars(C) ∧ |FutV ars(C)| > 1 (3.5)

where FutV ars(C) denotes the uninstantiated variables in vars(C). The
current domain of the variable can also be incorporated to give the heuris-
tics: dom/wdegH1, dom/wdegH2 and dom/wdegH3. The way in which the
new heuristics update constraint weights is displayed in the following ex-
ample.

Example 3 Assume that when solving a CSP (X, D,C), the domain of
some variable e.g. x1 is wiped out. Suppose that D(x1) initially was
{a, b, c, d, e} and each of the values was deleted because of constraints:
{c12, c12, c13, c12, c13} respectively. The proposed heuristics will assign dif-
ferent constraint weights as follows: H1(weightH1[c12]=weightH1[c13] = 1),
H2(weightH2[c12] = 3, weightH2[c13] = 2) and H3(weightH3[c12] = 3/5,
weightH3[c13] = 2/5)

Heuristics H1, H2, H3 are closely related to the three heuristics pro-
posed by Grimes and Wallace [43]. However, the weights in [43] are in-
creased during constraint propagation in each value deletion for all vari-
ables. Our proposed heuristics differ by increasing constraints weights

32

CHAPTER 3. VARIABLE SELECTION STRATEGIES

only when a DWO occurs. As discussed in [43], DWOs seem to be par-
ticularly important events in helping identify hard parts of the problem.
Hence we focus on information derived from DWOs and not just any
value deletion.

Algorithm 4 describes the implementation of the modified revision
function for AC-3, depicting the new proposed heuristics. The two dimen-
sional table responsibleConstraint in used to record the constraint which is
responsible for any value deletion (line 4). In line 8, we show how the
three alternative heuristics can increase constraint weights.

Algorithm 4 newReviceH(xi, xj) : boolean

1: for each a ∈ D(xi) do
2: if @b ∈ D(xj) such that cij(a, b) then
3: delete a from D(xi)

4: responsibleConstraint[xi][a] = cij

5: end if
6: end for
7: if D(xi) = ∅ then
8: ∀ cij ∈ responsibleConstraint[xi][D(xi)] weight[cij] + + //(H1)

for each a ∈ D(xi)

weight[resposibleConstraint[xi][a]] + + //(H2)
weight[responsibleConstraint[xi][a]]+ = 1/sizeof(D(xi)) //(H3)

end for
9: end if

10: return D(xi) 6= ∅

3.4.5 Constraint weight aging

Most of the state-of-the-art SAT solvers like BerkMin [41] and Chaff [64],
use the strategy of weight “aging”. In such solvers, each variable is as-
signed with a counter that stores the number of clauses responsible for at
least one conflict . The value of this counter is updated during search. As
soon as a new clause responsible for the current conflict is derived, the
counters of the variables, whose literals are in this clause, are incremented

33

CHAPTER 3. VARIABLE SELECTION STRATEGIES

by one. The values of all counters are periodically divided by a small con-
stant greater than 1. This constant is equal to 2 for Chaff and 4 for BerkMin.
In this way, the influence of ”aged” clauses is decreased and preference is
given to recently deduced clauses.

Inspired from SAT solvers, we propose here the use of ”aging” to pe-
riodically age constraint weights. As in SAT, constraint weights can be
”aged” by periodically dividing their current value by a constant greater
than 1. The period of divisions can be set according to a specified number
of backtracks during search. With such a strategy we give greater impor-
tance to recently discovered conflicts. The following example illustrates
the improvement that weight ”aging” can contribute to the solver’s per-
formance.

Example 4 Assume that in a CSP (X, D,C) with D={0,1,2}, we have a
ternary constraint c123 ∈ C for variables x1, x2, x3 with disallowed tuples
{(0,0,0), (0,0,1), (0,1,1), (0,2,2)}. When variable x1 is set to a value differ-
ent from 0 during search, constraint c123 is not involved in a conflict and
hence its weight will not increase. However, in a branch that includes as-
signment x1 = 0, constraint c123 becomes highly ”active” and a possible
DWO in variable x2 or x3 should increase the importance of constraint c123

(more that a simple increment of its weight by one). We need a mechanism
to quickly adopt changes in the problem caused by a value assignment.
This can be done, by ”aging” the weights of the other previously active
constraints.

Aging constraint weights can be used in conjunction with any of the
newly proposed heuristics and any alternative aging strategy can be fol-
lowed.

3.4.6 Fully assigned weights

When arc consistency is maintained during search using a coarse grained
algorithm like AC-3, a revision list is created after each variable assign-
ment. This list consists of variables, arcs, or constraints, depending on the
particular implementation of the AC algorithm. Hereafter we assume a

34

CHAPTER 3. VARIABLE SELECTION STRATEGIES

variable-oriented implementation which is the most efficient alternative
[17]. The variables that have been inserted into the list are removed and
revised in turn. The revision process stops either if the list becomes empty
or if a DWO is detected. When the latter situation occurs for some vari-
able xi, a weighted-based heuristic like dom/wdeg will increase the weight
of the constraint that was responsible for the wipeout of D(xi), and search
will continue by backtracking to the most recent choice point. Any vari-
able that remained in the revision list pending revision will be discarded,
and a new revision list will be created after the next variable assignment
is made.

However, it is possible that some of the remaining variables in the revi-
sion list would also cause a DWO if they were selected for revision before
xi i.e., through the use of a different revision ordering heuristic. This leads
to a natural presumption that constraints weights are not always fully as-
signed. That is, each time a DWO occurs when AC is applied during
search, only one constraint weight is increased, whereas plausibly, more
than one constraint could lead to the DWO. To better illustrate this situa-
tion, consider again Example 2 where there are two DWO-revisions in the
revision list but only one is detected, and as a result, the weight of only
one constraint is incremented.

The question here is how to identify any additional DWO-revisions
and consequently increase more than one constraint weight in each call to
AC. Is this possible, considering that the variable revisions stop after the
first DWO-revision is encountered? We propose here a mechanism that
fully assigns weights to all constraints that are potentially responsible for
DWOs.

When the first DWO-revision is detected in the revision list, we in-
crease the weight of the responsible constraint by one and then we “freeze”
the search procedure and we “undo” the deletions that this revision has
made. Then, we continue by revising the remaining variables that are still
in the revision list, until the next DWO-revision is identified or the revision
list is emptied. If a new DWO-revision is detected, we increase the appro-
priate constraint weight and ”undo” the last value deletions. This process
continues until the revision list becomes empty. After that, we ”redo” the

35

CHAPTER 3. VARIABLE SELECTION STRATEGIES

deletions of the first DWO-revision detected and we continue search by
instantiating the next appropriate variable.

Although this heuristic theoretically seems to be promising, its exper-
imental behavior was not the expected. Experiments on a wide variety
of real world problems showed that the variables that remain in the revi-
sion list after the detection of the first DWO are very unlikely to cause a
new DWO. After a statistical analysis on many real problems we observed
that on average, the 96.5% of the revisions are redundant (they achieve
no pruning), the 3.3% are fruitful (they delete at least one value) and only
the 0.2% are DWO revisions. Thus, in practice we can say that it is almost
impossible to identify a second DWO in a revision list.

However, it is also observed that in the same revision list, different
revision ordering heuristics can lead to the DWOs of different variables.
To better illustrate this, we give the following example.

Example 5 Assume that we use two different revision ordering heuristic
R1, R2 to solve a CSP (X, D,C), and that at some point during search the
following AC revision list is formed for R1 and R2. R1:{X1,X2}, R2:{X2,X1}.
We also assume the following: a) The revision of X1 deletes some values
from the domain of X1 and it causes the addition of the variable X3 in the
revision list. b) The revision of X2 deletes some values from the domain of
X2 and it causes the addition of the variable X4 in the revision list. c) The
revision of X3 deletes some values from the domain of X1. d) The revision
of X4 deletes some values from the domain of X2. e). A DWO occurs after
a sequential revision of X3 and X1. f) A DWO occurs after a sequential
revision of X4 and X2. Considering the R1 list, the revision of X1 is fruitful
and adds X3 in the list (R1:{X3,X1}). The sequential revision of X3 and
X1 leads to the DWO of X1. Considering the R2 list, the revision of X2 is
fruitful and adds X4 in the list (R2:{X4,X2}). The sequential revision of X4

and X2 leads to the DWO of X2.

From the above example it is clear that although only one DWO is iden-
tified in a revision list, both X1 and X2 can be responsible for this. In R1

where X1 is the DWO variable, we can say that X2 is also a “potential”
DWO variable i.e. it would be a DWO variable, if the R2 revision ordering

36

CHAPTER 3. VARIABLE SELECTION STRATEGIES

was used. The question that arises here is: how can we identify the ”po-
tential” DWO variables that exists on a revision list? A first observation
that can be helpful in answering this question is that “potential” DWO
variables are among variables that participate in fruitful revisions.

Based on this observation, we propose here a new conflict-driven vari-
able ordering heuristic that takes into account the “potential” DWO vari-
ables. This heuristic increases the weights of constraints that are responsi-
ble for a DWO by one (as wdeg heuristic does) and also, only for revision
lists that lead to a DWO, increases by one the weights of constraints that
participate in fruitful revisions. Hence, to implement this heuristic we
record all variables that delete at least one value during the application of
AC. If a DWO is detected, we increase the weight of all these variables.

An interesting direction for future work can be a more selective identi-
fication of “potential” DWO variables.

37

Pleasure in the job puts
perfection in the work.

Aristotle 4
Empirical Evaluation of Variable

Selection Strategies

In this chapter, we experimentally evaluate the most recent and power-
ful variable ordering heuristics, and new variants of them, over a wide
range of benchmarks. This experimental analysis is divided in two parts.
In the first part, we evaluate the new proposed conflict-driven adaptive
heuristics which where presented in Chapter 3. In the second part, we
experimentally evaluate the performance of the most recent and power-
ful variable ordering heuristics over a wide range of benchmarks, in order
to reveal their strengths and weaknesses. Before presenting the empiri-
cal results we give some details about the benchmarks and the CSP solver
which was used throughout this study.

4.1 Benchmarks’ description

In recent years, the CP research community has collected many series of
structures and random instances from different backgrounds. One such
collection is represented and stored in XCSP 2.1 format [71] (an XML rep-
resentation of CSP instances) and allows researchers to control and repro-
duce experimental results based on them. All these series of instances can
be found in C. Lecoutre’s web repository (http://www.cril.univ-artois.fr/
∼lecoutre/benchmarks.html).

Throughout the experimental studies that are presented in this thesis,

CHAPTER 4. EMPIRICAL EVALUATION

we have used many benchmarks taken from this web repository. We have
used a wide range of CSP instances taken from different backgrounds.
These instances can be divided in the following categories: instances from
real world applications, instances following a regular pattern and involv-
ing a random generation, academic instances which do not involve any
random generation, random instances containing a small structure, pure
random instances and, finally, instances which involve only Boolean vari-
ables. The selected instances include both binary and non-binary con-
straints.

In the following sections we give a brief description of all the bench-
marks that we have used in our experimental studies.

4.1.1 Real-world Instances

The Radio Link Frequency Assignment Problem

The Radio Link Frequency Assignment Problem (RLFAP) is the task of
assigning frequencies to a number of radio links so that a large number
of constraints are simultaneously satisfied and as few distinct frequencies
as possible are used. A number of modified RLFAP instances have been
produced from the original set of problems. These instances have been
translated into pure satisfaction problems after removing some frequen-
cies (denoted by f followed by a value)[20]. For example, scen11-f8 cor-
responds to the instance scen11 for which the 8 highest frequencies have
been removed.

The Driver Problem

This set of instances are taken from the Third International Planning Com-
petition [58]. Each problem involves sets of drivers, trucks, locations, and
packages. The goal is to deliver packages to different locations, and have
the drivers and trucks finish at specified destinations.

39

CHAPTER 4. EMPIRICAL EVALUATION

The Renault Problem

This is a CSP instance obtained from a Renault Megane configuration prob-
lem that has been converted from symbolic domains to numeric ones.
Interestingly, this instance, denoted by renault, involve large table con-
straints of high arity. The series modifiedRenault contains instances gen-
erated from the original configuration one.

4.1.2 Patterned instances

The Graph Coloring Problem

One of the most widely studied combinatorial problems is the Graph Col-
oring problem. Given a graph, and a set of colors, the problem is to color
the nodes such that no edge connects two nodes of the same color.

The Black Hole Problem

The Black Hole problem is the task of moving all cards of 17 fans of 3 cards
each to the center pile, the Black hole, which initially only contains the Ace
of Spades.

The QCP, QWH and BQWH Problems

The Quasi-group Completion problem (QCP) is the task of determining
whether the remaining entries of the partial Latin square can be filled in
such a way that we obtain a complete Latin square, ie. a full multiplication
table of a quasi-group. The Quasi-group With Holes problem (QWH) is
a variant of the QCP as instances are generated in such a way that they
are guaranteed to be satisfiable. BQWH instances are satisfiable balanced
quasi-group instances with holes.

The Primes Problem

The Primes instances are non-binary intensional instances. All instances
are satisfiable. The domains of the variables consist of prime numbers and
all constraints are linear equations. The coefficients and constants in the

40

CHAPTER 4. EMPIRICAL EVALUATION

equations are also prime numbers. These instances are interesting because
solving them using Gaussian elimination is polynomial, assuming that the
basic arithmetic operations have a time complexity of O(1). In reality this
assumption does not hold and the choice of prime numbers in the equa-
tions gives rise to large intermediate coefficients in the equations, making
the basic operations more time consuming.

The Haystacks Problem

The Haystacks instances are binary unsatisfiable instances. They are pa-
rameterized by their size. Instance haystacks-n.xml is the haystack in-
stance of size n. It has n × n variables and each variable has domain
{0, ..., n − 1}. The constraint graph is highly regular, consisting of n clus-
ters: one central cluster and n−1 outer clusters. Each cluster is an n-clique.
The outer clusters are connected to the central cluster by a single edge
(constraint). The instances were designed such that if the variables in the
central cluster have singleton domains, only one of the outer clusters con-
tains an inconsistency (this instance is the haystack). The instances were
designed such that “learning” to locate the haystack from past experience
is difficult. This was done as follows. The assignment to the variables
in the central cluster determines which outer cluster is the haystack. Dif-
ferent assignments to the variables in the central cluster lead to different
haystacks. The task then consists of finding the haystack and deciding that
it is inconsistent, thereby providing a proof that the current assignment to
the variables in the central cluster is invalid. If the structure of these in-
stances isn’t taken into account then solving them may take quite some
time when the size becomes large.

4.1.3 Academic instances

The All-Interval Series Problem

The all-interval series problem is the task of finding a vector s = (s1, ...,
sn), such that s is a permutation of {0, 1, ..., n − 1} and the interval vector
v = (|s2 − s1|, |s3 − s2|,|sn − sn−1|) is a permutation of {1, 2, ..., n − 1}.

41

CHAPTER 4. EMPIRICAL EVALUATION

Each instance is denoted by series-n.

The Golomb Ruler Problem

The Golomb Ruler problem is the task of putting n marks on a ruler of
length m such that the distance between any two pairs of marks is dis-
tinct. Each instance from the model involving ternary (resp. quaternary)
constraints is denoted by ruler-m-n-a3 (resp. ruler-m-n-a4).

The Chessboard Coloration Problem

The chessboard coloration problem is the task of coloring all squares of a
chessboard composed of r rows and c columns. There are exactly n avail-
able colors and the four corners of any rectangle extracted from the chess-
board must not be assigned the same color. Each instance is denoted by
cc-r-c-n.

The Langford Problem

The generalized version of the Langford problem is to arrange k sets of
numbers ranging from 1 to n, so that each appearance of the number m is
m numbers on from the last. Each instance is denoted by langford-k-n.

The Queens Problem

The n-queens puzzle is the problem of placing n chess queens on an n × n

chessboard so that none of them can capture any other using the standard
chess queen’s moves. The queens must be placed in such a way that no
two queens attack each other. Thus, a solution requires that no two queens
share the same row, column, or diagonal.

The Queen Attacking Problem

The Queen Attacking problem is the task of putting a queen and the n2

numbers 1, ..., n2, on a n×n chessboard so that no two numbers are on the
same cell, any number i + 1 is reachable by a knight move from the cell
containing i and the number of cells containing a prime number that are

42

CHAPTER 4. EMPIRICAL EVALUATION

not attacked by the queen is 0 (for satisfaction). Each instance is denoted
by queenAttacking-n.

The Queens-Knights Problem

The Queens-Knights problem is the task of putting on a chessboard of size
n × n, q queens and k knights such that no two queens can attack each
other and all knights form a cycle (when considering knight moves). In
one version of this problem (identified by “add”), a square of the chess-
board can be shared by both a queen and a knight and in another one
(identified by “mul”), it is not allowed. For the first version, each instance
is denoted by queensKnights-n-k-add while for the second one, it is denoted
by queensKnights-n-k-mul.

The Domino Problem

The domino problem, denoted domino-n-d, is binary and corresponds to
an undirected constraint graph with a cycle. More precisely, n denotes the
number of variables, the domains of which are {1, ..., d}, and there exists
n− 1 equality constraints Xi = Xi+1 (for all i ∈ {1, ..., n− 1}) and a trigger
constraint (X1 = Xn+1 ∧X1 < d) ∨ (X1 = Xn ∧X1 = d).

4.1.4 Boolean instances

The Dimacs Problem

These are sets of instances taken from the 2nd DIMACS Implementation
Challenge [49]:random 3-SAT instances (aim and dubois), 2-coloring prob-
lems (pret) and random SAT instances (jnh) with variable length clauses
(2-14 literals per clause).

4.1.5 Quasi-random instances

The Geometric Problem

The geometric instances are a kind of random instances generated as fol-
lows. Instead of a density parameter, a “distance” parameter, dst, is used

43

CHAPTER 4. EMPIRICAL EVALUATION

such that dst <= sqrt(2). For each variable, two coordinates are chosen
at random so the associated point lies in the unit square. Then for each
variable pair, (x, y), if the distance between their associated points is less
than or equal to dst, the arc (x, y) is added to the constraint graph. Con-
straint relations are created in the same way as they are for homogeneous
random CSP instances. Each instance is prefixed by geom.

The Composed Problem

Model B describes a class of CSPs as < n, k, d, t > where n is the number of
its variables, k the maximum domain size, d the density, and t the tightness
[42]. Consider < n, k, d, t > s < n′, k′, d′, t′ > d′′ t′′, a class of composed
problems. Each composed problem has a central component described by
< n, k, d, t >, s satellites, each described by < n′, k′, d′, t′ >, and links with
density d′′ and tightness t′′ between its central component and its satellites.

The Ehi Problem

A 3-SAT instance is a SAT instance such that each clause contains exactly
3 literals. Two series of 3-SAT unsatisfiable instances have been converted
into CSP instances using the dual method as described in [1]. These series
are denoted by ehi-85 and ehi-90.

4.1.6 Random instances

Model B

A class of random CSP instances of model B is denoted as:< k, n, d, p1, p2 >,
where k denotes the arity of each constraint, n the number of variables, d

the size of each domain, p1 the number of constraints and p2 the number
of disallowed tuples of each relation.

Model D

A class of random CSP instances of model D is denoted as:< k, n, d, p1, p2 >,
where k denotes the arity of each constraint, n the number of variables, d

44

CHAPTER 4. EMPIRICAL EVALUATION

the size of each domain, p1 the number of constraints and p2 the the con-
straint tightness in terms of probability.

Model RB

Given a set V of n variables, first, we select with repetition m = r · n ·
ln(n) random constraints (r > 0 is a constant), each of which is formed by
selecting k different variables at random from V , where k ≥ is an integer
(k = 2 for binary CSPs). Next, for each constraint, we uniformly select
without repetition q = p · d · k incompatible (unallowed) tuples of values
(i.e. nogoods), where d = n ·α is the domain size of each variable (α > 0 is
a constant) [88].

4.2 Experiments with conflict-driven VOHs

In this section we experimentally investigate the behavior of the new pro-
posed conflict variable ordering heuristics, presented in Chapter 3 on sev-
eral classes of real, academic and random problems.

We compare our proposed heuristics with dom/wdeg, which is one the
most efficient general purpose heuristics. Regarding the heuristics of Sec-
tion 3.4.1, we only show results from dom/wdegH1, dom/wdegH2 and dom/wdegH3,
denoted as H1, H2 and H3 for simplicity, which are more efficient than the
corresponding versions that do not take the domain size into account. We
have also include in this experimental comparison results from the alldel
heuristic, described in Section 3.4.2.

In our tests we have used the following measures of performance: cpu
time in seconds (t) and number of visited nodes (n). For these experi-
ments we have used d-way branching, lexicographic value ordering and
restarts. Concerning the restart policy, the initial number of allowed back-
tracks for the first run has been set to 10 and at each new run the number
of allowed backtracks increases by a factor of 1.5. Regarding heuristics
that employ weight aging, we have selected to periodically decrease all
constraint weights by a factor of 2, with the period set to 20 backtracks.
All experiments were run on an Intel dual core PC T4200 2GHz with 3GB

45

CHAPTER 4. EMPIRICAL EVALUATION

RAM.
Our search algorithm is MAC-3, denoting MAC with AC-3, coupled

with a variable-oriented propagation scheme. Concerning revision order-
ing inside AC-3, we have used the standard FIFO queue.

Table 4.1: Cpu times (t), and nodes (n) from frequency allocation problems. Best cpu
time is in bold.

Instance dom/wdeg H1 H2 H3 aging fully alldel
dom/wdeg Assigned

scen1-f8 t 2,4 2,1 2,2 2,5 2,4 2,4 2,4
(sat) n 1.141 1.038 1.041 1.128 1.134 1.096 1.129

scen1-f9 t 3,6 3,5 3,6 3,6 2,8 3,8 2,9
(unsat) n 1.055 1.029 1.002 1.128 1.040 777 984

scen2-f25 t 6,3 8,4 9,2 7,3 5,8 8,1 7,4
(unsat) n 2.434 2.682 2.735 2.204 1.912 2.571 2.553

scen3-f10 t 1,43 1,49 2 2,2 1,46 2 2
(sat) n 598 670 787 850 591 773 972

scen3-f11 t 6,7 3,7 5,4 7,8 5,5 6,1 4
(sat) n 1.613 801 1.199 1.929 1.263 1.274 880

graph2-f25 t 8,6 2,2 2,8 6,4 3,1 2,7 1,9
(unsat) n 6.701 1.351 2.003 4.303 2.218 1.611 1.292

graph8-f10 t 18,6 15,6 11,8 21,4 7,7 6,7 18,7
(sat) n 9.705 6.559 5.234 9.905 3.631 2.984 8.634

graph9-f10 t 9,8 6,14 6,7 8,3 6,11 8,9 10,6
(unsat) n 3.120 1.640 1.966 2.513 1.750 2.671 3.292

graph14-f27 t 34 26,6 12,3 8,7 92,5 88,7 86,1
(sat) n 28.087 24.037 10.482 7.242 66.534 82.947 86.375

graph14-f28 t 21,4 1,8 29,3 10,8 27,6 36,5 0,4
(unsat) n 16.006 1.078 22.367 9.051 16.017 29.491 199

Table 4.1 shows results from some real world RLFAP instances. The
proposed heuristics display in general a slightly better performance than
dom/wdeg, which achieves the best cpu time only on instance scen3-f10.
The “aging” version of the dom/wdeg heuristic achieves the best cpu time
in three instances and heuristics H1 and alldel in two instances. The “fully
assigned” heuristic has a better performance on graph8-f10 instance.

In Table 4.2 we present results from structured instances belonging to
the driver benchmark class, while in Table 4.3 we give results from non-
binary problems. The results are similar to the ones from RLFAPs shown
in Table 4.1. We must notice here that the dom/wdeg heuristic does not
achieve any win, in all the tested experiments. H1, H2 and H3 heuristics

46

CHAPTER 4. EMPIRICAL EVALUATION

Table 4.2: Results from the driver problem. Best cpu time is in bold.
Instance dom/wdeg H1 H2 H3 aging fully alldel

dom/wdeg Assigned
driverlogw-02c t 2 1,5 1,4 2,1 1,1 3,4 2,3

(sat) n 1.859 1.553 1.446 1.910 1.009 2.713 1.771
driverlogw-04c t 1,9 0,7 0,7 2,1 1,7 0,5 0,3

(sat) n 1.946 663 663 2.007 1.357 456 300
driverlogw-05c t 1,3 1,8 1,3 2,4 1,1 1,4 0,6

(sat) n 1.026 1.473 978 1.894 823 794 506
driverlogw-08cc t 13,7 4,9 9,5 17,2 7,2 1,4 2,7

(sat) n 8.759 2.582 5.503 8.657 1.915 674 1.365
driverlogw-08c t 13,4 3,3 2,9 10,7 3,1 1,4 1,3

(sat) n 8.759 2.582 5.503 8.657 1.915 674 1.365
driverlogw-09 t 124,1 36,3 38,6 46,3 30,4 123,1 132,3

(sat) n 55.166 12.768 15.091 20.246 5.010 27.830 27.247

also do not achieve any win in driver problems but they behave well on
non-binary instances.

Table 4.3: Results from non-binary problems. Best cpu time is in bold.
Instance dom/wdeg H1 H2 H3 aging fully alldel

dom/wdeg Assigned
series-11 t 1,6 1,1 5,4 14,9 1 12,6 4,2

(sat) n 2.728 19.689 9.287 25.973 1.280 27.229 9.613
series-12 t 15,9 14,8 12,9 5,6 11,7 48,6 0,04

(sat) n 19.651 22.127 16.200 7.576 11.710 87.036 25
series-13 t 5,8 1,4 128,1 31,8 41,7 98,5 169,6

(sat) n 5.504 1.322 128.793 28.347 37.744 133.911 251.466
series-14 t 316,4 172,3 86,1 78,5 9,9 501,2 0,06

(sat) n 291.836 133.665 80.207 67.371 6.390 487.564 36
ruler-17-7-a3 t 10,8 3,72 4,1 3,9 7,6 3,77 6

(unsat) n 1.378 685 683 666 1.097 658 1.007
ruler-25-8-a3 t 69 97,7 53,2 64,4 130 77,2 76,1

(unsat) n 3.587 5.957 2.552 3.618 6.413 4.882 3.779
ruler-34-8-a3 t 152,3 633,6 78,5 43,2 273,7 93,7 151,9

(sat) n 4.192 24.813 2.090 1.084 6.813 2.962 3.811
ruler-34-9-a3 t 1.409 1.177 900 744 1.634 1.070 678

(unsat) n 36.662 29.166 21.343 16.926 32.297 32.045 13.364

In Table 4.4 we present results from random problems. One can notice
here the bigger cpu time variation among all heuristics. A possible expla-
nation for this diversity is the lack of structure that random instances have.
Heuristic aged-H1 displays the best performance in three cases, while the
rest of the heuristics at most in one.

47

CHAPTER 4. EMPIRICAL EVALUATION

Table 4.4: Results from random problems. Best cpu time is in bold.
Instance dom/wdeg H1 H2 H3 aging fully alldel

dom/wdeg Assigned
frb30-15-1 t 14,9 14,3 51,2 50,4 11,1 38,1 9,8

(sat) n 8.103 7.895 26.796 26.371 5.632 20.832 5.497
frb30-15-2 t 58,2 68,9 115 114 170,3 86,9 80,2

(sat) n 32.625 38.212 63.839 63.753 89.505 49.417 46.993
frb30-15-4 t 105,9 111,9 76,3 79,4 35,2 26,9 43,3

(sat) n 58.185 60.145 42.601 42.417 19.128 14.927 25.200
frb30-15-2-mgd t 66,9 32,8 60,9 59,6 59,4 31 20,6

(sat) n 36.036 17.679 31.559 30.852 30.511 16.030 11.410
frb30-15-3-mgd t 20,7 10,7 3,7 55,2 4,8 9,3 2,8

(sat) n 11.082 5.496 1.849 28.140 2.368 4.717 1.427
frb30-15-5-mgd t 16,1 16,2 17,9 23,7 15,3 22,1 24,6

(sat) n 8.132 7.691 8.956 11.903 7.409 10.801 12.472

Table 4.5: Averaged values for Cpu times (t), and nodes (n) from 6 different problem
classes. Best cpu time is in bold.

