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Abstract

In the first part of this thesis we analyse the variational structure

of arbitrary nonlinear Langrangian theories of gravity. After a

critique on the traditional Palatini variation we exploit the con-

sequences of adopting the so-called constrained Palatini variation

and prove a general result of equivalence of the constrained Pala-

tini variation to the usual Hilbert method for most of the higher

order Lagrangians. We apply this theorem to f (R) theories in the

extended framework of Weyl geometries and study the conformal

structure of the so-formed theories. We prove a non-trivial gener-

alization of the conformal equivalence theorem valid for arbitrary

f (R) Lagrangians in Weyl geometry. In particular, previous re-

sults valid in the Riemannian framework appear naturally as spe-

cial cases of this general result in the limit when Weyl geometries

tend to Riemannian ones.

In the second part we study in detail the isotropization prob-

lem in the context of f (R) theories. In the framework of infla-

tion, we prove the cosmic no-hair conjecture for all orthogonal

Bianchi cosmologies with matter in the R + βR2 + Lmatter the-

ory. The proof is given in the conformal frame with the scalar

field, that has the usual self-interacting potential, in the presence

of the conformally related matter fields. We show in particular

that the Bianchi IX universe asymptotically approaches de Sit-

ter space provided that, initially, the scalar three-curvature does

not exceed the value of the potential of the scalar field associated

with the conformal transformation. We present a generalization

of the Collins-Hawking theorem for a large class of higher order

gravity theories. More precisely we show that, in the context of

this class of theories, the set of spatially homogeneous cosmolo-

gies which can approach isotropy at late times is of measure zero

in the space of all spatially homogeneous universe models. The

proof is based on the transformation properties of the Raychaud-

huri equation in higher order gravity theories and a recent ex-

tension of the Collins-Hawking theorem to scalar fields, Heusler’s

theorem. This result is used to present simplified proofs in higher
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order gravity of certain forms of the cosmic no-hair theorems in

de Sitter and power-law inflation. We discuss the closed universe

recollapse conjecture in a curvature-squared higher order gravity

theory and give sufficient conditions for recollapse of the closed

Friedmann model in the conformal frame.
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Time present and time past

Are both perhaps present in time future

And time future contained in time past

T. S. Elliot



Chapter 1

Introduction

The observable universe today seems to be remarkably homogeneous and

isotropic on a very large scale and the Friedmann cosmology is a success-

ful cosmological model capable of describing its large-scale properties.

The most important cosmological discovery of recent decades has been

the detection of the cosmic background radiation. A striking feature of

the cosmic background radiation is a temperature isotropy over a wide

range of angular scales on the sky. The remarkable uniformity of the

cosmic background radiation indicates that at the end of the radiation-

dominated period (some hundreds of thousands of years after the big

bang) the universe was almost completely isotropic. One then has a

difficulty in explaining why there should be such an isotropy in the uni-

verse for the following reason. The finite velocity of light divides the

universe into causally decoherent regions. Roughly speaking, if the age

of the universe is T, then regions moving away because of the expansion

of the universe and separated by a distance greater than cT will not have

enough time to communicate with each other. How did these separated

regions come to be at the same temperature today to better than one

part in ten thousand?

There are two currently popular responses to this so-called horizon

problem. The first is that the universe has always been isotropic which

means that the initial conditions were such that the universe was and has

ever remained homogeneous and isotropic. This seems to be statistically

quite improbable since the set of homogeneous and isotropic initial data

is ‘of measure zero’ in the space of all initial data. The second response
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is that the universe came about in a less symmetric state and evolved

through some dynamical mechanisms towards a FRW state. Soon after

the discovery of the cosmic background radiation isotropy, Misner and

others suggested that the universe could have started off in a ‘chaotic

state’ with inhomogeneities and anisotropies of all kinds and that various

dissipation processes could damp out nearly all of these, leaving only the

very small amounts that we see today. This program was unable to show

that the present state of the universe could be predicted independently

of its initial conditions. Attempts to tackle to isotropization problem

date at least since the pioneering work of Collins and Hawking [26] who

formulated and proved the first isotropization theorems for certain classes

of orthogonal Bianchi spacetimes.

Interest in a particular approach to the isotropization problem in cos-

mology renewed after the advent of inflation as a mechanism for solving

the problem. Today it is believed that inflation is the most successful

mechanism of isotropization and that the inflationary scenario answers

simultaneously almost all problems of standard cosmology.

Soon after the invention of the inflationary scenario, interest focused

on proving the so-called cosmic no-hair conjecture. This conjecture,

roughly speaking, states that general cosmological initial data sets, when

evolved through the gravitational field equations, are attracted (in a sense

that can be made precise) by the de Sitter space of inflation. In other

words, if this conjecture is true, inflation is a ‘transient’ attractor of such

sets. These in turn quickly isotropize after the inflationary period and

the inflationary regime could thus be regarded as ‘natural’ in view of its

prediction of the (observed) large-scale homogeneity and isotropy of the

universe.

No less interesting in modern cosmology is the recollapse problem,

the question of whether or not closed universe models recollapse to a

second all-encompassing singularity in their future. It has been demon-

strated in the context of relativistic cosmology that only in very special

cases, namely the closed FRW model [8], the closed spherically symmet-

ric model [108, 24] and the orthogonal Bianchi IX with rather general

matter fields [66] obeying appropriate energy conditions does one obtain

a recollapsing universe. This problem is closely linked to that of the



existence of constant mean curvature foliations in general relativity and

is already quite involved in several ‘simple’ cases outside cosmology (see

[87] for an interesting review).

Ever since the development of the singularity theorems of general rel-

ativity and their subsequent application to relativistic cosmology, a lot

of interesting work has been focused (and is currently continuing) on the

precise nature of the singularities in specific cosmological models, the

best–known example being perhaps the Mixmaster universe, in partic-

ular the orthogonal and tilted Bianchi universes (for a review see [25]).

More recently, Borde and Vilenkin [19] attempted to develop a series

of singularity theorems applicable to inflationary cosmology in an effort

to gain some understanding of the existence of an initial singularity in

inflation.

From the above brief discussion we see that in recent years consider-

able progress has been made in the analysis of the three main unresolved

issues of modern mathematical cosmology, namely the Singularity Prob-

lem, the Isotropization Problem and the Recollapse Problem. Although

the final word on each one of these issues is still beyond our reach, we

have a clear picture of the open problems in each of these areas and the

complex interconnections that exist between different approaches to the

above issues.

It is well known that the vacuum Einstein field equations can be

derived from an action principle

SE =

∫
d4x

√
−gLE , (1.0.1)

where the Lagrangian LE is just the Ricci scalar R

LE = R. (1.0.2)

If matter fields are included in the theory an appropriate Lmatter term

must be added to the Lagrangian (1.0.2).

Einstein was the first to modify his original theory in an attempt to

obtain a static cosmological model. This modified theory can be derived

from a Lagrangian

L = R− 2Λ, (1.0.3)



where Λ is the cosmological constant. Since then there have been nu-

merous attempts to generalize the action (1.0.1) by considering action

functionals that contain curvature invariants of higher than first order in

(1.0.3). These Lagrangians generally involved linear combinations of all

possible second order invariants that can be formed from the Riemann,

Ricci and scalar curvatures, namely

R2, RabR
ab, RabcdR

abcd, εiklmRikstR
st
lm.

The reasons for considering higher order generalizations of the action

(1.0.1) are multiple. Firstly, there is no a priori physical reason to re-

strict the gravitational Lagrangian to a linear function of R. Secondly

it is hoped that higher order Lagrangians would create a first approxi-

mation to an as yet unknown theory of quantum gravity. For example a

certain combination of the above second order invariants may have better

renormalization properties than general relativity [98]. Thirdly one ex-

pects that, on approach to a spacetime singularity, curvature invariants

of all orders ought to play an important dynamical role. Far from the

singularity, when higher order corrections become negligible, one should

recover general relativity. It is also hoped that these generalized theories

of gravity might exhibit better behaviour near singularities.

In the following we critically review higher order gravity (HOG) theo-

ries, wherein the Lagrangian is an arbitrary smooth function of the scalar

curvature, ie

L = f (R) . (1.0.4)

By varying L with respect to the metric tensor, g, the action principle

provides the vacuum field equations [6]

f
′

Rab −
1

2
fgab −∇a∇bf

′

+ gab�f
′

= 0, (1.0.5)

where � = gab∇a∇b and a prime (′) denotes differentiation with respect

to R. These are fourth order equations, ie they contain fourth order

derivatives of the metric. Therefore it is not surprising that very few

solutions exist in the literature. For a discussion of cosmological solutions

and stability issues see [12, 27, 32]. Among other difficulties related

to the field equations (1.0.5) we mention the need for additional initial



conditions in the formulation of the Cauchy problem besides the usual

ones in general relativity.

Fortunately there is a method to overcome most of these problems.

This is the conformal equivalence theorem proved by Barrow and Cot-

sakis [6]: Under a suitable conformal transformation, equations (1.0.5)

reduce to the Einstein field equations with a scalar field as a matter source

(for the technical details on conformally related metrics see Appendix D).

To see this we choose the conformal factor in (D.0.1) to be

Ω2 = f
′

(R) . (1.0.6)

Granted the relation between the tensors Rab and R in the spacetime

(M, g) to the corresponding ones R̃ab and R̃ in the spacetime (M, g̃) , we

may transform the field equations (1.0.5) to the new spacetime (M, g̃) .

With the introduction of a scalar field ϕ by

ϕ =

√
3

2
ln f

′

(R) , (1.0.7)

the conformally transformed field equations become

R̃ab −
1

2
g̃abR̃ = ∇aϕ∇bϕ− 1

2
g̃ab (∇cϕ∇cϕ) − 1

2
g̃ab

(
f

′

)
−2 (

Rf
′ − f

)
.

(1.0.8)

These are the Einstein equations for a scalar field source with potential

V =
1

2

(
f

′

)
−2 (

Rf
′ − f

)
. (1.0.9)

The authors [6] state their result in D dimensions, but for our pur-

poses a four-dimensional treatment is sufficient. If matter fields with

energy-momentum tensor Tm
ab (g) are present in the original spacetime

(M, g) , the field equations become

f
′

Rab −
1

2
fgab −∇a∇bf

′

+ gab�f
′

= Tm
ab (g) . (1.0.10)

In the conformally related spacetime, (M, g̃) , the corresponding Einstein

equations become

R̃ab −
1

2
g̃abR̃ = Tm

ab (g̃) + T ϕ
ab (g,g̃) , (1.0.11)

where T ϕ
ab (g,g̃) is the right-hand side of (1.0.8) and Tm

ab (g̃) is the trans-

formed stress-energy tensor.



The conformal equivalence theorem of Barrow and Cotsakis is a de-

vice to lower the order of the field equations to second and thus to ob-

tain differential equations which are the usual Einstein equations plus

the equation of motion of the scalar field. It is analogous to the Legen-

dre transformation which reduces the second order Lagrange equations

in classical mechanics to the first order Hamilton equations. However,

several conceptual problems are raised. What does exactly the state-

ment, ‘the original higher order gravity theory is conformally equivalent

to Einstein’s equations plus a scalar field’ imply? Does conformal equiv-

alence imply physical equivalence between the two theories? If a certain

property is proven in the conformal frame, is it also valid in the original

spacetime? Which is the natural spacetime, the original one or the one

conformally related to it? The last question is related to the issue of

physical reality of the two metrics involved. In fact, in the conformal

frame there are two possible candidates, the metrics g and g̃. A possible

criterion of ‘naturalness’ of a metric would be the motion of matter: if

matter moves on geodesics relative to one metric then this metric can

be regarded as the physical one. For a discussion on the question of the

physical reality of the two metrics involved and other interpretational

issues see [28, 29] and references therein.

The conformal equivalence theorem allows certain rigorous results

in general relativity to be transferred in HOG and therefore, to study

the dynamical properties of higher order gravity theories by analyzing

them in the conformal picture, that of Einstein’s equations with a scalar

field matter content. In the vacuum case this technique is very fruitful.

However, in the presence of matter there are some limitations, mainly

because the energy conditions imposed on the stress-energy tensor are

not automatically conserved in the conformal frame. For example, if

the stress-energy tensor satisfies the strong energy condition in (M, g) ,

the transformed tensor does not in general obey the same condition in

(M, g̃) . A sufficient (but not necessary) condition for the validity of the

SEC in both spacetimes is that the stress-energy tensor be conformally

invariant. By a conformally invariant stress-energy tensor Tab we mean

that Tab → T̃ab = ΩwTab, where the number w ≥ 0 is the conformal weight

of the tensor. This will be the case if Tab is derived from a conformally



invariant action with respect to the metric.

Higher derivative quantum corrections to the gravitational action of

classical general relativity are generally expected to play a significant role

at very high energies where a quantum gravitational field will presum-

ably dominate. It is not unreasonable to consider classical cosmology

in theories coming out of such nonlinear gravitational Lagrangians and

in fact, one expects that there exist close links between properties of

such ‘higher derivative cosmologies’ and those of general relativistic cos-

mology. It is obvious that the resolution of aspects of the singularity,

isotropization and recollapse problems is of paramount importance also

in this extended framework.

In this thesis we examine structural and cosmological issues in gravity

theories obtained from a Lagrangian L = f (R) . The plan of this thesis

is the following:

• Chapter Two: In this chapter we begin by critical review of the

Palatini variation in general relativity which outlines the method.

Next we derive the field equations via the Palatini variational prin-

ciple for general gravitational Lagrangians which are functions of

all possible curvature invariants. We find that the Palatini method

leads to certain restrictions on the form of the Lagrangians and,

if matter fields are included, to severe inconsistencies. We care-

fully formulate an extension of the Palatini method, the so-called

constrained Palatini variation, and prove a general result of equiv-

alence of this generalized variational procedure to the usual Hilbert

method for most of the higher order Lagrangians. We apply this

theorem to f (R) theories in the extended framework of Weyl ge-

ometries and prove a non-trivial generalization of the conformal

equivalence theorem. The forms of the scalar field potential and

conformal factor are formally identical to the usual ones. However,

new issues arise relative to the stress tensor of matter fields in this

picture. In particular, previous results valid in the Riemannian

framework appear naturally as special cases of this general result

in the limit when Weyl geometries tend to Riemannian ones.

• Chapter Three: After a brief review of the inflationary scenario,



we carefully state the cosmic no-hair conjecture and critically dis-

cuss its limitations. Next we prove the central result, namely the

cosmic no-hair conjecture for all orthogonal Bianchi cosmologies

with matter in the R+βR2 +Lmatter theory. The proof is based on

the conformally equivalent Einstein field equations with the scalar

field that has the usual self-interacting potential in the presence

of the conformally related matter fields. We show, in particular,

that the Bianchi IX universe asymptotically approaches de Sitter

space provided that initially the scalar three-curvature does not ex-

ceed the potential of the scalar field associated with the conformal

transformation. We also show that the time needed for the scalar

field to reach the minimum of the potential is much larger than the

isotropization time.

• Chapter Four: In this Chapter we present a generalization of the

Collins-Hawking theorem for a large class of higher order gravity

theories. More precisely we show that in the context of this class

of theories, the set of spatially homogeneous cosmologies which can

approach isotropy at late times is of measure zero in the space of all

spatially homogeneous universe models. This involves a non-trivial

argument based on a treatment of the Raychaudhuri equation in

HOG theories and a recent extension of the Collins-Hawking theo-

rem to scalar fields [53]. The result is also used to prove in HOG

theories certain known forms of cosmic no-hair theorems in de Sit-

ter and power-law inflation in general relativity.

• Chapter Five: We discuss the closed universe recollapse conjec-

ture in a curvature-squared higher order gravity theory. In partic-

ular we give sufficient conditions for recollapse of the closed Fried-

mann model in the conformal frame.

• Chapter Six: We present our conclusions and suggest some paths

of future research.

For the convenience of the reader we include four appendices with

the necessary material and geometric notions that are needed for

the development of this thesis.



Notation and conventions

In this thesis we follow the sign conventions of Misner, Thorne and

Wheeler (MTW [78]). In particular we use the metric signature (−,+,+,+)

and define the Riemann tensor by

R (X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

so that

∇c∇dZ
a −∇d∇cZ

a = Ra
bcdZ

b.

The Ricci tensor is defined as the one-three contraction of the Riemann

tensor so that

Rbd = Ra
bad.

The Einstein tensor is defined as

Gab = Rab −
1

2
gabR,

where gab is the metric tensor and R is the scalar curvature tensor. The

Einstein field equations are

Gab = Tab.

Throughout this work, we use units where c = 8πG = 1.

We also employ the abstract index notation discussed in Wald [101].

Thus Latin indices of a tensor denote the type of the tensor (they are

part of the notation for the tensor itself). Greek indices on a tensor

represent its components in a given frame. In the cases where purely

spatial tensor components occur, the range of the indices is explicitly

denoted. An exception to the above convention is Chapter 2, where all

indices are component indices.

∇a is the symbol for the covariant derivative operator. We occasion-

ally use a semicolon (; ) to denote covariant differentiation. The symbol

∂a stands for the ordinary derivative operator.



Here are some abbreviations most frequently used in the text.

HOG Higher order gravity

HE Hawking and Ellis

FRW Friedmann-Robertson-Walker

PV Palatini variation

CPV Constrained Palatini variation

HDCs Higher Derivative Cosmologies

CBR Cosmic background radiation

GR General relativity

SEC Strong energy condition

WEC Weak energy condition

TCC Timelike convergence condition

DEC Dominant energy condition

CNHC Cosmic no-hair conjecture

CNHT Cosmic no-hair theorem

PPC Positive pressure criterion

The stress-energy-momentum tensor is usually written as stress-energy

tensor.



