MANEIIESTHMIO AITAIOY

TMHMA MHXANIKON ITAHPO®OPIAKQN
KATI EIIIKOINOQNIAKON YXYYXTHMATOQN

ATATPIBH

Yoo T amoxtnon Awaxtopeod Atmhduatog
Tou Turuatog Mnyovixdv IThnpogoptaxdv xou
Emuxowvwviaxdy Yuotnudtoy

®cbddwpov Mraldérouviou

ITPOATATPA®H KAI YAOIIOIHXH
KPYIITOTPA®IKQN ITPOQTOKOAAQN AYXPAAEIAY
ME AITAITHXYEIY ATAYXPAAIXHY TAIQTIKOTHTAXY

(Specifying and Implementing Privacy-Preserving Cryptographic Protocols)

YuuBovdevtikn Emitponn:

Ipéedpog:

Ytégavog I'npitloing
Avamnpwtic Kadnyntic
Mavemotnuiou Avyaiou

Mérn:

Ywxpdtne K. Kdtouwxag
Kadnyneic
IMavemotnuiou Ilepande

Kovotavtivog Aoumptvouddxng
Enixouvpoc Kadnyntic
Mavemotnuiov Avyaiou

Eéetaonikn Emigpornn):

Ilpéedpog:

Ytégpavoe I'npitloing
Avomnpwtic Kadnyntic
Mavemotnuiou Avyalou

Mérn:

Ywxpdtne K. Kdtowag
Korhnynthc
Mavemotnuiou Tlewpondg

Kwvotavtivog Aaumpvouddxng
Enixoupoc Kadnyntic
Mavemotnuiou Avyalou

Baotheioc Xpuowdnovhoc
Korhnynehc
Toviou Havemotnulou

Iwdvvne Aoplévtac
Korhnynthc
Mavemotnuiou Avyalou

Anunteog Pwtdxng
Enixoupoc Kadnyntic
Mavemotnuiou Avyalou

Yrupldwv Kwtodxng
Kodhnynthc
Mavemotnuiou Avyalou

Specitying and Implementing Privacy-Preserving
Cryptographic Protocols

Theodoros Balopoulos

October 26, 2007

ITepiindn

H Swrtei3) auty| aoyoleltan Ue TNV TEOBLAYRUPY X0 UAOTOINOT TEWTOXOMWY AGPIAELNS UE
ATOUTACELS OLAGPIALOTG IWOWTIXOTNTAUS, OTWS Yol TUPAOELYUA To TEWTOXOMAAL NAEXTEOVIXGDV
UETENTOY, Mhexteovixrc Pnpogopiag xon emhextinic anoxdhudng dedouévwv. O otoyog,
boov agopd v Tpodlaypapt| Toug, eivar auth va yiver pe tumxr uédodo (formal method),
X0, 600V aopd TNV Vhorolnot Toug, va PactleTon oTNY TEOdLYEAPY) TOUS xou Vo Slac@ahilel
TIC TER! IBWTIXOTNTIC ATAUTHOELS.

To umdpyov epeuvntixd €pyo otn diedvy| BiBAoypapia o TuTxég Yedbdoug BEV XUNDTTEL
ETAPAWS TA TPWTOXOAAAL ACPIAELUG YE ATAUTACELS OLAGPAAIGTS IOUWTIXATNTIG OGO SAAWY ELDGDY
TEWTOXOANO. UCGQPIAELIS, OTWS To TEWTOXOA audevTixonolnong. Xtny mapoloa dtate3n
unootneiletar 6Tt ot AdyoL Yo auTy TNV avendpxeta UeAETng eivon ot e&hc: Tlpwrov, 6TL Ta
TEWTOXOAAO UE ATOUTHOELS DACPINLOTS WOLWTIXOTNTAS Bacilovton o€ mo eZEBIXEVUEVT] XQUT-
Toypapia, 6nwe 1 déoueuor (commitment), n Tl unoypay| (blind signature), n oanddeiln
undevixric yvwone (zero-knowledge proof), 1 ogouoppixt xpuntoypagia (homomorphic en-
cryption), to mix tou Chaum xou to onion routing. AeOtepov, bt eivon amapoityty 7 Oi-
aopomoinon oty Hovielomoinor TN xhaotxic xpuUnToypapiac (CUUUETEIXY Xt AoOUUETEN
XPUTTOYPAONOT X0l PNPLIXES UTOYPAPES) TOU TA TEWTOXOAAYL QUTE Y ENOULOTOOUY otd X0VoD
UE TO UTOAOLTTOL TEWTOXOANL.

H dwter auty ypnowonoel we Bdorn 11 yAOcoa tpodaypaprs tpwtoxoiwy Typed
MSR [14, 15], xodé¢ xar tny mponyolueyn epyooio woc otny bl [10, 7, 9, 8, 6] epeuvntixy
xote0YUVOT) XL OTOYEVEL UE TPOTOTOLACELS XU TROOUNAXES VoL TNV UETATEEDEL GE XUTAAANAT,
AUPEVOS YLOL TNV TEOOLAY PUPT] TEWTOXOMAWY UE ATOUTACELS DACPIALOTS IOLWOTIXOTNTAS, APETEQOU
Yoo Ty mpodaypopyy evoe xatd Dolev-Yao emtidépevou [19] oyedoaoyévou yur enideor oe
TewtoxXoMa TéTowu eidouc. Emmiéov, ypnowonowel wg Bdorn tn yhdooa Jif [30, 31, 29,
xS xon TNV TEONYOLUUEYY epyacia wac [6] otny (Bia epeuvntind xotebYuvon xar oToyevel
vo emdetlel g 1 YAWooo auth, mou StadéTel oUOTNUA TUTWY YIol ATOUTACEL, ACQIAELIS,
urogel va yenotonotniel ue TETOOY TEOTO WGTE OL ABUVIUIES OTNY UAOTOINGT TEWTOXOANGY
acpakeiog 660v agopd Tt cuvdeowdTnto (linkability) va propolv va aviyveutolv ue éva
OLVBLAOUO GTUTIXMY Xou BUVOIXGY (runtime) e €Yy wV.