Problem dom/wdeg H1 H2 H3 aged fully allDel
Class dom/wdeg assigned

RLFAP scensMod t 1,9 2 2,2 2,3 1,7 2,2 2,2
(13 instances) n 734 768 824 873 646 738 809

RLFAP graphMod t 9,1 5,2 6,1 5,5 12,9 13,4 11,1
(12 instances) n 6168 3448 4111 3295 8478 11108 9346

Driver t 22,4 7 7,8 11,6 6,4 18,8 20
(11 instances) n 10866 2986 3604 5829 1654 4746 4568
Interval Series t 34 19,4 23,4 13,3 6,5 66,4 17,4
(10 instances) n 32091 18751 23644 13334 5860 74310 26127
Golomb Ruler t 274,9 321,4 173,1 143,4 342,1 208,3 154,4
(6 instances) n 7728 10337 4480 3782 7863 6815 3841

geo50-20-d4-75 t 62,8 174,1 72,1 95 69 57,6 76
(10 instances) n 15087 36949 16970 23562 15031 12508 18094

frb30-15 t 37,3 35,1 45,8 57,2 42,3 32,9 26,1
(10 instances) n 20176 18672 24326 30027 21759 17717 14608

48

CHAPTER 4. EMPIRICAL EVALUATION

Finally, in Table 4.5 we show averaged results from all the tested prob-
lem classes. The first two classes are from the RLFA Problem. For the
scensMod class we have run 13 instances and in this table we present the
averaged values for cpu time and nodes visited. Since these instances are
quite easy to solve, all the heuristics have almost the same behavior. The
aged version of the dom/wdeg heuristic has a slightly better performance.
For the graphMod class we have run 12 instances. Here heuristics H1, H2,
H3 that record the constraint which is responsible for each value dele-
tion display better performance. The third problem class is from another
real world problem, which is called Driver. In these 11 instances the aged
dom/wdeg heuristic has on average the best behavior. The next 10 instances
are from the non-binary academic problem “All Interval Series” and have
maximum constraint arity of 3. We must notice here that the aged dom/wdeg
heuristic, which has the best performance is five times faster compared to
dom/wdeg.

This good performance that the aged dom/wdeg heuristic has, is not
generic within different problem classes. This can be seen in the next aca-
demic problem class (the well known Golomb Ruler problem) where the
aged dom/wdeg heuristic, has the worst performance. The last two classes
are from the “geo”quasi-random instances (random problems which con-
tain some structure) and from the “frb” pure random instances that are
forced to be satisfiable. Here, although on average the fullyAssigned and
allDel heuristics have the best performance, within each class we observed
a big variation in cpu time among all the tested heuristics. A possible ex-
planation for this diversity is the lack of structure that random instances
have.

We must also comment that interestingly the dom/wdeg heuristic does
not achieve any win, in all the tested experiments. As a general comment
we can say that experimentally, all the proposed heuristics are competi-
tive with dom/wdeg and in many benchmarks a notable improvement is
observed.

49

CHAPTER 4. EMPIRICAL EVALUATION

4.3 Experimental Evaluation of modern VOHs

The aim of this second part of experiments is to evaluate the performance
of the most recent and powerful heuristics over a wide range of bench-
marks, in order to reveal their strengths and weaknesses. We compare here
conflict-driven variable ordering heuristics (dom/wdeg, alldel, random prob-
ing, fully assigned) with the impacts, node impacts and RSC heuristics. We
have also tried combinations of them. This is the first experimental study
in the literature where state-of-the-art heuristics like impacts and dom/wdeg
are compared exhaustively.

Most results were obtained using a lexicographic value ordering, but
we also evaluated the impact of random value ordering on the relative
performance of the heuristics. We employed a geometric restart policy
where the initial number of allowed backtracks for the first run was set
to 10 and at each new run the number of allowed backtracks increased by
a factor of 1.5. In addition, we evaluated the heuristics under a different
restart policy and in the absence of restarts. Since our solver does not yet
support global constraints, we have left experiments with problems that
include such constraints as future work.

In our experiments the random probing technique is run to a fixed
failure-count cutoff C = 40, and for a fixed number of restarts R = 50 (these
are the optimal values from [43]). After the random probing phase has
finished, search starts with the failure-count cutoff being removed and
the dom/wdeg heuristic used based on the accumulated weights for each
variable. According to [43], there are two strategies one can pursue dur-
ing search. The first is to use the weights accumulated through probing
as the final weights for the constraints. The second is to continue to incre-
ment them during search in the usual way. In our experiments we have
used the latter approach. Cpu time and nodes for random probing are
averaged values for 50 runs. For heuristics that use probing we have mea-
sured the total cpu time and the total number of visited nodes (from both
random probing initialization and final search). In the next tables (except
Table 4.6) we also show in parenthesis results from the final search only
(with the random probing initialization overhead excluded).

50

CHAPTER 4. EMPIRICAL EVALUATION

Concerning impacts, we have approximated their values at the initial-
ization phase by dividing the domains of the variables into (at maximum)
four sub-domains.

As a primary parameter for the measurement of performance of the
evaluated strategies, we have used the cpu time in seconds (t). We have
also recorded the number of visited nodes (n) as this gives a measure that
is not affected by the particular implementation or by the hardware used.
In all the experiments, a time out limit has been set to 1 hour.

In Section 4.3.1 we give some additional details on the heuristics which
we have selected for the evaluation. In Section 4.3.2 we present results
from the radio link frequency assignment problem (RLFAP). In Section 4.3.3
we present results from structured and patterned problems. These in-
stances are taken from some academic (langford), real world (driver) and
patterned (graph coloring) problems. In Section 4.3.4 we consider instances
from quasi-random and random problems. Experiments with non-binary
constraints are presented in Section 4.3.5. The last experiments presented
in Section 4.3.6 include Boolean instances. In Section 4.3.7, we study the
impact of the selected restart policy on the evaluated heuristics, while in
Section 4.3.8 we present experiments with random value ordering. Finally
in Section 4.4 we make a general discussion where we summarize our re-
sults.

4.3.1 Details on the evaluated heuristics

For the evaluation we have selected heuristics from 5 recent papers men-
tioned above. These are: i) dom/wdeg from Boussemart et al. [18], ii) the
random probing technique and the “alldel by #del” heuristic where con-
straint weights are increased by the size of the domain reduction (Grimes
and Wallace [43]), iii) Impacts and Node Impacts from Refalo [70], iv) the
“RSC” heuristic from Correia and Barahona [24] and, finally, v) our “fully
assigned” heuristic [6].

We have also included in our experiments some combinations of the
above heuristics. For example, dom/wdeg can be combined with RSC (in
this case RSC is used only to break ties). Random probing can be applied

51

CHAPTER 4. EMPIRICAL EVALUATION

to any conflict-driven heuristic, hence it can be used with the dom/wdeg
and “fully assigned” heuristics. Moreover, the impact heuristic can be
combined with RSC for breaking ties.

The full list of the heuristics that we have tried in our experiments in-
cludes 15 variations. These are the following: 1) dom/wdeg, 2) dom/wdeg
+ RSC (the second heuristic is used only for breaking ties), 3) dom/wdeg
with random probing, 4) dom/wdeg with random probing + RSC, 5) Im-
pacts, 6) Node Impacts, 7) Impacts + RSC, 8) alldel by #del, 9) alldel by
#del + RSC, 10) alldel by #del with random probing, 11) alldel by #del
with random probing + RSC, 12) fully assigned, 13) fully assigned + RSC,
14) fully assigned with random probing, and 15) fully assigned with ran-
dom probing + RSC. In all these variations the RSC heuristic is used only
for breaking ties.

4.3.2 RLFAP instances

Results from Table 4.6 show that conflict-driven heuristics (dom/wdeg,
alldel and fully assigned) have the best performance. In the final line of
Table 4.6 we give the averaged values for all the instances.

Although the Impact heuristic seems to make a better exploration of
the search tree on some easy instances (like s2-f25, g14-f27, s11, s11-f12),
it is clearly slower compared to conflict-driven heuristics. This is mainly
because the process of impact initialization is time consuming. On hard
instances, the Impact heuristic has worse performance and in some cases
it cannot solve the problem within the time limit. In general we observed
that impact based heuristics cannot handle efficiently problems which in-
clude variables with relatively large domains. Some RLFA problems, for
example, have 680 variables with up to 44 values in their domains.

52

Ta
bl

e
4.

6:
C

pu
tim

es
(t

)f
ro

m
fr

eq
ue

nc
y

al
lo

ca
tio

n
pr

ob
le

m
s.

Be
st

cp
u

tim
e

is
in

bo
ld

.T
he

s
an

d
g

pr
efi

xe
s

st
an

d
fo

r
sc

en
an

d
gr

ap
h

re
sp

ec
tiv

el
y.

d
/w

d
eg

d
/w

d
eg

d
/w

d
eg

N
od

e
I
m

p
a
ct

a
ll
d
el

a
ll
d
el

a
ll
d
el

f
u
ll
y

f
u
ll
y

f
u
ll
y

In
st

an
ce

d
/w

d
eg

r.
p
ro

be
R

S
C

r.
p
ro

be
I
m

p
a
ct

I
m

p
a
ct

R
S

C
a
ll
d
el

r.
p
ro

be
R

S
C

r.
p
ro

be
f
u
ll
y

r.
p
ro

be
R

S
C

r.
p
ro

be

R
S

C
R

S
C

R
S

C

s2
-f

25
t

7,
4

29
,2

14
,2

23
,6

14
,2

19
,5

19
,5

9,
3

28
,5

9,
8

22
,7

11
,1

29
,8

9,
1

29
,4

(u
ns

at
)

n
11

95
16

31
7

26
51

14
54

8
20

88
20

91
20

91
16

89
16

23
1

15
79

14
32

1
17

44
16

67
2

13
88

16
21

1
s3

-f
10

t
2,

2
36

,5
10

,2
33

,7
>

1h
>

1h
>

1h
2,

3
38

,7
5,

5
30

1,
2

37
,2

10
,4

37
,2

(s
at

)
n

72
4

18
11

9
72

8
17

78
1

–
–

–
90

0
18

31
2

94
1

17
14

7
47

2
92

7
63

1
18

89
1

s3
-f

11
t

9,
6

41
,4

9,
9

36
,2

>
1h

>
1h

>
1h

5,
3

47
,5

10
,4

39
,9

9,
6

47
,7

11
,7

48
,7

(u
ns

at
)

n
10

78
18

72
8

86
1

17
21

1
–

–
–

64
1

18
86

2
88

9
17

86
5

10
78

18
99

3
15

46
19

94
4

g8
-f

10
t

15
72

,5
45

,2
62

,4
>

1h
>

1h
>

1h
21

,3
76

,5
14

,4
60

,7
10

,9
77

,4
15

,8
66

,4
(s

at
)

n
41

93
26

53
5

60
18

22
73

9
–

–
–

68
77

27
78

1
38

87
23

00
5

34
28

27
19

3
41

27
24

16
2

g8
-f

11
t

7
62

,7
10

,5
54

,2
>

1h
>

1h
>

1h
1,

6
60

,3
1,

7
55

,3
0,

8
61

1,
1

58
,3

(u
ns

at
)

n
14

50
24

24
4

94
0

23
34

8
–

–
–

22
4

23
87

8
45

5
23

66
8

10
7

23
97

9
10

5
24

13
8

g1
4-

f2
7

t
18

,8
48

,4
82

,5
49

,1
53

,9
21

6,
7

21
7,

1
28

,8
48

,3
70

,1
60

,2
39

,8
52

,5
89

,3
52

,7
(s

at
)

n
12

25
1

28
33

7
13

10
6

27
78

5
62

84
62

84
62

84
18

14
3

28
01

9
40

21
1

38
90

1
20

82
0

29
21

1
47

65
5

31
92

5
g1

4-
f2

8
t

75
,3

43
,3

18
,2

37
,2

>
1h

>
1h

>
1h

0,
4

60
,5

57
,3

55
,7

46
,4

51
,5

57
,1

53
,1

(u
ns

at
)

n
33

55
6

22
30

3
14

59
19

54
4

–
–

–
99

29
92

8
30

23
9

29
32

7
16

39
7

20
38

9
24

35
6

28
87

4
s1

1
t

5,
5

11
8,

1
14

1,
2

15
7,

5
29

,3
21

0,
6

22
4,

8
4

12
0,

5
56

,2
97

,4
4,

3
12

7,
8

12
0,

3
18

1,
3

(s
at

)
n

10
24

35
09

7
95

9
29

39
1

83
4

83
3

83
3

94
7

35
78

8
15

40
29

08
0

85
3

36
61

1
78

0
35

61
0

s1
1-

f1
2

t
6,

6
56

,2
4,

8
51

,5
22

,4
25

,7
25

,8
3,

7
54

,1
3,

9
48

,3
3,

1
54

,3
3,

5
52

,6
(u

ns
at

)
n

11
02

24
15

8
98

1
22

89
3

42
1

42
1

42
1

56
6

23
66

1
98

9
21

77
5

38
6

23
86

5
97

7
22

79
8

s1
1-

f1
1

t
6,

8
55

,6
4,

7
51

,1
22

,1
25

,7
25

,8
3,

7
53

,4
3,

8
48

,5
3,

1
53

,7
3,

6
51

,8
(u

ns
at

)
n

11
02

23
55

5
98

1
22

75
1

42
1

42
1

42
1

52
2

23
10

1
98

9
21

55
7

38
6

23
56

6
97

7
22

56
4

s1
1-

f1
0

t
3,

5
56

,7
4,

8
52

,4
>

1h
>

1h
>

1h
4,

5
58

,2
3,

3
55

,8
4,

5
59

,7
4,

6
59

,4
(u

ns
at

)
n

49
0

23
13

1
49

8
22

89
1

–
–

–
55

6
23

66
4

37
6

24
07

7
52

8
23

51
2

63
1

24
97

2
s1

1-
f9

t
14

,3
71

,7
18

,1
65

,6
>

1h
>

1h
>

1h
16

,4
72

,4
18

,9
65

,2
12

,1
72

,8
17

,1
71

,1
(u

ns
at

)
n

14
12

24
26

1
13

84
23

44
1

–
–

–
19

06
24

54
7

17
53

23
28

7
11

56
24

78
1

11
50

24
76

3
s1

1-
f8

t
21

,2
87

,1
44

,7
79

,6
>

1h
>

1h
>

1h
26

,3
89

,1
40

,1
76

,8
26

,1
89

,5
45

83
,5

(u
ns

at
)

n
21

12
28

08
3

28
97

24
89

2
–

–
–

25
26

27
86

7
31

92
24

68
2

21
81

27
94

4
27

84
27

44
3

s1
1-

f7
t

13
3,

7
18

9,
9

21
1,

2
20

1,
6

>
1h

>
1h

>
1h

13
0,

6
19

1,
4

16
6,

8
22

1,
8

13
7,

7
19

8,
5

16
0,

2
20

3,
5

(u
ns

at
)

n
12

77
7

39
46

9
20

15
4

42
34

5
–

–
–

13
20

5
39

55
7

14
88

6
45

38
8

12
77

7
24

68
9

15
01

7
42

16
7

s1
1-

f6
t

39
1,

4
40

2,
9

41
2,

7
41

6,
8

>
1h

>
1h

>
1h

30
7,

6
48

8,
4

46
5,

2
47

9,
8

33
0,

4
33

0,
4

30
1,

4
32

0,
6

(u
ns

at
)

n
34

71
4

61
52

3
40

89
2

62
55

7
–

–
–

27
94

9
63

44
7

37
95

4
69

43
2

28
94

7
29

93
0

19
23

6
29

08
4

M
ea

n
cp

u
ti

m
e

t
47

,9
91

,5
68

,8
91

,5
–

–
–

37
,7

99
,1

61
,8

94
,5

42
,7

89
,5

56
,8

91
,3

CHAPTER 4. EMPIRICAL EVALUATION

Node Impact and its variation, “Impact RSC”, are strongly related, and
this similarity is depicted in the results. As mentioned in Chapter 3 (Sec-
tions 3.2 and 3.3), Node Impact computes the accurate impacts and the
“RSC” heuristic computes the reduction in the search space, after the ap-
plication of Restricted Singleton Consistency. Since node impact compu-
tation also uses Restricted Singleton Consistency (it subsumes it), these
heuristics differ only in the measurement function that assigns impacts to
variables. Hence, when they are used to break ties on the Impact heuristic,
they usually make similar decisions.

When “RSC” is used as a tie breaker for conflict-driven heuristics, re-
sults show that it does not offer significant changes in the performance. So
we have excluded it from the experiments that follow in the next sections,
except for the dom/wdeg + RSC combination.

Concerning “random probing”, although experiments in [43] show that
it has often better performance when compared to simple dom/wdeg, our
results show that this is not the case when dom/wdeg is combined with
a geometric restart strategy. Even on hard instances, where the compu-
tation cost of random probes is small compared to the total search cost,
results show that dom/wdeg and its variations are dominant. Moreover, the
combination of “random probing” with any other conflict-driven varia-
tion heuristic (“alldel” or “fully assigned”) does not result in significant
changes in the performance. Thus, for the next experiments we have kept
only the “random probing” and dom/wdeg combination.

Finally, among the three conflict-driven variations, “alldel” seems to
display slightly better performance on this set of instances.

4.3.3 Structured and patterned instances

This set of experiments contains instances from academic problems (lang-
ford), some real world instances from the “driver” problem and 6 pat-
terned instances from the graph coloring problem. Since some of the vari-
ations presented in the previous paragraph (Table 4.6) were shown to be
less interesting, we have omitted their results from the next tables.

Results in Table 4.7 show that the behavior of the selected heuristics is

54

CHAPTER 4. EMPIRICAL EVALUATION

close to the behavior that we observed in RLFA problems. Conflict-driven
variations are again dominant here. The dom/wdeg heuristic has in most
cases the best performance, followed by “alldel” and “fully assigned”. Im-
pact based heuristics have by far the worst performance. Random probing
again seems to be an overhead as it increases both run times and nodes
visits.

Table 4.7: Cpu times (t), and nodes (n) from structured and patterned problems. Best
cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

langford- t 42,8 48,5 (44,1) 52,2 65,5 70 73,8 46,9 48,2
2-9(unsat) n 65098 64571 (59038) 68901 73477 52174 53201 62171 60780
langford- t 364,5 380 (374,2) 431,2 406,9 660,6 530,7 402,2 395,2

2-10(unsat) n 453103 422742 (417227) 481909 458285 494407 479092 435599 428681
langford- t 584,8 673,2 (621) 632,8 1094 1917 1531 726,6 676,8

3-11(unsat) n 140168 134133 (126991) 140391 174418 200558 187091 141734 138919
langford- t 65,9 238,2 (65,3) 101,3 183,4 289,3 301,1 106,7 70,3

4-10(unsat) n 5438 14024 (4582) 5099 9257 9910 9910 7362 5031
driver- t 13,6 43,1 (0,7) 31,2 27,8 31,2 31,1 1,3 1,4
8c (sat) n 4500 9460 (420) 3110 431 429 429 660 632
driver-9 t 262,3 305,2 (219,7) 201,1 > 1h 1409 2121 123,5 167,9

(sat) n 58759 58060 (46413) 18581 – 19668 60291 13657 20554
will199-5 t 1,4 17 (1,7) 5,2 > 1h > 1h > 1h 1,7 2,1
(unsat) n 577 13060 (726) 650 – – – 538 582

will199-6 t 15,8 42,9 (21,9) 30,1 > 1h > 1h > 1h 12,7 13,4
(unsat) n 4288 22792 (5763) 4582 – – – 2852 2846

ash608-4 t 3,3 20,1 (1,8) 81,3 35,1 136,2 123,3 2,6 1,2
(sat) n 3146 21346 (1823) 2291 3860 2452 2293 2586 1266

ash958-4 t 12,8 36,8 (3) 299,2 111,4 > 1h > 1h 11,6 1,2
(sat) n 8369 27322 (1992) 3870 5105 – – 7399 1266

ash313-5 t 18,2 134,7 (18,4) 43,2 172,2 442,1 489,7 19,4 19
(unsat) n 512 10204 (512) 512 512 512 512 512 512

ash313-7 t 828,4 1011 (809,6) 1271 1015 > 1h > 1h 995,7 1056
(unsat) n 20587 35135 (19990) 20139 20539 – – 20411 20406

Mean cpu time t 184,4 245,8 264,9 – – – 204,2 204,3

55

CHAPTER 4. EMPIRICAL EVALUATION

4.3.4 Random instances

In this set of experiments we have selected some quasi-random instances
which contain some structure (“ehi” and “geo” problems) and also some
purely random instances, generated following Model RB and Model D.

Results are presented in Table 4.8. All the conflict-driven heuristics
(dom /wdeg, “alldel” and “fully assigned”) have much better cpu times
compared to impact based heuristics. In pure random problems the “alldel”
heuristic has the best cpu times, while in quasi-random instances the three
conflict-driven heuristics share a win. Random probing can slightly im-
prove the performance of dom/wdeg on Model D problems but it is an over-
head on the rest of the instances.

Table 4.8: Cpu times (t), and nodes (n) from random problems. Best cpu time is in bold.
Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

ehi-85-0 t 2,1 94,2 (0,15) 2,7 11,7 12,1 12 0,15 1,2
(unsat) n 722 8005 (4) 61 3 3 3 4 149
ehi-85-2 t 1 101,6 (0,15) 2,4 11,8 12,4 12,4 5,6 1,1
(unsat) n 248 7944 (5) 12 4 4 4 650 145

geo50-d4- t 334,9 526 (490,6) 311,3 > 1h > 1h > 1h 280 129,2
75-2(sat) n 50483 88615 (76247) 46772 – – – 42946 18545

frb30-15-1 t 10,5 42 (15,4) 13,2 66,4 295,6 375,6 20,5 15,6
(sat) n 3557 15833 (4426) 3275 17866 71052 85017 6044 4493

frb30-15-2 t 63,7 123,6 (97,8) 55,4 273,4 5,4 391,3 86,8 91,2
(sat) n 21330 38765 (27458) 20019 79936 1306 81911 26596 26296

40-8-753- t 76,5 70,9 (45,9) 60,4 2117 404,5 931,3 50,5 486,3
0,1 (sat) n 21164 21369 (13422) 15239 523831 67979 180281 13823 127686

40-11-414- t 1192 1261 (1234) 1219 > 1h > 1h > 1h 1178 1162
0,2 (unsat) n 336691 354778 (345212) 345886 – – – 346368 332844
40-16-250- t 2919 2928 (2895) 3172 > 1h > 1h > 1h 2893 3038

0,35 (unsat) n 741883 755386 (743183) 750910 – – – 747757 764989
40-25-180- t 2481 2689 (2632) 2878 > 1h > 1h > 1h 2340 2606
0,5 (unsat) n 373742 402266 (385072) 390292 – – – 349685 389603

Mean cpu time t 786,7 870,7 857,1 – – – 761,6 836,7

56

CHAPTER 4. EMPIRICAL EVALUATION

4.3.5 Non-binary instances

In this set of experiments we have included problems with non-binary
constraints. The first three instances are from the chessboard coloration
problem and have maximum arity of 4. The next two instances are from
the academic problem “All Interval Series” which have maximum arity
of 3, while the last three instances are from a Renault Megane (maximum
arity is 10).

Results are presented in Table 4.9. Here again the conflict-driven heuris-
tics have the best performance in most cases. The Impact based heuristics
have the best cpu performance in two instances (cc-15-15-2 and series-16),
but on the other hand they cannot solve 4 instances within the time limit.

We must also note here that although the “node impact” and “impact
RSC” heuristics are slow on chessboard coloration instances, they visit less
nodes. In general, with impact based heuristics there are cases where we
can have a consistent reduction in number of visited nodes, albeit at the
price of increasing the running time.

Random probing is very expensive for non-binary problems, especially
when the arity of the constraints is large and the cost of constraint prop-
agation is high. As a result, adding random probing forced the solver to
time out on many instances.

4.3.6 Boolean instances

This set of experiments contains instances involving only Boolean vari-
ables and non-binary constraints. We have selected a representative sub-
set from Dimacs problems. To be precise, we have included a subset of
the “jnhSat” collection which includes the hardest instances from this col-
lection, 4 randomly selected instances from the “aim” set, where all prob-
lems are relatively easy to solve, and the first instance from the “pret”
and “dubois” sets, which include very hard instances. All the selected in-
stances have constraint arity of 3, except for the “jnhSat” instances which
have maximum arity of 14.

Results from these experiments can be found in Table 4.10. The be-
havior of the evaluated heuristics in this data set is slightly different from

57

CHAPTER 4. EMPIRICAL EVALUATION

Table 4.9: Cpu times (t), and nodes (n) from problems with non-binary constraints. Best
cpu time is in bold.

Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

cc-10-10-2 t 31 40,6 (30,3) 47,7 31,3 193,1 219,2 29,9 33,1
(unsat) n 16790 20626 (15800) 16544 16161 10370 10233 15639 15930

cc-12-12-2 t 50,7 67,6 (14,3) 79,3 65 523,6 555,6 49,1 54,3
(unsat) n 16897 19429 (49780) 16596 21532 13935 13564 16292 16135

cc-15-15-2 t 98,6 125 (94,5) 159,7 91,3 1037 1134 103,6 102,1
(unsat) n 16948 20166 (14881) 16674 16437 10374 10012 15741 15945

series-16 t 147,3 543,9 (516,5) 177,6 > 1h > 1h > 1h > 1h > 1h

(sat) n 49857 155102 (146942) 51767 – – – – –
series-18 t > 1h > 1h > 1h > 1h > 1h > 1h > 1h > 1h

(sat) n – – – – – – – –
renault-mod-0 t 1285 > 1h 2675 > 1h > 1h > 1h 1008 776,2

(sat) n 288 – 251 – – – 166 179
renault-mod-1 t 2126 > 1h 2283 > 1h > 1h > 1h 431,4 785,4

(unsat) n 474 – 469 – – – 161 234
renault-mod-3 t 2598 > 1h 2977 > 1h > 1h > 1h 993,5 435,7

(unsat) n 546 - 475 – – – 203 176

the behavior that we observed in previous problems. Although conflict-
driven heuristics again display the best overall performance, impact based
heuristics are in some cases faster.

The main bottleneck that impact based heuristics have, is the time con-
suming initialization process. On Boolean instances, where the variables
have binary domains, the cost for the initialization of impacts is small.
And this can significantly increase the performance of these heuristics.

Among the conflict-driven heuristics, the “alldel” heuristic is always
better than its competitors. We recall here that in this heuristic constraint
weights are increased by the size of the domain reduction. Hence, on bi-
nary instances constraint weights can be increased at minimum by one
and at maximum by two (in each DWO).

The same good performance of the “alldel” heuristic was also observed
in 30 additional instances from the Dimacs problem class (“aim” instances)
not shown here. These extended experiments showed that this way of in-

58

CHAPTER 4. EMPIRICAL EVALUATION

crementing weights seems to work better on Boolean problems where the
deletion of a single value is of greater importance compared to problems
with large domains, i.e. it is more likely to lead to a DWO.