Part I

Variational issues in higher

order gravity theories
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Chapter 2

Constrained variations and

nonlinear Lagrangians

In this Chapter we generalize the constrained Palatini variation (CPV)

in order to include arbitrary symmetric connections in gravity theories

derived from nonlinear Lagrangians. In Section 2.1 we review the two

variational principles namely the Hilbert and Palatini variations in gen-

eral relativity. In Section 2.2 we apply the Palatini variation to nonlinear

gravitational Lagrangians. In particular we extend Buchdahl’s work [23]

to f (Ric2) Lagrangians and give an alternative approach to the recent

analysis of Borowiec et al [21]. A critique on the Palatini variation serves

as a motivation for Section 2.3 where we present the constrained Palatini

variation and prove a general theorem to the effect that the CPV field

equations obtained from the most general gravitational Lagrangian with

general couplings to matter fields are identical to those derived by the

Hilbert variation. We apply this theorem to quadratic Lagrangians and

correct previous results. In Section 2.4 we derive the field equations for

an f (R) Lagrangian in Weyl geometry, study the conformal structure of

these theories and extend previous results [6] valid in Riemannian geom-

etry. Furthermore our analysis shows that the Palatini variation can be

recovered as a special case of the CPV. In the last Section we discuss our

results and compare them with those in previous works.
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2.1 Variational principles in General Rela-

tivity

Soon after the discovery of general relativity, Einstein, Weyl, Eddington

and Cartan among others, were searching for a more general theory that

would unify on purely geometrical grounds gravitational and electromag-

netic phenomena. Several ideas were introduced and developed at that

epoch concerning the structure of the underlined spacetime manifold,

such as semi-riemannian structures in dimension greater than four, non-

symmetric metric tensor, connection non-compatible with the metric, no

imposition of a metric from the beginning but such that a metric struc-

ture could result as a byproduct (for example, as the symmetric part of

the Ricci tensor Rab, or the symmetric part of the functional derivative

of a gravitational Lagrangian with respect to the Ricci tensor). The vari-

ational principle proved to be an indispensable tool in the derivation of

these theories. In fact, since Hilbert succeeded in deriving the Einstein

field equations in vacuum by varying the action
∫
R
√−g with respect

to the metric, it became clear that variational principles should play an

important role in setting up a theory of gravity.

The standard variational principle (Hilbert variation) that leads to

general relativity is a metric variation, in the sense that the gravitational

action is varied only with respect to the metric tensor. It is assumed

from the beginning that the underling manifold is a four-dimensional

Lorentz manifold (M, g,∇) with metric g and the Levi-Civita connec-

tion ∇. However, in the search of a possible generalization of GR one

could consider a Lorentz manifold with an arbitrary connection ∇ which

is totally unrelated to the metric, ie ∇g 6= 0. A motivation for such

a generalization was inspired by the work of Weyl [103] wherein for the

first time the notion of distance appeared as independent of the notion of

parallelism (other possible motivations may be found in [78]). Therefore,

as an alternative procedure, one could consider variation of the action

with respect to both the metric components gab and the connection co-

efficients Γa
bc without imposing from the beginning that Γa

bc be the usual

Christoffel symbols. This method was used for the first time by Einstein



in 1925 [40]. By historical accident1 the method is attributed to Palatini,

although the latter was not responsible for that. In the current litera-

ture the variational principle, where the metric and the connection are

considered as independent variables, is referred to as the Palatini vari-

ation. Even Einstein in his late years used to refer to Palatini without

mentioning his own previous work, probably in order to follow the by

then accepted custom.

2.1.1 Hilbert variation

The simplest gravitational Lagrangian is the Einstein-Hilbert Lagrangian

(1.0.2)

L = R,

( R = gabRab is the scalar curvature). The corresponding action is

S =

∫
L
√
−gd4x,

where the integral is taken over a compact region U of the spacetime

(M, g,∇) . Here ∇ is the Levi-Civita connection of the metric, ie ∇g = 0.

We assume that the metric components and their derivatives are held

constant on the boundary of U. The Ricci tensor is expressed in terms

of the connection coefficients Γa
bc and their first derivatives and Γa

bc are

related to the metric by the usual relations, ie they are the Christoffel

symbols. Hence the Lagrangian density L := L
√−g can be written as

L = L
(
g, ∂g, ∂2g

)
.

Performing an arbitrary variation δgab to the metric, one could calculate

the variation δS of the action and, setting δS = 0, one would obtain the

field equations. This is Hilbert’s original prescription for the derivation

of the Einstein equations in vacuum. However, we could proceed in the

following way. Consider a manifold M (not necessarily semi-Riemannian)

equipped with two connections ∇ and ∇̃. As mentioned in the previous

chapter, the corresponding connection coefficients Γ and Γ̃ differ by a

tensor field, ie

δΓc
ab = Γ̃c

ab − Γc
ab

1For an interesting historical restoration of this affair see Ferraris et al [42].



is a tensor field. Different connections lead to different curvature tensors,

but the difference between R̃a
bcd and Ra

bcd is given by a simple formula

due to Palatini. This is the Palatini equation

δRa
bcd = ∇c (δΓa

bd) −∇d (δΓa
bc) , (2.1.1)

which can be easily derived in a locally geodesic coordinate system (see

for example [56]). Contraction yields

δRab = ∇m (δΓm
ab) −∇b (δΓm

am) . (2.1.2)

This identity allows the evaluation of the variation of the Ricci tensor

due to an arbitrary variation of the connection. In particular it applies

in the case where the variation of the Levi-Civita connection is due to

an arbitrary variation of the metric.

We are now in the position to calculate the variation of the action as2

0 = δ

∫
wL =

∫ (
wRabδg

ab + wδRabg
ab +Rδw

)
. (2.1.3)

Using the Palatini identity (2.1.2) the middle term in the right-hand side

of (2.1.3) can be written as
∫
wgab (∇m (δΓm

ab) −∇b (δΓm
am))

and after integrating by parts it becomes an integral of a pure divergence

since the covariant derivative of both gab and w is zero. By Gauss’ the-

orem this integral vanishes since we have assumed that the metric and

its derivatives vanish on the boundary of the region of integration. The

variation of w given by δw = −1
2
wgabδg

ab and equation (2.1.3) finally

becomes ∫
w

(
Rab −

1

2
Rgab

)
δgab = 0.

Since the variation δgab and the region of integration U are arbitrary, we

conclude that the last equation implies the Einstein field equations in

vacuum.

The full field equations are obtained if we add to the gravitational

Lagrangian (1.0.2) an appropriate Lagrangian Lm for the matter fields.

2In the following we omit the symbol d4x under the integral sign and set w :=
√−g.

Gothic characters denote tensor densities, for example gab := wgab.



The matter Lagrangian, depending primarily on the field variables which

we collectively call ψ, is a generalization of its special relativistic form.

This generalization is achieved via the principle of equivalence (and the

undefined principle of ‘simplicity’) according to the scheme ηab → gab

and ∂ → ∇, the order of the two steps being irrelevant as long as the

connection is the Levi-Civita one.3 Therefore, Lm is a function of the

matter fields present and of the metric and its derivatives. Varying the

total action with respect to gab we obtain

δ

∫
w (L + Lm) =: δ

∫
w
(
−Gab + T ab

)
δgab. (2.1.4)

Equation (2.1.4) defines the stress-energy tensor Tab. (The minus in front

of the contravariant Einstein tensor comes out from the identity gabδgab =

−gabδgab). Setting the variation of the total action equal to zero we obtain

the Einstein field equations.

We end up this paragraph with an important differential identity

implied by the metric variational principle [39]. Consider an arbitrary

Lagrangian which is assumed to be a function of the metric and its (pos-

sibly higher order) derivatives as well as of some other fields ψ, that

is

L = L
(
g, ∂g, ∂2g, ..., ψ

)
. (2.1.5)

The variation of the action

δ

∫
L =:

∫
Aabδgab (2.1.6)

defines the functional derivative Aab (or the Euler-Lagrange derivative)

of the Lagrangian density L. The field equations are then

Aab = 0.

A specific class of variations of the metric is that induced by diffeomor-

phisms f : M → M. With any diffeomorphism of spacetime we may

associate a coordinate transformation (see, for instance, HE [50]). Since

the manifolds (M, g) and (M, f ∗g) are physically equivalent, the action

3However, for arbitrary connections there is an ambiguity because the operation

of lowering and raising indexes does no longer commute with the covariant derivative

operator.



functional does not change under the diffeomorphism f. In particular, the

action remains unchanged under an infinitesimal coordinate transforma-

tion. It is well known that, for such variations, δgab is associated with

the Lie derivative  LXgab of the metric with respect to the infinitesimal

generator X of the diffeomorphism, ie δgab = ∇aXb + ∇bXa. Since by

definition (2.1.6) Aab is symmetric, the variational principle yields

2

∫
Aab (∇aXb) = 0

for all vector fields X vanishing on the boundary of integration. Par-

tially integrating the last equation and discarding the divergence term

we obtain ∫ (
∇aA

ab
)
Xb = 0,

which implies the promising identity

∇aA
ab = 0. (2.1.7)

We shall call (2.1.7) the generalized Bianchi identities since in the case

of the Einstein-Hilbert Lagrangian (1.0.2) they take the form of the con-

tracted Bianchi identities, namely

∇aG
ab = 0.

2.1.2 Palatini variation

As mentioned in the introduction of Section 2.1, one could start with a

(semi-)Riemannian manifold (M, g,∇) where ∇ is an arbitrary symmet-

ric connection, ie ∇g 6= 0, and ∇XY −∇YX = [X, Y ] for all vector fields

X and Y defined on M. Hence, the connection coefficients are considered

as functions independent of the metric components. In the case of gen-

eral relativity, the gravitational Lagrangian L = R = gabRab is regarded

as a function of the 10 metric components gab and the 40 connection

coefficients Γa
bc. Therefore, the corresponding variational principle (the

Palatini variation) consists of an independent or separate variation of

the metric and the connection. It turns out that this method is techni-

cally much simpler than the metric variation discussed above. In fact, if

we carry out a variation with respect to gab only, we find δRab = 0 since



the Ricci tensor depends only on the connection. Hence, (compare to

(2.1.3))

0 = δ

∫ (
wRabδg

ab +Rδw
)

= δ

∫
w

(
Rab −

1

2
Rgab

)
δgab,

which immediately gives the Einstein equations in vacuum. Variation

with respect to Γa
bc yields

0 =

∫
wδRabg

ab =

∫
wgab [∇c (δΓc

ab) −∇b (δΓc
ac)] ,

where the Palatini identity (2.1.2) was used. Integrating by parts we

have

0 =

∫ [
∇b

(
gabδΓc

ac

)
−∇c

(
gabδΓc

ab

)]
=

∫ (
δbc∇dg

ad −∇cg
ab
)
δΓc

ab

and, since δΓc
ab are arbitrary, it follows that the symmetric part in a and

b of the expression in brackets vanishes, ie

δbc∇dg
ad + δac∇dg

bd − 2∇cg
ab = 0, (2.1.8)

which by standard arguments implies that the covariant derivative of gab

(and of gab) vanishes, ie ∇cgab = 0. It follows that the Γc
ab are necessarily

the Christoffel symbols,

Γc
ab =

1

2
gcm (gam,b + gbm,a − gab,m) .

Thus we arrive at the well-known result that variation with respect

to the metric produces the vacuum Einstein equations and variation with

respect to the connection reveals that the connection is necessarily the

Levi-Civita connection. That is why the Palatini variation is usually re-

ferred to in the literature as equivalent to the Hilbert variation. This is

erroneous since, as we shall see, the fact that the two variational princi-

ples, if applied to the Lagrangian L = R, produce the same theory is a

mere coincidence. In the presence of matter fields described by an arbi-

trary matter Lagrangian the two variations are in general inequivalent.

When the matter Lagrangian does not depend explicitly on the connec-

tion, the two variations are equivalent. This is the case for most known

forms of matter fields: For example, the Lagrangian of a massive scalar

field contains only ordinary derivatives of the field and in the case of



electromagnetism the derivatives of the field A never appear alone, but

always in the combination ∇aAb − ∇bAa making covariant derivatives

equivalent to ordinary derivatives. In the case of generalized Yang-Mills

field also, the Palatini method is equivalent to the Hilbert variation.

However, the ultimate Lagrangian of the real world is not yet known.

One can construct examples where the two methods are inequivalent. In

some cases, as is the case of Einstein-Dirac fields, the equivalence is re-

stored by adding an appropriate term to the Lagrangian. Nevertheless,

the main drawback of the Palatini variation is not its inequivalence to

the Hilbert variation, but stems from the fact that it leads to certain

inconsistencies in the field equations obtained from a general Lagrangian

[58, 52].

To see this consider an arbitrary matter Lagrangian Lm (g, ψ,∇ψ) so

that the total action is

S =

∫
[R (g,∇) + Lm (g, ψ,∇ψ)] ,

where we have emphasized the explicit dependence of the scalar curvature

R = gabRab on both the metric and the connection. For an arbitrary

(but symmetric) connection the Palatini method gives the following pair

of equations:

Gab = Tab := − 1

w

δLm

δgab
, (2.1.9)

δbc∇dg
ad + δac∇dg

bd − 2∇cg
ab = 2

1

w

δLm

δΓc
ab

. (2.1.10)

(Compare (2.1.10) to (2.1.8)). These equations are inconsistent in gen-

eral4 and they are not equivalent to the full Einstein equations obtained

via the metric variation unless the matter Lagrangian does not depend

explicitly on the connection, ie δLm/δΓ
c
ab = 0.

It is interesting to note that, in two dimensions in vacuum, the Pala-

tini method leaves the connection undetermined. In fact it is not difficult

to show from (2.1.8) that for any dimension D,

Γc
ab = {cab} +

1

2
(δcaQb + δcbQa − gabQ

c) (2.1.11)

4This inconsistency is due to the fact that the geometric parts of these equations

are projectively invariant whereas the sources are not in general (see [52]).



with Qa := −∇a lnw = −∂a lnw+Γa, and Γa := Γb
ab The trace of (2.1.11)

is (
1 − D

2

)(
∂a ln

√−g − Γa

)
= 0.

Hence the Γa part of the connection is undetermined in two dimensions

[38].

2.2 Palatini variation for general Lagrangians

Nonlinear Lagrangians in the context of alternative variational methods

were first considered by Weyl and Eddington [103, 39]. Later, in attempts

to obtain second order differential equations different from Einstein’s

equations, Stephenson [96] and Higgs [54] applied the Palatini variation

to the quadratic Lagrangians R2, RabR
ab, RabcdR

abcd. Yang [106] investi-

gated a theory based on the Lagrangian RabcdR
abcd , by analogy with the

Yang–Mills Lagrangian. However, as Buchdahl [22] pointed out, there

was a conceptual mistake in the variational method used by Stephen-

son and Yang, for they considered independent variations of the metric

and the connection and imposed the metricity condition, ie the con-

nection coefficients equal to the Christoffel symbols, after the variation.

Purely Palatini variations for quadratic Lagrangians without imposing

the metricity condition were considered by Buchdahl [23] who showed

using specific examples that the PV is not a reliable method in general.

Van den Bergh [15] arrived at a similar conclusion in the context of gen-

eral scalar-tensor theories. The R+αR2 theory including matter has been

investigated by Shahid-Saless[91] and was generalized to the f (R) case

by Hamity and Barraco [49]. These authors also studied conservation

laws and the weak field limit of the resulting equations. More recently,

Ferraris et al [43] have shown that the Palatini variation of f (R) vacuum

Lagrangians leads to a series of Einstein spaces with cosmological con-

stants determined by the explicit form of the function f . Similar results

were obtained in the case of f (Ric2) theories by Borowiec et al [21].

As expected, for more general nonlinear Lagrangians in a four-dimensional

spacetime of the type f (R) , f
(
(Ricci)2

)
, f
(
(Riemann)2

)
, where f is

an arbitrary smooth function, the field equations obtained from a Pala-



tini variation are of second order while the corresponding ones obtained

via the usual metric variation are of fourth order. This result (see below

for explicit derivations) sounds very interesting since it could perhaps

lead to an alternative way to ‘cast’ the field equations of these theories

in a more tractable reduced form than the one we usually use for this pur-

pose namely, the conformal equivalence theorem [6]. In this way certain

interpretational issues related to the question of the physicality of the

two metrics [28, 29] associated with the conformal transformation would

be avoided. Unfortunately, as we show below, there are other difficul-

ties that appear when one follows the method which are more serious

than those encountered in the conformal transformation method. The

net result is that, viewed as an alternative to, for instance, reducing the

complexity of the field equations, the Palatini variation is not a reliable

method (see, however, Section 2.3).