To Bacixd cuunepdoyota Tng dtateBnc authc elvon Tor axdroudo:

1. Tlpoxewévou 1 Typed MSR vo efvar xatdAAnhn yiow TNV TEOBLAYQUPT| TEWTOXOMWY
AGQPUAELNS YE UTOUTHCELS WOIWTIXOTNTAS, OEV Yo TPENEL VA LOVTEAOTIOLEL T GUUUETELXN
XL TNV ACOUPETEN %xpUTTOYEAQNCT we arTioxpatixh. Mia tétoln arholoteuon unopet
Vo un onuoveyel TEoBAuATY GTY LOVIEAOTOMOT IAWY TEWTOXOAA®Y, A& odnyel
O€ aVUTOEXTES ABLVOULES BLUGUYOECTIC GTA TEWTOXOANA TOU UEAETOVUE OTNV TopoVoo

oLoteLB.

2. MnopoUyue va xaTaoxeLdcouue UYNAOY EMTEDOL LOVTIEAOTOIGELS Yo XPUTTOYpApioL O
oOVUETN and TNV xhaowxy|, OTWS eivon 1) BEGUEUOT), 1) TUYAT| UTOYEAUPY), 1) ATODEET UT)-

10.

OEVIXNG YVWOTNS XAl 1) OUOUORPLXT XQUTTOY AP

H ypriomn un d1adpaotixdy LOVIEAOTOLACE®Y YLa TIC ATOOEEELS UNBEVIXNS YVWONS 00NYEL
GTNV anhoTnoinon TG0 TNG TEODYPUPHS TWV TEOTOXOAAWY, OGO XAl TNG UETATEOTHC
auTH o€ LAoToinGT Toug.

Me [dom ti¢ tpoavagepeioeg ahhayég xar tpocdrxeg, 1 Typed MSR yivetow xatdAinin
YLOL TNV TEOOLALYPAPY) TRWTOXOAAWY AGPIAELIG UE ATOUTAGELS LOLWTLXOTNTAS, OTWS DELY VEL
1 TEOBLIY AT TWY BUO TEWTOXOMWY NAEXTEOVIXNS Pnpogopiac Tou TEpLEyovTo GTNY
Topolo dlTE3Y.

. 'Eva anhé cbotnua 1Onwy, Tou yenotwonoteitor TapdAAnAa ue 10 cUGTNUA TOTWY TNg

Typed MSR, anotpénel ouYXEXPWEVES ECQUNUEVES YPEHOES TNG XQUTTOYRUPING ToU
umogel vor 00MYicouy oe adLVAULES GUYBECIUOTNTAS, XAVMS XAl VoL TUpaxoAovIfceL TNy
ATELAT) CUVDECIUOTNTAG o TPoXUTTEL and xdide miavy| yeror Tng xpunTtoypapiog.

Eivar amapaitntn 1 evnuéowon tou exgpacuévou oe Typed MSR yovtélou tou xatd
Dolev-Yao emtidéuevou ue Bdom to mopandvew, wote vo uropel mhéov va emtedel ota
TEWTOXOMAA ToL OTolor UEAETAE.

H evnuepwuévn autr éxdoon tou xotd Dolev-Yao emtidéuevou onuovpyel €va Tumixo
(formal) nep3dhhov, oo onoio unopolv va exPEAcTOVY UBUVOUIES BIIGUVOESTC TWY
TEWTOXOMNWY.

To mapamdvew uropolv vo arotekéoouv T Bdom v T yeron tne yiwooog Jif ue
TETOLO TPOTO, WOTE 0L ABLVAULES BTNV VAOTOINGT TEWTOXOMWY AcQUAeldg 6GOV apopd
T1) GUVOEGLUOTITA VoL LTOROVY VL AVLY VELTOUY UE EVOL GUVOUAGUO CTATLXWY X0l OUVOULXGDY
eENEYYWV.

H cuvdeootnta 0ev elvar duvatd va eheyyVel oTatind 6T YeEVX! TepinTtwo, oahrd
uTopEl vor EAEY yETAL DUVIIXY XAUTE TNV EXTEAECT) TWV TEWTOXOAAWY.

O xavéveg tng Typed MSR pe toug omoloug mapdyovrton tar xawvolplor Unvouoto To
omola propel va oynuaticer o xatd Dolev-Yao emtidéuevog and €va GOVORO YVOOTOVY
UnvuudTeY yweiloviar o 600 xatrnyopieg, avdhoya UE TO oV YENOWOTOWOVINL OTH
PAoT ATOBOUNCNS TOV YVOOTOY UNYUUATOY 1| OTN QAOT XUTACKEVAC TWV XAVOURLOV.
Yuyxexpwéva unvouota mou Pactlovtar oty xpuntoypapia Tng dtateBrc auTrc dev
UTO0POUY OUWS VA YwpeloToly ot pla and Tig dLo xatnyopieg, xadwg elvor weekun 7
YP1ion Toug X GTIC 000 AUTEG PACELS.