Table 4.10: Cpu times (t), and nodes (n) from boolean problems. Best cpu time is in bold.
Instance d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

r.probe RSC Impact RSC by #del assigned

jnh01 t 10,2 95,2 (3,5) 14,2 2,2 13,2 13 4,2 6,2
(sat) n 970 5215 (362) 515 100 100 100 481 692
jnh17 t 3,1 57,3 (0,5) 18,8 1,9 10,1 9,9 1,4 1,5
(sat) n 477 4914 (189) 1233 132 131 131 216 204

jnh201 t 3 79,6 (2,1) 3,3 2,6 11 10,7 1,13 1,14
(sat) n 336 5222 (121) 168 177 180 180 179 178

jnh301 t 33,4 121 (14,5) 38,2 2,2 5,7 5,5 7 8
(sat) n 2671 6144 (1488) 1541 110 108 108 608 787

aim-50-1- t 0,15 0,43 (0,13) 0,21 0,82 0,49 0,5 0,07 0,08
6-unsat-2 n 1577 6314 (1404) 1412 6774 474 474 691 474

aim-100-1- t 0,34 1,47 (1,05) 1,42 91 4,3 6,3 0,16 0,2
6-unsat-1 n 3592 17238 (10681) 7932 697503 2338 3890 1609 1229

aim-200-1- t 0,76 1,28 (0,47) 2,1 1,66 1,9 1,8 0,24 0,26
6-sat-1 n 4665 11714 (3236) 1371 4747 213 213 1756 1442

aim-200-1- t 1,9 3,2 (2,4) 5,3 105,9 4,8 8,5 0,19 0,23
6-unsat-1 n 12748 26454 (16159) 28548 436746 1615 3654 1255 1093
pret-60- t 1255 1385 (1385) > 1h 3589 > 1h > 1h 1027 1108

25 (unsat) n 44,6M 44,777M (43,773M) – 95,4M – – 42,5M 43,8M
dubois-20 t 1196 1196 (1196) > 1h > 1h > 1h > 1h 1004 1245

(unsat) n 44,9M 44,461M (44,457M) – – – – 40,5M 43,8M

Mean cpu time t 250,3 294 857,1 – – – 204,5 237

4.3.7 The effect of restarts on the results

In all the experiments reported in the previous sections we followed a ge-
ometric restart policy. This policy were introduced in [87] and it has been
shown to be very effective. However, different restart policies can be ap-
plied within the search algorithm, or we can even discard restarts in favor
of a single search run. In order to check how the selected restart policy

59

CHAPTER 4. EMPIRICAL EVALUATION

affects the performance of the evaluated variable ordering heuristics, we
ran some additional experiments.

Apart from the geometric restart policy which we used on the previous
experiments, we also tried an arithmetic restart policy. In this policy the
initial number of allowed backtracks for the first run has been set to 10
and at each new run the number of allowed backtracks increases also by
10. We have also tested the behavior of the heuristics without the use of
any restarts.

Selected results are depicted in Table 4.11. Unsurprisingly, results show
that the arithmetic restart policy is clearly inefficient. On instances that can
be solved within a small number of restarts (like scen11, ehi-85-297-0, rb30-
15-1 and ash958GPIA-4), the differences between the arithmetic and the
geometric restart policies are small. But, when some problem (like scen11-
f7, aim-200-1-6, langford-4-10 and cc-12-12-2) requires a large number of
restarts to be solved, the geometric restart policy clearly outperforms the
arithmetic one. Importantly, this behavior is independent of the selected
variable ordering heuristic.

Comparing search without restart to the geometric restart policy, we
can see that the former is more efficient on some instances. But in general
restarts are necessary to solve very hard problems. Importantly, the rel-
ative behavior of the conflict-driven heuristics compared to impact based
heuristics is not significantly affected by the presence or absence of restarts.
That is, the conflict-driven heuristics are always faster than the impact
based ones, with or without restarts. Some small differences in the rela-
tive performance of the conflict-driven heuristics can be noticed when no
restarts are used, but they generally have similar cpu times. Random prob-
ing seems to work better with no restarts, in accordance with the results
and conjectures in [86], but this small improvement is not enough for it
to become more efficient than the dom/wdeg, “alldel” and “fully assigned”
heuristics.

60

CHAPTER 4. EMPIRICAL EVALUATION

Table 4.11: Cpu times for the three selected restart policies: without restarts, arithmetic
restarts and geometric restarts. Best cpu time is in bold.

Instance restart d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

policy r.probe RSC Impact RSC by #del assigned

scen11 no restart 42,5 102,2 148,3 > 1h > 1h > 1h 112,4 41,3
(sat) arithmetic 8 109,5 142,7 29 211,3 218,3 4 4,5

geometric 5,5 118,1 141,2 29,3 210,6 224,8 4 4,3
scen11-f7 no restart > 1h 109 > 1h > 1h > 1h > 1h > 1h > 1h

(unsat) arithmetic 1848 1464 1991 > 1h > 1h > 1h 3207 2164
geometric 133,7 189,9 211,2 > 1h > 1h > 1h 130,6 137,7

aim-200-1-6 no restart 4,8 1,5 4,7 2,3 2,8 3,1 0,28 0,31
(unsat) arithmetic 81,4 150,3 212,7 124,8 9,4 9,2 0,39 0,27

geometric 1,9 3,2 5,3 105,9 4,8 8,5 0,19 0,23
ehi-85-297-0 no restart 17,1 90,4 7,1 11,8 12,2 12,4 0,16 1,9

(unsat) arithmetic 2 102,2 2,8 12,8 12,4 12,3 0,15 1,18
geometric 2,1 94,2 2,7 11,7 12,1 12 0,15 1,2

frb30-15-1 no restart 3,2 30,1 3,6 152,6 215,1 201,5 7,1 3,8
(sat) arithmetic 15,9 149,2 15,1 303,9 626,1 532,5 184,3 201,2

geometric 10,5 42 13,2 66,4 295,6 375,6 20,5 15,6
langford-4-10 no restart 16,2 193,7 24,6 59,1 74,6 79,3 24,1 20,8

(unsat) arithmetic 521,1 749,7 557,2 2579 904,1 1293 1011 744,9
geometric 65,9 238,2 101,2 183,4 289,3 301,1 106,7 70,3

cc-12-12-2 no restart 17 27,6 25,4 16,4 115,9 98,2 17,9 17,2
(unsat) arithmetic 2939 1976 > 1h > 1h > 1h > 1h 2501 2589

geometric 50,7 67,6 79,3 65 523,6 555,6 49,1 54,3
ash958GPIA-4 no restart 10,4 35,6 162,2 383,7 > 1h > 1h 6,3 6,4

(sat) arithmetic 13 36,2 310,2 118,3 > 1h > 1h 14 10,7
geometric 12,8 36,8 299,2 111,4 > 1h > 1h 11,6 1,2

61

CHAPTER 4. EMPIRICAL EVALUATION

4.3.8 Using random value ordering

As noted at the beginning of Section 4.3, all the experiments were ran with
a lexicographic value ordering. In order to check if this affects the per-
formance of the evaluated variable ordering heuristics, we have ran some
additional experiments. In these experiments we study the performance
of the heuristics when random value ordering is used.

Selected results are depicted in Table 4.12 where we show cpu times for
both random and lexicographic value ordering. Concerning the random
value ordering, all the results presented here are averaged values for 50
runs. Looking at the results and comparing the performance of the heuris-
tics under the different value orderings, we can see some differences in
cpu time. However, the relative behavior of the conflict-driven heuristics
compared to impact based heuristics is not significantly affected by the
use of lexicographic or random value ordering.

Table 4.12: Cpu times for the two different value orderings: lexicographic and random.
Best cpu time for each ordering is in bold.

Instance value d/wdeg d/wdeg d/wdeg Impact Node Impact alldel fully

ordering r.probe RSC Impact RSC by #del assigned

scen11-f7 random 161 232,5 191,3 > 1h > 1h > 1h 157,2 178,9
(unsat) lexico 133,7 189,9 211,2 > 1h > 1h > 1h 130,6 137,7

aim-200-1-6 random 2,3 2,3 6,2 11,9 6,4 6,1 0,18 0,23
(unsat) lexico 1,9 3,2 5,3 105,9 4,8 8,5 0,19 0,23

ehi-85-297-0 random 1,3 3,5 5,1 11,4 11,8 11,9 0,16 0,8
(unsat) lexico 2,1 94,2 2,7 11,7 12,1 12 0,15 1,2

frb30-15-1 random 39,7 52,8 27,5 120,9 132,4 123,6 32,3 28,2
(sat) lexico 10,5 42 13,2 66,4 295,6 375,6 20,5 15,6

langford-4-10 random 61,2 229,8 75,4 155,7 255,7 249,6 280,5 83,8
(unsat) lexico 65,9 238,2 101,2 183,4 289,3 301,1 106,7 70,3

cc-12-12-2 random 55,6 74,5 82,4 51,2 423,9 437,2 55,8 54,8
(unsat) lexico 50,7 67,6 79,3 65 523,6 555,6 49,1 54,3

ash958GPIA-4 random 5,3 35,6 242,2 106,6 515,4 450,1 3,8 3,9
(sat) lexico 12,8 36,8 299,2 111,4 > 1h > 1h 11,6 1,2

62

CHAPTER 4. EMPIRICAL EVALUATION

4.4 A general summary of the results

In order to get a summarized view of the evaluated heuristics, we present
six figures. In these figures we have included cpu time and number of vis-
ited nodes for the three major conflict-driven variants (dom/wdeg, “alldell”
and “fully assigned”) and we have compared them graphically to the Im-
pact heuristic (which has the best performance among the impact based
heuristics).

Results are collected in Figure 4.1. The left plots in these figures corre-
spond to cpu times and the right plots to visited nodes. Each point in these
plots, shows the cpu time (or nodes visited) for one instance from all the
presented benchmarks. The y-axes represent the solving time (or nodes
visited) for the Impact heuristic and the x-axes the corresponding values
for the dom/wdeg heuristic (Figures (a) and (b)), “alldell” heuristic (Figures
(c) and (d)) and “fully assigned” heuristic (Figures (e) and (f)). Therefore,
a point above line y = x represents an instance which is solved faster (or
with less node visits) using one of the conflict-driven heuristics. Both axes
are logarithmic.

As we can clearly see from Figure 4.1 (left plots), conflict-driven heuris-
tics are almost always faster. Concerning the numbers of visited nodes, the
right plots do not reflect an identical performance. Although it seems that
in most cases conflict-driven heuristics are making a better exploration in
the search tree, there is a considerable set of instances where the Impact
heuristic visit less nodes.

The main reason for this variation in performance (cpu time versus
nodes visited) that the impact heuristic has, is the time consuming pro-
cess of initialization. The idea of detecting choices which are responsible
for the strongest domain reduction is quite good. This is verified by the
right plots of Figure 4.1. But the additional computational overhead of
computing the “best” choices, really affect the overall performance of the
impact heuristic (Figure 4.1, left plots). As our experiments showed the
impact heuristic cannot handle efficiently problems which include vari-
ables with relatively large domains. For example in the RLFA problems
where we have 680 variables with at most 44 values in their domains re-

63

CHAPTER 4. EMPIRICAL EVALUATION

sults in Table 4.6 verified our hypothesis. On the other hand in problems
where variables have only a few values in their domains (as in the Boolean
instances of Section 4.3.6) results showed that the impact heuristic is quite
competitive.

64

CHAPTER 4. EMPIRICAL EVALUATION

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: A summary view of run times (left figures) and nodes visited (right figures),
for dom/wdeg and impact heuristics (figures (a),(b)), “alldell” and impact heuristics
(figures (c),(d)), “fully assigned” and impact heuristics (figures (e),(f)).

65

Abundance of knowledge does
not teach men to be wise.

Heraclitus 5
Adaptive Revision Ordering in

Propagation Algorithms

Any CP solver performs constraint propagation by maintaining a propa-
gation list. The elements of this list may be variables, constraints or arcs.
In any case, the order in which the elements of the list are processed plays
an important role in the efficiency of the solver.

In arc consistency algorithms, like AC-3, the propagation list records
the revisions that are still to be performed. It is well known that the per-
formance of such algorithms is affected by the order in which revisions
are carried out. As a result, several heuristics for ordering the elements of
the revision list have been proposed. These heuristics exploit information
about the original and the current state of the problem, such as domain
sizes, variable degrees, and allowed combinations of values, to reduce the
number of constraint checks and list operations aiming at speeding up arc
consistency computation.

In this chapter, we show how information about constraint weights can
be exploited to efficiently order the revision list when AC is applied dur-
ing search. We propose a number of simple revision ordering heuristics
based on constraint weights for arc, variable, and constraint oriented im-
plementations of coarse grained arc consistency algorithms, and compare
them to the most efficient existing revision ordering heuristic. Importantly,
the new heuristics can not only reduce the numbers of constraints checks
and list operations, but also cut down the size of the explored search tree.
Results from various structured and random problems demonstrate that

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

some of the proposed heuristics can offer significant speed-ups.

5.1 Introduction

It is well known that the order in which the elements of the revision list
are processed affects the overall cost of search [85, 17, 75]. This is true for
solvers that implement variable or constraint based propagation as well
as for propagator oriented solvers like Ilog Solver and Gecode. In general,
revision ordering and variable ordering heuristics have different tasks to
perform when used by a search algorithm like MAC. Prior to the emer-
gence of conflict-driven heuristics there was no way to achieve an interac-
tion with each other, i.e. the order in which the revision list was organized
during the application of AC could not affect the decision of which vari-
able to select next (and vice versa). The contribution of revision ordering
heuristics to the solver’s efficiency was limited to the reduction of list op-
erations and constraint checks.

In this chapter, we first show that the ordering of the revision list can af-
fect the decisions taken by a conflict-driven DVO heuristic. That is, differ-
ent orderings can lead to different parts of the search space being explored.
Based on this observation, we then present a set of new revision ordering
heuristics that use constraint weights, which can not only reduce the num-
bers of constraints checks and list operations, but also cut down the size
of the explored search tree. Finally, we demonstrate that some conflict-
driven DVO heuristics, e.g. “alldel” and “fully assigned”, are less amenable
to changes in the revision list ordering than others (e.g. dom/wdeg).

First of all, to illustrate the interaction between a conflict-driven vari-
able ordering heuristic and revision list orderings, we give the following
example.

Example 6 Assume that we want to solve a CSP (X, D,C), where X contains n
variables {x1, x2, ..., xn}, using a conflict-driven variable ordering heuristic (e.g.
dom/wdeg), and that at some point during search and propagation the variables
pending for revision are x1 and x5. Also assume that two of the constraints in
the problem are x1 > x2 and x5 > x6, and that the domains of x1, x2, x5, x6

67

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

are as follows: D(x1) = D(x5) = {0, 1}, D(x2) = D(x6) = {2, 3}. Given these
constraints and domains, the revision of x1 against x2 would result in the DWO of
x1, and the revision of x5 against x6 would result in the DWO of x5. Independent
of which variable is selected to be revised first (i.e. either x1 or x5), a DWO will
be detected and the solver will reject the current variable assignment. However,
depending on the order of revisions, the dom/wdeg heuristic will increase the
weight of a different constraint. To be precise, if a revision ordering heuristic R1

selects to revise x1 first then the DWO of D(x1) will be detected and the weight of
constraint c12 will be increased by 1. If some other revision ordering heuristic R2

selects x5 first then the DWO of D(x5) will be detected, but this time the weight of
constraint c56 will be increased by 1. Since increases in constraint weights affect
the subsequent choices of the variable ordering heuristic, R1 and R2 can lead to
different future decisions for variable instantiation. Thus, R1 and R2 may guide
search to different parts of the search space.

From the above example it becomes clear that the revision ordering can
have an important impact on the performance of conflict-driven heuristics
like dom/wdeg. One might argue that a way to overcome this is to continue
propagation after the first DWO is detected, try to identify all possible
DWOs and increase the weights of all constraints involved in failures. The
problem with this approach is threefold: First, it may increase the cost
of constraint propagation significantly, second it requires modifications in
the way all solvers implement constraint propagation (i.e. stopping after
a failure is detected), and third, experiments we have run showed that the
possibility of more than one DWO occurring is typically very low. As we
will discuss in Section 5.5, some variants of dom/wdeg are less amenable to
different revision orderings, i.e. their performance do not depend on the
ordering as much, without having to implement this potentially complex
approach.

5.2 Background

In this section we first review three standard implementations of revi-
sion lists for AC, i.e. the arc-oriented, variable-oriented, and constraint-

68

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

oriented variants. Then, we summarize the major revision ordering heuris-
tics that have been proposed so far in the literature, before describing the
new adaptive revision ordering heuristics we propose.

5.2.1 AC-3 variants

The numerous AC algorithms that have been proposed can be classified
into coarse grained and fine grained. Typically, coarse grained algorithms
like AC-3 [59] and its extensions (e.g. AC2001/3.1 [15] and AC-3d [32])
apply successive revisions of arcs, variables, or constraints. On the other
hand, fine grained algorithms like AC-4 [62] and AC-7 [13] use various
data structures to apply successive revisions of variable-value-constraint
triplets. Here we are concerned with coarse grained algorithms, and specif-
ically AC-3. There are two reasons for this. First, although AC-3 does not
have an optimal worst-case time complexity, as the fine grained algorithms
do, it is competitive and often better in practice and has the additional ad-
vantage of being easy to implement. Second, many constraint solvers that
can handle constraints of any arity follow the philosophy of coarse grained
AC algorithms in their implementation of constraint propagation. That is,
they apply successive revisions of variables or constraints. Hence, the re-
vision ordering heuristics we describe below can be easily incorporated
into most of the existing solvers.

As mentioned, the AC-3 algorithm can be implemented using a va-
riety of propagation schemes. We recall here the three variants, follow-
ing the presentation of [17], which respectively correspond to algorithms
with an arc-oriented, variable-oriented or constraint-oriented propagation
scheme.

The first one (arc-oriented propagation) is the most commonly pre-
sented and used because of its simple and natural structure. Algorithm 5
depicts the main procedure. As explained, an arc is a pair (cij, xj) which
corresponds to a directed constraint. Hence, for each binary constraint cij

involving variables xi and xj there are two arcs, (cij, xj) and (cij, xi). Ini-
tially, the algorithm inserts all arcs in the revision list Q. Then, each arc
(cij, xj) is removed from the list and revised in turn. If any value in D(xj)

69

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

is removed when revising (cij, xj), all arcs pointing to xj (i.e. having xi

as second element in the pair), except (cij, xi), will be inserted in Q (if not
already there) to be revised. Algorithm 6 depicts function REVISE(cij, xj)
which seeks supports for the values of xj in D(xi). It removes those values
in D(xj) that do not have any support in D(xi). The algorithm terminates
when the list Q becomes empty.

Algorithm 5 ARC-ORIENTED AC3
1: Q←{(cij , xj) | cij ∈ C and xj ∈ vars(cij)}
2: while Q 6= ∅ do
3: select and delete an arc (cij , xj) from Q
4: if REVISE(cij , xj) then
5: Q← Q ∪ {(ckj , xk) | ckj ∈ C, k 6= i}
6: end if
7: end while

Algorithm 6 REVISE(cij , xi)

1: DELETE← false
2: for each a ∈ D(xi) do
3: if @ b ∈ D(xj) such that (a, b) satisfies cij then
4: delete a from D(xi)

5: DELETE← true
6: end if
7: end for
8: return DELETE

The variable-oriented propagation scheme was proposed by McGregor
[61] and later studied in [22]. Instead of keeping arcs in the revision list,
this variant of AC-3 keeps variables. The main procedure is depicted in
Algorithm 7. Initially, all variables are inserted in the revision list Q. Then
each variable xi is removed from the list and each constraint involving xi

is processed. For each such constraint cij we revise the arc (xj ,xi). If the
revision removes some values from the domain of xj , then variable xj is
inserted in Q (if not already there).

70

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Algorithm 7 VARIABLE-ORIENTED AC3
1: Q← {xi | xi ∈ X}
2: ∀ cij ∈ C,∀xi ∈ vars(cij), ctr(cij, xi)← 1
3: while Q 6= ∅ do
4: get xi from Q
5: for each cij | xi ∈ vars(cij) do
6: if ctr(cij, xi) = 0 then continue
7: for each xj ∈ vars(cij) do
8: if NEEDS-NOT-BE-REVISED(cij, xj) then continue
9: nbRemovals← REVISE(cij, xj)

10: if nbRemovals > 0 then
11: if dom(xj) = ∅ then return false
12: Q← Q ∪ {xj}
13: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
14: ctr(cjk, xj)← ctr(cjk, xj) + nbRemovals
15: end for
16: end if
17: end for
18: for each xj ∈ vars(cij) do ctr(cij, xj)← 0
19: end for
20: end while
21: return true

Algorithm 8 NEEDS-NOT-BE-REVISED(cij, xi)
1: return (ctr(cij, xi) > 0 and @xj ∈ vars(cij) | xj 6= xi ∧ ctr(cij, xj) > 0)

Function NEEDS-NOT-BE-REVISED [17] given in Algorithm 8, is used
to determine relevant revisions. This is done by associating a counter
ctr(cij ,xi) with any arc (xi,xj). The value of the counter denotes the num-
ber of removed values in the domain of variable xi since the last revision
involving constraint cij . If xi is the only variable in vars(cij) that has a
counter value greater than zero, then we only need to revise arc (xj ,xi).
Otherwise, both arcs are revised.

The constraint-oriented propagation scheme is depicted in Algorithm 9.

71

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Algorithm 9 CONSTRAINT-ORIENTED AC3
1: Q← {cij | cij ∈ C}
2: ∀ cij ∈ C,∀xi ∈ vars(cij), ctr(cij, xi)← 1
3: while Q 6= ∅ do
4: get cij from Q
5: for each xj ∈ vars(cij) do
6: if NEEDS-NOT-BE-REVISED(cij, xj) then continue
7: nbRemovals← REVISE(cij, xj)
8: if nbRemovals > 0 then
9: if dom(xj) = ∅ then return false

10: for each cjk | cjk 6= cij ∧ xj ∈ vars(cjk) do
11: Q← Q ∪ {xj}
12: ctr(cjk, xj)← ctr(cjk, xj) + nbRemovals
13: end for
14: end if
15: end for
16: for each xj ∈ vars(cij) do ctr(cij, xj)← 0
17: end while
18: return true

This algorithm is similar to Algorithm 7. Initially, all constraints are in-
serted in the revision list Q. Then each constraint cij is removed from the
list and each variable xj ∈ vars(cij) is selected and revised. If the revision
of the selected constraint cij is fruitful, then the reinsertion of the con-
straint cij in the list is needed. As in the variable-oriented scheme, the
same counters are also used here to avoid useless revisions.

5.2.2 Overview of revision ordering heuristics

The standard implementation to process the revision list is a FIFO queue.
Alternative implementations can be done with revision ordering heuris-
tics, which is a topic that has received considerable attention in the liter-
ature. The first systematic study on this topic was carried out by Wallace
and Freuder, who proposed a number of different heuristics that can be

72

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

used with the arc-oriented variant of AC-3 [85]. These heuristics, which
are defined for binary constraints, are based on three major features of
CSPs: (i) the number of acceptable pairs in each constraint (the constraint
size or satisfiability), (ii) the number of values in each domain and (iii)
the number of binary constraints that each variable participates in (the de-
gree of the variable). Based on these features, they proposed three revision
ordering heuristics: (i) ordering the list of arcs by increasing relative satis-
fiability (sat up), (ii) ordering by increasing size of the domain of the vari-
ables (dom j up) and (iii) ordering by descending degree of each variable
(deg down).

The heuristic sat up counts the number of acceptable pairs of values
in each constraint (i.e the number of tuples in the Cartesian product built
from the current domains of the variables involved in the constraint) and
puts constraints in the list in ascending order of this count. Although this
heuristic reduces the list additions and constraint checks, it does not speed
up the search process. When a value is deleted from the domain of a vari-
able, the counter that keeps the number of acceptable arcs has to be up-
dated. This process is usually time consuming because the algorithm has
to identify the constraints in which the specific variable participates and
to recalculate the counters with acceptable value pairs. Also an additional
overhead is needed to reorder the list.

The heuristic dom j up counts the number of remaining values in each
variable’s current domain during search. Variables are inserted in the list
by increasing size of their domains. This heuristic reduces significantly list
additions and constraint checks and is the most efficient heuristic among
those proposed in [85].

The deg down heuristic counts the current degree of each variable. The
initial degree of a variable xi is the number of variables that share a con-
straint with xi. During search, the current degree of xi is the number of
unassigned variables that share a constraint with xi. The deg down heuris-
tic sorts variables in the list by decreasing size of their current degree. As
noticed in [85] and confirmed in [17], the (deg down) heuristic does not offer
any improvement.

Gent et al. [39] proposed another heuristic called kac. This heuristic

73

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

is based on the number of acceptable pairs of values in each constraint
and tries to minimize the constrainedness of the resulting subproblem.
Experiments have shown that kac is time expensive but it performs less
constraint checks when compared to sat up and dom j up.

Boussemart et al. [17] performed an empirical investigation of the
heuristics of [85] with respect to the different variants (arc, variable and
constraint) of AC-3. In addition, they introduced some new heuristics.
Concerning the arc-oriented AC-3 variant, they have examined the dom j
up as a stand alone heuristic (called domv) or together with deg down which
is used in order to break ties (called ddeg◦domv). Moreover, they proposed
the ratio sat up/dom j up (called domc/domv) as a new heuristic. Regarding
the variable-oriented variant, they adopted the domv and ddeg heuristics
from [85] and proposed a new one called remv. This heuristic corresponds
to the greatest proportion of removed values in a variable’s domain. For
the constraint-oriented variant they used domc (the smallest current do-
main size) and remc (the greatest proportion of removed values in a vari-
able’s domain). Experimental results showed that the variable-oriented
AC-3 implementation with the domv revision ordering heuristic (simply
denoted dom hereafter) is the most efficient alternative.

5.3 Revision ordering heuristics based on con-
straint weights

The heuristics described in the previous subsection, and especially dom,
improve the performance of AC-3 (and MAC) when compared to the clas-
sical queue or stack implementation of the revision list. This improve-
ment in performance is due to the reduction in list additions and constraint
checks. A key principle that can have a positive effect on the performance
of the AC algorithms is the “ASAP principle” by Wallace and Freuder [85]
which urges to “remove domain values as soon as possible”. Consider-
ing revision ordering heuristics this principle can be translated as follows:
When AC is applied during search (within an algorithm such as MAC), to
reach as early as possible a failure (DWO), order the revision list by putting

74

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

first the arc or variable which will guide you to early value deletions and
thus, most likely, earlier to a DWO.

To apply the “ASAP principle” in revision ordering heuristics, we must
use some metric to compute which arc (or variable) in the AC revision list
is the most likely to cause failure. Until now, constraint weights have only
been used for variable selection. In the next paragraphs we describe a
number of new revision ordering heuristics for all three AC-3 variants.
These heuristics use information about constraint weights as a metric to
order the AC revision list and they can be used efficiently in conjunction
with conflict-driven variable ordering heuristics to boost search.

The main idea behind these new heuristics is to handle as early as
possible potential DWO-revisions by appropriately ordering the arcs, vari-
ables, or constraints in the revision list. In this way the revision process of
AC will be terminated earlier and thus constraint checks can be reduced
significantly. Moreover, with such a design we may be able to avoid many
redundant revisions. As will become clear, all of the proposed heuristics
are lightweight (i.e. cheap to compute) assuming that the weights of con-
straints are updated during search.