2.2.1 f(R) Lagrangians

We begin with a Lagrangian that is a smooth function of the scalar

curvature R,

L = f (R) . (2.2.1)

The Ricci tensor is build up of only the connection Γ and its derivatives,

ie is independent of the metric. We vary the action

S =

∫
wf (R) (2.2.2)

with respect to the metric tensor and set the variation equal to zero:

0 =

∫
[f (R) δw + wδf (R)] =

∫ [
−1

2
f (R) gab + f

′

(R)R(ab)

]
wδgab,

(2.2.3)

where the identity,

δw =
1

2
wgabδgab = −1

2
wgabδg

ab,

was used and f
′

is an abbreviation for f
′

(R) := df/dR. Since the δgab

are arbitrary, (2.2.3) implies

f
′

R(ab) −
1

2
fgab = 0. (2.2.4)



We now vary the action (2.2.2) with respect to the connection Γ:

0 =

∫
wf

′

(R) gabδRab =

∫
wf

′

gab [∇m (δΓm
ab) −∇b (δΓm

am)] ,

where the Palatini identity (2.1.2) was used. Partial integration of the

right-hand side of the last equation yields

0 =

∫ [
−∇m

(
wf

′

gab
)
δΓm

ab + ∇b

(
wf

′

gab
)
δΓm

am

]
+

∫
total divergence

=

∫ [
δbc∇m

(
wf

′

gam
)
−∇c

(
wf

′

gab
)]
δΓc

ab.

Since the δΓc
ab are independent, it follows that the symmetric part (in a

and b) of the term in brackets which is multiplied by δΓc
ab vanishes, ie

δbc∇m

(
wf

′

gam
)

+ δac∇m

(
wf

′

gbm
)
− 2∇c

(
wf

′

gab
)

= 0. (2.2.5)

Contraction on b and c gives ∇m

(
wf

′

gam
)

= 0 which, when inserted

back to (2.2.5), yields finally

∇a

(
wf

′

gbc
)

= 0. (2.2.6)

It is evident that the field equations (2.2.4) and (2.2.6) derived from the

Lagrangian (2.2.1) differ from the corresponding field equations obtained

from the same Lagrangian with a Hilbert variation. To see what these

equations imply, let us first consider in detail (2.2.6) which is usually

called the Γ− equation. Expanding (2.2.6) we have

f
′

gbc∇aw + wf
′∇ag

bc + wf
′′

gbc∇aR = 0.

With the use of ∇aw = ∂aw − Γaw and ∇aR = ∂aR the last equation

can be written as
(
∂a lnw +

(
ln f

′

)′

∂aR− Γa

)
gbc−∂agbc + Γm

bagmc + Γm
cagmb = 0. (2.2.7)

Contracting with gbc we see that Γa is a gradient:

Γa = ∂a lnw + 2
(

ln f
′

)′

∂aR. (2.2.8)

Had we begun with an asymmetric Ricci tensor, we would end up

with a symmetric Ricci tensor since R[ab] = ∂[aΓ b]. Inserting the value of

Γa in (2.2.7) one can show that

∂a

(
f

′

gbc

)
= Γm

baf
′

gmc + Γm
caf

′

gmb. (2.2.9)



This suggests that if we define a conformally related metric with confor-

mal factor f ′, we could ‘make’ the connection Levi-Civita. Indeed, if we

set

g̃ab := f
′

gab, (2.2.10)

(2.2.9) becomes

∂ag̃bc = Γm
bag̃mc + Γm

cag̃mb (2.2.11)

which implies that the covariant derivative of the new metric g̃ with

respect to the connection Γ vanishes, ie the connection Γ is the Levi-

Civita connection for the metric g̃.

On the other hand the analysis of the field equation (2.2.4) is more

straightforward. By taking the trace of (2.2.4) we find

f
′

(R)R = 2f (R) . (2.2.12)

This equation is identically satisfied by the function

f (R) = R2, (2.2.13)

apart from a constant rescaling factor. Accordingly the field equation

(2.2.4) is

Rab −
1

4
Rgab = 0, (2.2.14)

provided that f
′

(R) 6= 0. Observe that the scalar curvature in the original

frame is undetermined because (2.2.14) is traceless, which is another

peculiarity of the Palatini method. Moreover, since Rab is constructed

only from the connection and its derivatives, it remains unchanged under

the transformation gab → f
′

gab, ie R̃ab = Rab. Hence, the field equation

(2.2.14) becomes

R̃ab −
1

4
g̃ab = 0. (2.2.15)

The conformally equivalent field equation (2.2.15) implies that the un-

derlined manifold must be an Einstein space5 with unit scalar curvature

R̃ = g̃abR̃ab.

However, the quadratic solution (2.2.13) to the trace equation (2.2.12)

is not the only possibility. Given an arbitrary differentiable function f,

(2.2.12) can be regarded as an algebraic equation to be solved for R.

5An Einstein space is defined by the property that Ric = cg, where c is a constant.



Denoting the resulting roots by ρ1, ρ2, ... one obtains a whole series of

Einstein spaces, each having a constant scalar curvature. This situation

was analyzed by Ferraris et al [43] (who generalized the case a+ bR+R2

studied previously by Buchdahl [23]).

However, if it happens for some root ρi to be f
′

(ρi) = 0, then the

trace equation (2.2.12) implies that f (ρi) = 0 also. In that case the field

equations leave both the metric and the connection completely undeter-

mined.

2.2.2 f(R(ab)R
ab) Lagrangians

We consider a Lagrangian

L = f (r) , (2.2.16)

where r = QabR
ab and Qab is the symmetric part6 of the Ricci tensor.

Remembering that the Ricci tensor depends only on the connection, by

varying the corresponding action with respect to the metric we obtain

0 = δ

∫
wf (r) =

∫ [
−1

2
wfgabδg

ab + 2wf
′

gam (QabQmn) δgbn
]

or, renaming the indices,

0 =

∫ [
−1

2
fgab + 2f

′

gmn (QmaQnb)

]
wδgab.

The variation of the metric being arbitrary, the last equation implies

f
′

QacQ
c
b −

1

4
fgab = 0. (2.2.17)

We now vary the action with respect to the connection. As in the previ-

ous Section we express the variation of the Ricci tensor via the Palatini

identity (2.1.2) and after the integration by parts we discard the diver-

gence terms:

0 = 2

∫
wf

′

QabδQab = 2

∫
wf

′

Qab [∇m (δΓm
ab) −∇b (δΓm

am)]

= 2

∫ [
−∇m

(
wf

′

Qab
)
δΓm

ab + ∇b

(
wf

′

Qab
)
δΓm

am

]

= 2

∫ [
δbc∇m

(
wf

′

Qam
)
−∇c

(
wf

′

Qab
)]
δΓc

ab.

6The field equations derived from the LagrangianR[ab]R
ab by the Palatini variation

impose only four conditions upon the forty connection coefficients and leave the metric

components entirely undetermined [23].



It follows that

δbc∇m

(
wf

′

Qam
)

+ δac∇m

(
wf

′

Qbm
)
− 2∇c

(
wf

′

Qab
)

= 0. (2.2.18)

Contracting the last equation on b and c we obtain

∇m

(
wf

′

Qam
)

= 0. (2.2.19)

Inserting (2.2.19) into (2.2.18) we finally obtain

∇a

(
wf

′

Qbc
)

= 0. (2.2.20)

To see what the Γ− equation (2.2.20) implies we first expand

(∂a lnw − Γa)Q
bc +

(
ln f

′
)′
Qbc (∂aQ

mnQmn +Qmn∂aQmn)

+∂aQ
bc + Γb

maQ
mc + Γc

maQ
cm = 0.

(2.2.21)

Assuming that rankQab = 4 and following Buchdahl [23], we define

the ‘reciprocal’ tensor Pab :

PamQ
mb = δba (2.2.22)

and set

p := detQab = w4 detQab. (2.2.23)

Then, with the usual identity ∂a
(
detQab

)
/ detQab = Pmn∂aQ

mn, we find

Pmn∂aQ
mn = ∂a ln

(
w−4p

)
= −4∂a lnw + ∂a ln p. (2.2.24)

We can solve for Γa equation (2.2.21) by multiplying it with Pbc and using

(2.2.24). The result is

Γa =
1

2
∂a ln p+ 2

(
ln f

′

)′

∂a (QmnQ
mn) . (2.2.25)

This equation shows that Γa is a gradient, hence the Ricci tensor is

symmetric and we can replace Qab by Rab everywhere.

If we multiply (2.2.21) with PbmPcn, we find that

[
∂a lnw − 1

2
∂a ln p−

(
ln f

′

)′

∂a
(
RbcR

bc
)]
Pmn−∂aPmn+Γb

naPbm+Γc
maPcn = 0,

(2.2.26)



where the value of Γa was substituted from (2.2.25). We observe now

that, if we define

g̃ab :=
f

′

p1/2

w
Pab (2.2.27)

and

g̃ab =
w

f ′p1/2
Rab (2.2.28)

so that g̃abg̃
bc = δca, then (2.2.26) becomes

Γb
nag̃bm + Γc

mag̃cn = ∂ag̃mn. (2.2.29)

As a consequence the covariant derivative of g̃ with respect to the

connection Γ vanishes, so that (2.2.29) implies that Γc
ab is the Levi-Civita

connection for the metric g̃.

We now express the field equations (2.2.17) in the new frame described

by the metric g̃. To this end we write (2.2.17) as f
′

RamRmb − 1
4
fδab = 0

and multiply it by Pac to obtain

f
′

Rbc −
1

4
fPbc = 0. (2.2.30)

Since the Ricci tensor depends only on the connection, it remains un-

changed in the new frame, ie R̃ab = Rab. Remembering the definition

(2.2.27) the previous equation becomes

R̃ab =
1

4

fw

(f ′)2 p1/2
g̃ab. (2.2.31)

Thus we find again that the Ricci tensor in the conformal frame is pro-

portional to the metric, ie we have again an Einstein space.7

So far no restriction on f has been imposed, but it turns out that our

theory is the simplest one, that is f (r) = r. In fact, taking the trace of

(2.2.17), we find

f
′

(r) r = f (r) . (2.2.32)

This differential equation is identically satisfied by f (r) = r so that we

fall again into the case of a Lagrangian quadratic in the Ricci tensor,

7The field equations (2.2.31) having the form Ric = hg, where h is a scalar

function, actually represent an Einstein space. In fact, in any manifold M with

dimM ≥ 3, it can be shown using the Bianchi identities that, Ric = hg implies that

h must be a constant.



which was analyzed by Buchdahl. Thus we can set f
′

(r) = 1 in all

formulas and rewrite the field equation (2.2.17) in the equivalent form

gmng̃amg̃bn =
1

4
gabg

rsgmng̃rmg̃sn. (2.2.33)

As Buchdahl [23] has pointed out, a solution to this equation is

gab = ψg̃ab, (2.2.34)

where ψ is any non-zero scalar function. Hence the field equations

(2.2.17) and (2.2.20) will be satisfied by any space-time (M, g) conformal

to an Einstein space, provided that p 6= 0.

Again, given an f (r) , (2.2.32) can be regarded as an algebraic equa-

tion for the Ricci squared invariant, with roots ρ1, ρ2, ... exactly as in the

previous paragraph. This gives rise to a whole series of theories, each

having a constant value of RabR
ab. When this work was completed, we

became aware of a preprint by Boroviec et al [21] where the f (r) theory

is treated in the same spirit as a previous work [43]. The emphasis is

again on the algebraic solutions to the trace equation (2.2.32) and it is

proved that the field equations reduce to Rab = γhab, where the Ricci

tensor is derived from the metric hab, ie the underlined manifold is an

Einstein space. However, the constant γ is completely at our disposal.

Hence the theory cannot determine uniquely the scalar curvature. (In

particular, if one applies an arbitrary f (r) theory in a homogeneous and

isotropic universe model in vacuum, one could equally well arrive at a de

Sitter or an anti-de Sitter space-time).

For completeness, we show that the introduced metric in (2.2.27) is

actually conformally related to the original one. In fact (2.2.17) can be

written equivalently as

gab =
1

4

w2f

f ′3p
gmng̃amg̃bn. (2.2.35)

A solution is

gab = φg̃ab with φ2 =
1

4

w2f

f ′3p
. (2.2.36)



2.2.3 f
(
RabcdR

abcd
)
Lagrangians

As a last example of the uses of the Palatini variation in higher derivative

theories, consider the Lagrangian

L = f (K) , (2.2.37)

where K = RabcdR
abcd. By varying the corresponding action with respect

to the metric and the connection, we obtain respectively

−1

2
fgab − f

′

Ra
klmRbklm + f

′

Rk
almRkb

lm + 2f
′

Rk
lamRk

l
b
m = 0 (2.2.38)

and

∇d

(
wf

′

Ra
(bc)d
)

= 0. (2.2.39)

Again taking the trace of the field equation (2.2.38) we find

f
′

(K)K = f (K) . (2.2.40)

Hence either f (K) = K identically or, given a function f, equation

(2.2.40) must be solved algebraically for K.

In contrast to the previous examples there exists no natural way to

derive a metric g̃ from the field equation (2.2.39) as was the case with

the corresponding equations (2.2.6) and (2.2.20) unless the Weyl tensor

vanishes [37].

2.2.4 Comments on the Palatini variation

In principle there is no theoretical selection rule to pick out the correct

theory between the two derived from the same Lagrangian via the two

variational principles. However, the examples discussed in the previous

Section bring to light certain constraints on the function f imposed by

the Palatini variation, in sharp contrast to the Hilbert variation. More-

over, PV is very restrictive as to the choice of the matter Lagrangian,

ie for general matter Lagrangians the corresponding field equations are

inconsistent in general. Some of the inconsistencies are already encoun-

tered at the level of GR and this suggests that the Palatini variation

cannot be taken generally as a reliable method.

In the following we recapitulate some of the problems related to the

Palatini variation.



• One of the simplest examples is the massless vector field with La-

grangian

L = R + κ∇aAb∇aAb, (2.2.41)

where κ is a coupling constant. It can be shown [58] that the field

equations obtained from the Lagrangian (2.2.41) by the Palatini

method exhibit several kinds of causal anomalies for the propaga-

tion of discontinuities of A.

• As we saw in Section 2.2 the Palatini method does not accept gen-

eral Lagrangians of the form L = f (r) where r is a curvature

invariant. It forces the theory to be purely quadratic, ie f (r) = r

where r stands for R, (Ric)2 or (Riem)2 (see (2.2.12), (2.2.32) and

(2.2.40)). In these cases the Lagrangian density is invariant under

conformal transformations g → φg, where φ is an arbitrary func-

tion. Since the Γc
ab and the gab are unrelated, the corresponding

field equations are also conformally invariant. Hence, if g is any

solution to the equations generated by any quadratic Lagrangian,

then so is φg. This fact is in sharp contrast to the situation en-

countered in the Hilbert variation. In the curvature squared case,

the field equations are identically satisfied if R = 0. Hence only one

condition is imposed on the 40 functions Γc
ab while the gab remain

arbitrary. Analogous is the situation in the Ricci squared theory,

where the field equations are satisfied by any Ricci flat space leav-

ing the metric quite undetermined. This degree of arbitrariness

reflects serious reservations on the use of the Palatini variation in a

general arbitrary gravity theory. A common feature of both the R2

and (Ric)2 field equations is that they are (in the case R 6= 0 and

Ric 6= 0 respectively) conformally equivalent to an Einstein space

in which the initially given connection is the Levi-Civita one (see

the discussion after (2.2.11) and (2.2.29)). Consequently the field

equations are satisfied by any (semi-)Riemannian space conformal

to an Einstein space.

• As discussed in Section 2.2, the trace equations (2.2.12) and (2.2.32)

can be thought of as algebraic equations which, given a smooth



function f (r) , give rise to a whole series of Einstein spaces with

cosmological constants depending on the roots of the trace equa-

tions. However, the ‘universality of the Einstein equations’ claimed

in [43] cannot been taken seriously in general since even in the sim-

plest cases severe inconsistencies emerge. For example, the field

equations derived by the Palatini method from the Lagrangian

L = a + bR + cR2, a 6= 0, lead to a contradiction as Buchdahl

has pointed out [23].

• The situation is even worse if matter fields are included in the La-

grangian L = f (R). In that case the stress-energy tensor no longer

satisfies the conservation equation. The remedy is to define a new

stress-energy tensor which is conserved (see [91] for the curvature

squared Lagrangian and a generalization in [49]). However, the

physical interpretation of this generalized conservation law is put

in doubt. In the weak field limit the equation of motion of test par-

ticles derived from the ‘conservation equation’ exhibits undesirable

terms which disagree with Newton’s law [49].

2.3 Constrained Palatini Variation

In contrast to Stephenson’s and Yang’s attempts mentioned above the

only consistent way to consider independent variations of the metric and

the connection in the context of Riemannian geometry is to add the

compatibility condition between the metric and the connection into the

Lagrangian as a constraint with Lagrange multipliers [99]. This method

is called the constrained Palatini variation (CPV). In the case of vacuum

general relativity it turns out that the Lagrange multipliers vanish iden-

tically as a consequence of the field equations [86]. This result expresses

that the Palatini and Hilbert variations are equivalent in vacuum by a

mere coincidence. CPV has also been used as a tool to include torsion in

the context of general relativity [52]. Safko and Elston [89] applied the

CPV to quadratic Lagrangians with the aim of developing a Hamiltonian

formulation for these theories.