Abstract

Formal methods are an important tool for designing and implementing secure cryptographic
protocols. However, the existing work on formal methods does not cover privacy-preserving
protocols as much as other types of protocols (for example, authentication protocols). Fur-
thermore, privacy-related properties are not always easy or even possible to prove statically,
but need to be checked dynamically during the protocol’s execution. This thesis: (i) pro-
poses abstractions for some (relatively) complex cryptographic primitives used in privacy-
preserving protocols, and uses these abstractions to develop suitable message constructors
and a linkability-oriented type system for Typed MSR. (a strongly typed specification lan-
guage for security protocols), and (ii) demonstrates how these typed message constructors
can be implemented in Jif (a security-oriented extension of a subset of the Java program-
ming language dealing with information flow) in such a way that linkability vulnerabilities
can be detected with a mixture of static and runtime checks.

Original Work

The symbol € is used in front of a section’s title to denote that the section — in both its
main body and subsections — presents original work and new results.

Contents

1 Introduction

1.1 Privacy Terminology
1.1.1 Names and Identity
1.1.2 Anonymity
1.1.3 Pseudonymity
1.1.4 Privacy e
1.1.5 Trust and Reputation.
1.1.6 Repudiation
1.2 Formal Methods
1.2.1 Formal logics
1.2.2 Process Calculi
1.2.3 Strand Spaces
1.24 Typed MSR
1.3 About this Thesis

Specifying Privacy-Preserving Cryptographic Protocols

The Specification Language: Typed MSR

2.1 Messages e e e e
2.2 Message Predicates
2.3 States ... e
2.4 Types . ..o
2.5 Rules
2.6 Roles and Protocol Theories
2.7 & A Critique of Typed MSR’s Encryption
Privacy-Preserving Cryptographic Abstractions
3.1 & Primitive Cryptographic Abstractions
3.1.1 Asymmetric Encryption and Digital Signatures
3.1.2 Commitment
3.1.3 Blind Signatureso
3.1.4 Zero-Knowledge Proofs

11
11
11
12
14
14
15
16
16
16
18
19
20
20

21

23
24
25
25
26
26
28
28

3.1.5 Homomorphic Encryption
3.2 & Derived Cryptographic Abstractions
3.2.1 Mixes
3.2.2 Onmion Routing

4 Case Study: Specifying e-Voting Protocols
4.1 <> Protocol based on Blind Signatures and Mixes

4.1.1 Description Lo
4.1.2 Specification
4.1.3 Security Analysis L.

4.2 & Protocol based on Homomorphic Encryption

4.2.1 Description oL
4.2.2 Specification o000
4.2.3 Security Analysis

5 A Simple Linkability-Oriented Type System

5.1 @ Types Lo
5.2 Signatures
53 @ TypeRuleso

6 The Dolev-Yao Intruder

6.1 The Standard Version
6.2 € An Extended Version
6.3 <€ Demonstrating Linkability Attacks

CONTENTS

II Implementing Privacy-Preserving Cryptographic Protocols

51

7 The Implementation Language: Jif

7.1 The Decentralized Label Model (DLM)
7.2 Program Counter
7.3 Language Features
7.4 Selective Declassification
7.5 Class Parameterization
7.6 Dynamiclabels 00000
7.7 Handling Exceptions

8 Linkability-Checking in Jif

8.1 & A Cryptographic Framework
8.2 <& Runtime Linkability-Checking
8.3 & Message Inference

9 Summary and Conclusions

53

.......... 23
.......... 93
.......... 54
.......... 54
.......... 95
.......... 95
.......... 25

57

.......... 57
.......... 59
.......... 60

67

CONTENTS

10 Future Work

69

10

CONTENTS

Chapter 1

Introduction

In this Chapter we introduce the necessary terminology about privacy, and give an overview
of the most commonly employed formal methods for cryptographic protocols.

1.1 Privacy Terminology

In order to provide an accurate overview of this topic, it is necessary to define the basic
terms. These definitions are needed in order to build more formal descriptions. This section
is based on many papers in the field, but most notably on Pfitzmann and Kéhntopp’s paper
“Anonymity, Unobservability and Pseudonymity — A Proposal for Terminology” [34].

1.1.1 Names and Identity

Many of the concepts we examine here are in some way concerned with the obfuscation of
information which relates to a principal’s identity. This information can take many forms,
but the classic example is the name. The name of an individual is intended to be a unique
identifier within some group that allows for that individual to be distinguished from the
other members of that group. The fact that, in the increasingly large social groups in which
we find ourselves, a classical name is rarely totally unique does not affect the purpose of
distinguishing those around us by such labels.

When we discuss the anonymity properties of a principal, we are implicitly assuming
definitions of identity. To a large extent, we can assume that a user of a system may
be treated as a unique individual who performs actions that can potentially be traced by
another individual. However, there is a dissociation between a user’s representation in a
system and his real-world personality: multiple users can collaborate to form a single online
identity, and a single user may have multiple representations online. The implications of
these are not fully understood, as the assumption that a single user is linked to a single
representation is almost uniformly made in the field.

11

12 CHAPTER 1. INTRODUCTION

1.1.2 Anonymity

Anonymity may be described at the linguistic level as the property of being nameless, or
having an absence of identification. To extend this definition to a more common usage
within the field, we borrow from [34]: “Anonymity is the state of being not identifiable
within a set of subjects, the anonymity set.”