Arc-oriented heuristics are tailored for the arc-oriented variant where
the list of revisions Q stores arcs of the form (cij ,xi). Since an arc consists of
a constraint cij and a variable xi, we can use information about the weight
of the constraint, or the weight of the variable, or both, to guide the heuris-
tic selection. These ideas are the basis of the proposed heuristics described
below. For each heuristic we specify the arc that it selects. The names of
the heuristics are preceded by an “a” to denote that they are tailored for
arc-oriented propagation.

• a wcon: selects the arc (cij ,xi) such that cij has the highest weight
wcon among all constraints appearing in an arc in Q.

• a wdeg: selects the arc (cij ,xi) such that xi has the highest weighted
degree wdeg among all variables appearing in an arc in Q.

• a dom/wdeg: selects the arc (cij ,xi) such that xi has the smallest ratio
between current domain size and weighted degree among all vari-
ables appearing in an arc in Q.

75

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

• a dom/wcon: selects the arc (cij ,xi) having the smallest ratio between
the current domain size of xi and the weight of cij among all arcs in
Q.

The call to one of the proposed arc-oriented heuristics can be attached
to line 3 of Algorithm 5. Note that heuristics a dom/wdeg and a dom/wcon

favor variables with small domain size hoping that the deletion of their
few remaining values will lead to a DWO. To strictly follow the “ASAP
principle” which calls for early value deletions we intend to evaluate the
following heuristics in the future:

• a dom/wdeg inverse: selects the arc (cij ,xi) such that xj has the small-
est ratio between current domain size and weighted degree among
all variables appearing in an arc in Q.

• a dom/wcon inverse: selects the arc (cij ,xi) having the smallest ratio
between the current domain size of xj and the weight of cij among
all arcs in Q.

Heuristics a dom/wdeg inverse and a dom/wcon inverse favor revis-
ing arcs (cij ,xi) such that xj , i.e. the other variable in constraint cij , has
small domain size. This is because in such cases it is more likely that some
values in D(xi) will not be supported in D(xj), and hence will be deleted.

Variable-oriented heuristics are tailored for the variable-oriented vari-
ant of AC-3 where the list of revisions Q stores variables. For each of the
heuristics given below we specify the variable that it selects. The names of
the heuristics are preceded by an “v” to denote that they are tailored for
variable-oriented propagation.

• v wdeg: selects the variable having the highest weighted degree wdeg
among all variables in Q.

• v dom/wdeg: selects the variable having the smallest ratio between
current domain size and wdeg among all variables in Q.

The call to one of the proposed variable-oriented heuristics can be at-
tached to line 4 of Algorithm 7. After selecting a variable, the algorithm

76

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

revises, in some order, the constraints in which the selected variable par-
ticipates (line 5). Our heuristics process these constraints in descending
order according to their corresponding weight.

Finally, the constraint-oriented heuristic c wcon selects a constraint cij

from the AC revision list having the highest weight among all constraints
in Q. The call to this heuristic can be attached to line 4 of Algorithm 9. One
can devise more complex constraint-oriented heuristics by aggregating the
weighted degrees of the variables involved in a constraint. However, we
have not yet implemented such heuristics.

5.4 Experiments with revision ordering heuris-
tics

In this section we experimentally investigate the behavior of the new revi-
sion ordering heuristics proposed above on several classes of real world,
academic and random problems. We only include results for the two most
significant arc consistency variants: arc and variable oriented. We have
excluded the constraint-oriented variant since this is not as competitive as
the other two [17].

We compare our heuristics with dom, the most efficient previously pro-
posed revision ordering heuristic. We also include results from the stan-
dard FIFO implementation of the revision list which always selects the
oldest element in the list (i.e. the list is implemented as a queue). The
selected variable ordering heuristic in these experiments is the dom/wdeg
heuristic. In our tests we have used the following measures of perfor-
mance: cpu time in seconds (t), number of visited nodes (n), number
of constraint checks (c) and the number of times (r) a revision ordering
heuristic has to select an element in the propagation list Q.

Tables 5.1 and 5.2 show results from some real-world RLFAP instances.
In the arc-oriented implementation of AC-3 (Table 5.1), heuristics a wcon,
mainly, and a dom/wcon, to a less extent, decrease the number of con-
straint checks and list revisions compared to dom. However, the decrease
is not substantial and is rarely leads into a decrease in cpu times. The no-

77

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

table speed-up observed for problem s11-f6 is mainly due to the reduction
in the number of visited nodes offered by the two new heuristics. a wdeg

and a dom/wdeg are less competitive, indicating that information about
the variables involved in arcs is less important compared to information
about constraints.

The variable-oriented implementation (Table 5.2) is clearly more effi-
cient than the arc-oriented one. This confirms the results of [17]. Concern-
ing this implementation, heuristic v dom/wdeg in most cases is better than
dom and queue in all the measured quantities (number of visited nodes,
constraint checks and list revisions). Importantly, these savings are re-
flected on notable cpu time gains making the variable-oriented heuristic
v dom/wdeg the overall winner. Results also show that as the instances
becomes harder, the efficiency of v dom/wdeg compared to dom increases.
The variable-oriented v wdeg heuristic in most cases is better than dom but
is clearly less efficient than v dom/wdeg.

In Table 5.3 we present results from structured instances belonging to
benchmark classes langford and driver. As the variable-oriented AC-3 vari-
ant is more efficient than the arc-oriented one, we only present results from
the former. Results show that on easy problems all heuristics except queue

are quite competitive. But as the difficulty of the problem increases, the
improvement offered by the v dom/wdeg revision heuristic becomes clear.
On instance driverlogw-09 we can see the effect that weight based revision
ordering heuristics can have on search. v dom/wdeg cuts down the num-
ber of node visits by more than 5 times resulting in a similar speed-up. It
is interesting that v dom/wdeg is considerably more efficient than v wdeg

and dom, indicating that information about domain size or weighted de-
gree alone is not sufficient to efficiently order the revision list.

Finally, in Table 5.4 we present results from random and quasi-random
problems. In the geo50-20-d4-75-2 , which is a quasi-random instance we
can see that the proposed heuristics (v wdeg and v dom/wdeg) are one or-
der of magnitude faster than dom. This suggest that the small presence
of structure is this problem results in behavior similar to the behavior ob-
served in the structured instances of Table 5.3.

On the rest of the instances, which are purely random, there is a large

78

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Table 5.1: Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n)
from frequency allocation problems (hard instances) using arc oriented propagation. The
s prefix stands for scen instances. Best cpu time is in bold.

ARC ORIENTED
Inst. queue dom a wcon a wdeg a dom/wdeg a dom/wcon

s11-f9 t 18,8 12,8 14,6 14,8 19 14,2
c 25,03M 19,3M 13,2M 20,8M 21M 16,8M
r 1,1M 910060 529228 1,04M 1,01M 737803
n 1202 1153 1155 1145 1148 1159

s11-f8 t 37,5 20,3 22,5 21,9 28,5 23,5
c 46,5M 29,3M 19,1M 30,1M 32,9M 27,5M
r 1,95M 1,3M 748050 1,52M 1,43M 1,11M
n 1982 1830 1843 1876 1832 1928

s11-f7 t 257,5 146,5 170 265,2 205,8 326,2
c 268,4M 159,4M 128,5M 281,4M 205,1M 300M
r 13,3M 10,2M 6,1M 17,7M 12,1M 15M
n 17643 14734 15938 20617 15318 29845

s11-f6 t 568,5 465,2 309,4 540,4 834,9 396,4
c 482,3M 468,2M 230,8M 517,2M 745,4M 362,7M
r 27,5M 29,7M 10,4M 34,9M 49,5M 16,6M
n 46671 50021 29057 49201 68217 35860

s11-f5 t 2821 2307 3064 3234 2898 2291
c 2,492G 2,139G 2,097G 2,928G 2,596G 1,965G
r 137,8M 157M 116,5M 215,7M 172,2M 103,3M
n 212012 217407 287017 258261 185991 187363

s11-f4 t 11216 7774 8256 10386 12520 10473
c 9,938G 7,054G 5,298G 9,020G 10,711G 8,598G
r 533,4M 523,1M 311,7M 681,2M 738,1M 464,7M
n 753592 709196 762477 832892 850446 786924

variance in the results. All heuristics seems to lack robustness and there
is no clear winner. The constraint weight based heuristics can be faster
than dom (instance frb30-15-1), but they can also be significantly slower
(frb30-15-2). In all cases, the large run time differences in favor of one or
another heuristic are caused by corresponding differences in the size of the
explored search tree, as node visits clearly demonstrate.

A plausible explanation for the diversity in the performance of the
heuristics on pure random problems as opposed to structured ones is the
following. When dealing with structured problems, and assuming we
use the variable-oriented variant of AC-3, a weighted based heuristic like
v dom/wdeg will give priority for revision to variables that are involved
in hard subproblems and hence will carry out DWO-revisions faster. This

79

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Table 5.2: Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n)
from frequency allocation problems (hard instances) using variable oriented propagation.
The s prefix stands for scen instances. Best cpu time is in bold.

VARIABLE ORIENTED
Inst. queue dom v wdeg v dom/wdeg

s11-f9 t 14,3 10,2 10,9 9,9
c 22,6M 11,4M 12,9M 11M
r 28978 17177 20161 17048
n 1413 1117 1145 1137

s11-f8 t 21,2 17,3 18,5 16,7
c 42,1M 17,2M 20,4M 16,8M
r 48568 24885 28807 24819
n 2112 1842 1830 1841

s11-f7 t 133,7 158,1 154,5 108,2
c 193,3M 116,9M 157,6M 82,7M
r 313568 223094 263306 156160
n 12777 18773 14570 13181

s11-f6 t 391,4 391 434,4 269,5
c 306,2M 263,2M 413,6M 192,6M
r 426469 509474 673935 340583
n 34714 46713 41609 31538

s11-f5 t 2473 3255 2019 1733
c 2,073G 2,115G 1,502G 1,157G
r 3,63M 4,52M 2,97M 2,2M
n 223965 397590 190496 199854

s11-f4 t 13969 11859 9490 6669
c 12,059G 7,512G 6,915G 4,322G
r 20,3M 15,9M 14M 8,9M
n 1,148M 1,354M 939094 716427

will in turn increase the weights of constraints that are involved in such
hard subproblems and thus search will focus on the most important parts
of the search space. Pure random instances that lack structure do not in
general consist of hard local subproblems. Thus, different decisions on
which variables to revise first can lead to different DWO-revisions being
discovered, which in turn can guide search tree to different parts of the
search space with unpredictable results. Note that for structured prob-
lems only very few possible DWO-revisions are present in the revision list
at each point in time, while for random ones there can be a large number
of such revisions.

80

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Table 5.3: Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n)
from structured problems using variable oriented propagation. Best cpu time is in bold.

Instance queue dom v wdeg v dom/wdeg

langford-2-9 t 56,5 46,9 60,3 46,2
c 99,6M 81,7M 99,9M 81,5M
r 633113 533656 741596 533261
n 48533 40228 49114 40363

langford-2-10 t 489,8 430,6 418,9 340,1
c 336,1M 283,7M 275,2M 197,9M
r 5,3M 4,5M 4M 2,9M
n 337772 280600 260343 208651

langford-3-11 t 695,8 648,5 843,5 513,5
c 408,6M 352,7M 468,8M 256,7M
r 2,3M 1,9M 2,9M 1,6M
n 99508 68042 103863 65958

langford-4-10 t 81,4 57,7 99,4 41,2
c 52,3M 33,2M 59,6M 21,7M
r 150493 99646 194952 75889
n 3852 2973 5759 2661

driverlogw-08c t 19,4 14,7 14,4 14,6
c 20,8M 8,6M 10,9M 9M
r 86809 39063 40256 38748
n 3151 3040 1960 2660

driverlogw-09 t 174,6 411 346,3 70,1
c 151,5M 251,5M 203,6M 39,5M
r 521358 1,05M 583686 139962
n 21220 41039 31548 7457

5.5 Dependency of conflict-driven heuristics on
the revision ordering

As we showed in the previous section, dom/wdeg is strongly dependent
on the order in which the revision list is constructed and updated during
constraint propagation. Looking at the results in Tables 5.1 – 5.4, we can
see that there are cases where the differences in cpu performance between
dom and v dom/wdeg can be up to 5 times. Hence, when dom/wdeg is used
as DVO heuristic, we must carefully select a good revision ordering using
for example one of the heuristics we have proposed in Section 5.3. In con-
trast, the conflict-driven DVO heuristics “alldel” and “fully assigned” are
not as amenable to the selection of revision ordering. To better illustrate
this statement, let us consider the following example.

81

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Table 5.4: Cpu times (t), constraint checks (c), number of list revisions (r) and nodes (n)
from random problems using variable oriented propagation. Best cpu time is in bold.

Instance queue dom v wdeg v dom/wdeg

frb30-15-1 t 22,3 20,9 29,3 14,1
c 16,5M 11,1M 16,4M 7,5M
r 105626 70924 102724 46727
n 3863 3858 4138 2499

frb30-15-2 t 84,9 29,7 118,9 95
c 45,7M 21,8M 90M 68,9M
r 311040 149119 624360 472124
n 15457 7935 25148 24467

frb35-17-1 t 125,8 193,7 118 250,9
c 93,9M 144M 89,7M 180,9M
r 533694 836462 514258 1,03M
n 18587 40698 19167 50611

rand-2-30-15 t 1240 74,4 98 108,1
c 114,5M 53M 72,5M 78,1M
r 922251 443792 602582 642665
n 28725 19846 20192 28766

geo50-20-d4-75-2 t 226,1 401,8 34,8 39,5
c 191,8M 310,3M 28,2M 28,8M
r 778758 1,3M 117241 124163
n 20069 60182 3735 5484

Example 7 Assume that we want to solve a CSP (X, D,C) with X : {x1, x2,
x3, x4}, by using two different revision ordering heuristics R1 (lexicographic or-
dering) and R2 (reverse lexicographic ordering). For the revision of each xi ∈ X ,
we assume that the following hypotheses are true: a) The revision of x1 is fruitful
and it causes the addition of the variable x3 in the revision list. b) The revision of
x2 is fruitful and it causes the addition of the variable x4 in the revision list. c)
The revision of x4 is fruitful and it causes the addition of the variable x3. We also
assume the a DWO can only occur either d) in x4 after a sequential revision of x2

and x3 or e) in x3 after a sequential revision of x4 and x1. Finally, assume that at
some point during search only the variables x1 and x2 have remained in the AC
revision list Q, but with different orderings for R1 and R2. That is, QR1 :{x1,x2},
QR2 :{x2,x1}. Following all these assumptions (which can exist commonly in any
real world CSP), lets now trace the behavior of both R1 and R2 during problem
solving. Considering the QR1 list, the revision of x1 is fruitful and adds x3 in the
list (due to hypothesis a). Now the revision list changes to QR1 :{x2,x3}. The se-
quential revision of x2 and x3 leads to the DWO of x4 (due to hypotheses b and d).

82

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

Considering the QR2 list, the revision of x2 is fruitful and adds x4 in the list (due
to hypothesis b). Now the revision list changes to QR2 :{x4,x1}. The sequential
revision of x4 and x1 leads to the DWO of x3. (due to hypotheses c and e).

From the above example it is clear that although only one DWO is iden-
tified in the revision list, both x1 and x2 can be responsible for this. In R1

where x1 is the DWO variable, we can say that x2 is also a “potential”
DWO variable i.e. it would be a DWO variable, if the R2 revision order-
ing was used. Although the dom/wdeg heuristic ignores all the “potential”
DWO variables, the other two DVO heuristics,“alldel” and “fully assigned”,
take into account their contribution. The former heuristic increases the
weights for every constraint that causes a value deletion, and thus suc-
ceeds to increase the weights of the constraints related to the “potential”
DWO variables. The latter heuristic increases the weights of constraints
that participate in fruitful revisions (only for revision lists that lead to a
DWO), and thus is able to frequently identify “potential” DWO variables.

To experimentally verify the strong dependance of dom/wdeg heuristic
on the revision ordering and the ability of the “alldel” and “fully assigned”
heuristics to be less dependent, we have computed the variance in the
number of node visits for the three conflict-driven heuristics on some se-
lected instances.

The variance is a measure of how spread out a distribution of a vari-
able’s values is. A variable’s spread is the degree to which the values of
the variable differ from each other. If all values of the variable were about
equal, the variable would have very little spread. In other words, it is a
measure of variability. In our case the measured variable x is the number
of visited nodes for the conflict-driven heuristics. For each conflict-driven
heuristic the x variable can take N=3 values. That is, the number of vis-
ited nodes when any one of the 3 main revision ordering heuristics (queue,
dom, v dom/wdeg) is used.

The variance is calculated by taking the arithmetic mean of the squared
differences between each value and the mean value, using the following
equation:

V ARIANCE =

∑
(x− x̄)2

N
(5.1)

83

CHAPTER 5. REVISION ORDERING IN AC ALGORITHMS

where x is the number of node visits when a specific revision ordering
heuristic is used and x̄ is the mean number of visited nodes of the N=3
main revision ordering heuristics (queue, dom, v dom/wdeg).

The smaller the variance of a conflict-driven heuristic, the less the de-
pendance from the selected revision ordering heuristic. Results from these
experiments are depicted in Table 5.5. As we can see, in almost all cases
the dom/wdeg heuristic displays the highest variance, while the other two
conflict-driven heuristics in most cases have smaller values. This suggests
that indeed the “alldel” and “fully assigned” heuristics are less amenable to
changes in the revision ordering than dom/wdeg and therefore can be more
robust.

Table 5.5: The computed variances for the three conflict-driven heuristics. Best values is
in bold.

Instance dom/wdeg alldel fully assigned

scen-11 96732 7432 67
scen-11-f8 6893 2127 701
scen-11-f7 3974589 6384509 1454538

jnh01 6123 80 41280
jnh17 1316 52 91

jnh201 4238 12 7
jnh301 66738 19783 91

langford-2-10 7564932 4547893 10923451
driverlogw-08c 291287 8465 912
driverlogw-09 71643951 19821345 13189345
will199GPIA-5 1139 0 3717
will199GPIA-6 5313746 860138 614930

Finally, it would be interesting to apply similar ideas as the ones pre-
sented in this chapter to propagator-oriented solvers. Constraint propa-
gation in such solvers is not handled by a revision list of variables or con-
straints, but they do use heuristics to choose the order in which propaga-
tors will be applied [75]. Hence exploiting information such as constraint
weights might be beneficial.

84

We are more ready to try the untried
when what we do is inconsequential.
Hence the fact that many inventions had
their birth as toys.

E. Hoffer 6
Adaptive Branching for CSPs

In this chapter we are interested in developing an adaptive branching
scheme for CSPs. In order to devise such a scheme, we first have to explore
and analyze the practical differences of the standard branching schemes.
The most widely used standard branching schemes for CSPs are d-way
and 2-way branching. Although it has been shown that in theory the latter
can be exponentially more effective than the former, there is a lack of em-
pirical evidence showing such differences. To investigate this, we initially
make an experimental comparison of the two branching schemes over a
wide range of benchmarks and under a variety of variable ordering heuris-
tics. Experimental results verify the theoretical gap between d-way and 2-
way branching as we move from a simple variable ordering heuristic like
smallest domain to more sophisticated ones like dom/ddeg. However, expo-
nential differences are rarely observed when state-of-the-art variable or-
dering heuristics like dom/wdeg and impact are used. Perhaps surprisingly,
experiments also demonstrate that under such heuristics d-way branching
can be clearly more efficient than 2-way in many cases. Exploiting this ob-
servation, we propose two generic heuristics that can be applied at certain
points during search to decide whether 2-way branching or a restricted
version of 2-way branching, which is close to d-way branching, will be fol-
lowed. The application of these heuristics results in an adaptive branching
scheme. Experiments with instantiations of the two generic heuristics con-
firm that search with adaptive branching outperforms search with a fixed
branching scheme on a wide range of problems.

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

6.1 Introduction

Branching decisions repeatedly split the search tree into two or more sub-
trees. Classical branching schemes for making such decisions are 2-way
(or binary) branching and d-way branching (or enumeration). In d-way
branching, after a variable x with domain {a1, . . . , ad} is chosen, d branches
are built, each one corresponding to one of the d possible value assign-
ments of x. In 2-way branching, after a variable x is chosen, its values are
assigned through a sequence of binary choices. The first choice point cre-
ates two branches, corresponding to the assignment of a1 to x (left branch)
and the removal of a1 from the domain of x (right branch). The full ver-
sion of 2-way branching allows for any variable to be chosen after a value
removal, while a commonly used restricted version requires branching on
variable x again. 2-way branching was described by Freuder and Sabin
within the MAC algorithm [73] and in theory it can achieve exponential
savings in search effort compared to d-way branching [47]. Indeed, 2-way
is the standard branching scheme of most constraint solvers.

Since we are interested in developing adaptive branching schemes, we
first need to identify and analyze the practical differences of the standard
branching schemes described above. Identifying cases where each stan-
dard branching scheme, like 2-way or d-way, work efficiently, can give us
indications on how we can adapt them.

In order to achieve this analysis, we first make a detailed experimental
comparison between 2-way branching, in both its restricted and full ver-
sions, and d-way branching, under a variety of different variable ordering
heuristics (VOHs). Results show that, unsurprisingly, the d-way and re-
stricted 2-way branching schemes are closely matched across the different
VOHs, with d-way being slightly more cost effective. Also, confirming the
theoretical results, exponential differences in favor of full 2-way branch-
ing are observed as soon as we move from a simple heuristic like smallest
domain (dom) to more sophisticated ones like domain over dynamic de-
gree (dom/ddeg). But perhaps surprisingly, when state-of-the-art heuristics
like dom/wdeg and impact are used, significant differences in favor of d-way
(and restricted 2-way) are also observed. We conjecture that this is because

86

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

in some cases the VOH mistakenly chooses to branch on a variable other
than the current one after the successful propagation of a value removal.
This can divert search away from a hard part of the search space, resulting
in increased search effort.

Exploiting and analyzing this observation, we next propose two generic
heuristics that can be applied at successful right branches once the VOH
chooses to branch on a variable other than the current one. At this point
the heuristics are used to decide whether the advice of the VOH will be
followed or not. The application of these heuristics results in an adap-
tive branching scheme that dynamically switches between 2-way branch-
ing and its restricted version (which is close to d-way branching). Both of
our heuristics can be used in tandem with any backtracking search algo-
rithm and VOH. The first heuristic is based on measuring the difference
between the scores that the VOH assigns to its selected variable and the
current variable. The VOH is followed only if the difference is sufficiently
large. As a downside, this heuristic requires some tuning to optimize its
performance. The second heuristic is based on the use of a secondary ad-
visor to decide if the VOH will be followed, and it does not require any
tuning.

Experiments with instantiations of the two generic heuristics confirm
that search with adaptive branching outperforms search with a fixed branch-
ing scheme on a wide range of problems. This is more profound when a
conflict-directed VOH like dom/wdeg is used, but it also notable under the
impact VOH. Interestingly, in many cases where full 2-way branching sig-
nificantly outperforms d-way and restricted 2-way, the adaptive branching
methods match its performance with only very few decisions following
the VOH when it suggests to move away from the current variable at suc-
cessful right branches.

6.2 Branching schemes

From the early days of CSP research, search algorithms were usually im-
plemented using either a d-way or a 2-way branching scheme. The former
works as follows. After a variable x with domain D(x) = {a1, a2, ..., ad}

87

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

is selected, d branches are created, each one corresponding to a value as-
signment of x. In the first branch, value a1 is assigned to x and constraint
propagation is triggered. If this branch fails, a1 is removed from D(x).
Then the assignment of a2 to x is made (second branch), and so on. If
all d branches fail then the algorithm backtracks. An example of a search
tree explored with d-way branching is shown in Figure 6.1a. This type
of branching was typically used in the past to describe older search al-
gorithms like chronological backtracking, forward checking, and various
versions of backjumping [44, 68, 51], but it is still used in some solvers,
mainly ones developed in academia.

In 2-way or binary branching, after a variable x and a value ai ∈ D(x)

are selected, two branches are created. In the left branch ai is assigned to
x, or in other words the constraint x=ai is added to the problem and is
propagated. In the right branch the constraint x 6= ai is added to the prob-
lem and is propagated. If both branches fail then the algorithm backtracks.
Figure 6.1b shows a search tree explored with 2-way branching. This type
of branching is typical in constraint programming systems and is the most
widely used branching scheme in commercial and other well-developed
solvers (e.g. [48, 81]). Since the description of the MAC algorithm with
2-way branching [73], it has gradually taken over from d-way in academia
as well.

There are two differences between these branching schemes:

• In 2-way branching, if the branch assigning a value ai to a variable
x fails then the removal of ai from D(x) is immediately propagated.
Instead, d-way branching tries the next available value aj of D(x).
Note that the propagation of aj subsumes the propagation of ai’s
removal.

• In 2-way branching, after a failed branch corresponding to an as-
signment x=ai, and assuming the removal of ai from D(x) is then
propagated successfully, the algorithm can choose to branch on any
variable (not necessarily x), according to the VOH (e.g. Figure 6.1b).
In d-way branching the algorithm has to choose the next available
value for variable x after x=ai fails.

88

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Figure 6.1: Examples of search trees for the three branching schemes.

In between these two schemes is the version of 2-way branching used
in [78] where the algorithm is forced to assign x with its next value after the
successful propagation of ai’s removal from D(x). In the following we call
this restricted 2-way branching. Figure 6.1c shows a search tree explored
with restricted 2-way branching.

We should note that alternative branching schemes have been pro-
posed but are by far less popular than 2-way and d-way. The most notable
among them is dichotomic domain splitting [31]. This method originates
from numerical CSPs and proceeds by splitting the current domain of the
selected variable into two sets, usually based on the lexicographical order-
ing of the values.

All the above branching schemes essentially post unary constraints at
each decision point (e.g. x = ai, x 6= ai, x > ai). A survey of these and
other less widely used branching schemes that post unary constraints is
given in [2]. Alternatively, there are branching schemes that post non-
unary constraints, but these are rather problem-specific and although they
are successful on certain problems (e.g. in scheduling), they typically need
to be hand-crafted into a solver as the default method offered is 2-way
branching.

89

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

6.3 Comparing 2-way to d-way Branching

Although there is an implicit assumption in the community that 2-way
branching is more efficient in practice than d-way (as noted above, 2-way
is the dominant branching scheme in CP solvers), there are only a few ex-
perimental studies on this topic in the literature. Despite this assumption
and the theoretical result of [47], the few experimental studies compar-
ing 2-way and d-way branching have not displayed significant differences
between them. Park showed that 2-way and d-way display very similar
performance when the dom VOH is used [65], while Smith and Sturdy
showed that 2-way outperforms d-way when searching for all solutions,
albeit not considerably (an average speed-up of 30% was reported) [78].
However, it is important to note that both research works used restricted
2-way branching in their experimental study.

The lack of extensive experimental evidence on the relative perfor-
mance of (full) 2-way branching compared to d-way motivated us to em-
pirically evaluate them on a wide range of random and structured bench-
marks. The aim of this study was threefold:

1. To compare the three branching schemes (2-way, restricted 2-way, d-
way) on a wide range of problems using a standard search algorithm
and variable ordering heuristic.

2. To investigate if and to what extent the choice of variable ordering
heuristic affects the relative performance of the branching schemes.