We consider the most general higher order Lagrangian with general



matter couplings

L
(
g,∇g, ...,∇(m)g; ψ,∇ψ, ...,∇(p)ψ

)
. (2.3.1)

For an arbitrary symmetric connection Γa
bc the following identity holds

Γc
ab = {cab} −

1

2
gcm (∇bgam + ∇agmb −∇mgab) . (2.3.2)

For example, in Weyl geometry which is characterized by the relation

∇cgab = −Qcgab, (2.3.3)

where Qc is the Weyl covariant vector field, the identity (2.3.2) becomes

Γc
ab = {cab} +

1

2
gcm (Qbgam +Qagmb −Qmgab) . (2.3.4)

On introducing the difference tensor between the two connections Γc
ab

and {cab}
Cc

ab = Γc
ab − {cab} , (2.3.5)

the constrained Palatini variation is defined by adding to the original

Lagrangian (2.3.1) the following term as a constraint (with Lagrange

multipliers Λ)

Lc (g,Γ,Λ) = Λ mn
r [Γr

mn − {rmn} − Cr
mn] . (2.3.6)

For instance, in Riemannian geometry (2.3.6) takes the form

Lc (g,Γ,Λ) = Λ mn
r [Γr

mn − {rmn}] ,

while, in Weyl geometry

Lc (g,Γ,Λ) = Λ mn
r

[
Γr
mn − {rmn} −

1

2
grs (Qngms +Qmgsn −Qsgmn)

]
.

We then express all the covariant derivatives appearing in (2.3.1) in terms

of the connection Γ through the identity (2.3.2), viz.

L = L
(
g; Γ,∇Γ, ...,∇(m−1)Γ; ψ,∇ψ, ...,∇(p)ψ

)

and vary the resulting action

S =

∫
w [L (g,Γ, ψ) + Lc (g,Γ,Λ)] (2.3.7)

with respect to the independent fields g, Γ, Λ and ψ. We find



Theorem 2.1. The field equations obtained from the general Lagrangian

(2.3.1) upon Hilbert variation are identical to the field equations derived

from the corresponding constrained Lagrangian

L′ (g,Γ,Λ, ψ) = L (g,Γ, ψ) + Lc (Λ,Γ) (2.3.8)

upon the constrained Palatini variation.

Proof. (Without loss of generality and to keep the notation as simple as

possible we give the proof for Weyl geometry. Generalization to arbitrary

symmetric connection is straightforward). Variation with respect to the

multipliers Λ ab
c is straightforward and yields the Weyl condition (2.3.4).

Now we proceed to the variation of the action (2.3.7) with respect to

the metric gab taking into account that the constraint (2.3.6) is weakly

vanishing. We have first

δS

δgab

∣∣∣∣
Γ

=

∫ {
δ (wL)

δgab

∣∣∣∣
Γ

+
δ (wLc)

δgab

∣∣∣∣
Γ

}
. (2.3.9)

Using a local geodesic frame one can easily prove the following relation

δg {cab} =
1

2
(∇bgam + ∇agmb −∇mgab) δg

cm +

1

2
gcm [∇b(δgam) + ∇a(δgmb) −∇m(δgab)]

= −1

2
(Qbgam +Qagmb −Qmgab) δg

cm +

1

2
gcm [∇b(δgam) + ∇a(δgmb) −∇m(δgab)] . (2.3.10)

On the other hand, variation of (2.3.5) yields

δgC
c
ab =

1

2
(Qbgam +Qagmb −Qmgab) δg

cm +

1

2
gcm [Qbδgam +Qaδgmb −Qmδgab] . (2.3.11)

Consequently the variation of the second term on the r.h.s. of (2.3.9)

becomes
∫
δg (wLc) = −1

2

∫
wΛsmn [∇m (δgsn) + ∇n (δgms) −∇s (δgmn)

+ Qmδgsn +Qnδgms −Qsδgmn] ,

which reads, after integrating by parts,
∫
δg (wLc) = 1

2

∫
{[∇m (wΛsmn) − wQmΛsmn] δgsn+

[∇n (wΛsmn) − wQnΛsmn] δgms −
[∇s (wΛsmn) − wQsΛ

smn] δgmn} .
(2.3.12)



Taking into account that ∇aw = −2Qaw the last result becomes

∫
δg (wLc) = 1

2

∫
w {[∇mΛsmn − 3QmΛsmn] δgsn+

[∇nΛsmn − 3QnΛsmn] δgms −
[∇sΛ

smn − 3QsΛ
smn] δgmn} .

(2.3.13)

Rearranging indices, we find

(
∇mΛbam

)
δgab = − (∇mΛbam + 3QmΛbam) δgab. (2.3.14)

This last result when inserted into (2.3.13) yields finally

∫
δg (wLc) = −1

2

∫
w∇m [Λbam + Λamb − Λmab] δg

ab. (2.3.15)

Therefore extremization of the action (2.3.7) yields the g–equations

δ (wL)

δgab

∣∣∣∣
Γ

+ wBab = 0, (2.3.16)

where Bab is defined as

Bab := −1

2
∇m [Λbam + Λamb − Λmab] . (2.3.17)

On the other hand variation with respect to the connection Γc
ab yields

the Γ–equations
δL

δΓc
ab

∣∣∣∣
g

+ Λ ab
c = 0. (2.3.18)

Finally, variation with respect to the matter fields ψ yields their respec-

tive equations of motion. Solving explicitly the Γ–equations (2.3.18) for

the multipliers Λ and substituting back the resulting expression into the

g–equations, Bab can be written explicitly as

Bab =
1

2
∇m

[
gbrgms

δL

δΓa
rs

∣∣∣∣
g

+ gargms
δL

δΓb
rs

∣∣∣∣
g

− gargbs
δL

δΓm
rs

∣∣∣∣
g

]
,

(2.3.19)

while the g–equations (2.3.16) become

δ (wL)

δgab

∣∣∣∣
Γ

+
1

2
w∇m

[
gbrgms

δL

δΓa
rs

∣∣∣∣
g

+ gargms
δL

δΓb
rs

∣∣∣∣
g

− gargbs
δL

δΓm
rs

∣∣∣∣
g

]
= 0.

(2.3.20)



We claim that equations (2.3.20) are identical to the field equations ob-

tained from the original Lagrangian (2.3.1) upon the usual Hilbert vari-

ation. Indeed, starting from the Hilbert equations in the form

δ (wL)

δgab
= 0, (2.3.21)

and expanding the functional derivative, we obtain

δ (wL)

δgab
=
δ (wL)

δgab

∣∣∣∣
Γ

+
δ (wL)

δΓr
mn

∣∣∣∣
g

δ

δgab
[{rmn} + Cr

mn] . (2.3.22)

Using (2.3.10) and (2.3.11) and integrating by parts the action functional

corresponding to (2.3.22), we find that the second term on the r.h.s. of

(2.3.22) becomes,

δ (wL)

δΓr
mn

∣∣∣∣
g

δg [{rmn} + Cr
mn]

=

[
−1

2
∇n

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
δgms + ∇m

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
δgsn

−∇s

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
δgmn

]
+ 1

2
w (Qnδgms +Qmδgsn −Qsδgmn) grs

δL

δΓr
mn

∣∣∣∣
g

= −1
2

[
∇n

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
gmagsb + ∇m

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
gsagnb

−∇s

(
wgrs

δL

δΓr
mn

∣∣∣∣
g

)
gmagnb

]
δgab

−1
2
w (Qngmaδ

r
b +Qmgnbδ

r
a −Qrgmagnb) δg

ab δL

δΓr
mn

∣∣∣∣
g

= 1
2
w

[
∇n

(
gma

δL

δΓb
mn

∣∣∣∣
g

)
+ ∇m

(
gnb

δL

δΓa
mn

∣∣∣∣
g

)
−∇r

(
gmagnb

δL

δΓr
mn

∣∣∣∣
g

)]
δgab

−1
2
w

(
Qngma

δL

δΓb
mn

∣∣∣∣
g

+Qmgnb
δL

δΓa
mn

∣∣∣∣
g

)
δgab.

(2.3.23)

On the other hand (2.3.19) is equivalent to

Bab =
1

2

[
∇n

(
gma

δL

δΓb
mn

∣∣∣∣
g

)
+ ∇m

(
gnb

δL

δΓa
mn

∣∣∣∣
g

)
−∇r

(
gmagnb

δL

δΓr
mn

∣∣∣∣
g

)

−Qngma
δL

δΓb
mn

∣∣∣∣
g

−Qmgnb
δL

δΓa
mn

∣∣∣∣
g

]
δgab. (2.3.24)

A direct comparison of expressions (2.3.24) and (2.3.23) shows the equiv-

alence of the field equations (2.3.20) and (2.3.21).



The above theorem holds for the Riemannian and Weyl geometries

as well for it assumes an arbitrary symmetric connection. In the next

Section we shall apply this theorem to the Lagrangian L = f (R) in

the framework of Weyl geometry. In the following we illustrate how the

CPV works for specific Lagrangians in the framework of Riemannian

geometry. We first apply it to quadratic Lagrangians and correct the

results obtained in [89]. The g–equations, Γ–equations and the explicit

expressions for the Bab tensor are respectively as follows :

for the Lagrangian L = R2,

−2RRab +
1

2
R2gab +Bab = 0

Λ ab
c =

(
2gabδmc − gamδbc − gmbδac

)
∇mR (2.3.25)

Bab = −2gab�R + 2∇b∇aR,

for the Lagrangian L = RmnR
mn,

1

2
RmnR

mngab − RamRb
n −R b

m Rma +Bab = 0

Λ ab
c = 2∇cR

ab − δac∇mR
mb − δbc∇mR

am (2.3.26)

Bab = −�Rab + 2∇m∇bRam − gab∇n∇mR
mn

and finally, for the Lagrangian L = RmnrsR
mnrs,

1

2
RmnrsR

mnrsgab − 2RamnrRb
mnr +Bab = 0

Λ bc
a = 2∇mR

bcm
a + 2∇mR

cbm
a (2.3.27)

Bab = 4∇n∇mR
ambn.

Now, if we add the first and the third equations in each of these above

cases, we recover the usual field equations inferred by the Hilbert varia-

tion. They are respectively (for each quadratic Lagrangian defined above)

as follows:

1

4
R2gab −RRab + ∇b∇aR − gab�R = 0

1

2
RmnR

mngab − 2RbmanRmn + ∇b∇aR −�Rab − 1

2
�Rgab = 0(2.3.28)

1

2
RmnrsR

mnrsgab − 2RmnrbR a
mnr + 4∇n∇mR

amnb = 0.

As it can be seen by performing the usual metric variation in order to get

the fourth order field equations above, CPV has the following advantage:



it simplifies considerably the computations since one deals with a first

order formalism rather than a second order one. As a second example we

apply CPV to the Lagrangian L = f (R) in the framework of Riemannian

geometry. The g–equations, Γ–equations and the explicit expressions for

the Bab tensor are respectively as follows :

f
′

R(ab) −
1

2
fgab = Bab

(
2gbcδma − gmcδba − gbmδba

)
∇mf

′

= Λ bc
a (2.3.29)

Bab = −gab�f ′

+ ∇b∇af
′

.

As in the quadratic cases above, if we add the first and the third equa-

tions above, we recover the usual field equations obtained by the Hilbert

variation, namely

f
′

R(ab) −
1

2
fgab −∇a∇bf

′

+ gab�f
′

= 0.

2.4 Conformal structure and Weyl geome-

try

As discussed in the previous Section, in Weyl geometry the constraint

(2.3.6) becomes

Lc (Λ, C) = Λab
c

[
Γc
ab − {cab} −

1

2
gcm (Qagmb +Qbgam −Qmgab)

]
.

(2.4.1)

In order to examine the consequences of the Weyl constraint (2.4.1),

we apply CPV to the Lagrangian L = f (R) . Variation with respect

to the Lagrange multipliers recovers the expression (2.3.4) of the Weyl

connection. Variation with respect to the metric yields the g−equations

f ′R(ab) −
1

2
fgab +Bab = 0, (2.4.2)

where Bab is defined by (2.3.17). Variation with respect to the connection

yields the explicit form of the Lagrange multipliers

Λab
c =

1

2
δbc (Qaf ′ −∇af ′) +

1

2
δac
(
Qbf ′ −∇bf ′

)
− gab (Qcf

′ −∇cf
′) .

(2.4.3)



Following the prescriptions of the CPV we now substitute back this last

result into the definition (2.3.17) of the Bab tensor to obtain

Bab = 2Q(a∇b)f
′ −∇(a∇ b)f

′ + f ′∇(aQ b) − f ′QaQb

−gab (2Qm∇mf ′ −Q2f ′ −�f ′ + f ′∇mQm) .
(2.4.4)

Inserting this result into the g− equations (2.4.2) we find the full field

equations for the Lagrangian L = f (R) in the framework of Weyl geom-

etry, namely

f ′R(ab) −
1

2
fgab −∇a∇bf

′ + gab�f
′ = Mab, (2.4.5)

where Mab is defined by

Mab = −2Q(a∇b)f
′−f ′∇(aQ b)+f

′QaQb+gab
(
2Qm∇mf ′ −Q2f ′ + f ′∇mQm

)
.

(2.4.6)

It is interesting to note that the degenerate case Qa = 0 corresponds to

the usual field equations obtained by the Hilbert variation in the frame-

work of Riemannian geometry, namely

f ′Rab −
1

2
fgab −∇a∇bf

′ + gab�f
′ = 0.

It is known that these equations are conformally equivalent to Einstein

equations with a self-interacting scalar field as the matter source [6]. In

what follows we generalize this property of the f(R) field equations in

Weyl geometry. To this end we define the metric g̃ conformally related

to g with f ′ as the conformal factor. Taking into account that the Weyl

vector transforms as

Q̃a = Qa −∇a ln f ′,

the field equations (2.4.5) in the conformal frame are

f ′R̃(ab) −
1

2

f

f ′
g̃ab − ∇̃a∇̃bf

′ + g̃ab�̃f
′ = M̃ab,

where ∇̃ = ∇, �̃ = g̃ab∇̃a∇̃b = (f ′)−1
� and M̃ab is given by

M̃ab = −f ′∇̃(a Q̃ b) + f ′Q̃aQ̃b−∇̃a∇̃bf
′ + g̃ab

(
−f ′Q̃2 + f ′∇̃m

Q̃m + �̃f
′

)
.

Defining a scalar field ϕ by ϕ = ln f ′ and the potential in the ‘usual’

form

V (ϕ) =
1

2
(f ′ (R))

−2
(Rf ′ (R) − f (R)) , (2.4.7)



we find that the field equations take the final form,

G̃ab = M̃Q
ab − g̃abV (ϕ) , (2.4.8)

where we have defined

G̃ab := R̃(ab) −
1

2
R̃g̃ab

and

M̃Q
ab := −∇̃(a Q̃ b) + Q̃aQ̃b + g̃ab

(
−Q̃2 + ∇̃m

Q̃m

)
.

The field equations (2.4.8) could also be obtained from the correspond-

ing conformally transformed Lagrangian using the CPV. In that case

the equation of motion of the scalar field ϕ derived upon variation with

respect to ϕ would imply that the potential V (ϕ) is constant.

Formally the field equations (2.4.8) look like Einstein equations with

a cosmological constant and a source term M̃Q
ab depending on the field

Q̃a. However, they cannot be identified as such unless the geometry is

Riemannian, ie Q̃a = 0. This will be the case only if the original Weyl

vector is a gradient, Qa = ∇aΦ. Then it can be gauged away by the con-

formal transformation g̃ab = (exp Φ) gab and therefore the original space

is not a general Weyl space but a Riemann space with an undetermined

gauge [93]. It is exactly what happens when the PV is applied to the

Lagrangian L = f (R) . In that case the Weyl vector can be deduced us-

ing (2.2.7) and turns out to be Qa = ∇a (ln f ′) . This fact shows that the

PV is not the most general metric-affine variational method for it cannot

deal with a general Weyl geometry. Moreover it can be considered as

a degenerate case of the CPV in Weyl geometry, for the field equations

obtained from the former can be recovered only by choosing a specific

Weyl vector.

2.5 Summary

The theorem stated in Section 2.3 has the interpretation that the only

consistent way to investigate generalized theories of gravity without im-

posing from the begining that the geometry is Riemannian, is the con-

strained Palatini variation. Applications to quadratic Lagrangians and



f (R) Lagrangians in the framework of Riemannian and Weyl geometry,

respectively, reveal that (a): PV is a degenerate case corresponding to a

particular gauge and (b): The usual conformal structure can be recovered

in the limit of vanishing Weyl vector. The generalization of Theorem 2.1

to include arbitrary connections with torsion should be the subject of fu-

ture research. The physical interpretation of the source term in equation

closely related to the choice of the Weyl vector field Q. However, Mab

cannot be interpreted as a genuine stress-energy tensor in general since,

for instance, choosing Q to be a unit timelike vector field hypersurface

orthogonal, the sign of MabQ
aQb depends on the signs of f ′ (R) and the

‘expansion’ ∇aQ
a.

The non-trivial generalization of the conformal equivalence theorem

presented in Section 3.3.2 opens the way to analyzing cosmology in the

framework of these Weyl f (r) theories by methods such as those used in

the traditional Riemannian case. The first steps in such a program may

be as follows.

(A) Analyze the structure and properties of Friedman cosmologies,

find their singularity structure and examine the possibility of inflation.

(B) Consider the past and future asymptotic states of Bianchi cos-

mologies. Examine isotropization and recollapse conjectures in such uni-

verses. Look for chaotic behavior in the Bianchi VIII and IX spacetimes.

(C) Formulate and prove singularity theorems in this framework. This

will not be as straightforward as in the Riemannian case (cf. [6]) because

of the presence of the source term Mab.

All the problems discussed above can be tackled by leaving the con-

formal Weyl vector field Q̃a, undetermined while, at the end, setting it

to zero will lead to detailed comparisons with the results already known

in the Riemannian case.
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Cosmological dynamics
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Chapter 3

Cosmic no-hair theorems

In this chapter we present the cosmic no-hair conjecture and give a proof

of this for a curvature squared gravity theory for all Bianchi cosmologies.