While this definition refers to the anonymity set, an anonymity metric which has since
then fallen into disfavor, the first half of the definition expresses the main purpose of
anonymity and as such is of use to us.

Anonymity is the fundamental identity hiding property, providing total removal of
identifying information from its subject. As such, anonymity research comprises the vast
majority of work into the field of identity hiding. This is by no means a limitation to
current work in the field.

It is worth noting that any identifying information required by principals with appro-
priate authority can be added into a data channel within an anonymous system. As such,
anonymity provides us with the choice to limit identity hiding as much or as little as desired
by explicitly revealing identifying information when it is necessary.

As such, anonymity has been, and will probably remain, the focal point for research
into identity hiding. Additionally, anonymity systems are based upon a small set of pos-
sible approaches, Chaum’s mix [16] being the most significant of these. It is discussed in
Section 3.2.1. The most active topic of research into identity hiding is therefore the finer
details of the various subtle variations of these basic ideas.

Despite this focus on anonymous systems, total anonymity is very much a two-edged
sword. For certain forms of application, such as posting to mailing lists or accessing the
world wide web, anonymity can be a highly desirable goal. Other systems, however, suffer
greatly if there is no possibility of tracking identities. It is not good policy, for example, to
entrust your life savings to an anonymous user claiming to be a reputable bank. Indeed,
if you were to do so and were yourself anonymous it would be impossible in the future to
track down and recover your savings even if you did happen to have stumbled across an
honest anonymous banker. For this reason pseudonymous communication, which provides
a certain amount of information associated with an identity, is required for a number of
practical identity hiding systems.

Sender and Recipient Anonymity

We have defined anonymity as the property of being nameless, given certain assumptions
concerning the meaning of a name. However, this namelessness is of use only in the
context a communicating system. Communication requires two participants: a sender and
a recipient, where either participant may actually be a group of individuals. To whom does
anonymity apply?

There are three cases. We may ensure the anonymity of the initiator of some commu-
nication, but leave the recipient’s identity open to the world. Conversely it is possible for
a sender to make available their identity, but to ensure that the recipient of their message

1.1. PRIVACY TERMINOLOGY 13

remains unknown. This provides a very different problem to sender anonymity and is also
less focused upon. Finally, it may be desirable for both end-points of communication to
be hidden from observation, by outside observers or from each other. Each of these forms
of anonymity has its own set of applications, design problems and potential attacks.

Connection-Based and Message-Based Anonymity

Another important distinction in anonymity is the form of the communication which takes
place between the sender and the recipient. The majority of data transmitted over the
Internet takes place using the connection-based Transmission Control Protocol (TCP).
However, at a higher level than the underlying protocol much of the communication than
takes place, especially email, is based upon the messages themselves.

The main body of the current literature focuses strongly on message-based anonymity,
which is an easier problem than that of anonymity within connection-based systems. There
are, however, some applications (such as remote terminal sessions) which simply cannot be
performed effectively using a message-based approach. For these systems, it is necessary
to use a connection-based approach.

In recent literature, a number of approaches to connection-based anonymity have been
proposed. By far the most popular of these is the onion routing system presented by
Goldschlag, Reed and Syverson [22]. Onion routing is discussed in Section 3.2.2. The main
concern with such systems is the requirement for low-latency connections and bandwidth
restrictions. Message-based systems inherently cause delays between data transfer that are
unacceptable in connection-based systems.

The Anonymity Set

The traditional method of quantifying anonymity is to utilize the cardinality of the set of all
participants who could have performed an action. This approach was proposed by Chaum
in his paper “Untraceable electronic mail, return addresses, and digital pseudonyms” [16],
where he utilized the anonymity set quantification to analyze the anonymity provided by
a mix. The point is simple: the larger the size of the set which could have performed an
action, the stronger the anonymity provided by the system.

However, this quantification, while certainly of some value, is not considered ideal
anymore. The most critical of the deficiencies of the anonymity set is that it assumes
a uniform distribution of probabilities across the set of participants. This assumption is
rather naive for a group of heterogenous users [37]. In response to this issue, a number
of alternative quantification methods have been proposed which seek to deal with both
this and other problems inherent in the anonymity set. These methods include the work
of Serjantov and Danezis [36], as well as the work of Diaz [18], both of which describe
the level of anonymity provided by a system through an information theoretic approach,
making the entropy of a set of users the defining factor.

14 CHAPTER 1. INTRODUCTION

Unlinkability

An important underlying component of anonymity systems is the property of unlinkability.
Pfitzmann and Kohntopp [34], in reasoning about anonymity systems, propose a viewpoint
defined by a set of subjects sending messages to a set of recipients. In this setting, the
critical concept is an item of interest, defined as the sending or receiving of a message.

The desirable property of an anonymity system is therefore that items of interest are
unlinkable to any principal in the system, and no principal in the system can be linked to
a specific item of interest. This provides a basic definition of anonymity which, however,
does not lend itself to any form of quantification.

However, based on this definition of linkability, we introduce a qualitative classification
of messages with respect to their effect on the unlinkability of the sending principal in
Chapter 5 of this thesis.

1.1.3 Pseudonymity

Pseudonymity, in terms of online systems, is achieved by having users associated with an
at least semi-persistent identifier. The purpose of this is to allow types of transaction that
rely on user history and behavior, and which are not possible using a truly anonymous
system. This is of particular use in systems which must provide a level of confidence for
users, or which seek to rely on networks of trust between users, and thus cannot rely upon
a simple one-use session identifier.