3. To investigate if and to what extent the level of local consistency ap-
plied during search affects the relative performance of the branching
schemes.

To address these three goals we compared three implementations of
the MAC algorithm, one for each branching scheme, using a variety of
VOHs: dom, dom/ddeg, dom/wdeg, dom/wdeg + aging, impact. We also com-
pared three corresponding implementations of the MmaxRPC algorithm
using the dom/wdeg heuristic.

90

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

We have experimented with 1600 instances taken from C. Lecoutre’s
web repository. We have tried to include a wide range of CSP instances
from different backgrounds but our focus was mainly on binary problems.
Hence, we have experimented with instances from real world applications
(like the Radio Link Frequency Assignment problem and the Driver prob-
lem), instances following a regular pattern and involving a random gen-
eration (Quasigroup Completion and Quasigroup With Holes problems,
the Black Hole problem, the Graph Coloring problem and Haystacks),
academic instances which do not involve any random generation (All-
Interval series, chessboard coloration, Golomb Ruler, Langford, Queens,
Queen Attacking, Queens-Knights and Domino), random instances con-
taining a small structure (the Geometric problem) and, finally, pure ran-
dom instances (generated following models D and RB). Although the ma-
jority of the selected problems are binary, we have also experimented with
the following non-binary academic problem classes: All-Interval series,
Chessboard Coloration and Golomb Ruler.

As a primary parameter for the measurement of the performance of
the evaluated branching schemes, we have used the cpu time in seconds
(t). We also report the number of visited nodes (n) as this gives a measure
that is not affected by the particular implementation or by the hardware
used. A node in 2-way branching can correspond to a value assignment
or to a value removal, while in d-way branching it can only correspond to
a value assignment. Hence, they cannot be compared directly. However,
the number of nodes gives an accurate measure of the difference in search
effort between 2-way and restricted 2-way.

Constraint propagation in our solver is variable-oriented and the revi-
sion list is implemented as a fifo list. That is, the oldest variable inserted in
the list is always selected (i.e. the list is implemented as a queue).

The ordering of values for the selected variable is done lexicograph-
ically. Experiments with an informed value ordering heuristic, namely
Geelen’s promise [37], showed that the relative behavior of the tested branch-
ing schemes was qualitatively similar to that obtained under lexicographic
value ordering. A time limit of 2 hours was set for every single experi-
ment, unless otherwise stated. All the experiments were run on an Intel

91

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.1: CPU times(t) in seconds and nodes(n) for the three branching schemes using
the VOH dom.

Instance 2 − way restricted d − way

2 − way

cc-10-10-2 t 246.2 248.6 241.9
(unsat) n 0.47M 0.47M 0.37M

cc-12-12-2 t 2,201 2,205 2,152
(unsat) n 2.75M 2.75M 2.11M

queens-100 t 45.8 47 40.6
(sat) n 16,018 16,111 13,140

queenA-5 t 124.1 124.4 114.7
(sat) n 0.48M 0.48M 0.35M

queensK-10-5 t 114.2 127.9 131.5
(unsat) n 85,207 85,401 81,348

bqwh18-141-0 t 45.1 43.7 42.7
(sat) n 0.18M 0.18M 0.11M

langford3-11 t 161.6 156.2 147.4
(unsat) n 96,775 88,479 41,042

langford4-10 t 18.1 17.7 16.2
(unsat) n 3,544 3,207 1,481

domino300-300 t 9.4 9.2 9.4
(unsat) n 300 300 300

dual core PC T4200 2GHz with 3GB RAM.

6.3.1 Using dom and dom/ddeg as VOHs

In a first set of experiments, we compared the performance of the three
branching schemes when dom or dom/ddeg were used for variable ordering.
The search algorithm for these experiments was MAC. These two VOHs
are quite ineffective compared to more advanced ones like dom/wdeg and
impact. Thus, only a fraction of the instances that terminated within the
time limit using a state-of-the-art VOH, managed to terminate using dom
or dom/ddeg (excluding very easy instances). Despite this, results from the
instances that did terminate demonstrate a clear pattern with respect to
the performance of the different branching schemes.

In Tables 6.1 and 6.2 we give indicative results from the use of the
dom and dom/ddeg heuristics respectively. Under the dom VOH, 2-way
branching essentially emulates d-way branching and the three branch-

92

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.2: CPU times(t) in seconds and nodes(n) for the three branching schemes using
the VOH dom/ddeg.

Instance 2 − way restricted d − way

2 − way

cc-10-10-2 t 29.3 144.8 143.6
(unsat) n 30,706 0.14M 71,358

cc-12-12-2 t 58.3 978 959
(unsat) n 36,994 0.56M 0.27M

scen-11 t 7.1 508 372
(sat) n 1,379 68,597 45,862

scen-11-f11 t 8.1 > 2h > 2h

(unsat) n 2,716 - -

driver-09 t 205 1197 1207
(sat) n 75,033 0.42M 0.16M

ehi-85-297-0 t 62.3 2509 2481
(unsat) n 37,246 2.5M 0.9M

ehi-85-297-2 t 41.8 > 2h > 2h

(unsat) n 20,733 - -

ash958-4 t 5.1 > 2h > 2h

(sat) n 2712 - -

ash313-7 t 2,405 > 2h > 2h

(sat) n 0.14M - -

93

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

ing schemes are closely matched in terms of run times (with d-way being
slightly better). This is in accordance with previous results [65]. Concern-
ing the dom/ddeg VOH, our results confirm the theoretical results of [47] as
we can observe huge differences in favor of 2-way branching. Restricted
2-way and d-way display similar performance with d-way usually being
slightly faster.

As an example that clearly depicts the differences in relative perfor-
mance of the three branching schemes when the dom as opposed to the
dom/ddeg VOH is used, we can notice their behavior on the non-binary
chessboard coloration instances cc-10-10-2 and cc-12-12-2. While in Ta-
ble 6.1 the three branching schemes are very close, in Table 6.2, 2-way is
over a magnitude faster than d-way and restricted 2-way.

6.3.2 Using conflict-driven VOHs

The dynamic VOHs of the previous subsection are nowadays considered
relatively poor general purpose heuristics. Conflict-driven VOHs, like
dom/wdeg, can learn from failures encountered during search and thus
make more informed choices [18]. Such VOHs are considered to be state-
of-the-art.

In this subsection we present results from the use of dom/wdeg in tan-
dem with the three branching schemes. In addition, we also give results
from a variant of dom/wdeg which applies periodic weight aging [8]. Re-
garding this variant, we have selected to periodically decrease all con-
straint weights by a factor of 2, with the period set to 20 backtracks.

In Table 6.3 we give indicative results from various structured instances.
This table is divided in two parts. In the first part we include instances
where d-way and restricted 2-way are the best choices, while in the second
part we include instances where 2-way is better. The selected instances are
among the ones that demonstrate the most notable differences in favor of
either 2-way or d-way branching.

These results show that none of the branching schemes is always the
best choice, even for instances within the same problem class (see for ex-
ample the ruler25 and bqwh-18-141 problems in Table 6.3). Perhaps sur-

94

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.3: Cpu times (t), and nodes (n) from indicative instances when MAC is used
with dom/wdeg and dom/wdeg + aging. Best cpu time is in bold.

dom/wdeg dom/wdeg + aging

Series of 2 − way restricted d − way 2 − way restricted d − way

Instances 2 − way 2 − way

geo50-20-d4-75-62 t 2,398 964 883 4,763 1,020 904.9
(sat) n 0.43M 0.15M 0.12M 1.04M 0.25M 0.23M

geo50-20-d4-75-57 t 1,632 1,232 1,083 3,485 1,238 1,126
(unsat) n 0.18M 0.14 0.13 0.59M 0.23M 0.24M

haystacks-05 t 41.8 4 3.7 13 3.4 3
(unsat) n 1.27M 0.13M 0.11M 0.44M 0.10M 92,900

ruler-25-7-a3 t 12.4 4.1 2.1 3.1 3.9 2.1
(sat) n 1,444 225 129 258 228 129

qwh-15-106-1 t 34.3 14.8 14.3 31 1.4 1.5
(sat) n 44,150 19,964 12,788 35,542 2,104 1,742

bqwh-18-141-84 t 97.1 59.1 58.4 86.5 51.8 48.8
(sat) n 0.33M 0.18M 0.11M 0.22M 0.13M 0.11M

series13 t 148.4 1,132 1,057 839.9 1,638 1,371
(sat) n 0.15M 1.6M 1.33M 0.77M 1.94M 1.55M

scen2-f25 t 42.3 183.8 137.9 38.4 146.8 118.2
(unsat) n 7,819 31,516 42,699 8,879 34,704 42,459

scen1-f9 t 5.7 13.6 12.2 4.3 12.4 11.3
(unsat) n 1,300 3,582 2,808 1,341 4,156 3,538

ruler-25-8-a3 t 50.3 180.8 167.6 39.7 162.6 154.4
(unsat) n 1,829 6,407 7,026 1,579 6,300 6,963

qcp-15-120-6 t 62.8 80.5 76.2 96.9 110.4 108.5
(sat) n 70,384 92,058 60,314 0.11M 0.12M 0.10M

bqwh-18-141-95 t 1.6 8.5 8.4 2.7 14.5 14
(sat) n 4,417 25,957 15,984 6,075 38,509 30,797

95

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

prisingly, there are many instances where d-way (and restricted 2-way)
are clearly better than 2-way branching. Moreover, in cases where 2-way
branching dominates, exponential differences are rare. Actually, only in
the case of the “All-Interval series” problem class did we observe per-
sistent exponential differences in most of the instances included in the
class. As in the case of dom/ddeg, restricted 2-way branching displays a
behavior very close to that of d-way branching. Results from Table 6.3 also
show that the relative performance of the three branching schemes does
not change when we move from dom/wdeg to dom/wdeg+aging. Although
the two heuristic display differences in performance (sometimes dom/wdeg
is better and sometimes it is worse), the dominating branching scheme on
each instance remains the same.

Comparing these results with the results of Table 6.2, we can notice
two differences: First, there are many instances where 2-way branching is
less efficient, sometimes considerably, compared to restricted 2-way and
d-way. Second, in instances where 2-way branching dominates, the differ-
ences are not as striking as in Table 6.2, albeit they can still be considerable.

Aggregate results from all the binary structured problem classes that
we experimented with are presented in Table 6.4. Similar results from non-
binary problems are presented separately in Table 6.5. For each problem
class we report the mean cpu time in seconds and the mean visited nodes.
We have excluded instances that terminated in less than one second, and
also instances which did not terminate within the time limit. In the last
line of these tables we also give the total mean. This mean value has been
computed over all the instances whose aggregate results are given in Ta-
ble 6.4 and in Table 6.5.

Results showed that in almost half of the tried instances all methods
were very close. In around 25% 2-way was faster than d-way, while in
the remaining 25% it was slower. The last two cases included most of the
hardest instances.

On binary problems, d-way branching is on average more efficient than
2-way. This superiority is observed in most of the problem classes. RL-
FAPs is the only case where 2-way dominates. The relative performance
of the three branching schemes is not affected by the selection of conflict-

96

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.4: Mean cpu times (t), and nodes (n) from binary structured and patterned
problems using MAC with dom/wdeg and dom/wdeg + aging. Best cpu time is in
bold.

dom/wdeg dom/wdeg + aging

Series of 2 − way restricted d − way 2 − way restricted d − way

Instances 2 − way 2 − way

geometric t 537.6 440.7 401.8 1,221 478.7 417.1
n 0.11M 96,624 86,986 0.26M 0.11M 0.10M

Driver t 35.4 34.7 28 9.4 10.1 9.8
n 16,176 17,393 8,111 2,292 2,532 1,736

rlfapScensMod t 8.5 36.7 29 7.4 32.2 26.2
n 3,505 15,932 18,470 2,623 11,634 12,835

rlfapGraphsMod t 31.7 210.6 120.4 13.4 47.5 113.9
n 10,396 0.12M 41,310 6,597 25,318 56,900

Black Hole-4-4 t 15 14.5 13.7 18.6 13 12.1
n 9,892 9,762 8,661 15,483 13,384 12,283

Haystacks t 20.9 2 1.9 6.5 1.7 1.6
n 1.27M 0.13M 0.11M 0.22M 53,139 46,565

qwh-15-106 t 17 15.2 15.1 29.4 21.5 21.1
n 21,585 20,959 12,689 31,054 23,825 18,984

qcp-10-67 t 135.3 131 126.8 22.1 25.2 24.5
n 0.43M 0.42M 0.32M 68,511 84,729 69,075

qcp-15-120 t 380.4 382.3 373.5 368.8 393.6 385.3
n 0.43M 0.45M 0.28M 0.38M 0.52M 0.40M

Langford2 t 55.7 51.4 47.8 117.6 56 51.5
n 0.15M 0.14M 0.11M 0.20M 0.13M 0.11M

bqwh-15-106 t 2.05 1.63 1.61 2.6 2.3 2.2
n 11,993 9,365 5,780 8,517 7,988 6,363

bqwh-18-141 t 13.5 11.9 11.7 15.5 14.1 13.7
n 49,123 43,321 26,452 39,931 38,570 30,718

TOTAL MEAN t 143.5 130.7 117.6 278.5 130.7 119.8

97

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.5: Mean cpu times (t), and nodes (n) from non-binary structured problems using
MAC with dom/wdeg and dom/wdeg + aging. Best cpu time is in bold.

dom/wdeg dom/wdeg + aging

Series of 2 − way restricted d − way 2 − way restricted d − way

Instances 2 − way 2 − way

allIntervalSeries t 574.7 6,002 6,214 2,849 7,414 7,090
n 0.42M 6.4M 6.2M 1.72M 6.3M 5.3M

golombRuler t 319.7 185.4 315 151.6 719.9 348
n 6,541 3,662 5,736 3,032 6,952 5,120

Chessboard t 16.1 15.4 15.3 16.6 14.9 14.8
Coloration n 9,501 9,342 6,069 12,904 12,119 9,304

TOTAL MEAN t 353.2 2,540 2,673 1,320 3,538 2,270

driven VOH. Both dom/wdeg and the aging variation, gives qualitatively
similar results.

Results for non-binary problems are quite different. In the case of the
“All-Interval series” problem class we observe exponential differences in
favor of 2-way. On the contrary, on the “chessboard coloration“ problem
d-way is slightly better than 2-way. Golomb ruler is the only problem
class where the selection of the conflict-driven VOH affects the relative
performance of the branching schemes. When dom/wdeg is used, 2-way is
the worst choice, while when dom/wdeg+aging is used, 2-way is the best
choice. Also, and uncharacteristically, there is considerable variance be-
tween the performance of restricted 2-way and d-way. The computed total
mean is clearly affected by the huge differences in favor of 2-way in the
“All-Interval series” problem class.

In general we can say that our empirical observations outlined in this
subsection show that with conflict-driven variable ordering heuristics ex-
ponential differences in favor of 2-way branching are rare. Also, perhaps
surprisingly, in a wide range of binary problems d-way branching signif-
icantly outperforms 2-way. This is the first study that gives detailed em-
pirical evidence in favor of d-way.

98

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

6.3.3 Using the impact VOH

In order to investigate if the choice of an efficient general purpose VOH
that is based on different principles than conflict-driven VOHs affects the
relative performance of the branching schemes, we ran experiments with
the impact VOH.

In these experiments we have approximated the values at the initial-
ization phase of impacts by dividing the domains of the variables into (at
maximum) four sub-domains. Since the initialization cost of impacts is
rather significant (especially on instances with large domains), the frac-
tion of problems that terminated within the time limit was smaller that
that of the previous subsection.

In Table 6.6 we give results from indicative instances. In the first part of
this table we again include instances where d-way branching is the dom-
inant branching scheme, while in the second part we include instances
where 2-way is better. As with the conflict driven VOHs, neither 2-way
nor d-way is always the best choice, even for instances within the same
problem class (see for example qwh-15 and bqwh-15).

Although there are many instances where d-way is faster than 2-way,
mean results for binary problems in Table 6.7 and for non-binary problems
in Table 6.8 show that in general 2-way is a better choice.

Comparing the results obtained with impact and those obtained with
conflict-driven VOHs, we may notice a difference in the relative perfor-
mance of the branching schemes on binary problems. While with the
conflict-driven VOHs d-way was faster than 2-way, with impact 2-way
was better. But again the experimental behavior of the different branch-
ing schemes using any of these state-of-the-art heuristics does not reveal
exponential differences between 2-way and d-way branching, such as the
ones displayed using dom/ddeg.

6.3.4 Maintaining a Stronger Level of Consistency

We now investigate the behavior of the three branching schemes when a
stronger level of consistency than AC is maintained during search, namely
when maxRPC is maintained. To achieve maxRPC we use the recently

99

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.6: Cpu times (t), and nodes (n) from indicative instances when MAC is used
with impact. Best cpu time is in bold.

Series of 2 − way restricted d − way

Instances 2 − way

ruler-34-9-a3 t 1,665 874.2 746.6
(unsat) n 37,224 16,972 17,708

langford-4-10 t 82.1 54.6 47.3
(unsat) n 5,906 4,282 3,997

frb30-15-5-mgd t 66.4 4.4 3.4
(sat) n 32,627 2,243 1,773

qwh-15-106-4 t 19.1 2.8 1.4
(sat) n 59,478 1,904 754

bqwh-15-106-53 t 23.1 2.37 2.35
(sat) n 0.15M 5,904 5,016

bqwh-15-106-93 t 9.03 1.06 1.03
(sat) n 35,676 1,778 1,068

series13 t 211.2 2,710 3,004
(sat) n 0.30M 4.28M 3.95M

qwh-15-106-1 t 191.8 982 508.5
(sat) n 0.55M 4.75M 1.53M

qwh-15-106-5 t 54.5 467.2 141
(sat) n 0.18M 2.04M 0.36M

bqwh-15-106-3 t 110.57 404.3 640.4
(sat) n 0.67M 2.76M 3.34M

ruler-34-8-a3 t 68.9 87.1 238.3
(sat) n 1,342 1,943 10,174

frb30-15-1 t 71.5 385.6 387
(sat) n 36,042 0.20M 0.25M

100

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.7: Mean cpu times (t), and nodes (n) from binary structured and random prob-
lems using MAC with impact. Best cpu time is in bold.

Series of 2 − way restricted d − way

Instances 2 − way

Driver t 22.9 24.2 23.5
n 882 1,462 1,154

Haystacks t 54.7 56.9 47.9
n 0.96M 1.09M 0.89M

qwh-15-106 t 51.3 183.6 107.2
n 0.16M 0.82M 0.30M

Langford t 148.2 185.9 157.2
n 0.10M 0.15M 94,546

bqwh-15-106 t 9.2 22.2 18.4
n 49,449 0.13M 82,418

frb30-15 t 77.1 133 100.4
n 34,591 69,368 66,336

TOTAL MEAN t 28.4 57.5 42.4

Table 6.8: Mean cpu times (t), and nodes (n) from non-binary structured problems using
MAC with impact as VOH. Best cpu time is in bold.

Series of 2 − way restricted d − way

Instances 2 − way

allIntervalSeries t 79.6 1,040 1,072
n 0.11M 1.66M 1.46M

golombRuler t 863.3 898.7 994.6
n 14,894 12,575 18,370

Chessboard t 73.5 65.2 62.4
Coloration n 95,383 86,788 65,078

TOTAL MEAN t 500.1 738.9 797.5

101

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

proposed algorithm maxRPC3rm which is the most efficient maxRPC algo-
rithm to date [3]. The success of this algorithm is based on the exploitation
of residual supports, a concept first introduced in the efficient AC algo-
rithms ACr and ACrm [55, 57]. To place the presented results in context,
each instance that was solved with MmaxRPC was also solved with MAC,
but this time the AC algorithm used was ACrm (so that a direct comparison
with maxRPC3rm can be made). As dom/wdeg is perhaps the most success-
ful general purpose VOH, it has been used in all experiments presented
here.

In the first set of experiments we have experimented with seven se-
ries of random problems, each one consisting of 100 binary instances at
the phase transition and generated following Model D. For each class <

n, d, e, t >, the number of variables n has been set to 40, the domain size
d varied between 8 and 180, the number of constraints e between 84 and
753 (meaning that the constraint graph density varied between 0.1 and
0.96) and the tightness t, which denotes the probability that a pair of val-
ues is allowed by a relation, varied between 0.1 and 0.9. The first class
< 40, 8, 753, 0.1 > corresponds to dense instances involving constraints of
low tightness whereas the seventh one < 40, 180, 84, 0.9 > corresponds to
sparse instances involving constraints of high tightness.

Figure 6.2 shows the effort (cpu time) required for solving these seven
series of random instances with respect to the different tightness values.
We compare here the 2-way and d-way branching schemes. When MAC
is used, Figure 6.2(a), d-way branching is clearly more cost effective than
2-way branching. When MmaxRPC is used, Figure 6.2(b), again d-way
is better but the differences in its favor are smaller, and in instances with
high tightness 2-way branching is slightly faster.

In all seven series the d-way and restricted 2-way branching schemes
displayed similar performance, with d-way being slightly more cost effec-
tive. In Figure 6.3(a) we depict the search effort for tightness=0.65 when
MAC was used. The 100 random instances from that set were shorted in
ascending order according to the cpu time. In Figure 6.3 (b) we give simi-
lar plots for tightness values 0.1, 0.2 and 0.35 when MmaxRPC is used.

In a second set of experiments we evaluated the efficiency of the three

102

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

(a) (b)

Figure 6.2: Mean search cost of solving the random instances as tightness is increased.
2-way and d-way branching are comparatively depicted. In (a) with MAC and in (b) with
MmaxRPC.

(a) (b)

Figure 6.3: Comparison of restricted 2-way and d-way branching. (a) Solving time for
the 100 random instance with tightness = 0.65, shorted in ascending order when MAC
is used. (b) Solving time for the 100 random instance with tightness = 0.1, 0.2 and 0.35
when MmaxRPC is used.

103

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.9: Cpu times (t), and nodes (n) from indicative instances using MAC and
MmaxRPC with dom/wdeg as VOH. Best cpu times are in bold.

MAC MmaxRPC

Series of 2 − way restricted d − way 2 − way restricted d − way

Instances 2 − way 2 − way

geo50-20-d4-75-1 t 278.8 160.1 150.2 306.3 181.6 173.1
(sat) n 0.34M 0.20M 0.18M 0.12M 80,581 79,691

geo50-20-d4-75-2 t 24.8 4.1 4.2 23 4 3.7
(sat) n 41,133 6,610 6,239 13,436 2,181 1,826

bqwh-18-141-3 t 89 62.4 52.8 11.2 9.7 9
(sat) n 0.59M 0.40M 0.24M 87,386 74,743 48,549

haystacks-05 t 25.7 2.5 2.2 4 0.3 0.5
(unsat) n 1.27M 0.13M 0.11M 0.16M 10,363 20,278

qcp-15-120-10 t 342.4 252 223 764.8 771.5 688.1
(sat) n 1.01M 0.78M 0.48M 1.98M 2.03M 1.26M

qwh-15-106-1 t 22.8 11.1 10.1 4.4 4.6 4.1
(sat) n 44,150 19,964 12,788 11,991 12,727 8,507

geo50-20-d4-75-20 t 72.4 188.1 175.8 65.3 237.6 200.6
(sat) n 83.708 0.22M 0.19M 22,680 85,958 81,851

scen2-f25 t 9.8 41.4 40.6 14 54.5 40.8
(unsat) n 7,819 31,516 42,699 1,719 6,704 8,310

scen11-f8 t 105.9 805.1 722 113.3 965.4 748.4
(unsat) n 43,677 0.35M 0.34M 12,681 93,429 0.11M

scen11-f9 t 66.9 458.5 434.1 99.1 658.1 510.6
(unsat) n 27,920 0.20M 0.19M 10,265 62,465 69,400

graph9-f9 t 85.8 323.6 430.3 68.9 265.3 101.2
(sat) n 49,173 0.18M 0.28M 16,839 62,058 26,276

qwh-20-166-1 t 74.4 182.5 151.9 35.7 53.7 40
(sat) n 99,171 0.22M 0.13M 54,286 87,337 44,934

branching schemes over a wide range of structured problems. The same
set of binary problems has been used for both the search algorithms.

Indicative results for both MAC and MmaxRPC are given in Table 6.9.
In the first part of this table we have grouped instances where d-way is
faster, while in the second part we have grouped instances where 2-way
dominates. For both search algorithms the branching schemes have an
analogue behavior. That is, in instances where d-way (resp. 2-way) is the
best choice when MAC is used, d-way (resp. 2-way) is also the best choice
when MmaxRPC is used.

Mean results per problem class for both MAC and MmaxRPC are col-

104

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

lected in Table 6.10. For the computation of the mean values per problem
class we have excluded instances that terminated in less than one second
and also instances which did not terminate within the time limit of 2 hours.
In this set of experiments we have used only binary instances, as maxRPC
is only defined for binary constraints, and we have experimented with
some additional problem classes that were not used in the previous ex-
periments. Although there is an analogue in performance between the
search algorithms, we can notice that the difference among the branching
schemes per problem class are smaller when MmaxRPC is used. The to-
tal mean computed over all the experimented instances shows that in the
case of MAC d-way is slightly better than 2-way, while for MmaxRPC the
opposite occurs.

Although it is not the focus of this study, it is very interesting to note
that, as mean cpu times show, maxRPC is clearly a better choice of prop-
agation method for binary CSPs regardless of the branching method cho-
sen.

As a general conclusion from this set of experiments we can say that
when we increase the level of local consistency maintained during search,
2-way branching becomes stronger. But there is a non negligible set of
problem classes where d-way is still a better choice.

6.3.5 General discussion

Hwang and Mitchell have shown that in theory these exist instances which
require exponential search trees for backtracking with d-way branching,
but have polynomial search trees for backtracking with 2-way branching
[47].

Our experimental study has shown that the appearance of such ex-
ponential differences in practice strongly depends on the VOH used. The
choice of VOH can drastically affect the relative performance of the branch-
ing schemes if we consider the whole range of proposed heuristics. A less
effective VOH like dom/ddeg typically results in exponential differences
in favor of 2-way branching. But on the other hand modern VOHs like
dom/wdeg and impact make exponential differences a rarity. State-of-the-

105

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.10: Mean cpu times (t), and nodes (n) from binary structured and patterned
problems using MAC and MmaxRPC with dom/wdeg as VOH. Best cpu times are in
bold.