In section 3.1, after a brief discussion of the idea of inflation, we review

the main properties of de Sitter spacetime which are needed for the subse-

quent development. In section 3.2 we carefully present the cosmic no-hair

conjecture and discuss its limitations. We review the CNHC in several

inflationary models, thus setting the outline of its validity. In the last

section we give the proof of the main result of this chapter, namely that,

in the conformal frame of the R + βR2 + Lmatter theory, all expanding

Bianchi universes asymptotically approach de Sitter spacetime provided

certain reasonable conditions on matter hold.

3.1 The inflationary scenario and de Sitter

spacetime

As discussed in Chapter One, standard cosmology has a difficulty in ex-

plaining the observed isotropy of the universe – unless one assumes that

isotropy persists back to the big bang. Besides the horizon problem dis-

cussed in the introduction, there are some other interrelated problems of

the standard cosmology, like the monopole problem, the flatness problem

and the problem of the small-scale inhomogeneity of the universe (see [67]

for a discussion).

These problems led to the invention in 1981 of the inflationary sce-
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nario which is a modification of the standard hot big bang model. Ac-

cording to this scenario the very early universe underwent a short period

of exponential expansion, or inflation, during which its radius increased

by a factor of about 1050 times greater than in standard cosmology. This

inflationary phase is also known as the de Sitter phase since de Sitter

universe is an homogeneous and isotropic universe with radius growing

exponentially with time. From times later than about 10−30 sec the his-

tory of the universe is described by the standard cosmology and all the

successes of the later are maintained.

To see what this picture implies for our universe, consider a region

which at time t as measured from the big bang has the size of the horizon

distance at time t. The horizon distance at time t is approximately the

distance travelled by light in time t, ie equals ct. This is evidently the

greatest size of a causally coherent region possible. Thus at time 10−34sec

when inflation commences the size of this region is about 10−24cm. After

inflation, at time about 10−30sec, its size has grown to approximately

1026cm. The observable universe at that epoch had a radius of about

10cm, a minuscule part of the inflating region. Since the universe lay

within a region which started as a causally coherent one, it would have

had time to homogenize and isotropize. Thus inflation naturally explains

the uniformity of the universe.

Today inflation remains the only way to approach a solution of most

problems of standard cosmology. It must be emphasized that the infla-

tionary scenario is far from being a complete theory describing the very

early universe. Several inflationary models have been developed during

the last fifteen years, mainly because there exist different ways to gen-

erate the mechanism of inflation. These models have problems of their

own. Inflation remains an area of active research [68].

In all inflationary models inflation is driven by the false vacuum en-

ergy of a scalar field. The field has a potential with a flat portion and

slowly rolls down the potential curve. One usually assumes that the

scalar field, ϕ, is minimally coupled to gravity with a Lagrangian

L = −1

2
∇aϕ∇aϕ− V (ϕ) .

Therefore the stress-energy tensor of the scalar field is



T ϕ
ab = ∇aϕ∇bϕ− 1

2
gab [∇cϕ∇cϕ+ 2V (ϕ)] . (3.1.1)

We now can see the effect of a scalar field in driving the universe

to exponential expansion. Assume for simplicity that the scalar field is

constant. This is a good approximation as far as the field belongs in

the interval where the potential is flat. A constant scalar field ϕ over all

spacetime simply represents a ‘restructuring of the vacuum’ in the sense

that the vacuum energy density changes by a quantity proportional to

V (ϕ) . If there were no gravitational effects this change would be unob-

servable, but in general relativity it affects the properties of spacetime.

In fact V (ϕ) enters into the Einstein equation in the following way:

Gab = Tab ≡ Tm
ab − gabV, (3.1.2)

where Tab is the total stress-energy tensor, Tm
ab is the stress-energy tensor

of ordinary matter and −gabV is the stress-energy tensor of the vacuum

(the constant scalar field). Of course V (ϕ) = V is a constant. Note that

(3.1.2) is just the Einstein equation with a cosmological constant Λ, viz.

Gab = Tm
ab − Λgab, (3.1.3)

where Λ is given by

Λ = V (ϕ) . (3.1.4)

We may also view (3.1.2) or (3.1.3) in vacuum (Tm
ab = 0) as describ-

ing a perfect fluid with pressure q := −E = −V . This large negative

pressure has the effect that a homogeneous and isotropic universe ex-

pands exponentially. Since in most inflationary models E is of order

∼ 1073g/cm3, we see that a FRW universe expands almost exponentially

with a minuscule time constant of order H−1 ∼ 10−34 sec [17]. The time1

required for ϕ to evolve to its equilibrium value is ∼ 100H−1. Hence the

universe has enough time to inflate.

We now briefly review the basic properties of de Sitter spacetime

since it plays a central role in inflation (for a more complete discussion

see HE [50] and [92]). de Sitter spacetime can be defined as the maxi-

mally symmetric vacuum solution of the Einstein equations. Recall that

1This time of course is model dependent.



the spacetimes of constant curvature are locally characterized by the

condition

Rabcd =
1

12
R (gacgbd − gadgbc) (3.1.5)

which implies that

Rab =
1

4
Rgab. (3.1.6)

The second Bianchi identities, Rab[cd;e] = 0, imply that R is covariantly

constant, ie

R = R0 = const. (3.1.7)

The Einstein tensor is therefore Rab − 1
2
Rgab = −1

4
R0gab. Hence one can

regard these spaces as solutions of the vacuum Einstein equations with

Λ = 1
4
R0. Alternatively these spaces can be thought of as solutions of the

Einstein equations with a perfect fluid having constants density and pres-

sure −p = ρ = Λ. (If R0 = 0, the solution is Minkowski spacetime. The

de Sitter spacetime is the only maximally symmetric curved spacetime).

de Sitter space is more easily visualized as the pseudosphere S4
1 (H−1)

[82]

−
(
x0
)2

+
(
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2

= H−2 (3.1.8)

embedded in a five-dimensional Lorentz space. The radius of the pseu-

dosphere S4
1 (H−1) is H−1 =

√
3/Λ. In coordinates (t, χ, θ, φ) defined on

the pseudosphere by

x0 = H−1 sinhHt

x1 = H−1 coshHt cosχ

x2 = H−1 coshHt sinχ cos θ

x3 = H−1 coshHt sinχ cos θ

x4 = H−1 coshHt sinχ sin θ sinφ

(3.1.9)

the de Sitter metric takes the usual form of a FRW universe

ds2 = −dt2 +H−2 cosh2 (Ht)
[
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2

)]
(3.1.10)

with topology R× S
3.

With the introduction of coordinates (t, x, y, z) on the pseudosphere



by

t = H−1 lnH (x0 + x1)

x = H−1x2/ (x0 + x1)

y = H−1x3/ (x0 + x1)

z = H−1x4/ (x0 + x1) ,

(3.1.11)

the metric takes the form

ds2 = −dt2 + exp (2Ht)
(
dx2 + dy2 + dz2

)
. (3.1.12)

Other framings of de Sitter spacetime can be found in [92].

3.2 Cosmic no-hair conjecture

In principle the inflationary scenario provides an explanation of the ho-

mogeneity and isotropy of the universe without assuming this symmetry

as part of the initial conditions. However, many constructions of infla-

tionary models incorporate homogeneity and isotropy from the outset.

In the previous section we analyzed inflation in the context of an FRW

cosmology assuming that the inflating regions are smooth enough so that

they can be regarded as de Sitter spacetimes.

It is not obvious that cosmological models with non-FRW initial con-

ditions ever enter an inflationary epoch or that, if inflation occurs, ini-

tial inhomogeneities and anisotropies will be smoothed out eventually.

Therefore the question of the naturalness of the inflationary scenario is

posed in the sense that we have to ask: Did the inflationary phase in the

evolution of the universe proceed from very general initial conditions?

With regard to the question of whether the universe evolves to a ho-

mogeneous and isotropic state during an inflationary epoch Gibbons and

Hawking [45] and Hawking and Moss [51] have put forward the following

Conjecture 3.1. All expanding-universe models with positive cosmolog-

ical constant asymptotically approach the de Sitter solution.

This is referred to as the cosmic no-hair conjecture.

In general relativity solutions of the Einstein equations are believed

to settle toward stationarity as the nonstationary parts dissipate in the

form of gravitational radiation [77]. Such a proposition is very difficult to



prove, even for the simplest spacetimes. Even if we accept this principle,

neither the final state of evolution nor its uniqueness is at all obvious.

Such uniqueness assertions are known as ‘no-hair conjectures’, to denote

the loss of information regarding initial spacetime geometry, caused by

evolution under the field equations. This information either radiates

out to infinity or is hidden behind event horizons. The cosmic no-hair

conjecture is an assertion of the uniqueness of the de Sitter metric as a

stationary,2 no-black-hole solution of the Einstein equation with positive

cosmological constant.

A few comments about the cosmic no-hair conjecture (CNHC) are

necessary.

• A precise version of this conjecture is difficult to formulate, mainly

because of the vagueness associated with the terms ‘asymptotic

approach’ and ‘expanding universe’ [102].

• There is no general proof (or disproof) of this conjecture. In the

case of an arbitrary spacetime where the full Einstein equations

hold the validity of this conjecture is completely unknown (see,

however, [77]).

• Some counter-examples exist of the form ‘initially expanding uni-

verse models recollapse to a singularity’ without ever becoming de

Sitter type universes, the most obvious one being the closed FRW

spacetime which collapses before it enters an inflationary phase (see

[3, 8]).

• It should be possible for regions of the universe to collapse to black

holes so that the universe approaches a de Sitter solution with black

holes rather than a de Sitter solution. In addition other special

behaviors should be possible such as an asymptotic approach to an

Einstein static universe [102].

• Although the CNHC is not generally valid as it stands, the number

and diversity of the models that do obey this principle lead to the

belief that perhaps a weaker version of the conjecture must be true.

2The stationary nature of de Sitter spacetime is discussed in [77, 92].



Some evidence for the CNHC has been discussed by Boucher and

Gibbons [20], and Barrow [2]. They studied small perturbations of de

Sitter spacetime and found that they do not grow as the scale factor tends

to infinity. Steigman and Turner [97] considered a perturbed FRW model

dominated by shear or negative curvature when inflation begins in the

context of new inflation. They found that the size of a causally coherent

region after inflation is only slightly smaller than the usual one in a purely

FRW model. Wald [102] was the first who succeeded in 1983 to prove that

‘all expanding Bianchi cosmologies with positive cosmological constant Λ,

except type-IX, evolve towards the de Sitter solution exponentially fast.

The behavior of type-IX models is similar provided that Λ is greater than a

certain bound’. Wald’s proof is the prototype for many subsequent works

[57, 84]. For possible generalizations to inhomogeneous spacetimes see

[77, 80].

We can show by a physical argument why Wald’s theorem is to be

expected [60]. For this purpose we need only the time-time component of

the Einstein equation as our analysis will be quite qualitative. Denoting

the scale factors of the three principal axes of the universe by Xi, i =

1, 2, 3 and the mean scale factor by a = V 1/3, where V = X1X2X3, the

time-time component of Gab = Λgab + Tab is written as

3H2 ≡ 3

( .
a

a

)2

=
1

3

( .

V

V

)2

= Λ + Tabn
anb + F (X1, X2, X3) . (3.2.1)

The function F depends on the Bianchi model and contains all the in-

formation about the anisotropic expansion of the mean scale factor. The

detailed form of F can be found in [41]. The only property of F that we

will use is that in all Bianchi models F decreases at least as fast as a−2.

Equation (3.2.1) is the analog of the Friedmann equation for anisotropic

cosmologies. For the FRW models, X1 = X2 = X3 and F = k/a2. The

term
.

V /V in (3.2.1) is the expansion K in Wald’s theorem.

As the universe expands, the function F in (3.2.1) decreases at least

as a−2 and the term Tabn
anb decreases as some power of a (for example

as a−4 for a radiation dominated FRW universe). It is clear that the cos-

mological constant eventually dominates the terms Tabn
anb and F. This

happens in about one Hubble time, H−1
0 = (Λ/3)−1/2, and a ∼ expH0t.



We see that the anisotropic term F and the ordinary matter content of

the universe decay exponentially with time and the spacetime rapidly

approaches de Sitter. A careful analysis of the asymptotic approach to

de Sitter spacetime can be found in [9].

Wald’s theorem is valid in the context of general relativity, assuming

a positive cosmological constant. However, in inflationary models the

universe does not have a true cosmological constant. Rather there is

a vacuum energy density, which during the slow evolution of the scalar

field remains approximately constant and behaves like a cosmological

term. Therefore we are faced with the question: Does the universe evolve

towards a de Sitter type state before the potential energy of the scalar

field reaches its minimum? To answer to this question, one has to take

into account the dynamics of the scalar field in the no-hair hypothesis.

In many inflationary models the particular form of the potential V (ϕ)

of the inflaton field is predicted by some particle theory. An alternative

approach is to consider very simple forms of V (ϕ) such as m2ϕ2 or λϕ4,

not directly related to any particular physical theory [67]. This approach

is reasonable since we do not really know which theory of particle physics

best describes the very early universe. The CNHC has been examined

for homogeneous cosmologies for specific inflationary models, namely new

inflation, chaotic inflation, power-law inflation, inflation in the context

of HOG theories. The terminology derives mainly from the form of the

potential function of the scalar field which drives the inflation.

In chaotic inflation Moss and Sahni [79], using a quadratic potential,

proved the NHT for Bianchi-type models except type IX with matter

satisfying the SEC and DEC. Heusler [53] generalized this result in the

case of any convex potential having a local minimum V0 > 0 (see next

Chapter).

Using an exponential potential Halliwell [48] showed that the power-

law inflation solution, a (t) ∼ tp, p > 1, is an attractor for homogeneous

and isotropic cosmologies. Ibanez et al [55] studied the CNHC for the

Bianchi-type I, V, V II0 or V IIh models without matter, in the spirit of

Heusler’s theorem. A much more complete discussion of the CNHC for

homogeneous cosmologies including type IX in the case of an exponen-

tial potential leading to power-law inflation can be found in Kitada and



Maeda [59].

We now turn to the discussion of the CNHC in the context of higher

order gravity theories. An interesting feature of HOG theories is that

inflation emerges in these theories in a most direct way. In one of the

first inflationary models, proposed in 1980 by Starobinsky [95], inflation is

due to the R2 correction term in a gravitational Lagrangian L = R+βR2

where β is a constant. Instead of having to rely on the existence of a

scalar field, inflation in the present context is driven by the higher order

curvature terms present in the Lagrangian without assuming a scalar field

at all. Here the role of the scalar field is played by the scalar curvature

of the spacetime. The situation is not surprising under the light of the

conformal transformation theorem stated in Chapter One. For a review

of different inflation theories conformally related, see Gottlöber et al [46].

The existence of the de Sitter solution and its stability in f (R) theo-

ries has been examined by Barrow and Ottewill [12]. Cotsakis and Flessas

[32] have shown that the quasi-de Sitter solution a (t) ∼ exp (Bt−At2)

with A,B constants is an attractor for all homogeneous and isotropic

spacetimes in any f (R) theory. Cotsakis and Saich [36] studied the sta-

bility of the power-law solution for homogeneous and isotropic models in

the context of a L = Rn theory. A cosmic NHT for vacuum homoge-

neous cosmologies except type IX models in a quadratic theory has been

demonstrated by Maeda [71] (see also Mijic & Stein-Schabes [76] and

Berkin [16]). The proof is based on the conformal equivalence theorem

and thus relies on general relativity dynamics. For a review of the more

important works on the CNHC see [74].

3.3 Proof of the CNHT in a curvature squared

theory for all Bianchi-type cosmologies

In this section we prove the central result, namely the no-hair theorem

in a curvature-squared theory for all Bianchi-type cosmologies (including

Bianchi-type IX) with matter content satisfying certain energy condi-

tions.

Consider a four-dimensional spacetime (M, g) and a theory derived



from a Lagrangian L = R + βR2 + Lm where Lm denotes the matter

Lagrangian. The field equations (1.0.10) take the form

Rab −
1

2
gabR− β

1 + 2βR

(
2∇a∇bR− 2gab�R +

1

2
gabR

2

)
= Tab (g) .

(3.3.1)

Under a conformal transformation of the metric (compare to the gen-

eral formalism of Chapter One)

g̃ab = (1 + 2βR) gab, (3.3.2)

with

ϕ =

√
3

2
ln (1 + 2βR) , (3.3.3)

the field equations (3.3.1) become the Einstein equations in the new

spacetime (M, g̃)

R̃ab −
1

2
g̃ab R̃ = ∇aϕ∇bϕ− 1

2
g̃ab (∇cϕ∇cϕ) − g̃abV + T̃ab (g̃) , (3.3.4)

�̃ϕ− V
′

(ϕ) = 0, (3.3.5)

where the potential V is given by

V =
1

8β

[
1 − exp

(
−
√

2/3ϕ
)]2

. (3.3.6)

As Maeda [71] has pointed out, this potential has a long and flat plateau.

When ϕ is far from the minimum of the potential, V is almost constant

V∞ := limϕ→+∞ V (ϕ) = 1/ (8β) . Thus V has the general properties for

inflation to commence and V∞ behaves as a cosmological term. (The

constant β is of order 1014 l2PL [73].)