Pseudonymity can be achieved through the use of an anonymous infrastructure with
user information and history stored within the explicitly transmitted data. If the system
upon which communication relies is inherently anonymous, then pseudonymity becomes
an easier proposition, as data can be released as chosen by the user without fear of extra
information leakage from the system.

Pseudonymity may therefore be seen as a problem which exists at a higher level that
anonymity. An anonymous channel may have some form of persistent user identification
added which is kept secret between the sender and recipient. Pseudonymity may therefore
be viewed less as a primitive construction and more as a combination of other security
properties such as secrecy, anonymity and authentication.

There has been relatively little practical research into pseudonymity, perhaps due to
the status of anonymity as a problem yet to be definitively solved.

1.1.4 Privacy

Privacy is a less well-defined property than the others discussed here. Nonetheless, it is
what provides the motivation for almost all of the research which is undertaken in the field.

There are several definitions of privacy which have appeared over the years. Arguably
the first extant definition was made by the United States Supreme Court Justice Louis
Brandeis and lawyer Samuel Warren in the Harvard Law Review paper “The Right to
Privacy” [12], published in 1890. The notion had, however, been discussed throughout

1.1. PRIVACY TERMINOLOGY 15

human history as far back as Aristotle, who defined the separate spheres of public and
private life rights in his “Treatise on Government” [4].

Brandeis and Warren considered the right to privacy as a natural extension of an in-
dividual’s right to liberty, stating that liberty as a right had initially been enforced with
respect to preventing physical assault. As newer business models and media coverage
started to have significant effects on society, intrusion into private lives for public con-
sumption became of concern to many, and the ideal of liberty was necessarily extended to
include unfair intervention into aspects of a person’s life which could be embarrassing or
dangerous if publicized.

Real interest in privacy, however, appears to have begun in the second half of the twen-
tieth century. The United Nations Universal Declaration of Human Rights [32], finalized
in 1948, embodied the right to privacy in its twelfth article: “No one shall be subjected
to arbitrary interference with his privacy, family, home or correspondence, nor to attacks
upon his honor and reputation. Everyone has the right to the protection of the law against
such interference or attacks.”

Similarly, the International Covenant on Civil and Political Rights (ICCPR) [2], a
section of the International Bill of Rights which was adopted to expand upon and clarify
the Universal Declaration of Human Rights, reiterates the fundamentality of privacy as a
right to which humans are entitled.

In British law, the first explicit electronic privacy legislation was the 1984 Data Pro-
tection Act [1]. This act, which has since been superseded by the 1998 Act of the same
name, regulated the uses to which automatically stored data could be put. This legislation
places strict limitations upon individuals which store the personal data of third parties,
ensuring that any information is subject to a number of data protection principles. These
principles include the right of the subject to inspect any stored data and the duty of the
holder of the information to provide adequate technical protection for stored data.

The growing level of personal information stored by computers has brought privacy
forward as a right which must be protected. The varying privacy legislation and regulations
which are being enacted in various countries across the world are a useful step in preventing
the widespread storage and dissemination of personal information. There are, however,
always parties which seek to bypass these measures for a variety of purposes. Rather than
regulate the storage and transmission of personal information, advocates of anonymity
propose to achieve the same goals by preventing such information ever becoming known.
It is the belief in this approach which provides inspiration for the research covered in this
thesis.

1.1.5 Trust and Reputation

Trust and reputation are closely linked properties, particularly within the context of
anonymity systems.

Reputation is a property which associates a level of trust with a particular user in a
system. This allows for future judgements to be made on the past behavior of that user.
Reputation is particularly important in commerce systems where users are required to

16 CHAPTER 1. INTRODUCTION

invest real economic interests in other users of a system. In many systems, reputation
statements refer to pseudonyms.

1.1.6 Repudiation

Security protocol designers often wish for a party to prove a certain fact to another party in
such a way that it cannot later be retracted or denied. This is to satisfy the necessity that an
agent which negotiates a contract with another party must have some method of assurance
that this party will honor the contract. This property is known as non-repudiation.

In anonymity systems, however, it may often be desirable to prove a fact to another
agent at some point in time, but for this information to be unusable in creating long-term
profile information. The ability to present a piece of information to an agent but for this
information to be valid for no longer than the course of that single transaction prevents
personal information concerning the agent from being catalogued for the purposes of future
identification.

An important approach towards this form of information exchange is the zero knowledge
proof [21]. This form of exchange allows for individuals to prove that they hold a certain
piece of information without revealing the information itself. Whilst this notion is not
intrinsically a feature of anonymity systems, it is a closely related information hiding
property which is of great potential use in achieving anonymity in realistic systems. Zero
knowledge proofs are discussed in more detail in Section 3.1.4.

1.2 Formal Methods

Formal methods [23] are an important tool for designing and implementing secure crypto-
graphic protocols. By applying techniques concerned with the construction and analysis
of models and proving that certain properties hold in the context of these models, formal
methods can significantly increase one’s confidence that a protocol will meet its require-
ments in the real world.

In the rest of this Section we briefly present the formal methods that formed the basis,
or influenced the research covered in this thesis.

1.2.1 Formal logics

Formal logics grew out of a desire to express the logical relationship between stated con-
cepts, and to allow for generation of new (true) statements by the application of rules to
existing statements. This allows for propositions to be proved, based upon facts which are
already known and basic axioms which are assumed to be true.