MAC MmaxRPC

Series of 2 − way restricted d − way 2 − way restricted d − way

Instances 2 − way 2 − way

geometric t 104.5 84.5 75.3 99.5 92.5 84.4
n 0.11M 96,624 86,986 35,974 34,590 34,260

bqwh-15-106 t 1.46 1.12 1.03 0.47 0.43 0.29
n 11,993 9,365 5,780 4,987 4,623 2,110

bqwh-18-141 t 8.16 7.2 6.1 3.03 2.95 2.55
n 49,123 43,321 26,452 21,456 21,957 13,417

rlfapScensMod t 3.7 15.6 14.6 7.3 18.3 14.3
n 3,505 15,932 18,470 1,067 2,527 2,708

rlfapGraphsMod t 17.1 115.1 63.2 14.9 45.8 19.3
n 10,396 0.12M 41,310 4,006 11,647 5,287

rlfapScens11 t 184.1 1,375 1,283 93.7 778.4 552.4
n 13,174 97,151 95,213 14,664 0.11M 0.1M

qcp-10-67 t 73.8 77.1 66 11.4 10.6 7
n 0.43M 0.42M 0.32M 78,989 76,569 42,847

qcp-15-120 t 175.4 189.7 164.5 62.9 54.5 56.6
n 0.43M 0.45M 0.28M 0.18M 0.16M 0.12M

qwh-15-106 t 10.8 10.2 9 3.7 3.5 2.8
n 21,585 20,959 12,689 10,686 10,063 5,928

qwh-20-166 t 1,701 1,157 863.8 219 200.1 193.9
n 1.97M 1.35M 0.77M 0.31M 0.29M 0.2M

driverlogw t 19.5 25 15.8 13.2 18.2 20.8
n 16,176 17,393 8,111 11,255 14,530 9,477

blackHole-4-4 t 2.9 2.8 2.6 3.5 3.5 3.4
n 9,892 9,762 8,661 4,741 4,407 4,371

haystacks t 25.7 2.5 2.2 4 0.3 0.5
n 1.27M 0.13M 0.11M 0.16M 10,363 20,278

TOTAL MEAN t 132 149.2 124.4 53.5 84.3 69.5

106

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

art VOHs like dom/wdeg and impact are adaptive heuristics, which means
that they have the ability to learn during search and subsequently make
better decisions. This learning ability seems to alleviate the differences in
efficiency between the branching schemes. Perhaps surprisingly, our ex-
periments have also shown that on binary CSPs when the dom/wdeg VOH
is used, d-way branching is a better choice in general than 2-way.

With respect to the level of local consistency applied, our experiments
with maxRPC have shown that increasing the level of consistency does
have an effect on the relative performance of the branching schemes, albeit
not an overwhelming one. Specifically, 2-way branching becomes stronger
when moving from AC to maxRPC. But there still exists a non negligible
number of problems where d-way remains a better choice.

A general likely explanation for the failure of 2-way branching on some
instances, compared to its restricted version and d-way, is the following.
At some right branches during search, the VOH mistakenly chooses to
branch on a variable other than the current one. In the case of conflict-
driven VOHs this may result in the search process moving away from
a hard subproblem to another area of the search space resulting in in-
creased search effort. To test this conjecture we have developed heuris-
tics, presented below, that can be applied at successful right branches to
decide whether the advice of the VOH will be followed or not. The use of
such heuristics results in an adaptive branching scheme that dynamically
switches between 2-way branching and its restricted version.

6.4 Heuristics for Adaptive Branching

It is well known that variable ordering heuristics sometimes make deci-
sion errors when, based on their score, they try to select a variable for
instantiation. And the probability of making a wrong decision is bigger
in the case of ties, or when a set of “best variables” have scores with very
small differences.

In general, when 2-way branching is used for splitting the search tree,
the choice points where a VOH has to take a decision are significantly more
in number compared to the choice points when d-way branching is used.

107

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

This is because in 2-way at successful right branches (where the current
variable has not yet been successfully instantiated) the VOH has to take
an additional decision on whether to continue with the same variable or
to branch on another one. And since the number of choice points for a
VOH with 2-way branching is bigger compared to d-way, the probability
of making a decision error can also be bigger.

In many cases 2-way branching benefits from the extra liberty to branch
on different variables at successful right branches, since the VOH used
may be better informed and thus take a better decision. But since our
experimental study showed that d-way branching is frequently a better
choice, we conjecture that this is because sometimes erroneous decisions
at successful right branches are quite costly.

The heuristics we propose next try to minimize the decision errors that
can occur with 2-way branching during the variable selection process at
successful right branches. The intuition behind these heuristics is twofold.
First, to avoid branching on a different variable than the current one if
the VOH is not “confident enough” about the correctness of this decision.
And second, to identify ways to assist this decision by the use of secondary
advisors. That is, VOHs that can complementarily be consulted to help in
the decision making.

The two generic heuristics proposed can be used to dynamically adapt
the search algorithm’s branching scheme. We consider the case where dy-
namic adaptation involves switching between 2-way branching and re-
stricted 2-way branching. As detailed above, the performance of d-way
branching is very close to that of restricted 2-way branching. These heuris-
tics can be applied at successful right branches. That is, when the VOH
suggests to branch on another variable rather that trying the next value of
the current one. Following the above intuitions we propose the following
heuristics:

Hsdif f (e) :- VOH score difference If the current variable is x and the
VOH suggests to branch on a different variable y, we will follow this sug-
gestion only when |score(y) − score(x)| > e, where score(x) and score(y)

are the values assigned by the VOH to variables x and y, while e is a thresh-
old value difference.

108

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Hcadv(VOH2) : - complementary advisor If the current variable is x

and the VOH used by the algorithm (V OH1) suggests to branch on a differ-
ent variable y, we will follow this suggestion only when a secondary VOH
(V OH2) also prefers y to x. That is, when scoreV OH2(y) > scoreV OH2(x),
where scoreV OH2(x) and scoreV OH2(y) are the heuristic values assigned by
V OH2 to variables x and y1.

Both proposed heuristics are generic, in the sense that they can be used
in tandem with any VOH and any backtracking search algorithm. How-
ever, Hsdiff (e) requires some tuning to set the value of e appropriately.
In contrast, Hcadv(V OH2) does not require any such tuning, and can use
any VOH as a secondary heuristic. The two heuristics can also be com-
bined either conjunctively or disjunctively. In the former (resp. latter) case
the suggestion to branch on a variable different than x is followed when
both (resp. at least one) of the criterions for Hsdiff and Hcadv are satisfied.
Importantly, the two proposed heuristics are lightweight, assuming that
V OH2 is not too expensive to compute.

6.5 Experiments with Adaptive Branching

In this section we present an experimental evaluation of the proposed
adaptive branching strategies. Apart from the cpu time and the number
of visited nodes, we also measure the number of variable changes (vc). A vc

occurs when, after a failed assignment x = ai and the successful propaga-
tion of x 6= ai, the VOH chooses to branch on a variable y other than x. As
will be explained, this measure gives a good indication of how much an
adaptive branching method approximates 2-way branching.

We have experimented with the same set of 1600 benchmarks taken
from the problem classes detailed in Section 6.3. Before presenting the
results, we discuss the tuning of heuristic Hsdiff (e).

1We assume that a greater score is better according to V OH2.

109

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

6.5.1 Tuning Heuristic Hsdiff(e)

Although heuristic Hsdiff (e) is generic and can be used together with any
VOH, the optimum threshold value e obviously varies among different
VOHs as they may consider different metrics, such as domain sizes, con-
straint degrees, constraint weights, etc. Even with a fixed VOH and within
a specific problem class, the optimum threshold value e may differ from
instance to instance, and therefore locating it is not particularly interesting
from a practical point of view. However, our experiments have demon-
strated that a “good enough” value for e that carries across different prob-
lem classes can be located for a given VOH with only a few experiments.

To find a good value for e we proceeded as follows. Taking a single in-
stance from some problem class we repeatedly solved it using the Hsdiff (e)

heuristic for branching, starting with e set to 0 and gradually increasing e

in every repetition. Setting e = 0 forces Hsdiff (e) to emulate 2-way branch-
ing, while as e increases, Hsdiff (e) moves closer to restricted 2-way branch-
ing. For each run we measured the number of variable changes (vc). By
definition, with restricted 2-way branching vc is always 0.

Specifically for dom/wdeg, the value of e was increased in steps of 0.01.
Figures 6.4(a), (b) and (c) show the number of nodes (y-axis) as a relation of
e (x-axis) for instances scen11, series12 and haystacks-05 respectively. The
first data point in these plots (where e = 0) essentially gives the number of
nodes for 2-way branching. The experiment was stopped when for some
value of e the observed value of vc was 0. The last data point in each plot,
corresponding to this situation, essentially gives the number of nodes for
restricted 2-way branching.

In Figures 6.4(a) and (b) (scen11 and series12), where 2-way branching
is better than its restricted version, we can notice that as e increases there
is a point where a sharp decline in the performance of Hsdiff (e) occurs. Re-
spectively, in Figure 6.4(c) (haystacks-05) where restricted 2-way is better,
we can notice that as e increases there is point where a sharp improve-
ment in the performance occurs. After running similar experiments with
benchmark instances from other problem classes, we observed that setting
e to values around 0.1, when using dom/wdeg for variable ordering, gives
good results across many different instances and problem classes.

110

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

(a) (b)

(c) (d)

Figure 6.4: Visited nodes over increasing values of e for (a) scen11 RLFAP, (b) the series
12 instance and (c) the haystacks-05. (d) the decline in the number of variable changes
over increasing values of e for the scen11 RLFAP.

111

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Finally, Figure 6.4(d) gives the recorded value of vc (y-axis) as a relation
of e (x-axis) for the RLFAP instance scen11. Not surprisingly, as the value
of e increases, the value of vc decreases. Interestingly, there is a sharp
decline in the value of vc roughly around the point where e = 0.1. A
similar phenomenon was observed in all the tested instances.

6.5.2 MAC with dom/wdeg

In a first set of experiments we compare the fixed branching schemes 2-
way and restricted 2-way with the following adaptive branching schemes:
Hsdiff (0.1), Hcadv(wdeg), Hcadv(impact). We used MAC as the search al-
gorithm and dom/wdeg for variable ordering. Regarding the latter two
heuristics, we intentionally chose to experiment with wdeg and impact as
secondary advisors in order to observe the effects of using a secondary ad-
visor that is similar to the primary heuristic (wdeg) as opposed to one that
is quite diverse (impact).

In Table 6.11 we give indicative results from various instances. These
instances were among the ones where the most notable differences be-
tween 2-way and restricted 2-way were observed. The table is divided
in two parts. In the first part we include instances where restricted 2-way
is better than 2-way, while in the second part instances where 2-way is
better than restricted 2-way.

Results from Table 6.11 show that the adaptive branching schemes Hsdiff (0.1)

and Hcadv(wdeg) are, in most cases, close to or even slightly superior to
restricted 2-way branching in the fist part of the table, while a similar ob-
servation can be made with respect to 2-way branching in the second part
of the table. Respectively, the adaptive branching schemes are clearly su-
perior to restricted 2-way in the second part of Table 6.11, and to 2-way in
the first part of the table.

The Hcadv(impact) heuristic does not always follow the same pattern
and as a result it is not as successful. The diversity between the pri-
mary heuristic and the secondary advisor sometimes pays off remarkably
(haystacks-05) but on many instances it does not (e.g. geo50-20-d4-75-
2). Importantly, there are instances where Hcadv(impact) does cut down

112

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.11: CPU times (t) in seconds, nodes (n), and variable changes (vc) for 2-way,
restricted 2-way, and the adaptive branching schemes with the dom/wdeg VOH.

Instance 2 − way restricted Hsdiff Hcadv Hcadv

2 − way (0.1) (wdeg) (impact)

geo50-20-d4-75-1 t 2,298 1,242 1,233 2,311 2,331
(sat) n 0.33M 0.2M 0.2M 0.33M 0.33M

vc 1428 0 2 689 1289

geo50-20-d4-75-2 t 122 28.5 37 55 61.3
(sat) n 41,133 6,610 8,892 13,644 34,541

vc 642 0 2 58 354

haystacks-05 t 41.8 4 28.1 41.7 1.6
(unsat) n 1.27M 0.13M 0.86M 1.27M 88,760

vc 20 0 7 20 14

ruler-25-7-a3 t 12.4 4.1 5.8 3 15.2
(sat) n 1,444 225 291 190 1,032

vc 18 0 2 7 12

qwh-15-106-1 t 34.3 14.8 14.8 27.3 40.6
(sat) n 44,150 19,964 19,964 39,158 7,862

vc 324 0 0 73 241

bqwh-18-141-84 t 97.1 59.1 71.8 62.2 85.6
(sat) n 0.33M 0.18M 0.21M 0.19M 0.22M

vc 1,457 0 3 551 1,014

series13 t 148.4 1,132 98.3 150.6 205.7
(sat) n 0.15M 1.6M 96,248 0.15M 0.16M

vc 2,492 0 9 1,163 1,355

scen2-f25 t 42.3 183.8 45 41.4 45.7
(unsat) n 7,819 31,516 8,074 7,794 8,118

vc 722 0 69 484 624

scen1-f9 t 5.74 13.6 7.5 5.7 8.3
(unsat) n 1,300 3,582 1,765 1,302 1,304

vc 21 0 6 12 21

ruler-25-8-a3 t 50.3 180.8 139.5 54.6 55.8
(unsat) n 1,829 6,407 5,022 1,905 1,899

vc 281 0 1 159 166

qcp-15-120-6 t 62.8 80.5 96.4 81.8 94.1
(sat) n 70,384 92,058 0.1M 90,321 0.11M

vc 619 0 2 267 894

bqwh-18-141-98 t 6.7 9.2 2.7 16.3 10.5
(sat) n 21,051 30,293 8,934 47,198 25,154

vc 117 0 2 124 99

113

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

the explored portion of the search space (e.g. qwh-15-106-1) but the extra
cpu overhead of having to compute the impacts of the variables results in
slower run times. Hence, making sure that the secondary advisor is cheap
to compute is important for the success of the Hcadv heuristic.

Generally, we can notice that although the adaptive branching schemes
do not always achieve the best performance, they obtain a good trade-off
between the performance of 2-way and restricted 2-way. Additionally, in
many instances the adaptive branching schemes are superior to both 2-
way and restricted 2-way (e.g. series-13 for Hsdiff (0.1) and ruler-25-7-a3
for Hcadv(wdeg)). However, we should note there are some instances where
one or both of the adaptive methods performed substantially worse than
the winner among the standard branching schemes (e.g. bqwh-18-141-84
and ruler-25-8-a3).

Taking a closer look at the results presented in Table 6.11 it is interest-
ing to notice the behavior of the branching schemes on instance series13.
Here restricted 2-way is clearly inefficient compared to 2-way. The latter
branches on a variable different than the current one after a right branch
2,492 times throughout search (i.e. vc = 2, 492). But it is notable that Hsdiff

manages to outperform 2-way branching by only branching on 9 differ-
ent variables after right branches. Restricted 2-way branching is outper-
formed by a factor of 12 by only making 9 decisions against the VOH.
Similar behavior can be observed in other instances of Table 6.11.

These results suggest that heuristic Hsdiff in particular is able to “block”
variable changes that have a degrading effect on the search effort. Heuris-
tic Hcadv also achieves this, but to a lesser extent, as is evident by the vc

numbers.
To verify this conjecture, we rerun all the experiments and each time a

different variable y than the current one x was selected at a right branch,
we ordered all the (unassigned) variables according to their dom/wdeg value.
Then we measured the distance (dis) between x and y in this ordering (ob-
viously y was always first). Results show that the average value of dis for
Hsdiff was significantly larger than the average dis for 2-way branching.
For example in the geo50-20-d4-75-1 instance, the average dis for Hsdiff

was 14 while for 2-way branching it was 1.6. This demonstrates that Hsdiff

114

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.12: Mean cpu times (t), and nodes (n) from binary structured and patterned
problems using MAC with dom/wdeg. The best cpu time is given in bold.

Series of 2 − way restricted Hsdiff Hcadv Hcadv

Instances 2 − way (0.1) (wdeg) (impacts)

geometric t 537.6 440.7 468.6 556.1 560.2
n 0.1M 87,866 90,335 0.1M 91,547

Driver t 35.4 34.7 35.1 30.8 41.3
n 23,993 25,724 25.724 21,869 30,498

rlfapScensMod t 8.5 36.7 9.2 8.4 41.5
n 2,886 12,289 3,003 2,828 3,233

rlfapGraphsMod t 31.7 210.6 24.5 40.9 230.6
n 13,635 0.15M 11,963 15,540 10,882

Black Hole-4-4 t 15 14.5 14.7 15 16.1
n 13,579 13,384 13,402 13,579 13,579

Haystacks t 20.9 2 14.1 21 1.6
n 0.89M 94,452 0.6M 0.89M 80,436

qwh-15-106 t 17 15.2 15.6 16.8 14.9
n 31,479 30,629 30,629 33,531 28,755

qcp-10-67 t 135.3 131 140.9 147 150
n 0.46M 0.45M 0.47M 0.48M 0.45M

qcp-15-120 t 380.4 382.3 376.8 395.5 401.4
n 0.62M 0.65M 0.64M 0.65M 0.62M

Langford2 t 55.7 51.4 52.3 55.2 55.3
n 0.15M 0.14M 0.14M 0.14M 0.14M

bqwh-15-106 t 2.05 1.63 1.88 1.92 3.8
n 11,499 9,520 10,499 10,535 9,245

bqwh-18-141 t 13.5 11.9 12.2 12.6 14.7
n 63,674 56,872 56,779 58,460 55,747

TOTAL MEAN t 143.5 130.7 127.9 148.2 155.1

allows variable changes only when the selected variable is considerably
superior to the current variable according to the VOH.

In Table 6.12 we give mean results from all the binary structured prob-
lem classes that we have experimented with. Corresponding results for
the case of non-binary CSPs are shown in Table 6.13. In the last line of
these tables we have computed the total mean.

By comparing the total mean values in both tables, we can see that
the Hsdiff branching heuristic is clearly the best choice. As also shown
in Section 6.3, restricted 2-way is better than 2-way on binary problems,
while the opposite occurs on non-binary problems. The Hsdiff branching

115

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.13: Mean cpu times (t), and nodes (n) from non-binary structured problems
using MAC with dom/wdeg as VOH. Best cpu time is in bold.

Series of 2 − way restricted Hsdiff Hcadv Hcadv

Instances 2 − way (0.1) (wdeg) (impacts)

allIntervalSeries t 574.7 6,002 385.2 394.1 447.4
n 0.42M 6.4M 0.31M 0.34M 0.31M

golombRuler t 319.7 185.4 140.4 313.4 346.2
n 6,541 3,662 2,948 6,639 3,139

Chessboard t 16.1 15.4 15.4 16.5 16.6
Coloration n 9,501 9,342 9,342 9,516 9,468

TOTAL MEAN t 353.2 2,540 211,7 276.7 346.6

heuristic displays better mean performance than all the other branching
methods in both binary and non-binary problems.

It is interesting to note that while in Table 6.12 Hsdiff achieves the
best performance over all methods in only two problem classes (rlfap-
GraphsMod and qcp-15-120) it succeeds in having a better mean perfor-
mance overall. This is because it is able to obtains a good trade-off between
the performance of 2-way and restricted 2-way branching.

On the other hand, the Hcadv(wdeg) branching heuristic is successful in
terms of mean overall performance only in the case of non-binary prob-
lems. Hcadv(impact) is clearly the worst among the adaptive branching
schemes, but still performs slightly better than 2-way in the case of non-
binary problems.

6.5.3 MAC with dom/wdeg + aging

In order to examine if the success of adaptive branching is affected by the
selected VOH, we also ran some experiments with the aging variant of
dom/wdeg.

As in the previous section, we will fist present results from indicative
instances. These are collected in Table 6.14. As we can see, the Hsdiff

heuristic reacts adaptively but to a lesser extent compared to its behavior
with dom/wdeg. This can be explained by the effect of the aging mecha-
nism which periodically divides the constraint weights. These changes in
the constraints weights result in larger VOH score differences among vari-

116

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

ables compared to dom/wdeg without aging. As a result the threshold value
selected (0.1) is not high enough to block unnecessary variable changes.
For example, on instances series-13 and haystacks-05 the vc numbers for
Hsdiff in Table 6.14 are 18,946 and 7,098 respectively, while in Table 6.11
they are only 9 and 7. We believe that a higher threshold value for Hsdiff

will result in considerable performance improvement.
Concerning the behavior of the Hcadv(wdeg) heuristic we can notice a

significant improvement compared to the results presented in Table 6.11.
This improvement becomes clearer when looking at the mean results given
in Tables 6.15 and 6.16. These tables give results from binary and non-
binary CSPs respectively, and in both cases Hcadv(wdeg) outperforms all
the other branching methods. On the other hand, the Hsdiff heuristic is
better that the fixed branching schemes only on non-binary problems.

6.5.4 MAC with impact

We now give results from the evaluation of the adaptive branching schemes
with the impact VOH. This heuristic uses a different metric to compute
its score. Thus, the threshold values for Hsdiff that are successful when
dom/wdeg is used may not be suitable for impact. Indeed, after a few ex-
periments following the procedure described in Section 6.5.1, we decided
to set the threshold value for the impact VOH to 0.5, which is quite higher
than the chosen value for dom/wdeg. We also include results from the
Hcadv(wdeg) adaptive branching heuristic.

In Table 6.17 we give indicative results from specific instances. As in
the previous sections, this table is divided in two parts. In the upper part
we present results where restricted 2-way is better than 2-way, while the
lower part includes results where 2-way is better than restricted 2-way.

The adaptive heuristics mostly succeed to follow the performance of
the best fixed branching scheme on each instance. And on some instances
they outperform both 2-way and restricted 2-way. This is true especially
for Hsdiff (0.5).

In Tables 6.18 and 6.19 we give mean results for all the tried binary and
non-binary CSPs. Although the total number of instances that terminated

117

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.14: CPU times (t) in seconds, nodes (n) and variable changes (vc) for 2-way and
the adaptive branching schemes using the dom/wdeg + aging VOH.

Instance 2 − way restricted Hsdiff Hcadv

2 − way (0.1) (wdeg)

geo50-20-d4-75-96 t 82 39.2 28.9 37.1
(sat) n 23,838 12,126 8,420 11,714

vc 609 0 201 22

haystacks-05 t 13 3.4 9.7 43.6
(unsat) n 0.44M 0.10M 0.32M 1.78M

vc 11,286 0 7,098 20

qcp-15-120-9 t 1,728 1,301 1,643 1,169
(sat) n 1.78M 1.40M 0.67M 1.83M

vc 57,332 0 46,463 2,725

qwh-15-106-5 t 128.3 104.9 95.1 64
(sat) n 0.13M 0.11M 98,270 0.12M

vc 4,054 0 2,606 191

bqwh-15-106-1 t 2.5 1.2 1.5 1.5
(sat) n 7,271 3,779 4,605 7,386

vc 192 0 110 17

bqwh-18-141-98 t 15.1 3.3 3.7 16.5
(sat) n 37,001 8,317 9,031 68,321

vc 1,166 0 259 124

series-13 t 839 1,638 660 146.3
(sat) n 0.76M 1.94M 0.59M 0.15M

vc 31,469 0 18,946 799

scen1-f9 t 4,3 12.4 4.5 5.4
(unsat) n 1,341 4,156 1,325 1,795

vc 36 0 33 12

scen2-f25 t 38.4 146.8 38 39.4
(unsat) n 8,879 34,704 8,463 9,561

vc 1,013 0 493 484

graph8-f10 t 57.1 237.6 18.5 43.2
(sat) n 25,249 0.11M 6,105 21,149

vc 1,569 0 273 245

qcp-15-120-3 t 21.5 70.2 11.2 31.3
(sat) n 23,155 73,194 11,118 48,054

vc 719 0 307 84

bqwh-18-141-38 t 44.4 58.8 47.3 38.2
(sat) n 0.10M 0.15M 0.11M 0.17M

vc 3,483 0 3,267 303

118

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.15: Mean cpu times (t), and nodes (n) from binary structured and patterned
problems using MAC with dom/wdeg + aging as VOH. Best cpu time is in bold.

Series of 2 − way restricted Hsdiff Hcadv

Instances 2 − way (0.1) (wdeg)

geometric t 1,221 478.7 1,244 467.1
n 0.26M 0.11M 0.26M 0.11M

Driver t 9.4 10.1 24.8 32.9
n 2,292 2,532 3,876 15,195

rlfapScensMod t 7.4 32.2 7.8 8.1
n 2,623 11,634 2,646 2,828

rlfapGraphsMod t 13.4 47.5 10.5 42.7
n 6,597 25,318 5,729 22,872

Black Hole-4-4 t 18.6 13 18.8 13.5
n 15,483 13,384 15,309 13,579

Haystacks t 6.5 1.7 4.9 21.8
n 0.22M 53,139 0.16M 0.89M

qwh-15-106 t 29.4 21.5 21.6 18.6
n 31,054 23,825 23,180 37,055

qcp-10-67 t 22.1 25.2 29.9 23.2
n 68,511 84,729 87,345 78,258

qcp-15-120 t 368.8 393.6 444.1 329.5
n 0.38M 0.52M 0.54M 0.54M

Langford2 t 117.6 56 135.3 53.8
n 0.2M 0.13M 0.23M 0.14M

bqwh-15-106 t 2.64 2.33 2.78 2.05
n 8,517 7,988 9,036 10,921

bqwh-18-141 t 15.5 14.1 15.8 12.3
n 39,931 38,570 40,766 55,675

TOTAL MEAN t 278.5 130.7 287.8 123.2

Table 6.16: Mean cpu times (t), and nodes (n) from non-binary structured problems
using MAC with dom/wdeg + aging as VOH. Best cpu time is in bold.

Series of 2 − way restricted Hsdiff Hcadv

Instances 2 − way (0.1) (wdeg)

allIntervalSeries t 2,849 7,414 2,016 342.5
n 1.72M 6.38M 1.04M 0.30M

golombRuler t 151.6 719.9 132.3 292,3
n 3,032 6,952 2,726 6,639

Chessboard t 16.6 14.9 16.5 17
Coloration n 12,904 12,119 12,515 13,788

TOTAL MEAN t 1,320 3,538 943 253

119

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.17: CPU times (t) in seconds, nodes (n) and variable changes (vc) for 2-way and
the adaptive branching schemes using the impact VOH.

Instance 2 − way restricted Hsdiff Hcadv

2 − way (0.1) (wdeg)

ruler-34-9-a3 t 1,665 874 990 969
(unsat) n 37,224 16,972 20,796 18,542

vc 2,141 0 587 493

langford-4-10 t 82.1 54.6 58.8 56.9
(unsat) n 5,906 4,282 4,315 4,276

vc 47 0 1 2

frb30-15-5-mgd t 66.4 4.4 4.1 6
(sat) n 32,627 2,243 2,001 2,722

vc 1,306 0 12 47

qwh-15-106-4 t 19.1 2.9 4.2 5.6
(sat) n 59,478 1,904 5,627 8,545

vc 168 0 38 44

bqwh-15-106-93 t 9 1 1.3 3.6
(sat) n 35,676 1,778 2,294 7,697

vc 380 0 18 85

bqwh-15-106-56 t 50.8 26.8 24.5 45
(sat) n 0.29M 0.17M 0.16M 0.24M

vc 2,073 0 285 966

series-13 t 211.2 2,710 114.5 380.5
(sat) n 0.29M 4.28M 0.14M 0.56M

vc 9,583 0 2,901 3,254

qwh-15-106-1 t 191.8 982 160.2 117.4
(sat) n 0.55M 4.75M 0.60M 0.37M

vc 2,785 0 896 532

qwh-15-106-8 t 44 90.6 34.1 39.2
(sat) n 0.11M 0.29M 86,731 0.10M

vc 604 0 308 120

bqwh-15-106-83 t 12.5 133.1 42 13.9
(sat) n 60,306 0.73M 0.20M 63,852

vc 496 0 1,606 268

bqwh-15-106-85 t 12.6 103.9 15.1 33.7
(sat) n 61,147 0.54M 67,647 0.18M

vc 499 0 450 706

frb30-15-2 t 254.9 645 85.5 515.5
(sat) n 0.13M 0.35M 43,001 0.27M

vc 3,369 0 734 1,651

120

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.18: Mean cpu times (t), and nodes (n) from binary structured and random prob-
lems using MAC with impact. Best cpu time is in bold.