We shall work exclusively in the conformal picture and so for sim-

plicity we drop the tilde. Our starting point is a (spatially) homogeneous

spacetime which, according to the results of Appendix B, can be foli-

ated by a one-parameter family of spacelike hypersurfaces Σt orthogo-

nal to a congruence of timelike geodesics parametrized with proper time

t. As usual we denote by n = ∂/∂t the unit tangent vector field to

the geodesics. The spatial metric is related to the spacetime metric as

hab = gab+nanb. As discussed in the Appendix B, for homogeneous space-

times the scalar curvature R becomes a function only of time. Hence the



scalar field introduced by (3.3.3) is homogeneous. Moreover, the Einstein

equations (3.3.4) become ordinary differential equations with respect to

time. Ordinary matter is assumed to satisfy the strong and dominant

energy conditions, namely

Ts :=
(
Tab − 1

2
Tgab

)
nanb ≥ 0

Td := Tabn
anb ≥ 0 and T a

bn
b is non-spacelike

(3.3.7)

for any unit timelike vector field na. When it happens that matter is

moving along the geodesics defined by n, the expansion, shear and the

rotation of the cosmic fluid coincide with the corresponding quantities of

the geodesic congruence. However, we do not suppose that this be the

case since we can formally treat the scalar field as a perfect fluid with

velocity vector field

ua =
∇aϕ√

−∇aϕ∇aϕ
. (3.3.8)

Furthermore, we construct the spacelike homogeneous hypersurfaces in

such a way that ua is hypersurface orthogonal. In other words we identify

the vector field n with the velocity vector field u of the fluid representing

the scalar field ϕ. With the above choice of n we have na∇a = ∂/∂t.

Hence

T ϕ
abn

anb = E and

(
T ϕ
ab −

1

2
gabT

ϕ

)
nanb = E + 3q, (3.3.9)

where the energy density E and the pressure q of the scalar field are

defined by

E :=
1

2

.
ϕ
2

+V (ϕ) and q :=
1

2

.
ϕ
2 −V (ϕ) . (3.3.10)

We use the Einstein equations (3.3.4) written as

Gab = T ϕ
ab + Tab (3.3.11)

to describe the evolution of Bianchi cosmologies. In what follows besides

the equation of motion of the scalar field only two components of (3.3.11)

are necessary: the time-time component

Gabn
anb −E − Td = 0 (3.3.12)

and the ‘Raychaudhuri’ equation

Rabn
anb + E + 3q − Ts = 0. (3.3.13)



The term Rabn
anb permits us to transform (3.3.13) to its more familiar

form as follows. Firstly we decompose Kab into its trace K and traceless

part σab (see (A.0.5) and (A.1.4)), viz.

Kab =
1

3
Khab + σab. (3.3.14)

Note that by (A.1.3) K is related to the determinant h of the spatial

metric as

K =
d

dt

(
ln h1/2

)
. (3.3.15)

We can now express Gabn
anb in terms of the three-geometry of the homo-

geneous hypersurface using the Gauss-Codacci equation (see HE, [50])

1

2
(3)R =

1

2
R +Rabn

anb − 1

2
(Ka

a)
2 +

1

2
KabK

ab. (3.3.16)

Observe that the sum of the first two terms on the right-hand side of

the Gauss-Codacci equation equals Gabn
anb, while the last term of this

equation simplifies as KabK
ab = 1

3
K2 +σabσ

ab. Putting all these together

in (3.3.12) we obtain

1

3
K2 = σ2 + Td +

1

2

.
ϕ
2

+V − 1

2
(3)R (3.3.17)

where we set 2σ2 := σabσ
ab.

Eliminating Rabn
anb from the Raychaudhuri equation (A.0.6) and

(3.3.13) we obtain the Raychaudhuri equation with a scalar field

.

K= −1

3
K2 − 2σ2 − Ts−

.
ϕ
2

+V. (3.3.18)

Finally, the equation of motion for the scalar field (3.3.5) becomes

..
ϕ +K

.
ϕ +V ′ (ϕ) = 0. (3.3.19)

Using the above two components of the Einstein equations and the equa-

tion of motion of the scalar field we prove below the following three

propositions. Firstly we show that all Bianchi models which are initially

on the flat plateau of the potential ( 3.3.6), except probably Bianchi IX,

with a matter content satisfying the strong and dominant energy con-

ditions, rapidly approach de Sitter space-time. Secondly we show that

Bianchi-type IX also isotropizes if initially the scalar three-curvature (3)R



is less than the potential V of the scalar field. Thirdly we show that the

time needed for the potential energy to reach its minimum is much larger

than the time of isotropization. Hence we conclude that the universe

reaches the potential minimum (at ϕ = 0) at which the cosmological

term vanishes and consequently evolves according to the standard Fied-

mann cosmology.

In Appendix B it is shown that (3)R ≤ 0 in all Bianchi models except

type-IX. We observe that, assuming a negative spatial scalar curvature,

all terms in the right-hand side of (3.3.17) are positive and so we turn

our attention to any Bianchi model which is not type-IX.

Assume that the initial value ϕi of the scalar field is large and positive,

ie the universe is on the flat plateau of the potential and that the kinetic

energy of the field is negligible when compared to the potential energy.

If the universe is initially expanding, ie K > 0 at some arbitrary time

ti, then (3.3.17) implies that it will expand for all subsequent times,

ie K > 0 for t ≥ ti for all Bianchi models, except possibly type-IX.

Multiplying (3.3.19) by
.
ϕ we find for the energy density of the scalar

field E = 1
2

.
ϕ
2

+V that
.

E= −K .
ϕ
2
. (3.3.20)

Hence, in an expanding universe the field looses energy and slowly rolls

down the potential. The ‘effective’ regime of inflation is the phase during

the time interval tf−ti needed for the scalar field to evolve from its initial

value ϕi to a smaller value ϕf , where ϕf is determined by the condition

that V
(
ϕf

)
≃ ηV∞. The numerical factor η is of order say 0.9, but

its precise value is irrelevant. As we shall show, the universe becomes de

Sitter space during the effective regime followed by the usual FRW model

when the cosmological term vanishes. To this end we define a function

S, which plays the same role as in Moss and Sahni [79], by

S =
1

3
K2 − E. (3.3.21)

In all Bianchi models except IX this function is non-negative due to the

dominant energy condition and the fact that in these models the scalar

spatial curvature is non-positive. Taking the time derivative of S and



using eqs. (3.3.17) and (3.3.18) we obtain

.

S= −2

3
KS − 2

3

(
2σ2 + Ts

)
K. (3.3.22)

It follows that
.

S≤ −2
3
KS or

.

S≤ −2

3
S
√

3 (S + E). (3.3.23)

This differential inequality cannot be integrated immediately because E

is a function of time (albeit slowly-varying). However, as mentioned

above, in order to have inflation, E must be bounded from below, ie

the scalar field must be large enough so that E ≥ ηV∞. In that case

inequality (3.3.23) implies that

S ≤ 3m2

sinh2 (mt)
, m :=

√
ηV∞/3. (3.3.24)

From (3.3.17) we see that the shear, the three-curvature and the energy

density of the matter rapidly approach zero, just as in Wald’s case. Also

all components of the stress-energy tensor approach zero because of the

dominant energy condition. Thus the universe isotropizes within one

Hubble time of order 1/
√
V∞ ∼ 107 tPL.

In the case of Bianchi IX models the scalar curvature (3)R may be

positive and the above argument does not apply directly. In particular

the function S is not bounded below from zero. However, as Wald [102]

has pointed out, for some non-highly positively curved models, premature

recollapse may be avoided provided a large positive cosmological constant

compensates the −1
2
(3)R term in (3.3.17). In our case of course, it is the

potential V (ϕ) which acts as a cosmological term. A similar argument

for the Bianchi IX model was given by Kitada and Maeda [59] in the case

of an exponential potential leading to power-law inflation. Although S

is not positive, it might be non-negative initially. In that case, as long

as S (t) ≥ 0, the inequality (3.3.23) holds as in the previous case and an

upper bound for S is given by (3.3.24). Otherwise S is bounded above

from zero. Hence for general initial conditions we have an upper bound

S ≤ max
{

0, 3m2 sinh−2 (mt)
}
. (3.3.25)

An estimation of a (possible) lower bound for S derives from the

fact that the largest positive value the spatial curvature can achieve is



determined by the determinant of the three metric:

(3)Rmax ∝ h−1/3 := exp (−2α) . (3.3.26)

We obtain a lower bound for S in the following way. From (3.3.17) we

have
1

3
K2 − 1

2

.
ϕ
2≥ 0.

Observe that for any λ ∈
(

0,
√

2/3
)
, the above inequality implies that

for K > 0
1

3
K − 1

2
λ

.
ϕ≥ 1

3
K − 1√

6
| .ϕ| ≥ 0. (3.3.27)

Suppose that initially, ie at time ti, we have V > (3)Rmax. We claim

that this inequality holds during the whole period of the effective regime

of inflation. Define the function f by

f (t) := ln
V

(3)Rmax
, t ∈ [ti, tf ] , (3.3.28)

the initial valueof which is positive by the above assumption. Differenti-

ating we find

.

f=

.

V

V
+ 2

.
α= 2




exp
(
−
√

2
3
ϕ
)

1 − exp
(
−
√

2
3
ϕ
)
√

2

3

.
ϕ +

1

3
K


 (3.3.29)

since K = 3
.
α, by (3.3.15). Since the coefficient of

.
ϕ in the brackets is

less than 1/
√

6 during the effective regime of inflation, inequality (3.3.27)

implies that
.

f≥ 0 . Hence, if K > 0 and f (ti) > 0 initially, then for

t ∈ [ti, tf ] we have f (t) ≥ f (ti) and our assertion folllows.

We are now in a position to estimate the required bound for S. Firstly,

from (3.3.17) it is evident that

−1

2
(3)Rmax ≤ S (3.3.30)

and, since V/2 > (3)Rmax/2, (3.3.17) again implies that

K ≥
√

3

2
V >

√
3

2
ηV∞. (3.3.31)

Remembering that K = 3
.
α, from the last inequality and (3.3.26), we

see that (3)Rmax decays faster than exp
[
−
√

2ηV∞/3 (t− ti)
]
. Hence in-

equality (3.3.30) is

−1

2
(3)Rmax (ti) exp

[
−
√

2

3
ηV∞ (t− ti)

]
≤ S. (3.3.32)



Combining this lower bound for S with the upper bound (3.3.25), we

conclude that S vanishes almost exponentially. From (3.3.17), −2S ≤
(3)R ≤ (3)Rmax, so (3)R damps to zero just as S and (3)Rmax.

As in the case of the other Bianchi models, we see that, when the

universe is initially on the plateau, the shear, the scalar three-curvature

and all components of the stress-energy tensor approach zero almost ex-

ponentially fast with a time constant of order ∼ 1/
√
V∞.

3

We discussed inflation in the equivalent spacetime (M, g̃) , but it is not

obvious that the above attractor property is maintained in the original

spacetime (M, g) . This is probably an unimportant question since there

is much evidence that in most cases the rescaled metric g̃ is the real

physical metric [28]. However, as Maeda has pointed out [71], since

during inflation the scalar field changes very slowly and the two metrics

are related by g̃ = exp
(√

2/3ϕ
)
g, it is easily seen that inflation occurs

in the original picture also.

In contrast to Wald’s theorem, which is based on the existence of a

true cosmological constant, the cosmological term in our case eventually

vanishes. Therefore, it is not certain that the universe has enough time

to evolve towards de Sitter spacetime during the evolution of the scalar

field. In any consistent no-hair theorem one has to verify that the time

necessary for isotropization is small compared to the time the field reaches

the minimum of the potential.

The following argument shows that in our case the vacuum energy is

not exhausted before the universe is completely isotropized. We imagine

that at the beginning of inflation the universe is on the flat plateau of

the potential. It is evident that the time tf − ti needed for the scalar

field to evolve from its initial value ϕi to a smaller value ϕf is smaller

in the absence of damping than the corresponding time in the presence

of damping. In the absence of damping the time tf − ti is easily calcu-

lable because the equation of motion of the scalar field (3.3.19) can be

integrated by elementary methods when K = 0. Taking for example the

value ϕf to be such that V
(
ϕf

)
≃ ηV∞ one finds that tf−ti is more than

65 times the time τ of isotropization. The presence of damping increases

3Actually, the time constant for isotropization in type IX is longer by
√
2 than in

other types. The situation is similar to that encountered in Kitada and Maeda [59].



the time interval tf − ti and a larger anisotropy damps more efficiently

the slow rolling of the scalar field, thus producing more inflation. It

follows that, when due account of damping is taken, the period of the

effective regime of inflation is more than sufficient for both the complete

isotropization of the universe and for the solution of the horizon problem.

We conclude with some comments about our proof as compared to

the proof in the paper by Maeda [71] for Bianchi-type models except

IX in vacuum. In that case (3)R ≤ 0 and Ts = Td = 0. Moreover,

as long as inflation continues, V remains less than V∞. Hence Wald’s

method is directly applicable and equations (3.3.17) and (3.3.18) only

(ie, without explicit use of the equation of motion of the scalar field)

imply immediately

√
3V∞ ≤ K ≤

√
3V∞

tanhαt

σ2 ≤ V∞

sinh2 αt

.
ϕ
2≤ 2V∞

sinh2 αt
,

(3.3.33)

where α =
√
V∞/3 . In our treatment we also show that the effective

period of inflation is sufficient for the complete isotropization of the uni-

verse. This is again achieved using the equation of motion of the scalar

field.





Chapter 4

Recollapse problems

A closed Friedmann universe is considered almost synonymous to a recol-

lapsing universe. This is mainly due to our experience with the dust and

radiation filled Friedmann models usually treated in textbooks. That

this picture is misleading follows clearly from an example found by Bar-

row, Galloway and Tipler [8] according to which an expanding Friedmann

model with spatial topology S3 satisfying the weak, the strong, the dom-

inant energy conditions and the generic condition may not recollapse.

Thus the problem of recollapse of a closed universe to a second singular-

ity is not trivial already in the Friedmann case.

There are many examples showing that under certain conditions on

the matter content a closed universe recollapses. Several conjectures have

been proposed concerning the recollapse problem (see [11] and references

there). These conjectures usually assume the following general form:

Recollapse conjecture All globally hyperbolic closed universes with

spatial topology S3 or S2 × S1 and with stress-energy tensors satisfying

the SEC and the PPC begin in an all-encompassing initial singularity and

end in an all-encompassing final singularity.

As mentioned above, the conjecture was found true in special cases;

in certain spatially homogeneous cosmologies [66], in certain spherically

symmetric spacetimes [108, 24] and in spacetimes admitting a constant

mean-curvature foliation that possesses a maximal hypersurface [10, 87].

In this chapter we examine the closed universe recollapse conjecture

in the context of a curvature squared higher order theory and give some

plausibility arguments about the future asymptotic behavior of the closed
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Friedmann universe in the conformal frame. In Section 4.1 we formulate

the problem and compare with the standard closed Friedmann model

with ordinary matter. In Section 4.2 we examine the conditions to be

satisfied by the matter content in order that the classical global theorem

for recollapse be applicable. In the last Section we summarize our results

and illustrate some of the difficulties associated to the particular form of

the self interacting potential.

4.1 The k = 1 FRW universe in the confor-

mal frame

Starting with a Lagrangian R+βR2+Lmatter and applying the conformal

equivalence theorem, we obtain Einstein’s equations with a scalar field

having a potential V given by (see equations (3.3.4) and(3.3.6))

V (ϕ) =
1

8β

(
1 − e−ϕ

)2 ≡ V∞
(
1 − e−ϕ

)2
.

We consider the k = 1 FRW universe in the conformal frame. Ordinary

matter is described by a perfect fluid with energy density ρ and pressure

p. The Einstein equations become

( .
a

a

)2

+
1

a2
=

1

3

(
ρ+

1

2

.
ϕ
2

+V (ϕ)

)
(4.1.1)

(Friedmann equation) and

2

..
a

a
= −1

3

(
ρ+ 3p+ 2

.
ϕ
2 −2V

)
(4.1.2)

(Raychaudhuri equation) and the equation of motion of the scalar field

is
..
ϕ +3

.
a

a

.
ϕ +V ′ (ϕ) = 0. (4.1.3)

From the last three equations one can find the conservation equation still

holds:
.
ρ +3 (ρ + p)

.
a

a
= 0. (4.1.4)

We assume an equation of state of the form p = (γ − 1)ρ, γ ∈
(
2
3
, 2
)
.1

1The range of γ is chosen in accordance to the conditions for recollapse of Barrow,

Galloway and Tipler (BGT) [8].



We see that the Friedmann k = 1 model in the conformal frame

is formally obtained if we add to the matter content of the classical

Friedmann universe a perfect fluid with energy density E := 1
2

.
ϕ
2

+V

and pressure q := 1
2

.
ϕ
2−V (see equations (3.3.9) and (3.3.10)). However,

this fluid violates the SEC, ie E + 3q = 2
.
ϕ
2 −2V may be negative for

large values of the field. It is precisely this violation that leads to inflation

in the very early universe as we saw in Chapter Three. Therefore we

cannot conclude by the usual arguments [8] that the function a is convex

downwards and the Theorem of BGT is not valid. Nevertheless we can

imagine the following scenario. Suppose that at some time t0 (today)

the scalar field ϕ is negligible, ie it oscillates near the minimum of the

potential. In an expanding universe the middle term in (4.1.3) damps the

oscillations and ensures that the field does not grow. Hence we expect

an almost classical Friedmannian evolution until the scale factor reaches

its maximum value. However, once
.
a changes sign, 3

( .
a /a

) .
ϕ in (4.1.3)

acts as a driving force which forces the field ϕ to oscillate with larger and

larger amplitude. It is then possible that ϕ climbs the hill of the potential

and reaches the flat plateau. The repulsive effect of the cosmological term

may change the sign of
..
a and so our model could avoid recollapse. An

oscillating scale factor is then possible. The above intuitive ideas show

that the system (4.1.1)–(4.1.3) may exhibit a great variety of different

possible behaviours.