Formal logics provide a rigorous structure in which the truth of statements may be
ascertained based upon the application of given rules and axioms, within the confines
of such rules. The nature of the underlying rules differ between the various forms of
formal logic, dependent upon the scope and purpose of the logic in question. Different

1.2. FORMAL METHODS 17

logics express notions of belief, knowledge, uncertainty or even ignorance within specific
domains.

The application of formal logics to the analysis of security protocols was one of the first
approaches taken towards the verification of such systems, with the most notable example
being the BAN logic [13]. Logics have been shown to detect a range of problems with
protocols whilst being reasonably easy to use. However, logics suffer from being a high
level abstraction of a system, and as such may allow flaws which exist in the protocol to
pass undetected.

The BAN logic

The BAN logic [13], developed by Burrows, Abadi and Needham, is possibly the most
well-known of all logics which have been used for analyzing protocols.

BAN is a modal logic which is applied to authentication protocols with a view to proving
their correctness. To achieve this, the logic allows for the basic assumptions and goals of
some protocol to be expressed as formulas in the syntax of the logic, along with the steps
taken during the running of the protocol.

When this representation has been made, deduction rules are applied which provide a
logical path from the steps of the protocol to the desired goals. If this can be successfully
achieved, then the goals of the protocol are held to be true.

BAN relies on a syntax centered around the belief of participants, and some simple
rules which allow for the beliefs of an agent to be manipulated. The BAN logic contains
many constructs and deduction rules, the entirety of which is not given here. Some basic
constructs include:

e A X : Asees X, or the message X has been sent to A.

e A X : Asaid X at some point.

A E X : A believes, or has justified belief in, X.

A B X : A has jurisdiction over X.

£(X) : The message X is fresh (i.e. it has not been seen before).

{X}k : The message X encrypted with the key K.

Of note is the fresh construction £(X). Many logics which must deal with timing
information abstract away from such details. The BAN logic solves the problem of time by
distinguishing between two epochs: the past and the present. This has proven sufficient to
express a large number of complex protocols.

These constructions are manipulated using deduction rules which define the behavior
which results from such facts. As an example, the rule of jurisdiction, which concerns an
agent’s belief based upon the perceived authority of another agent can be expressed in the
following way:

18 CHAPTER 1. INTRODUCTION

AEBBX AEBEX
AEX

which may be read as: If A believes that B has authority over X and A believes that B
believes X, then A believes X.

BAN has been applied to a number of protocols, most famously the Needham-Schroeder
protocol, which forms the basis of the widespread Kerberos authentication mechanism. The
BAN logic was shown to detect a flaw in this protocol which allowed for an attacker to
replay information due to a particular nonce being assumed fresh. It is worth mentioning
that this flaw was already known before it was discovered by the BAN logic analysis.

There have been a number of logics over the years which have sought to correct some
of the flaws that have been observed in the BAN logic, such as [38]. None of these have
gained quite the level of acceptance that was observed in the BAN logic, and the increasing
use of process calculi and automated theorem provers has caused approaches such as these
to be less examined than previously.

BAN, as a logic of authentication, may provide an interesting insight into what is
required of anonymity protocols which can be seen as requiring the opposite of authenti-
cation. We wish to prove that a party with whom we are communicating is unknown to
us, and therefore none of the properties which the BAN logic seeks to prove should hold.

1.2.2 Process Calculi

Process calculi provide a mathematical notation which allows for the description of com-
municating processes in a rigorous fashion. Their focus on communicating processes makes
them promising for the expression of anonymity systems, which are by their very definition
concerned with the communication between entities.

This approach to describing computation has evolved relatively recently in the field
of theoretical computer science, in response to the increasing view of computers as com-
municating entities in larger networks rather than stand-alone machines. The possible
applications of process calculi for security in these networks follow as naturally as the use
of the traditional formal methods in traditional security situations.

There are two major process calculi in the literature. These are CSP, which was origi-
nally described by Hoare [24], and the 7-calculus of Milner [28] which was developed from
Milner’s earlier calculus, CCS [27]. Both CCS and the 7m-calculus provide a Turing com-
plete model of computation based upon the notion of message passing. Processes in the
calculus may send and receive messages along defined channels. These messages may rep-
resent, data transfer or the name of a new channel, which allows for the dynamic creation
of new topologies in the system. The approaches taken by each of these calculi are briefly
discussed below.

CSpP

CSP, or Communicating Sequential Processes, was developed by Hoare as a method for
describing communicating processes operating in parallel. The original CSP paper by

1.2. FORMAL METHODS 19

Hoare [24] presented the view that: “... input and output are basic primitives of program-

ming and that parallel composition of communicating sequential processes is a fundamental
program structuring method”. Therefore, Hoare devised his calculus around the interaction
between these processes.

CSP was the first published calculus which approached the formal description of soft-
ware in this fashion, although it was shortly followed by Milner’s Calculus of Communi-
cating Systems which eventually became the m-calculus. CSP has gained a wide following
in the formal methods community, which has led to many interesting developments within
the language such as timing and probabilistic elements. In addition, there are a number
of mature model checkers which handle CSP-based proofs of systems.

CSP has unsurprisingly been applied to the analysis of security protocols, which are
intuitively applicable to a calculus which is based upon the interaction between commu-
nicating parties. CSP has even been applied to a basic analysis of dining cryptographer
networks, by Schneider [35].