Series of 2 − way restricted Hsdiff Hcadv

Instances 2 − way (0.5) (wdeg)

Driver t 22.9 24.2 22.5 24.2
n 882 1,462 874 1,549

Haystacks t 54.7 56.9 44.7 56.5
n 0.96M 1.09M 0.77M 0.97M

qwh-15-106 t 51.3 183.6 45.2 40
n 0.16M 0.82M 0.15M 0.13M

Langford t 148.2 185.9 201.1 187.2
n 0.10M 0.15M 0.12M 0.13M

bqwh-15-106 t 9.2 22.2 11.6 11.4
n 49,449 0.13M 59,898 57,380

frb30-15 t 77.1 133 56.5 97.5
n 34,591 69,368 27,289 50,869

TOTAL MEAN t 28.4 57.5 29.1 32.7

within the time limit is considerably smaller compared to the conflict-
driven heuristics, it is clear that the adaptive branching schemes are still
competitive. In case of non-binary CSPs, both Hsdiff (0.5) and Hcadv(wdeg)

are much better than the fixed branching schemes. On binary CSPs, 2-way
is still a better choice, with Hsdiff (0.5) following closely.

Comparing the results obtained with the impact VOH to those obtained
with the conflict-driven heuristics, we can notice that on average the adap-
tive branching heuristics are more effective when used in tandem with a
conflict-driven VOH. This can be explained if we consider that conflict-
driven VOHs try to direct search to hard subproblems by identifying and
selecting variables that are involved in many conflicts. The adaptive branch-
ing heuristics try to complement this by blocking variable changes that
may divert search away from a currently explored hard subproblem. How-
ever, it is important that they still exhibit good performance when used in
tandem with impact.

121

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.19: Mean cpu times (t), and nodes (n) from non-binary structured problems
using MAC with impact. Best cpu time is in bold.

Series of 2 − way restricted Hsdiff Hcadv

Instances 2 − way (0.5) (wdeg)

allIntervalSeries t 79.6 1,040 77.4 175.2
n 0.11M 1.66M 0.10M 0.27M

golombRuler t 863.3 898.7 740.9 730.5
n 14,894 12,575 9,763 9,724

Chessboard t 73.5 65.2 67.6 71.8
Colloration n 95,383 86,788 84,302 93,910

TOTAL MEAN t 500.1 738.9 432.4 450.3

6.5.5 MmaxRPC with dom/wdeg

In order to investigate if and to what extent the level of local consistency
applied during search affects the performance of the proposed adaptive
branching schemes, we have run experiments with the MmaxRPC search
algorithm. In this case only the dom/wdeg VOH has been tried.

In the first set of experiments we experimented with the same seven se-
ries of random problems that we used in Section 6.3. Figure 6.5(a) shows
the effort (cpu time) required for solving these seven series of random in-
stances with respect to the different tightness values. We compare here the
2-way and the Hsdiff (0.1) branching schemes. Although on random prob-
lems the observed differences among the fixed branching schemes are not
very significant, we can still notice a small improvement on instances with
low tightness in favor of Hsdiff (0.1). On instances with hight tightness 2-
way branching is slightly better.

In Figure 6.5(b) we compare the adaptive branching schemes Hsdiff (0.1)

and Hcadv(wdeg) and we depict the search effort for tightness=0.5. The 100
random instances from that set are shorted in ascending order according
to cpu times. As can be seen, the performance of the adaptive branching
schemes is almost identical. This was the norm with random problems.

In Table 6.20 we present results from indicative structured instances.
From these results it becomes clear that the proposed heuristics still re-
act adaptively when the level of consistency is increased. In the first part
of this table, where we have selected instances in which restricted 2-way

122

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

(a) (b)

Figure 6.5: (a) Mean search cost of solving random instances as tightness is increased. 2-
way and Hsdiff (0.1) are comparatively depicted.(b) Comparison of the Hsdiff (0.1) and
Hcadv(wdeg) adaptive branching schemes. Solving time for the 100 random instance
with tightness = 0.5, shorted in ascending order.

is better than 2-way, both the adaptive branching heuristics are in most
cases close to or even better that restricted 2-way. Respectively, in the sec-
ond part of Table 6.20, where we have collected instances in which 2-way
is better than restricted 2-way both the adaptive branching heuristics are
much closer to 2-way.

Mean results for all the tried binary CSPs are collected in Table 6.21.
Both adaptive branching schemes are on average slightly better than 2-
way branching. Concerning the Hcadv(wdeg) heuristic, the results obtained
here are in accordance with the results of Section 6.3.2 where MAC with
dom/wdeg was examined. But the mean performance of the Hsdiff heuris-
tic seems to fall when the MmaxRPC search algorithm is used instead of
MAC. This can be explained as follows. By increasing the level of consis-
tency, the vc number is significantly reduced, as comparing the results of
Tables 6.11 and 6.20 shows. This means that the adaptive heuristics have
fewer opportunities to block potentially erroneous vc decisions, and there-
fore a smaller margin for improving the performance of 2-way branching.

Finally, we must keep in mind that the adaptive heuristics aim at achiev-

123

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.20: CPU times (t) in seconds, nodes (n) and variable changes (vc) for 2-way and
the adaptive branching schemes using MmaxRPC with dom/wdeg as VOH.

Instance 2 − way restricted Hsdiff Hcadv

2 − way (0.1) (wdeg)

geo50-20-d4-75-87 t 412 375.8 379.4 411.7
(sat) n 0.15M 0.14M 0.14M 0.15M

vc 704 0 1 309

bqwh-18-141-82 t 3.2 2.6 1.9 2.1
(sat) n 23,497 19,991 14,860 16,003

vc 174 0 4 72

qcp-15-120-10 t 342.4 252 260.2 270.5
(unsat) n 1.01M 0.78M 0.79M 0.82M

vc 8,600 0 1 3,291

qwh-15-106-5 t 13 11.2 bf 10.1 10.7
(sat) n 37,308 31,357 28,075 30,096

vc 224 0 1 112

qwh-20-166-2 t 736.9 335.4 330.8 554.2
(sat) n 1.04M 0.48M 0.48M 0.79M

vc 10,364 0 0 3,369

haystacks-05 t 4 0.3 3.4 8.7
(sat) n 0.16M 10,363 0.11M 0.33M

vc 287 0 6 14

geo50-20-d4-75-20 t 65.3 237.6 50.4 75.7
(sat) n 22,680 85,958 16,054 25,948

vc 107 0 3 61

geo50-20-d4-75-74 t 45.5 53.4 13.5 48.4
(sat) n 20,078 29,241 5,950 20,279

vc 134 0 2 60

bqwh-18-141-2 t 4.2 6.9 5.6 2.8
(sat) n 0.55M 4.75M 0.60M 0.37M

vc 2,785 0 896 532

scen11-f8 t 113.3 965.4 163.2 114
(unsat) n 12,681 93,429 16,118 12,407

vc 261 0 73 268

scen2-f25 t 14 54.5 18 15
(unsat) n 1,719 6,704 2,125 1,728

vc 37 0 33 31

graph9-f9 t 68.9 265.3 72 78.9
(sat) n 16,839 62,058 16,813 18,613

vc 213 0 123 246

124

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.21: Mean cpu times (t), and nodes (n) from binary structured and patterned
problems using MmaxRPC with dom/wdeg as VOH. Best cpu times are in bold.

Series of 2 − way restricted Hsdiff Hcadv

Instances 2 − way (0.1) (wdeg)

geometric t 99.5 92.5 92.9 101.3
n 35,974 34,590 33,433 36,121

Driver t 13.2 18.2 21.4 21.4
n 11,255 14,530 14,530 18,219

rlfapScensMod t 7.3 18.3 8.2 7.5
n 1,067 2,527 1,178 1,056

rlfapGraphsMod t 14.9 45.8 15.1 15.7
n 4,006 11,647 3,938 4,120

rlfapScen11 t 93.7 778.4 112.5 95.2
n 14,664 0.11M 16,351 14,579

Black Hole-4-4 t 3.5 3.5 3.5 3.6
n 4,741 4,407 4,514 4,741

Haystacks t 4 0.3 3.4 8.7
n 0.89M 94,452 0.6M 0.89M

qcp-10-67 t 11.4 10.6 11.4 11.1
n 78,989 76,569 80,889 77,811

qcp-15-120 t 62.9 54.5 55.7 57.6
n 0.18M 0.16M 0.16M 0.16M

qwh-15-106 t 3.7 3.5 3.3 3.4
n 10,686 10,063 9,516 9,571

qwh-20-166 t 219 200 196.5 189.3
n 0.31M 0.29M 0.29M 0.27M

bqwh-18-141 t 3 2.9 3.1 3.1
n 21,456 21,957 22,312 22,552

TOTAL MEAN t 52.7 85.9 50.1 50.9

125

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

ing a trade-off between the mean performance of 2-way and that of re-
stricted 2-way. Since 2-way is constantly better (or least very close) to re-
stricted 2-way per problem class when maxRPC is maintained, the best we
can hope for the adaptive schemes is to match the performance of 2-way.
This is certainly achieved.

6.5.6 Statistical analysis

Results from the previous subsections have shown that adaptive branch-
ing can be beneficial in a wide range of benchmarks. Indeed, on average it
gives better results than 2-way branching. In order to evaluate the statisti-
cal significance of our experimental results, a statistical analysis through a
set of paired t-tests was performed.

The dependent t-test (also called the paired t-test or paired-samples t-test)
compares the means of two related groups to detect whether there are any
statistically significant differences between these means. Here, we analyze
the cpu performance of the adaptive branching schemes compared to 2-
way, over all the structured instances with which we have experimented
(binary and non-binary). To be more precise, for each VOH and for each
search algorithm, we have compared the corresponding 2-way branching
scheme with the relative adaptive branching schemes. For example we
have compared 2-way branching with the Hsdiff (0.1) and the Hcadv(wdeg)

branching heuristics, when MAC is used in conjunction with the dom/wdeg
VOH. In case of the impact VOH, we have compared the corresponding 2-
way branching (where the impact VOH is used) with the relative adaptive
branching schemes.

We have excluded from our statistical analysis random instances and
instances that can be solved in less than a second. We have measured
the mean difference in seconds, standard deviation, t-value and the 95%
confidence interval. The risk level (called alpha level) has been set to 0.05.
Results are collected in Table 6.22.

In Table 6.22, the mean cpu reduction in all cases is always greater
than zero. However, the negative values at the confidence interval indicate
that this reduction was not observed in all the tried instances. According

126

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

Table 6.22: Paired t-test measurements for evaluation of the significance of the experi-
mental results. The first group corresponds always to 2-way branching, while the second
group is the Hsdiff or the Hcadv. Statistically significant t-values are in bold.

MAC MmaxRPC

dom/wdeg dom/wdeg + aging impacts dom/wdeg

Hsdiff Hcadv Hsdiff Hcadv Hsdiff Hcadv Hsdiff Hcadv

Mean 25.1 1.22 21.1 230.3 8.1 2.5 2.6 1.8

SD 195.3 99.3 332.6 1,180 81 85.6 41.8 22.9

t-value 1.95 0.18 0.95 2.9 0.99 0.28 0.7 0.88

95% C.I. (-0.2, 50.4) (-11.6, 14.1) (-22.4, 64.6) (76, 384) (-8.13, 24.3) (-14.6, 19.6) (-4.4, 9.7) (-2.16, 5.6)

to standard tables of significance (available as an appendix in the back
of most statistics texts) the critical t-value for characterizing a result as
significant was in all cases 1.65. Thus, we can confirm that t-values for
Hsdiff (0.1) when MAC is used with dom/wdeg as VOH and for Hcadv(wdeg)

when MAC is used with dom/wdeg + aging as VOH, are large enough to
be significant.

On the other hand, when MAC is used with the dom/wdeg VOH, the
statistical significant improvement of Hsdiff (0.1) over 2-way, is an impor-
tant result. Since the combination of 2-way branching with dom/wdeg on
MAC, is widely used in the research community as the most effective way
to solve CSPs.

6.6 Conclusions

2-way and d-way are the standard branching schemes employed by the
vast majority of constraint solvers. Although in theory the former can
be exponentially more efficient than the latter, there is little empirical ev-
idence concerning a practical comparison of their performance. In this
Chapter, we empirically evaluate the two branching schemes as well as a
widely used restricted version of 2-way branching. We consider a number
of different variable ordering heuristics as well as different levels of local
consistency. Results show that, unsurprisingly, the d-way and restricted
2-way branching schemes are closely matched across the different VOHs,

127

CHAPTER 6. ADAPTIVE BRANCHING FOR CSPS

with d-way being slightly more cost effective. Also, confirming the the-
oretical results, exponential differences in favor of full 2-way branching
are observed as soon as we move from a simple heuristic like smallest do-
main (dom) to more sophisticated ones like domain over dynamic degree
(dom/ddeg). But perhaps surprisingly, when state-of-the-art heuristics like
dom/wdeg and impact are used, significant differences in favor of d-way
(and restricted 2-way) are also observed.

Based on these results we introduce generic heuristics that can be used
to dynamically decide whether the variable ordering heuristic will be fol-
lowed or not at certain points during search. The application of such
heuristics results in an adaptive branching scheme that switches between
2-way branching and its restricted version, which is close to d-way branch-
ing. Experiments with instantiations of the generic heuristics confirm that
the adaptive heuristics achieve a trade-off between 2-way and restricted 2-
way. As a result, search with adaptive branching outperforms search with
a fixed branching scheme on a wide range of problems.

The work presented here is, to the best of our knowledge, the first at-
tempt towards designing heuristics for adaptive branching and contributes
to the design and implementation of adaptive constraint solvers.

128

I want to be what I was when I
wanted to be what I am now.

Prince, Ray 7
Set Branching

In this chapter, we propose and evaluate a generic approach to set branch-
ing where the partition of a domain into sets is created using the scores as-
signed to values by a value ordering heuristic, and a clustering algorithm
from machine learning. Experimental results demonstrate that although
exponential differences between branching schemes, as predicted in the-
ory between 2-way d-way branching, are not very common, still the choice
of branching scheme can make quite a difference on certain classes of prob-
lems. Set branching methods are very competitive with 2-way branching
and outperform it on some problem classes. A statistical analysis of the
results reveals that our generic clustering-based set branching method is
the best among the methods compared.

7.1 Introduction

Although 2-way and d-way are the most widely used branching schemes,
another technique that can also be used is dichotomic domain splitting
[31]. This method originates from numerical CSPs and proceeds by split-
ting the current domain of the selected variable into two sets, usually
based on the lexicographical ordering of the values. In this way branching
is performed on the two created sets and the branching factor is reduced to
two. Although domain splitting drastically reduces the branching factor,
it can result in a much deeper search tree since the effects of propagation
after a branching decision may be diminished.

CHAPTER 7. SET BRANCHING

In addition to these standard schemes, techniques that group together
the values of the selected variable, and branch on these created groups in-
stead of individual values, have been proposed [45, 53, 77, 10, 84, 50]. The
criteria used for the grouping of values and the methods used to perform
the grouping can be different, but all these techniques aim at reducing the
size of the search tree. In this chapter, following [50], we call any such
method a set branching method.

Our first goal in this chapter is to experimentally study the effect of dif-
ferent branching schemes for finite domain CSPs on search performance.
Although some existing branching methods have been compared to one
another (e.g. [78]), to our knowledge this is the first systematic evaluation
of several existing alternatives.

In addition, we propose and study a generic set branching method
where the partition of a domain into sets is created using the scores as-
signed to values by a value ordering heuristic, and a clustering algorithm.
Before employing such a method, two fundamental questions need to be
addressed: What is the measure of similarity between values, and how do
we partition domains using such a measure? Most of the approaches to
set branching that have been proposed in the past have either used very
strict measures of similarity or are problem specific. Our method offers a
generic solution to both the problem of similarity evaluation and the par-
titioning of domains. For the former we exploit the information acquired
from the value ordering heuristic, while for the latter we use a clustering
algorithm from machine learning.

Experimental results from a wide range of benchmarks demonstrate
that exponential differences between branching schemes, as predicted in
theory between 2-way d-way, are not very common. But although the
choice of branching scheme does not have as a profound effect as the
choice of variable ordering heuristic, it can still make a difference. The
generic set branching methods we evaluate outperform the standard 2-
way branching scheme in many problem classes resulting in better av-
erage performance. It is notable that our clustering-based set branching
method displays very promising results without any tuning of the clus-
tering algorithm applied. Importantly, a statistical analysis of the exper-

130

CHAPTER 7. SET BRANCHING

imental results reveals that this method is the best among the methods
compared.

The rest of this Chapter is organized as follows. In Section 7.2, we
briefly recall the most well known fixed branching schemes by also noting
their differences. In Section ?? we discuss past work on set branching for
CSPs. In Section 7.3 we propose a new generic method for set branching
which is based on a machine learning clustering algorithm. In Section 7.4
we report results from an experimental evaluation of the various branch-
ing schemes including a statistical analysis. Finally, in Section 7.5 we con-
clude.

7.2 Alternative branching schemes

Dichotomic domain splitting [31] is a branching scheme that originates from
numerical CSPs. This method proceeds by splitting the current domain of
the selected variable into two sets, usually based on the lexicographical
ordering of the values. Once the domain has been split, the second set of
values is removed from the domain and this removal is propagated. In this
way branching is performed on the two created sets and the branching fac-
tor is reduced to two. However, domain splitting tends to achieve weaker
propagation compared to d-way and 2-way branching. So, although it
drastically reduces the branching factor, it can result in a much deeper
search tree. Domain splitting is mostly used on optimization problems and
especially when the domains of the variables are very large. An example
of a search tree explored with domain splitting is shown in Figure 7.1c.

Very recently, Kitching and Bacchus explored the applicability of set
branching for constraint optimization problems [50]. The basic idea is to
group together values that offer similar improvement to the currently com-
puted bounds. In this way entire groups of values that offer no improve-
ment to the bounds can be refuted, resulting in smaller tree sizes.

In this chapter we use the term set branching to refer to any branching
technique that, using some similarity criterion, identifies values that can
be grouped together and branched on as a set. Dichotomic domain split-
ting and 2-way branching can be seen as manifestations of this generic

131

CHAPTER 7. SET BRANCHING

Figure 7.1: Examples of search trees for the three branching schemes.

method that use simple grouping criteria. Domain splitting creates two
sets of values based on their lexicographical ordering. 2-way branching
splits the domain into two sets where the first includes a single value and
the second the rest of the values. In general, in order to define a set branch-
ing technique, two questions need to be addressed: What is the measure of
similarity between values, and how are domains partitioned using such a mea-
sure?

The idea of set branching for CSPs has been explored in the past. Freuder
introduced the notion of interchangeability, substitutability, and their weaker,
but tractable, neighborhood versions as means to identify values with
similar behavior [33]. Two values of a variable are neighborhhood in-
terchangeable iff they have exactly the same supports in all constraints.
One value a is neighborhood substitutable for another value b if the set
of values inconsistent wth a is a subset of the values inconsistent with b.
These notions were exploited, for example in [45, 10, 67], to group together
values when branching and in this way perform set branching. The draw-
back of these techniques is that their conditions are too strong, as in many
problems neighborhood interchangeable and substitutable values are very
rare.

Larrosa investigated the merging of similar subproblems during search
using forward checking [53]. According to this approach, values whose as-

132

CHAPTER 7. SET BRANCHING

signment leads to similar subproblems are grouped together and branched
on as a set. Experiments performed on crossword puzzle generation prob-
lems displayed promising results. However, the measure of subproblem
similarity and the algorithm used to partition the domains according to
this measure are both problem specific.

Silaghi et al. proposed a method for partitioning the domains of vari-
ables based on the Cartesian product representation of the search space
[77]. This method is particularly suitable for finding all solutions but it re-
quires an explicit extensional representation of the constraints in the prob-
lem.

A generic and simple approach to set branching that can be applied
on a wide range of problems was proposed by van Hoeve and Milano
[84]. In this approach, values that are “tied” according to their value or-
dering heuristic score are grouped together and branching is performed
on the sets of values created. Assignment of specific values to variables
is postponed until lower levels of the search tree (which is also done in
Larossa’s method). Experiments using both depth-first search and limited
discrepancy search displayed promising results. However, this method re-
lies heavily on the particular value ordering heuristic used and the num-
ber of ties produced by the value ordering heuristic, which can be quite
low in many cases. Also, this method distinguishes between values that
have very close but not equal scores and as a result such values will be
placed into different sets. As noted in [84], the concept of a tie can be ex-
tended to refer to values having close scores. In this chapter we explore
this idea further.

7.3 Clustering for Set Branching

As we intend to apply set branching dynamically throughout search, after
selecting a variable x with current domain D(x) = {a1, . . . , ad}, we are
faced with the following problem. We have to create a partition SD(x) =

{s1, . . . , sm} of D(x) into m sets s.t. each value ai ∈ D(x) belongs to only
one set sj ∈ S. Ideally, we want all the values that have been assigned to a
specific set to be similar according to some measure of similarity.

133

CHAPTER 7. SET BRANCHING

Following van Hoeve and Milano, we use a generic measure of simi-
larity that is based on the score of the values according to a value ordering
heuristic. In order to perform the dynamic partitioning of domains into
sets, we propose the use of clustering algorithms from machine learning.
Our approach can be summarized as follows. A value ordering heuris-
tic is used to assign a score vi to each value ai ∈ D(x). The collection
of d items (values) and the matrix of their scores are given as input to a
clustering algorithm. The output of the algorithm will be the partition
SD(x) = {s1, . . . , sm}.

Compared to [84] our approach has the following potential benefits.
First, not only will tied values be placed in the same set, but with high
probability so will values that have very close scores. Hence, there will
be fewer sets, resulting in lower branching factor. Second, in cases where
there are no ties, the method of [84] uses d-way branching. In contrast, our
approach will still partition the domain if there are groups of values with
similar score.

The algorithm we currently use to create the clustering of values is x-
means [66]. This is an extension of the well known k-means algorithm that
is considerably faster and does not require to predetermine the desired
number of clusters. The algorithm starts with randomly selected points
(values in our case) as cluster centroids and iteratively improves the com-
puted clustering until a fixpoint is reached. Several parameters of the algo-
rithm can be tuned to give more accurate results on a specific application,
including the starting centroids, the number of iterations, the measure of
distance between points, etc. Although we intend to investigate this in the
future, in the experiments reported below we use the Weka implementa-
tion of the x-means algorithm as is, without any tuning.

7.4 Empirical evaluation

We have experimented with 350 instances from ten classes of real world,
academic, patterned, and random CSPs taken from C.Lecoutre’s XCSP
repository. We included both satisfiable and unsatisfiable instances. Each
selected instance involves constraints defined either in intension or in ex-

134

CHAPTER 7. SET BRANCHING

tension. The CSP solver used in our experiments is a generic solver and
has been implemented in the Java programming language. This solver
essentially implements the M(G)AC search algorithm, where (G)AC-3 is
used for applying (G)AC. Since our solver does not yet support global con-
straints (apart from the table constraint) , we have left experiments with
problems that include such constraints as future work. All experiments
were run on an Intel dual core PC T4200 2GHz with 3GB RAM.

For a fair evaluation of the different branching schemes we use the
same propagation method during search (arc consistency), the same vari-
able ordering heuristic (dom/wdeg [18]) and value ordering heuristic (Gee-
len’s promise [37]). The promise metric is calculated over all the visited
nodes of the search tree. This penalizes run times and as a result may be
inefficient in some problems, but for the purposes of this initial investi-
gation we only wanted to use a reasonably sophisticated value ordering
heuristic throughout all the tried instances. In the future we intend to ex-
periment with different value ordering heuristics and study their effect on
the performance of the clustering set branching method.

We compare the following branching schemes:

2-way Values are chosen in descending order of their promise.

d-way Values are chosen in descending order of their promise.

domain splitting The values are ordered according to their promise and
then the domain is split in half. The part with the top ranked values
is tried first.

ties set branching This is the method of [84] where values with the same
promise form a set. The sets are tried in descending order of promise.

clustering set branching This is our method where x-means is used to
partition the domain into sets based on the promise of the values.
The sets are tried in descending order of promise. Note that the
clusters are linearly ordered since clustering is done over only one
dimension.

135

CHAPTER 7. SET BRANCHING

The two set branching methods have been implemented using a 2-way
and a d-way branching style, giving four alternatives. More specifically,
past works on set branching for CSPs perform set branching using a d-
way style. That is, once the partition of the domain SD(x) = {s1, . . . , sm} is
created, search proceeds by removing from D(x) any value a, s.t. a /∈ s1,
and propagating. If there is a failure, the same process is repeated for
s2 and so on. We have also implemented and evaluated 2-way style set
branching. In this case the generated sets are tried in a series of binary
choices. That is, after the reduction of D(x) to s1 fails, we propagate the
removal from D(x) of all the values in s1. If this succeeds then we reduce
D(x) to s2 and so on.

We must clarify here that in all the “2-way style” branching variants
(domain splitting, ties, clustering) the set branching method allows to
jump from one variable to another as standard 2-way branching does.

In addition, for domain splitting and the set branching methods we
have tried two options: 1) Domain splitting (resp. set branching) is per-
formed throughout search on all variables. 2) Domain splitting (resp. set
branching) is performed on a variable only if its domain size is greater
than a certain percentage of its original domain size. We have tried several
values for this percentage, with 25% giving the best results. This can im-
prove the performance of domain splitting by 30% on average, and it can
offer (minor) improvement to set branching. Therefore, in the reported
experiments with these methods Option 2 is followed.

Table 7.1 compares the various branching methods on specific instances
from the tested problem classes. We display CPU times as well as nodes.
A node in 2-way branching can correspond to a value assignment or to
a value removal, while in d-way branching it can only correspond to a
value assignment. Hence, they cannot be compared directly. The instances
in this table are chosen to highlight the gaps in performance that can oc-
cur when using different branching schemes. As can be seen any method
can be the best on a given instance, and there can be very considerable
variance in the performance of the methods. For instance, clustering set
branching can be very effective on certain problems (e.g. qcp-15-120-8)
but it can also be quite ineffective on others (e.g. qcp-15-120-6). How-

136

CHAPTER 7. SET BRANCHING

Table 7.1: Cpu times (t), and nodes (n) from specific instances. Cpu times are in seconds.
The best result for each instance is given in bold.

d-way 2-way d-way 2-way

Problem d-way 2-way dom ties ties clust. clust.

Class split. set branch. set branch. set branch. set branch.

frb35-17-2 t 43.3 98.4 954 60.1 98.3 134 154

(sat) n 16241 45098 515909 27160 50713 58633 75743

scen3-f11 t 73.7 6.9 33.8 40.1 11.3 43.5 14.5

(unsat) n 11056 1739 5318 11019 4021 13631 5705

pigeons-30-ord t 2435 572 762 1259 773 1322 639

(unsat) n 376384 135031 128286 338049 247792 364343 228190

geo50-20-d4-75-7 t 472 1338 2815 190 1309 365 543

(sat) n 108027 404918 686333 58411 443724 111505 174716

langford-2-10 t 300 129 605 108 120 116 127

(unsat) n 199104 247286 372733 199609 235912 203580 238314

driverw-09 t 177 145 243 103 164 180 143

(sat) n 75625 93236 97180 46823 76510 77509 64798

qcp-15-120-6 t 23.8 12.4 26 28.8 9.6 133 94.6

(sat) n 19074 20179 19353 33003 12019 136599 99847

qcp-15-120-8 t 50 35.4 53.2 44.4 130 1.01 1.01

(sat) n 38227 49680 38551 46188 146342 845 845

geo50-20-d4-75-11 t 41.6 38.9 94.2 32.5 37.9 12.2 15.1

(sat) n 9027 10044 21926 8990 12620 3486 5111

queensKnights-15-5 t 1506 1001 2245 1502 737 999 594

(unsat) n 42154 15393 86199 42309 38836 28312 30890

ever, these are some of the most ‘extreme’ instances. Exponential differ-
ences, as predicted between 2-way and d-way in theory, occured rarely1.
We must also note here, that these results (for 2-way and d-way branching
schemes) are not directly compared with the reported results from the pre-
vious chapter. Since the value ordering heuristic that we have used in each
case is different. In this experimental analysis, we have used the Geelen’s
promise [37] as the value ordering heuristic, while in Chapter 6 we have
used lexicographic value ordering.