4.2 Conditions that ensure the existence of

a maximal hypersurface

Before continuing our analysis we state some global results concerning

the closed universe recollapse conjecture. The first is a theorem proven

in [72]

Theorem The length of every timelike curve in a spacetime (M, g)

is less than a constant L if the following conditions hold:

(i) (M, g) is globally hyperbolic

(ii) Ric (u, u) ≥ 0 for all timelike vectors u

(iii) there exists a compact maximal hypersurface Σ



(iv) at least one of the tensors nrnsn[aR b]rs[cnd], Kab, or Rabn
anb

is non-zero somewhere on Σ, where n is the unit vector field normal to

Σ and Kab = ∇anb is the extrinsic curvature of Σ.

We recall that a spacelike hypersurface Σ is said to be maximal if

∇an
a = 0 on Σ, ie the expansion is zero. Global hyperbolicity is not a

severe restriction because a very large class of known spacetimes are glob-

ally hyperbolic. In fact Penrose [85] has conjectured that all physically

reasonable spacetimes must be globally hyperbolic. The meaning of the

timelike convergence condition (ii) has been discussed in detail in Chap-

ter Four. Condition (iv), says, that somewhere on Σ, either the gravi-

tational forces are non-zero
(
Rabn

anb 6= 0
)
, the tidal forces are non-zero

(
nrnsn[aR b]rs[cnd] 6= 0

)
or for vacuum spacetimes Σ is not a hypersurface

of time symmetry (Kab 6= 0) . Thus, for spacetimes having some kind of

irregularity, condition (iv) seems physically plausible. The conclusion of

the theorem, namely that the length of every timelike curve in the space-

time is less than L, has the interpretation that all timelike curves must

begin at an initial singularity and terminate at a final singularity.

For completeness we state two other global results although we shall

not make explicit use of them. The first says that the existence of a com-

pact maximal hypersuface is also a necessary condition for a spacetime

to have an initial and a final all-encompassing singularity. The second

says roughly that the only globally hyperbolic spacetimes that can have

a maximal hypersurface are those with spatial topology S3 or S2 × S1

(see [11] for a discussion).

We turn now to the problem of recollapse of the Friedmann universe in

a R+R2 +Lmatter theory in the conformal frame. By the above theorem,

it is not necessary to examine the detailed behavior of the solution of

(4.2.1)–(4.2.3) for large values of t: it suffices to check if the scale factor

has a maximum. If this is the case, then a Friedmann universe with

spatial topology S3 possesses a compact maximal hypersurface. Hence,

if the other conditions of the theorem are also satisfied, this universe

recollapses.

In the following we use a new variable α defined by

.
α=

.
a

a
,

.
α∈ (−∞,+∞)



In terms of α equations (4.1.1)–(4.1.3) are

.
α
2

+e−2α =
1

3

(
ρ+

1

2

.
ϕ
2

+V (ϕ)

)
(4.2.1)

2
..
α +2

.
α
2
= −1

3

(
ρ + 3p+ 2

.
ϕ
2 −2V

)
(4.2.2)

..
ϕ +3

.
α

.
ϕ +V ′ (ϕ) = 0. (4.2.3)

The conservation equation

.
ρ +3 (ρ + p)

.
α= 0

can be integrated to give

ρ = const× exp (−3γα) . (4.2.4)

From (4.2.3) we obtain (compare to 3.3.20))

.

E= −3
.
α

.
ϕ
2

(4.2.5)

which implies that in an expanding universe,

.

E≤ 0, (4.2.6)

ie, the field looses energy. Assume that at time t0 (now) the values of ϕ

and
.
ϕ are very small in the sense that

E0 :=
1

2

.
ϕ
2
0 +V0 ≪ ρ0 and 2

.
ϕ
2
0 −2V0 ≪ ρ0 + 3p0 (4.2.7)

so that the total stress-energy tensor satisfies the SEC. This is a plausible

assumption since the scalar field is unobservable in the present universe.

Equation (4.2.6) implies that there exists a time interval [t0, t0 + T ] such

that ϕ and
.
ϕ remain small and in this interval the universe evolves ac-

cording to the standard k = 1 FRW model. The scale factor in the

standard k = 1 FRW model (with no scalar field and p = (γ − 1)ρ,

γ ∈ (2/3, 2]) reaches a maximum at some time tmax and decreases to

zero. It may happen that T is large enough and our model also has a

time of maximum expansion. However, it is possible that after the time

t0+T the energy density 1
2

.
ϕ
2
+V and pressure 1

2

.
ϕ
2−V of the scalar field

dominate over the density ρ and pressure p of ordinary matter. This is



possible in an expanding universe with tmax ≫ t0 +T since ρ decreases as

∼ exp (−3γα) . In that case, since the stress-energy tensor of the scalar

field violates both the SEC and the PPC, the universe may have not a

time of maximum expansion.

The above discussion suggests that a detailed analysis of the time

dependence of the energy density of the scalar field is necessary, that is,

we have to examine if the conditions (4.2.7) remain true for all t ≥ t0.

To this end we write (4.2.3) (in first order approximation) as

..
ϕ +3

.
α

.
ϕ +m2ϕ = 0 (4.2.8)

where m2 := 2V∞. This is the equation of motion of an harmonic os-

cillator with a variable damping factor 3
.
α . For a slowly varying func-

tion α this equation can be solved using the Kryloff-Bogoliuboff [62]

approximation. We find that the amplitude of the scalar field varies as

∼ exp
(
−3

2
α (t)

)
. Since the amplitude of

.
ϕ has the same time dependence

and in our approximation E = 1
2

.
ϕ
2

+1
2
m2ϕ2, it follows that

E ∼ exp (−3α) . (4.2.9)

Comparing this with the time dependence of the density ρ ∼ exp (−3γα)

we arrive at the following results:

• If γ ≤ 1 the initial conditions (4.2.7) imply that for t ≥ t0

E = 1
2

.
ϕ
2

+V ≪ ρ and

2
.
ϕ
2 −2V ≪ ρ+ 3p

Hence the universe follows the classical Friedmannian evolution and

has a time of maximum expansion. By the preceding discussion this

is equivalent to the existence of a (compact) maximal hypersurface.

It is easy to verify that the other conditions of the above theorem

are also satisfied: (i) Global hyperbolicity follows from the fact that

every S3
t of constant t in R×S3 is a Cauchy surface. (ii) The TCC

is implied by the SEC on the total stress-energy tensor. Taking

for example for u in (ii) of Theorem 2 to be the unit normal to

S3
t vector field n, we have Ric (n, n) = 1

2

(
ρ+ 3p+ 2

.
ϕ
2 −2V

)
≥

0. The same argument shows that condition (iv) is also satisfied.



Therefore, if γ ≤ 1, the universe recollapses. The case γ = 1 is

particularly interesting since it corresponds to a dust-filled universe

which perfectly approximates our Universe.

• If γ > 1 there are two possibilities. Either tmax is far in the future

or tmax ∈ [t0, t0 + T ] (remember that tmax is the time of maximum

expansion of the universe filled with ordinary matter, ie without

a scalar field). In the former case, since ρ decreases faster than

the energy density E of the scalar field, there exists some time t1

such that, for t ≥ t1, E dominates over ρ. Hence this model may

have not a time of maximum expansion. In the later case, it may

happen that the scale factor reaches a maximum value before the

energy density and pressure of the scalar field exceed the values of

the corresponding quantities ρ and p (this is most probable when

the pressure p is small compared to the energy density ρ, ie when

γ is not much larger than unity). Which particular scenario will

actually take place depends on the detailed specification of the

parameters of the model and a fine tuning of the initial conditions.

4.3 Summary

For a curvature squared gravity theory in the conformal frame the Fried-

mann k = 1 universe filled with dust (or more generally with a perfect

fluid with p = (γ − 1) ρ, γ ≤ 1) recollapses. The case γ > 1 cannot

be handled by the above procedure. However, in the physically realistic

case, where, γ is slightly larger than 1, it seems that the universe can-

not avoid recollapse. Furthermore, a strict result for γ > 1, at least for

1 < γ ≤ 4/3, could possibly be obtained by the detailed analysis of the

system (4.2.1)–(4.2.3) either by classical or by global methods.

We mention two successful techniques that can be used in the case of

a scalar field as the only matter source. The first is the phase portrait

analysis of the Friedmann model with an exponential potential given by

Halliwell [48] (see also [59]). This is possible since, in that case, the

potential function V has the nice property of being proportional to the

derivative V ′ and, therefore, the resulting autonomous system becomes



two-dimensional. Our case subtler, since the corresponding dynamical

system turns out to be three-dimensional. The second is that during

the inflationary regime one can treat the field ϕ as a time parameter

(see [13]). In our case this is not possible, since the field oscillates near

the minimum of the potential during the quasi-Friedmann period and,

therefore, ϕ̇ changes rapidly sign.

The possibility to generalize the above results in the case of a Bianchi

type IX cosmology, might also be the subject of further research. A

possible approach is along the lines of the theorem of Lin and Wald [66],

where it seems that the shear is mainly responsible for recollapse of the

Bianchi IX model.



Chapter 5

Conclusion

In the first part of this thesis we analyzed the variational structure of ar-

bitrary nonlinear Lagrangian theories of gravity. In particular we proved

that the only consistent way to generalize higher order gravity theories in

the framework of non-Riemannian geometries is the constrained Palatini

variation. We applied this result to f (R) theories in Weyl geometry and

studied the conformal structure of the corresponding field equations. It

turns out that the Palatini variation is a degenerate case corresponding

to a particular gauge and in the limit when the Weyl vector field van-

ishes one obtains the conformal equivalence theorem mentioned in the

Introduction. Furthermore the field equations exhibit a rich structure

with possibly interesting properties that depend upon particular choices

of the source term, ie the Weyl vector field. We think that further gener-

alization to the case of non-symmetric connections is possible along the

lines of the theorem in Chapter Two. It should be interesting to con-

sider applications in cosmological models. Such a program could start by

analyzing the properties of Friedmann cosmologies, find their singularity

structure and examine the possibility of inflation. The next step could

be to consider the past and future asymptotic states of Bianchi cosmolo-

gies that is, to examine isotropization and recollapse conjectures in such

universes. This will not be as straightforward as in the Riemannian case

because of the presence of the source term Mab.

The second part of this thesis was mainly devoted to the isotropiza-

tion problem in higher order gravity cosmologies. Our first result was

the proof of the cosmic no-hair conjecture for homogeneous cosmologies
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in the context of the curvature squared Lagrangian with matter. In par-

ticular we proved a no-hair theorem to the effect that the Bianchi type

IX universe model isotropizes during the very early epoch provided that

initially the scalar three-curvature does not exceed the potential of the

scalar field associated to the conformal transformation. The fact that

the cosmic no-hair conjecture is probably true for a large class of gravity

theories, at least for homogeneous cosmologies, can be interpreted as a

generic property shared by these theories. We believe that our proof of

the cosmic no–hair conjecture could be extended with adjustments to

include the class of tilted Bianchi models. In fact such a demonstration

could amount to a first test of this conjecture in cases of some inhomo-

geneity. An analysis along these lines might be more tractable than, say,

attacking directly a genuine inhomogeneous case such as, for instance,

that of G2 cosmologies wherein the dynamics is described by systems of

partial differential equations. However, the generalization to arbitrary

spacetimes seems mathematically intractable at the moment.

The generalization of the (first) Collins-Hawking isotropization the-

orem, for a rather large class of f (R) theories, was our second result.

Global results in higher order gravity theories, such as the usual ones in

general relativity, are very difficult to obtain in the Jordan frame, mainly

because the positivity properties of the Ricci tensor cannot easily tested

in these theories. In particular the Raychaudhuri equation, which proved

to be an indispensable tool for the study of singularities in general rel-

ativity, does not give direct information in higher order gravity. Our

derivation of the so-called Raychaudhuri system permits the transfer to

f (R) theories some known results valid in general relativity.

The closed universe recollapse conjecture in the curvature-squared

gravity theory was discussed and sufficient conditions for recollapse of the

closed Friedmann model were given. It should be interesting to consider

the more general case, namely the Bianchi type IX, in this framework

and compare with the results obtained in [33].



Appendix A

Raychaudhuri’s equation

Consider a smooth congruence of timelike geodesics in a spacetime (M, g).

The corresponding tangent vector field n is normalized to unit length,

〈n,n〉 = −1. This means that the geodesics are parametrized by proper

time t and n = ∂/∂t. We define the spatial metric h by

hab = gab + nanb. (A.0.1)

Note that ha
bnb = hban

a = 0 so that hab = gachcb can be regarded as the

projection operator onto the subspace of the tangent space perpendicular

to n. In the following we are interested on the covariant derivative of n.

Its geometric meaning will become clear at the end of this Appendix.

We define the expansion, θ, shear, σ, and rotation, ω, of the con-

gruence by

θ = hab∇bna = ∇an
a (A.0.2)

σab = ∇(bna) −
1

3
θhab (A.0.3)

ωab = ∇[bna]. (A.0.4)

The tensor fields σab and ωab are purely spatial in the sense that σabn
b =

ωabn
b = 0 and σab is traceless. If the stress-energy tensor of the matter

fields is of the form of a fluid, then θ, σ, and ω, are not the expansion,

shear and the rotation of the fluid unless the fluid happens to be moving

along the geodesics.

The covariant derivative of n can now be expressed as

∇bna = na;b =
1

3
θhab + σab + ωab. (A.0.5)
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This can be verified by direct substitution from the previous defining

equations (A.0.2) – (A.0.4).1

From the definition of the curvature tensor and the geodesic equation

na∇an
b = 0 we have

nc∇c∇bna = nc∇b∇cna +Radcbn
dnc

= ∇b (nc∇cna) − (∇bn
c) (∇cna) +Radcbn

dnc

= − (∇bn
c) (∇cna) +Radcbn

dnc.

Taking the trace of the last equation we obtain

dθ

dt
:= nc∇c

(
∇dn

d
)

= − (∇dn
c)
(
∇cn

d
)
−Rcdn

cnd

and using (A.0.5) we obtain after some manipulation that

dθ

dt
= −1

3
θ2 − σabσ

ab + ωabω
ab − Rabn

anb. (A.0.6)

This equation is known as the Raychaudhuri equation and plays an im-

portant role in the proof of the singularity theorems of general relativity.

A.1 Extrinsic curvature

Consider now the case that the spacetime (M, g) is globally hyperbolic

and the congruence of the timelike geodesics is normal to a spacelike

hypersurface Σ. In every point p of Σ the unit normal to Σ at p equals

the (unit) tangent vector n of the geodesic passing through p. Then the

induced metric tensor h on Σ coincides with the previously defined ‘spa-

tial metric’ hab = gab + nanb, (A.0.1). For the same reason the covariant

derivative of n evaluated on Σ coincides with the extrinsic curvature Kab

of Σ, viz.

Kab = ∇anb. (A.1.1)

Of course the tensor field K is purely spatial (see footnote on page 72).

Since the congruence is hypersurface orthogonal,2 we have ωab = 0 which

1In HE there is a projection ha
b for every index of the tensor field na;b in the

definitions of the shear and the rotation. Our definitions differ from those in HE

because na;b is purely spatial, na;bn
a = na;bn

b = 0. This is due to the fact that n is

associated with a congruence of geodesics, not merely a congruence of timelike curves.
2A necessery and suficient condition that n be hypersurface orthogonal is

n[a∇bn c] = 0. See for example Wald [101], appendix B, p 436.



implies that the extrinsic curvature tensor field is symmetric ie Kab =

Kba. Hence taking the Lie derivative of the metric with respect to n we

find
Kab = 1

2
L
n
gab

= 1
2
L
n

(hab − nanb)

= 1
2
L
n
hab,

(A.1.2)

where the geodesic equation was used. If a coordinate system adapted

to n is used, then the components of the extrinsic curvature in these

coordinates are

Kµν =
1

2

∂hµν
∂t

. (A.1.3)

The trace K of the extrinsic curvature is defined as

K := Ka
a = habKab = θ (A.1.4)

so that K is equal to the mean expansion θ of the geodesic congruence

orthogonal to Σ.

One has the following geometric interpretation of K [90]. Assume Σ

to be a compact submanifold with boundary (otherwise, take a compact

subset of Σ). For every p in Σ denote by γp the geodesic passing through

p, ie γp : [0, ε] → M is a future-directed geodesic orthogonal to Σ and

satisfying γp (0) = p, with tangent vector field n. For all t ∈ [0, ε], define

Σt :=
{
γp (t) : p ∈ Σ

}
, that is, Σt is the set of all points of Σ moved along

each geodesic a parametric distance t. If V (t) denotes the Riemannian

volume of Σt, then it can be shown that

V
′

(0) =

∫

Σ

KΩΣ, (A.1.5)

where ΩΣ is the Riemannian volume element of Σ. Thus K > 0 roughly

means that the future-directed geodesics orthogonal to Σ are, on the

average, spreading out near Σ so as to increase the volume of Σ.