The m-Calculus

The m-calculus was developed as an extension of Milner’s calculus of communicating sys-
tems (CCS), which was presented in 1980 [27], shortly after the publishing of Hoare’s CSP.
Both CCS and CSP went about the description of communicating processes in a similar
fashion and presented the same level of expressive power.

In seeking to describe communicating processes as they exist in the networked world
which emerged since the development of CCS and CSP, Milner observed that [28]: “Physical
systems tend to have permanent physical links; they have fixed structure. But most systems
in the informatic world are not physical; their links may be virtual or symbolic... These
symbolic links can be created or destroyed on the fly...”

To solve this problem, Milner extended the basic capabilities of CCS to include mobility.
Mobility adds to the m-calculus the ability for agents to both form new links with other
agents and to destroy old links. An agent may therefore begin life in one area of a system
and, in the course of execution, relocate to an entirely new portion of a network.

1.2.3 Strand Spaces

Strand Spaces [20] is a technique for analyzing cryptographic protocols, particularly au-
thentication and key distribution protocols, at a high level. It uses the Dolev-Yao model of
cryptographic protocols, and models the real-world cryptographic algorithms as abstract
operations.

A strand is a sequence of events: it represents either an execution by a legitimate party
in a security protocol, or else a sequence of actions by a penetrator. A strand space is a
collection of strands, equipped with a graph structure generated by causal interaction. In
this framework, protocol correctness claims may be expressed in terms of the connections
between strands of different kinds.

20 CHAPTER 1. INTRODUCTION

1.2.4 Typed MSR

Typed MSR [14, 15] is a strongly typed specification language for security protocols, aiming
to discover errors in their design. It was developed by Iliano Cervesato. It is discussed in
detail in Chapter 2. Typed MSR formed the environment for formally expressing many of
the results of the research presented in this thesis.

1.3 About this Thesis

The existing work on formal methods does not cover privacy-preserving protocols as much
as others types of protocols (for example, authentication protocols). Privacy-preserving
protocols, such as electronic cash, electronic voting and selective disclosure protocols, need
more exotic cryptographic primitives and techniques (such as blind signatures, commit-
ments, zero-knowledge proofs, mixes and homomorphic encryption), and require a lower-
level abstraction of their primitives and techniques than other types of protocols.

Furthermore, privacy-related properties are not always easy or even possible to prove
statically, but need to be checked dynamically during the protocol’s execution. Although
such an attempt raises the effort needed to implement the protocol, it also has the advan-
tage that it is the actual protocol’s implementation that is being verified, not a possibly
flawed abstraction.

This thesis builds on the Typed MSR, specification language [14, 15], as well as on our
previous work on privacy-preserving protocols [10], and on Typed MSR [7, 9, 8, 6], and
aims to make the language suitable for the specification of privacy-preserving protocols, as
well as for the specification of a version of the Dolev-Yao intruder [19] that is designed to
attack such protocols.

It also builds on the Jif security-typed programming language [30, 31, 29], as well as on
our previous work [6] on Jif, and aims to demonstrate how Jif can be employed in such a
way that linkability vulnerabilities in the implementations of privacy-preserving protocols
can be detected with a mixture of static and runtime checks.

Part 1

Specifying Privacy-Preserving
Cryptographic Protocols

21

Chapter 2

The Specification Language: Typed
MSR

The design and analysis of cryptographic protocols are notoriously complex and error-prone
activities. Part of the difficulty derives from subtleties of the cryptographic primitives. An-
other portion is due to their deployment in distributed environments plagued by powerful
and opportunistic attackers.

The Dolev-Yao model of security [23, 17] tackles the first problem by promoting an
abstraction that has the effect of separating the analysis of the message flow from the
validation of the underlying cryptographic operations. It assumes that elementary data
such as principal names, keys and nonces are atomic rather than bit strings, and views
the message formation operations (e.g. concatenation, encryption and digital signature) as
symbolic combinators. The cryptographic operations are therefore assumed to be flawless.

Iliano Cervesato [14] claims that a significant source of faulty designs and contradictory
analyses can be traced to shortcomings in the language used to specify protocols. The
popular “usual notation” relies on the Dolev-Yao model and describes a protocol as the
sequence of the messages transmitted during an expected run. Besides distracting the
attention from the more dangerous unexpected runs, this description expresses fundamental
assumptions and requirements about message components, the operating environment and
the protocol’s goals as side remarks in natural language. This is clearly ambiguous and
error-prone. Strand formalizations [19], like most modern languages, represent protocols
as a collection of independent roles that communicate by exchanging message. While the
reference to expected runs is dropped, the reliance of this formalism on a fair amount of
natural language still makes it potentially ambiguous.

Therefore, Iliano Cervesato proposed a language based on multiset rewriting, nicknamed
MSR, as a formalism for unambiguously representing authentication protocols, with the
aim of studying properties such as the decidability of attack detection. The actions within
a role are formulated as multiset rewrite rules, threaded together by the use of dedicated
role state predicates. The nature and properties of message components are expressed in
a relational manner by means of persistent information predicates and to a minor extent
by typing declarations. In particular, variables that ought to be instantiated to “fresh”

23

24 CHAPTER 2. THE SPECIFICATION LANGUAGE: TYPED MSR

objects during execution are marked with an existential quantifier (this operator can indeed
be used for that purpose in logical specifications).

He then proposed a thorough redesign of MSR, and established this formalism as a
usable specification language for security protocols (not just authentication protocols). The
major innovations include the adoption of a typing methodology that subsumes persistent
information predicates, and the introduction of memory predicates and of constraints on
interpreted domains that significantly widen the range of applicability of this language. He
called this formalism Typed MSR [14, 15].