In Tables 7.2 and 7.3 we summarize the results of our experimental

1But this observation concerns the variable ordering heuristic and propagation
method used here and may not generalize as shown in Chapter 6.

137

CHAPTER 7. SET BRANCHING

Table 7.2: Average speed-up (positive values) or slow-down (negative values) achieved
by 2-way branching compared to the other branching methods. Cpu time (t) in seconds
and visited nodes (n) have been measured.

% d-way 2-way d-way 2-way

Problem graph d-way dom ties ties clust. clust.

Class density split. set branch. set branch. set branch. set branch.

langford 1.045 t 2.88 5.08 -1.21 -1.11 -1.20 -1.04

(unsat) n -1.27 1.52 -1.26 -1.06 -1.23 -1.03

pigeons 1 t 1.13 1.24 -1.53 -1.89 -1.07 -1.32

(unsat) n -1.21 1.33 -1.7 -1.66 -1.25 -1.12

queensKnights 0.70 t 1.49 1.99 1.75 -1.21 -1.02 -1.48

(unsat) n 2.85 4.96 3.47 3.04 1.87 2.39

forced random 0.65 t -1.22 1.88 -1.30 -1.03 -1.14 1.14

(sat) n -1.41 1.52 -1.11 -1.1 -1.24 1.07

geometric 0.35 t -2.48 2.07 -4.55 -1.03 -3.83 -2.58

(sat) n -3.02 1.79 -3.77 1.18 -3.53 -2.25

qcp − qwh 0.125 t 1.78 2.34 1.28 1.99 6.08 5.63

(sat) n -1.09 1.12 -1.06 1.5 4.08 3.84

driver 0.082 t 1.18 1.53 -1.33 1.10 1.21 1.00

(sat) n -1.23 -1.06 -1.71 -1.24 -1.23 -1.43

rlfap (ScensMod) 0.052 t 5.39 3.07 3.52 1.07 3.70 1.26

(mixed) n 4.63 2.73 4.28 1.77 4.94 2.1

graphColoring 0.05 t -1.50 1.01 -1.58 1.00 -1.49 -1.03

(mixed) n -1.28 1.15 -1.18 1.14 -1.17 -0.92

evaluation. We use 2-way branching as the standard all other branching
methods are compared against. In Table 7.2 we give the average slow-
down (or speed-up) of the methods compared to 2-way for each prob-
lem class (the two quasigroup classes qcp and qwh are grouped together).
We have mostly selected problem classes that contain either only satisfi-
able or only unsatisfiable instances. However, we have also experimented
with “mixed” problem classes. That is classes that contain both satisfi-
able and unsatisfiable instances. For example, on langford problems all
instances are unsatisfiable and 2-way is 2.88 times better than d-way on
average, while it is 1.2 times worse than d-way clustering set branching.
As mentioned above, it is difficult to accurately compare the numbers of
visited nodes under different branching schemes. However, in most prob-

138

CHAPTER 7. SET BRANCHING

lem classes the differences in Cpu times roughly reflect the differences in
visited nodes.

In Table 7.3 we give the percentage of instances, over all the tried in-
stances, where each method was faster (> 1), at least 2 times faster (> 2),
and at least 3 times faster (> 3) than 2-way branching. Similarly for in-
stances where each method was slower by < 1, < 2, and < 3 times com-
pared to 2-way.

Table 7.2 shows that although differences between methods can be
quite large on single instances, the average differences between the most
competitive methods are smaller. Dichotomic domain splitting is appar-
ently the worst among the branching methods. However, it may fare bet-
ter in problems with very large domain sizes2. Excluding domain splitting,
the other methods are usually no more that 2 times better or worse than
2-way branching on average. But there are cases where even the average
differences are quite large.

The set branching methods, and especially the d-way style ones, have
slightly better or very close performance compared to 2-way branching on
most classes. Also, these methods clearly outperform d-way branching.
Interestingly, the set clustering methods are typically very competitive on
the denser classes.

Table 7.3: % categorization of all tried instances according to the performance of the
branching methods compared to 2-way branching.

d-way 2-way d-way 2-way

Problem speedup d-way dom ties ties clust. clust.

Class split set branch. set branch. set branch. set branch.

all instances

>1 29% 11% 47% 68% 50% 45%
>2 8% 0% 8% 2% 15% 16%
>3 2% 0% 3% 0% 10% 6%
<1 71% 89% 53% 32% 50% 55%
<2 24% 56% 21% 2% 21% 15%
<3 11% 34% 6% 3% 11% 6%

Table 7.3 shows that 2-way ties set branching is better than 2-way on
most instances. However, the margins are usually small. This is because

2Most domains included between 2 and 50 values, with maximum 225.

139

CHAPTER 7. SET BRANCHING

Table 7.4: Paired t-test measurements for evaluation of the significance of the experimen-
tal results. 2-way branching is compared with the other branching schemes.

Mean SD t-value 95% C.I.

d-way -29.8 341.7 -0.68 (-116, 57)

domain splitting -241 456 -4.1 (-357, -125)

d-way ties set branching 9.48 326.3 0.23 (-73.3, 92.3)

2-way ties set branching 31.7 234 1.06 (-27.7, 91.1)

d-way clustering set branching 13.75 217.9 0.49 (-41.6, 69)

2-way clustering set branching 32.4 182.5 1.4 (-13.9, 78.7)

the number of ties that occur during search is usually low, meaning that
2-way ties set branching often emulates the standard 2-way scheme. The
other set branching methods are better than 2-way on roughly half of the
instances. However, they can be significantly better, and worse, on quite a
few.

In order to obtain a global view and to evaluate the statistical signifi-
cance of our experimental results, a set of paired t-tests were performed.
In these tests we compared the CPU performance of the 2-way branching
scheme against all the other branching schemes, over all the instances used
in the experiments. We measured the mean difference, standard deviation,
t-value and the 95% confidence interval. The risk level (called alpha level)
was set to 0.05. Results are collected in Table 7.4.

As the results show, d-way branching and domain splitting are clearly
inefficient compared to 2-way branching. The mean CPU reduction in the
all set branching techniques is always greater than zero with 2-way clus-
tering set branching being slightly better. However, the negative values
at the confidence interval indicate that this reduction was not observed
in all the tried instances. Although 2-way ties and clustering set branch-
ing achieve equivalent mean CPU reduction, the t-values score show that
the spread (or variability) of the scores for 2-way clustering set branching
is significantly higher compared to 2-way ties set branching. The t-value
scores lead us to conclude that 2-way clustering set branching is a promis-
ing branching technique, since in our experiments it has displayed the best
overall performance.

140

CHAPTER 7. SET BRANCHING

Finally, we have to mention that the number of clusters produced by
x-means during search was usually quite low (2-3). In some cases, typi-
cally for small domain sizes, there was only one cluster generated because
all values had similar score. In such a case our method switched to ei-
ther d-way or 2-way branching depending on the style of set branching
employed.

7.5 Conclusions

In this chapter, we performed an experimental evaluation of branching
methods for CSPs including the commonly used 2-way and d-way schemes
as well as other less widely used ones. We also proposed and evaluated a
generic set branching method that partitions domains into sets of values
by using information provided by the value ordering heuristic as input to
a clustering algorithm. Results showed that set branching methods, in-
cluding our approach, are competitive and often better compared to stan-
dard 2-way branching. We now plan to investigate ways to achieve more
efficient domain partitions by automatically tuning the parameters of the
clustering algorithm. Also, it would be interesting to study clustering of
domains using information from multiple value ordering heuristics.

141

One thing life has taught me: if you are interested,
you never have to look for new interests. They
come to you. When you are genuinely interested
in one thing, it will always lead to something else.

Eleanor Roosevelt 8
Conclusions and Future Work

In this dissertation we investigate adaptive search strategies for the CSP
with the aim to increase the practical efficiency of backtracking search.
In general, we contribute to the design and implementation of adaptive
and autonomous constraint solvers that have the ability to advantageously
modify modelers decisions that typically in mainstream CP solvers are
taken prior to search. In the next sections we summarize our main con-
tribution and we give interesting directions on how this work can be ex-
tended in the future.

8.1 Conclusions

The most important results and contributions from the work presented in
this thesis are now reviewed.

Adaptive search-guiding heuristics Adaptive variable ordering heuristics,
learn and use information from every node explored in the search
tree, whereas traditional static and dynamic heuristics only use in-
formation about the initial and current nodes. These conflict-driven
heuristics follow the learning-from-failure approach, in which infor-
mation regarding failures is stored in the form of constraint weights.
By recording constraints that are responsible for any value deletion,
we derive three new heuristics that use this information to spread
constraint weights. We also explore a SAT inspired constraint ag-
ing strategy that gives greater importance to recent conflicts. Finally

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

we proposed a new heuristic that tries to better identify contentious
constraints by recording all the potential conflicts upon detection of
failure.

Empirical evaluation of modern VOHs For a first time a wide empirical
evaluation of modern variable ordering heuristic is performed. All
these modern heuristics have been tested over a narrow set of prob-
lems in their original papers and they have been compared mainly
with older heuristics. Hence, there is no comprehensive view of the
relative strengths and weaknesses of these heuristics. State-of-the-art
VOHs can be divided in two main categories: heuristics that exploit
information about failures gathered throughout search and recorded
in the form of constraint weights and heuristics that measure the
importance/impact of variable assignments for reducing the search
space. Results demonstrate that, in general, heuristics based on fail-
ures have much better cpu performance. Although impact based
heuristics are in general slow, there are some cases where they per-
form a smarter exploration of the search tree resulting in fewer node
visits.

Adaptive revision orderings The performance of propagation algorithms
is affected by the order in which revisions are carried out. Based on
our observation concerning the interaction between conflict-driven
variable ordering heuristics and revision ordering heuristics, we ex-
tend the use of failures discovered during search to devise new, ef-
ficient and adaptive revision ordering heuristics. We propose a num-
ber of simple revision ordering heuristics based on constraint weights
for arc, variable, and constraint oriented implementations of coarse
grained arc consistency algorithms, and compare them to the most
efficient existing revision ordering heuristic. Importantly, the new
heuristics can not only reduce the numbers of constraints checks and
list operations, but also cut down the size of the explored search tree.
Results from various structured and random problems demonstrate
that some of the proposed heuristics can offer significant speed-ups.

Adaptive branching schemes We have developed two generic heuristics

143

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

that can be applied at successful right branches once the variable
ordering heuristic chooses to branch on a variable other than the
current one. At this point the heuristics are used to decide whether
the advice of the variable ordering heuristic will be followed or not.
The application of these heuristics results in an adaptive branch-
ing scheme that dynamically switches between the fixed branching
schemes. The first heuristic is based on measuring the difference be-
tween the scores that the variable ordering heuristic assigns to its
selected variable and the current variable. The second heuristic is
based on the use of a secondary advisor to decide if the variable or-
dering heuristic will be followed or not. Experiments with instantia-
tions of the two generic heuristics confirm that search with adaptive
branching outperforms search with a fixed branching scheme on a
wide range of problems.

New set branching method We propose and study a generic set branch-
ing method where the partition of a domain into sets is created us-
ing the scores assigned to values by a value ordering heuristic, and a
machine learning clustering algorithm. Most of the approaches to set
branching that have been proposed in the past have either used very
strict measures of similarity or are problem specific. Our method of-
fers a generic solution to both the problem of similarity evaluation
and the partitioning of domains. For the former we exploit the in-
formation acquired from the value ordering heuristic, while for the
latter we use a clustering algorithm from machine learning.

8.2 Future Work

Our study on ways to create adaptive methods and strategies for solving
CSps is by no means complete. There are many issues that require further
investigation and many aspects that have not been addressed here. In the
next paragraphs we discuss some of them.

By extending our solvers capability to handle global constraints, we in-
tent to experimentally examine the behavior of the proposed and existing

144

CHAPTER 8. CONCLUSIONS AND FUTURE WORK

adaptive variable ordering heuristics, on problems with global constraints.
Concerning revision ordering heuristics, we plan to evaluate the inverse
arc-oriented heuristics: a dom/wdeg inverse and a dom/wcon inverse, which
favor revising arcs (cij ,xi) such that xj , has small domain size. Also, it
would be interesting to apply similar ideas to propagator-oriented solvers.

On set branching methods, we plan to investigate ways to achieve
more efficient domain partitions by automatically tuning the parameters
of the clustering algorithm. Also, it would be interesting to study cluster-
ing of domains using information from multiple value ordering heuristics.

All the adaptive strategies that have been proposed in this thesis, have
proven to be beneficial. But in our empirical studies each adaptive strat-
egy have been evaluated separately. It would be interesting to intergrade
all of them on an new adaptive constraint solver and to analyze possible
effective combinations.

145

Bibliography

[1] F. Bacchus. Extending forward checking. In Proceedings of CP-2000,
pages 35–51, 2000.

[2] T. Balafoutis, A. Paparrizou, and K. Stergiou. Experimental Evalua-
tion of Branching Schemes for the CSP. In TRICS workshop at CP-2010,
pages 1–12, 2010.

[3] T. Balafoutis, A. Paparrizou, K. Stergiou, and T. Walsh. Improving
the Performance of maxRPC. In Proceedings of CP-2010, pages 69–83,
2010.

[4] T. Balafoutis and K. Stergiou. Experimental evaluation of modern
variable selection strategies in constraint satisfaction problems. In
Proceedings of the 15th RCRA workshop on Experimental Evaluation of
Algorithms for Solving Problems with Combinatorial Explosion., 2008.

[5] T. Balafoutis and K. Stergiou. Exploiting constraint weights for re-
vision ordering in arc consistency algorithms. In Proceedings of the
ECAI-2008 workshop on Modeling and Solving Problems with Constraints,
2008.

[6] T. Balafoutis and K. Stergiou. On conflict-driven variable ordering
heuristucs. In Proceedings of the ERCIM workshop - CSCLP, 2008.

[7] T. Balafoutis and K. Stergiou. Adaptive branching for constraint sat-
isfaction problems. In ECAI’10, pages 855–860, 2010.

[8] T. Balafoutis and K. Stergiou. Conflict directed variable selection
strategies for constraint satisfaction problems. In SETN, pages 29–38,
2010.

[9] T. Balafoutis and K. Stergiou. Evaluating and Improving Modern
Variable and Revision Ordering Strategies in CSPs. Fundamenta In-
formaticae, 102(3-4):229–261, 2010.

BIBLIOGRAPHY

[10] A. Beckwith and B. Choueiry. On the dynamic detection of inter-
changeability in finite constraint satisfaction problems. In Proceedings
of CP-01, page 760, 2001.

[11] C. Bessiere. Constraint Propagation. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint Programming, chapter 3. El-
sevier, 2006.

[12] C. Bessière, A. Chmeiss, and L. Sais. Neighborhood-based variable
ordering heuristics for the contraint satisfaction problem. In Proceed-
ings of the 7th Conference on Principles and Practice of Constraint Pro-
gramming (CP-2001), pages 61–75, 2001.

[13] C. Bessière, E.C. Freuder, and J.C. Régin. Using Inference to Reduce
Arc Consistency Computation. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-1995), pages 592–599, 1995.

[14] C. Bessière and J.C. Régin. MAC and combined heuristics: two rea-
sons to forsake FC (and CBJ?). In Proceedings of CP-1996, pages 61–75,
Cambridge MA, 1996.

[15] C. Bessière, J.C. Régin, R. Yap, and Y. Zhang. An Optimal Coarse-
grained Arc Consistency Algorithm. Artificial Intelligence, 165(2):165–
185, 2005.

[16] C. Bessiere, K. Stergiou, and T. Walsh. Domain filtering consisten-
cies for non-binary constraints. Artificial Intelligence, 172(6-7):800–822,
2008.

[17] F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuris-
tics for the Constraint Satisfaction Problem. In 10th International
Conference on Principles and Practice of Constraint Programming (CP-
2004), Workshop on Constraint Propagation and Implementation, Toronto,
Canada, 2004.

[18] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting system-
atic search by weighting constraints. In Proceedings of ECAI-04, pages
146–150, 2004.

147

BIBLIOGRAPHY

[19] D. Brelaz. New methods to color the vertices of a graph. Communica-
tions of the ACM, 22:251–256, 1979.

[20] B. Cabon, S. De Givry, L. Lobjois, T. Schiex, and J.P. Warners. Radio
Link Frequency Assignment. Constraints, 4:79–89, 1999.

[21] H. Cambazard and N. Jussien. Identifying and Exploiting Problem
Structures Using Explanation-based Constraint Programming. Con-
straints, 11:295–313, 2006.

[22] A. Chmeiss and P. Jégou. Efficient path-consistency propagation.
Journal on Artificial Intelligence Tools, 7(2):121–142, 1998.

[23] D. Cohen, P. Jeavons, P. Jonsson, and M. Koubarakis. Building
tractable disjunctive constraints. Journal of the ACM, 47:826–853, 2000.

[24] M. Correia and P. Barahona. On the integration of singleton consis-
tency and look-ahead heuristics. In Proceedings of the ERCIM workshop
- CSCLP, pages 47–60, 2007.

[25] R. Debruyne and C. Bessière. From restricted path consistency to
max-restricted path consistency. In CP-97, pages 312–326, 1997.

[26] R. Debruyne and C. Bessière. Some practicable path filtering tech-
niques for the constraint satisfaction problem. In IJCAI-97, pages 412–
417, 1997.

[27] R. Debruyne and C. Bessière. Domain Filtering Consistencies. Journal
of Artificial Intelligence Research, 14:205–230, 2001.

[28] R Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[29] R. Dechter and I. Meiri. Experimental evaluation of preprocessing
techniques in constraint satisfaction problems. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI-1989), pages
271–277, 1989.

148

BIBLIOGRAPHY

[30] Y. Deville and P.V. Hentenryck. An efficient arc consistency algorithm
for a class of CSP problems. In Proceedings of IJCAI-91, pages 325–330,
1991.

[31] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. In
Proceedings of FGCS-88, pages 693–702, 1988.

[32] M. van Dongen. AC-3d an efficient arc-consistency algorithm with a
low space-complexity. In Proceedings of the 8th International Conference
on Principles and Practice of Constraint Programming (CP-2002), volume
2470, pages 755–760, 2002.

[33] E. Freuder. Eliminating Interchangeable Values in Constraint Satis-
faction Problems. In Proceedings of AAAI-91, pages 227–233, 1991.

[34] E. Freuder and A. Mackworth. Constraint satisfaction: an emerging
paradigm. In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of
Constraint Programming, chapter 2. Elsevier, 2006.

[35] E.C. Freuder. A sufficient condition for backtrack-free search. Journal
of the ACM, 29(1):24–32, 1982.

[36] D. Frost and R. Dechter. Look-ahead value ordering for constraint sat-
isfaction problems. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-1995), pages 572–578, 1995.

[37] P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfac-
tion problems. In Proceedings of ECAI-92, pages 31–35, 1992.

[38] I. Gent and T. Walsh. Csplib: a benchmark library for constraints. In
Proceedings of CP-99, 1999.

[39] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The con-
straindedness of arc cosistency. In Proceedings of the 3rd Conference
on Principles and Practice of Constraint Programming (CP-1997), pages
327–340, 1997.

149

BIBLIOGRAPHY

[40] I.P Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. An
empirical study of dynamic variable ordering heuristics for the con-
straint satisfaction problem. In Proceedings of the 2nd Conference on
Principles and Practice of Constraint Programming (CP-1996), pages 179–
193, 1996.

[41] E. Goldberg and Y. Novikov. BerkMin: a Fast and Robust Sat-Solver.
In Proceedings of DATE’02, pages 142–149, 2002.

[42] C.P. Gomes, C. Fernandez, B. Selman, and C. Bessiere. Statistical
regimes across constrainedness regions. In Proceedings of CP-2004,
pages 32–46, 2004.

[43] D. Grimes and R.J. Wallace. Sampling strategies and variable selec-
tion in weighted degree heuristics. In Proceedings of CP-2007, pages
831–838, 2007.

[44] R.M. Haralick and Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263–314, 1980.

[45] A. Haselbock. Exploiting interchangeabilities in constraint satisfac-
tion problems. In Proceedings of IJCAI-93, pages 282–287, 1993.

[46] M.C. Horsch and W.S. Havens. An empirical study of probabilistic
arc consisteny as a variable ordering heuristic. In Proceedings of the
6th Conference on Principles and Practice of Constraint Programming (CP-
2000), pages 525–530, 2000.

[47] J. Hwang and D. Mitchell. 2-Way vs. d-Way Branching for CSP. In
Proceedings of CP-2005, pages 343–357, 2005.

[48] S.A. ILOG. Ilog solver 6.0 user’s manual, 2003.

[49] D.S. Johnson and M.A. Eds Trick. Second dimacs implementation
challenge:cliques, coloring and satisfiability. vol 26, of dimacs series
in discrete mathematics and theoretical computer science, 1996.

[50] M. Kitching and F. Bacchus. Set Branching in Constraint Optimiza-
tion. In Proceedings of IJCAI-09, pages 532–537, 2009.

150

BIBLIOGRAPHY

[51] G. Kondrak and P. van Beek. A theoretical evaluation of selected
backtracking algorithms. Artificial Intelligence, 89:365–387, 1997.

[52] F. Laburthe and N. Jussien. Choco constraint programming system.
Available at http://choco.sourceforge.net, 2003–2011.

[53] J. Larrosa. Merging constraint satisfaction problems to avoid redun-
dant search. In Proceedings of IJCAI-97, pages 424–433, 1997.

[54] C. Lecoutre. Optimization of Simple Tabular Reduction for Table
Constraints. In Proceedings of CP-2008, pages 128–143, 2008.

[55] C. Lecoutre and F. Hemery. A study of residual supports in arc cosis-
tency. In Proceedings of IJCAI-2007, pages 125–130, 2007.

[56] C. Lecoutre and S. Tabary. Abscon 109: a generic csp solver. In Pro-
ceedings of the 2nd International CSP Solver Competition, held with CP-
2006, pages 55–63, 2008.

[57] C. Likitvivatanavong, Y. Zhang, J. Bowen, S. Shannon, and E. Freuder.
Arc Consistency during Search. In Proceedings of IJCAI-2007, pages
137–142, 2007.

[58] D. Long and M. Fox. The third international planning competition.,
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume20/long03a-
html/node37.html, 2002.

[59] A. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99–118, 1977.

[60] A. Mackworth. On reading sketch maps. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJCAI-1977), pages
598–606, Cambridge MA, 1977.

[61] J.J. McGregor. Relational consistency algorithms anf their applica-
tions in finding subgraph and graph isomorphism. Information Sci-
ence, 19:229–250, 1979.

151

BIBLIOGRAPHY

[62] R. Mohr and T. Henderson. Arc and Path Consistency Revisited. Ar-
tificial Intelligence, 28:225–233, 1986.

[63] P. Morris. The breakout method for escaping from local minima. In
Proceedings of AAAI-93, pages 40–45, 1993.

[64] M. Moskewicz, C. Madigan, and S. Malik. Chaff: Engineering an effi-
cient sat solver. In Proceedings of Design Automation Conference, pages
530–535, 2001.

[65] V. Park. An empirical study of different branching strategies for con-
straint satisfaction problems, Master’s thesis, University of London,
2004.

[66] D. Pelleg and A. Moore. X-means: Extending K-means with Efficient
Estimation of the Number of Clusters. In Proceedings of ICML-2000,
pages 727–734, 2000.

[67] S. Prestwich. Full Dynamic Interchangeability with Forward Check-
ing and Arc Consistency. In Proceedings of the ECAI Workshop on Mod-
eling and Solving Problems With Constraints, 2004.

[68] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Prob-
lem. Computational Intelligence, 9(3):268–299, 1993.

[69] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Pro-
ceedings of the 6th Conference on Principles and Practice of Constraint Pro-
gramming (CP-2000), pages 353–368, 2000.

[70] P. Refalo. Impact-based search strategies for constraint programming.
In Proceedings of CP-2004, pages 556–571, 2004.

[71] O. Roussel and C. Lecoutre. Xml representation of constraint net-
works: Format xcsp 2.1. In CoRR abs/0902.2362, 2009.

[72] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In Proceedings of CP-1994, pages 10–20, 1994.

152

BIBLIOGRAPHY

[73] D. Sabin and E.C. Freuder. Understanding and Improving the MAC
Algorithm. In Proceedings of CP-1997, pages 167–181, 1997.

[74] C. Schulte, M. Lagerkvist, and G. Tack. Gecode solver. Available at
http://www.gecode.org, 2011.

[75] C. Schulte and P.J. Stuckey. Efficient constraint propagation engines.
ACM Transactions on Programming Languages and Systems, 31:2.1–2.43,
2008.

[76] B. Selman and H. Kautz. Domain-independent Extensions to GSAT:
Solving Large Structured Satisfiability Problems. In Proceedings of
IJCAI-93, pages 290–295, 1993.

[77] M. Silaghi, D. Sam-Haroud, and B. Faltings. Intelligent Domain Split-
ting for CSPs with Ordered Domains. In Proceedings of CP-99, pages
488–489, 1999.

[78] B. Smith and P. Sturdy. Value Ordering for Finding All Solutions. In
Proceedings of IJCAI-05, pages 311–316, 2005.

[79] B.M. Smith. The brelaz heuristic and optimal static orderings. In
Proceedings of the 5th Conference on Principles and Practice of Constraint
Programming (CP-1999), pages 405–418, 1999.

[80] B.M. Smith and S.A. Grant. Trying harder to fail first. In Proceedings
of 13th European Conference on Artificial Intelligence (ECAI-1998), pages
249–253, 1998.

[81] G. Smolka. The OZ Programming Model. In Computer Science Today
(LNCS 1000), pages 324–343, 1995.

[82] J. Thornton. Constraint weighting local search for constraint satisfaction.
PhD thesis, Griffith University, Australia, 2000.

[83] P. van Beek. Backtracking Search Algorithms. In F. Rossi, P. van Beek,
and T. Walsh, editors, Handbook of Constraint Programming, chapter 4.
Elsevier, 2006.

153

BIBLIOGRAPHY

[84] J. van Hoeve and M. Milano. Postponing Branching Decisions. In
Proceedings of ECAI-04, pages 1105–1106, 2004.

[85] R. Wallace and E. Freuder. Ordering heuristics for arc consistency
algorithms. In AI/GI/VI, pages 163–169, Vancouver, British Columbia,
Canada, 1992.

[86] R.J. Wallace and D. Grimes. Experimental studies of variable selection
strategies based on constraint weights. Journal of Algorithms, 63(1–
3):114–129, 2008.

[87] T. Walsh. Search in a small world. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-1999), pages 1172–1177,
1999.

[88] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to
generate hard satisfiable instances. In Proceedings of IJCAI-2005, pages
337–342, 2005.

[89] R. Zabih. Some applications of graph bandwith to constraint satisfac-
tion problems. In Proceedings of AAAI’90, pages 46–51, 1990.

[90] A. Zanarini and G. Pesant. Solution counting algorithms for
constraint-centered search heuristics. In Proceedings of the 13th Con-
ference on Principles and Practice of Constraint Programming (CP-2007),
pages 743–757, 2007.

154