Appendix B

Homogeneous cosmologies

The spacetimes we deal with in this work are with a few exceptions

spatially homogeneous. A spacetime (M, g) is said to be spatially homo-

geneous if there exists a one-parameter family of spacelike hypersurfaces

Σt foliating the spacetime such that for each t and for each p, q ∈ Σt there

exists an isometry of M which takes p to q. Homogeneous cosmologies

have been studied intensively over the past years (for reviews see Ryan

and Shepley [88], MacCallum [69, 70]). One of the main reasons is that

all possible geometries of the spacelike hypersurfaces fall into one of ten

classes. Another important reason is that Einstein’s equations reduce to

a system of ordinary differential equations. In fact because of the spatial

symmetry only time variations are non-trivial.

The set of all isometries of a Riemannian manifold forms a Lie group

G and the set of the Killing vector fields (that is, the set of infinitesimal

generators of the isometries) constitutes the associated Lie algebra, with

product the commutator. In our case dimG = dim Σt = 3 provided that

G acts simply transitively on each Σt, that is, for every p, q in Σt there

exists a unique isometry ∈ G sending p to q. The algebraic structure of

the group G can be described in terms of the Lie algebra since, if v, w

are Killing vector fields, they satisfy

[v, w]a = −Ca
bcv

bwc, (B.0.1)

where Ca
bc are the structure constants of the Lie group. It follows imme-

diately from the definition that

Ca
bc = −Ca

cb (B.0.2)
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and from the Jacobi identity for commutators that

Ce
d[aC

d
bc] = 0. (B.0.3)

These two equations lead to all three-dimensional Lie groups, or

equivalently, all possible sets of structure constants which satisfy (B.0.2)

and (B.0.3). Bianchi was the first to classify all three-dimensional Lie

groups into nine types. A slightly different version of this classification

can be obtained in the following way (see Ellis and MacCallum [41]).

The tensor field Cc
ab can be decomposed as

Cc
ab = M cdǫdab + δc[aA b], (B.0.4)

where ǫabc = ǫ[abc] is a three form on the Lie algebra, M cd = Mdc and

Ab is a ‘dual’ vector. We can solve for Mab and Ab, taking Ab = Ca
ba

and Mab = 1
2
C(a

cdǫ
b)cd. Inserting (B.0.4) into the Jacobi identity (B.0.3)

yields

MabAb = 0. (B.0.5)

Therefore the problem of finding all three-dimensional Lie groups is

reduced to determining all dual vectors Ab and all symmetric tensors

Mab satisfying (B.0.5). If Ab = 0 (class A), there exist six Lie alge-

bras determined by the rank and signature of Mab. If Ab 6= 0 (class

B), equation (B.0.5) implies that rankM cannot be greater than two.

Hence, in this case there exists four possibilities for the rank and signa-

ture of Mab. These ten combinations are tabulated (see eg in Landau

and Lifshitz [63], MacCallum [70]) and called the Bianchi models. For

example the Bianchi type-IX model is determined by Ab = 0, rankM = 3,

signatureM = (+++). One can find explicit formulas for Cc
ab in different

bases in Ryan and Shepley [88]. Useful formulas for the Ricci tensor and

Einstein equations in terms of the structure constants and the spatial

metric are also given in Ryan and Shepley [88].

The metric of a spatially homogeneous spacetime is

gab = −nanb + hab, (B.0.6)

where h is the three-metric of the spatial slices and n = ∂/∂t is a unit

timelike vector field, orthogonal to the homogeneous hypersurfaces. The



vector field n defines the time coordinate of the spacetime. There are

many ways to put the metric in a useful form [69]. For example the spatial

coordinates can be chosen as follows. We consider one homogeneous

hypersurface Σ0 and choose a basis of one-forms ω1, ω2, ω3 which are

preserved under the isometries, that is, have zero Lie derivative with

respect to the Killing vector fields. It follows that each one-form ωi (the

index i labels the one-form) satisfies (see for example Wald [101] Section

7.2)

∇[aω
i
b] = −1

2
Cc

abω
i
c (B.0.7)

with Cc
ab the structure constants of the Lie group of isometries of the

spacelike hypersurfaces. Then the (invariant) spatial metric can be writ-

ten

hab = hijω
i
aω

j
b, i, j = 1, 2, 3, (B.0.8)

where the components hij are constant on Σ0.

To construct the full metric we consider for p ∈ Σ0 the unit normal

vector np to Σ0 at p (we used the symbol n to denote an arbitrary timelike

vector field orthogonal to the homogeneous hypersurfaces for reasons that

will soon become clear). Denote by γp the geodesic determined by (p,np) .

Then γp will be orthogonal to all the spatial hypersurfaces it intersects,

because the tangent to γp remains orthogonal to all the spatial Killing

vector fields (see for example O’Neill [82], ch.9, lemma 26). We label the

other hypersurfaces by the proper time t of the intersection of γp with

the hypersurface. Hence t = const on each Σt. Then the vector field

n defined by na = −∇at will be everywhere orthogonal to each Σt and

the integral curves of n are all geodesics since this is true along γp and

hence is true everywhere on each Σt by spatial homogeneity. Now we ‘Lie

transport’ the ωi defined on Σ0 throughout the spacetime along n, ie

L
n
ωi = 0,

which implies that ωi
an

a = 0 everywhere. We conclude that the metric

(B.0.6) takes the form

gab = −∇at∇bt+ hij (t)ωi
aω

j
b, (B.0.9)

or equivalently,

ds2 = −dt2 + hij (t)ωiωj, i, j = 1, 2, 3. (B.0.10)



The property of homogeneous spacetimes mentioned at the beginning of

this Appendix is now clear, namely that the Einstein equations become

ordinary differential equations with respect to time.

We note by (3)R the scalar curvature of the spacelike hypersurface

which we think of as a Riemannian three-manifold with metric h. In

what follows we make repeated use of a property of the scalar spatial

curvature (3)R, namely that (3)R is nonpositive in all Bianchi models

except type-IX. To prove it, we write the scalar curvature (3)R in terms

of the structure constants Ca
bc of the Lie algebra of the symmetry group

of the homogeneous hypersurface (see [63] or [88])

(3)R = −Ca
abC

c
c
b +

1

2
Ca

bcC
c
a
b − 1

4
CabcC

abc. (B.0.11)

All indices are lowered and raised with the spatial metric, hab, and its

inverse hab. A rather lengthy calculation gives for (3)R (by substitution

of (B.0.4) into (B.0.11) and using (B.0.5))

(3)R = −3

2
AbA

b − h−1

(
MabMab −

1

2
M2

)
, (B.0.12)

where h is the determinant of hab, that is, h−1 = ǫabcǫmnrh
amhbnhcr. From

(B.0.12) it follows immediately that, if (3)R is positive then necessarily

MabMab <
1
2
M2, but then Mab must be definite (positive or negative)

as can be verified by considering a coordinate system where the tensor

Mab is diagonal. In this case (B.0.5) implies that Ab = 0. A look at the

Bianchi classification shows that the combination Ab = 0 and rankM = 3

corresponds to the type-IX model. What we have shown is that in all

Bianchi models except type-IX the three-scalar curvature is nonpositive,

ie
(3)R ≤ 0 . (B.0.13)

This ends the necessary geometric notions which will be used in the

development of this thesis.



Appendix C

Energy conditions

The actual form of the stress-energy tensor of the universe is very compli-

cated since a large number of different matter fields contribute to form

it. Therefore it is hopeless to try to describe the precise form of the

stress-energy tensor. However, there are some inequalities which it is

physically reasonable to assume for the stress-energy tensor. In many

circumstances these inequalities are sufficient to prove via the field equa-

tions many important global results, for example the singularity theo-

rems. In this Appendix we discuss these inequalities, usually referred to

as energy conditions.

If n is a unit timelike vector field, the quantity Tabn
anb is the energy

density as measured by an observer whose 4-velocity is n. For all known

forms of matter this energy density is non-negative and therefore we

impose that

Tabu
aub ≥ 0 (C.0.1)

for all timelike vectors u. This condition is known as the weak energy

condition (WEC). An other assumption usually accepted is the strong

energy condition (SEC) which states that

Tabn
anb +

1

2
T ≥ 0 (C.0.2)

for all unit timelike vectors n. In fact it seems reasonable that the matter

stresses will not be so large as to make the right-hand side of (C.0.2)

negative.

One can see that, if the right-hand side of the Raychaudhuri equation

(A.0.6) is negative, the expansion θ of a congruence of timelike geodesics
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decreases along a geodesic. We pay therefore attention to the sign of the

Rabn
anb term on the right-hand side of the Raychaudhuri equation. The

expansion θ of a congruence of timelike geodesics decreases if

Rabn
anb ≥ 0 for any unit timelike vector n. (C.0.3)

Inequality (C.0.3) is what Hawking and Ellis [50] call the timelike con-

vergence condition (TCC). By the Einstein equations the term Rabn
anb

can be written as

Rabn
anb =

(
Tab −

1

2
Tgab

)
nanb =

(
Tabn

anb +
1

2
T

)
. (C.0.4)

Therefore in general relativity the timelike convergence condition is equiv-

alent to the strong energy condition. However, this is not generally true

for an arbitrary f (R) gravity theory.

Finally the dominant energy condition states that

Tabu
aub ≥ 0 (C.0.5)

and T a
bu

b is a non-spacelike vector for all timelike vectors u. In particular

the dominant energy condition implies that

|Tµν | ≤ T00, (C.0.6)

where Tµν are the components of Tab in any orthonormal basis with n as

the timelike element of this basis.

To be convinced that the above conditions are reasonable assump-

tions, let us see what they imply for a diagonalizable stress-energy tensor

Tµν = diag (ρ, p1, p2, p3) . This is for example the case of a perfect fluid

with stress-energy tensor Tµν = diag (ρ, p, p, p). It is easy to see that the

energy conditions take the form

ρ ≥ 0 and ρ+ pi ≥ 0 (i = 1, 2, 3) (WEC)

ρ+ p1 + p2 + p3 ≥ 0 and ρ + pi ≥ 0 (i = 1, 2, 3) (SEC)

ρ ≥ |pi| (i = 1, 2, 3) (DEC).

(C.0.7)

For further discussion see for example HE [50].



Appendix D

Conformal transformations

Consider the transformation1

g̃ = Ω2g, (D.0.1)

where Ω2 is a smooth strictly positive function. Loosely speaking, a

transformation of the form (D.0.1) represents a rescaling of the metric

in each spacetime point. Since the angle between any two directions

remains the same, conformally related spacetimes have identical causal

structure: a vector is timelike, null or spacelike with respect to the metric

g if and only if it has the same property with respect to the metric g̃.

However, conformally related spacetimes may have different topologies.

Consider for example the metric of Minkowski spacetime (R4,η)

ds2 = −
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

In spherical coordinates (t, r, θ, φ) this metric becomes

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (D.0.2)

Using null coordinates u and v defined by v = t + r, u = t − r, we see

that the metric is

ds2 = −dudv +
1

4
(v − u)2

(
dθ2 + sin2 θdφ2

)
, (D.0.3)

1Strictly speaking the metrics in the transformation (D.0.1) are said to be con-

formally related, while a conformal transformation is a diffeomorphism f : (M,g) →
(M, g̃) such that f∗g = Ω2g; see eg [81] for a discussion.
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where −∞ < u < +∞, −∞ < v < +∞. With the definition of new

coordinates p, q by tan p = v, tan q = u where −π/2 < p < π/2, −π/2 <
q < π/2, the metric (D.0.3) becomes

ds2 =
1

4

1

cos2 p

1

cos2 q

[
−4dpdq + sin2 (p− q)

(
dθ2 + sin2 θdφ2

)]
. (D.0.4)

This metric can be reduced to a more usual form by defining T = p+ q,

R = p− q, where

−π < T +R < π, −π < T −R < π, R ≥ 0. (D.0.5)

The result is

ds2 =
1

4

1

cos2 p

1

cos2 q

[
−dT 2 + dR2 + sin2R

(
dθ2 + sin2 θdφ2

)]
. (D.0.6)

Now the metric g̃ defined by ds2 = −dT 2+dR2+sin2R
(
dθ2 + sin2 θdφ2

)

is the natural Lorenz metric on S3 × R, known as the Einstein static

universe, except that the coordinate ranges are restricted by (D.0.5).

We see that Minkowski spacetime (R4,η) is conformally related to that

part of the Einstein static universe (S3 × R,η) defined by the coordinate

system (D.0.5). The conformal factor is Ω = 2 cos p cos q. Thus, the

whole Minkowski spacetime has been conformally compactified into this

finite region. The conformal compactification procedure has been widely

used by Penrose (see HE [50] for a discussion and applications).

We briefly summarize the relations between geometric quantities de-

fined on the two conformally related spacetimes (M, g) and (M, g̃) . Let

∇ denote the covariant derivative operator compatible with the metric

g and let ∇̃ denote the covariant derivative operator associated with

the metric g̃. The relation between ∇̃ and ∇ is given by the equation

[105, 101]

∇̃aωb = ∇aωb − Cc
abωc, (D.0.7)

where

Cc
ab =

1

2
g̃cm (∇ag̃bm + ∇bg̃am −∇mg̃ab) . (D.0.8)

Since ∇ag̃bc = ∇a (Ω2gbc) = 2Ωgbc∇aΩ, we obtain for Cc
ab

Cc
ab = δca∇b ln Ω + δcb∇a ln Ω − gabg

cm∇m ln Ω. (D.0.9)



Hence we have a relation between the two connections ∇̃ and ∇ in terms

of the initial metric g and the conformal factor Ω. Therefore all inter-

esting geometric objects defined on (M, g) and (M, g̃) in terms of the

connection, namely geodesics, curvature etc. can be related via the ini-

tial metric g and the conformal factor Ω.

As an example consider an affinely parametrized geodesic γ in (M, g)

with tangent vector field n. Then n satisfies ∇
n
n = 0 or, in index nota-

tion, na∇an
b = 0. What is the corresponding relation on (M, g̃)? By eqs.

(D.0.7) and (D.0.9) we have

na∇̃an
b = na∇an

b + naCb
acn

c = 2nbnc∇c ln Ω − (nan
a) gbm∇m ln Ω.

(D.0.10)

Thus in general γ fails to be a geodesic with respect to ∇̃. However, in

the case of a null geodesic, nan
a = 0, equation (D.0.10) shows that γ is

a pregeodesic [82], that is, the tangent n satisfies

∇̃
n
n = fn, (D.0.11)

where the function f is f = 2∇
n

ln Ω. A pregeodesic can allways reparametrized

to be a geodesic. Hence null geodesics are conformally invariant.

The components of the Riemann curvature tensor in (M, g̃) may be

found by the usual formula in terms of the connection coefficients Γ̃a
bc

which are related to the Γa
bc by Γ̃a

bc = Γa
bc +Ca

bc. However, we can proceed

starting from the definition of the Riemann tensor

∇c∇dZ
a −∇d∇cZ

a = Ra
bcdZ

b

and use eqs. (D.0.7) and (D.0.9) to find

R̃a
bcd = Ra

bcd − 2∇[dC
a
c]b + 2Cm

b[dC
a
c]m

= Ra
bcd + 2δa[d∇ c]∇b ln Ω + 2gamgb[d∇ c]∇m ln Ω

+2
(
∇[d ln Ω

)
δac]∇b ln Ω − 2

(
∇[d ln Ω

)
g c]bg

am∇m ln Ω

−2gb[d δ
a
c]g

mn (∇m ln Ω)∇n ln Ω. (D.0.12)

Contracting on a and c, we obtain the Ricci tensor

R̃ab = Rab − (D − 2)∇a∇b ln Ω − gabg
mn∇m∇n ln Ω

+ (D − 2) (∇a ln Ω)∇b ln Ω − (D − 2) gabg
mn (∇m ln Ω)∇n ln Ω,(D.0.13)



where D denotes the dimension of the manifolds involved. Transvection

of the last equation with g̃ab = Ω−2gab gives the relation between the

scalar curvatures,

R̃ = Ω−2
[
R− 2 (D − 1)� ln Ω − (D − 1) (D − 2) gab (∇a ln Ω)∇b ln Ω

]

(D.0.14)

where � = gab∇a∇b.

This ends the necessary background on conformally related space-

times.
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quelques-uns de ses développements (Gauthier-Villars, Paris), p.

26.

[100] Turner M.S. & Widrow L.M., 1986, Homogeneous cosmological

models and new inflation, Phys. Rev. Lett., 57, 2237.

[101] Wald R., 1984, General Relativity, (University of Chicago Press,

Chicago).

[102] Wald R.M., 1983, Asymptotic behavior of homogeneous cosmologi-

cal models in the presence of a positive cosmological constant, Phys.

Rev. D 28, 2118.

[103] Weyl H., 1922, Raum–Zeit–Materie 3rd ed. (Springer, Berlin);

Weyl H., 1952, Space–Time–Matter (Dover, New York).

[104] Weinberg S., 1972, Gravitation and Cosmology, (Wiley, New York).

[105] Willmore T.J., 1993, Riemannian Geometry, (Clarenton Press, Ox-

ford).

[106] Yang C. N., 1974, Integral formalism for gauge fields, Phys. Rev.

Lett. 33, 445.

[107] Zeldovich Ya., 1970, A hypothesis unifying the structure and the

entropy of the universe, Mon. Not. R. Astron. Soc. 160, 1.



[108] Zeldovich Ya & Grishchuk L., 1984, Structure and future evolution

of the ‘new’ universe, Mon. Not. Astron. Soc. 207, 23.