The type annotations of the new language, drawn from the theory of dependent types
with subsorting, enable precise object classifications, for example by distinguishing keys
on the basis of the principals they belong to, or in function of their intended use. The
typing infrastructure can point to quite subtle errors, such as a principal trying to encrypt
a message with a key that does not belong to him.

Memory predicates allow a principal to remember information across role executions.
Their presence opens the doors to the specification of protocols structured as a collection
of coordinated subprotocols. Memory predicates can be used to give a specification of the
Dolev-Yao intruder that lies completely within the syntax of MSR roles.

2.1 Messages
In Typed MSR, messages are obtained by applying message constructors to a variety of

atomic messages. Typically, the atomic messages include principals, keys, nonces and raw
data. This is formalized by the following grammatical production:

Atomic messages: a == A (Principal)
|k (Key)
| n (Nonce)
| m (Raw data)

In Typed MSR A, k, n and m range over principal names, keys, nonces and raw data
respectively. Raw data denotes pieces of data whose sole function in a protocol is that
they are transmitted.

The message constructors typically present in Typed MSR that are of interest to us are
those formalized by the following grammatical production:

Messages: 1 a Atomic messages)
x Variables)
Concatenation)

{th
{3

[t]k

We use the letter ¢ (possibly sub-scripted) to range over messages. We write A, k, n and m
(possibly sub-scripted) for atomic constants or variables that are principals, keys, nonces

Symmetric encryption)
Asymmetric encryption)

|
| t1.ty
|
|
| Digital signature)

NN N N N

2.2. MESSAGE PREDICATES 25

and raw data respectively. We also use the letter B for principals and the letter S for
servers (which are also principals). Note that in Typed MSR, the seriffed letters are used
whenever the object we want to refer to cannot be but a constant.

To be able to later support blind signatures based on Chaum’s blinding (see Chapter 3),
we assume that the asymmetric encryption and digital signature message constructors are
based on the RSA cryptosystem.

2.2 Message Predicates

Message predicates are the fundamental ingredient of states, defined in Section 2.3. They
are atomic first-order formulas with zero or more terms as their arguments. Their definition
is therefore based on the concept of message tuple, defined as an ordered sequence of terms:

Message tuples: t == . (Empty tuple)
| tt (Tuple extension)

The predicates that can enter a state or a rewrite rule are of three kinds:

e First, the predicate N(_) implements the contents of the public network in a dis-
tributed fashion: for each (ground) message t currently in transit, the state will
contain a component of the form N (¢).

e Second, active roles rely on a number of role state predicates, generally one for
each rule in them, of the form L;(_,...,_), where [is a unique identifying label.
The arguments of this predicate record the value of the known parameters of the
execution of the role up to the current point.

e Third, a principal A can store data in a private memory predicate of the form
My(-,...,-) that survives role termination and can be used across the execution
of different roles, as long as the principal stays the same.

2.3 States

States are a fundamental concept in MSR. Indeed, they are the central constituent of
the snapshots of a protocol execution. They are the objects transformed by rewrite rules
to simulate message exchange and information update. Finally, together with execution
traces, they are the hypothetical scenarios on which protocol analysis is based.

A state is a finite collection of ground state predicates. The syntax of states is formalized
by means of the following grammar:

States: S = . (Empty state)
| S,N(t) (Extension with a network predicate)

| S, Ll(f) (Extension with a role state predicate)
| S, Ma(f) (

Extension with a memory predicate)

26 CHAPTER 2. THE SPECIFICATION LANGUAGE: TYPED MSR

Protocol rules (see Section 2.5) transform states. They do so by identifying a number
of component predicates, removing them from the state, and adding other, usually related,
state elements. The antecedent and consequent of a rewrite rule embed therefore substates.
However, in order to be applicable to a wide array of states, rules usually contain variables
that are instantiated at application time. This calls for a parametric notion of states and
message predicates.

2.4 Types

Typed MSR makes use of types to enforce basic well-formedness conditions (e.g. that only
keys can be used to encrypt a message), as well as to provide a statically checkable way
to ascertain desired properties (e.g. that no principal can grab a key he is not entitled to
access).

The typing of Typed MSR is based on the notion of dependent product types with
subsorting [5] and the basic types are summarized in the following grammar:

Types: T == principal (Principals)

| nonce (Nonces)
| shK A B (Shared keys)
| pubK A (Public keys)
| privK &£ (
| omsg

Private keys)
Messages)

We use the letter 7 (decorated in various ways) to range over types. Types principal
and nonce are used to classify principals and nonces respectively. Type shK A B is used
to classify the keys shared between A and B. Type pubK A is used to classify the RSA
public key of A. Type privK k is used to classify the private key that correspond to the
RSA public key k. Finally, type msg is used to classify generic messages, which include
raw data, but also all the other stated types.

The notion of dependent product types with subsorting accommodates the need of
having multiple classifications within a hierarchy. For example, everything that is of type
nonce, is also of type msg — but the inverse is not true. Therefore, we say that nonce
is a subsort of msg. In fact, all the types listed above are subsorts of msg. We use the
notation 7 :: 7' to state that 7 is a subsort of 7’.

2.5 Rules

With a slight imprecision that will be corrected as the discussion proceeds, a rule has the
form lhs — rhs. Rules are the basic mechanism that enables the transformation of a state
into another, and therefore the simulation of protocol execution: whenever the antecedent
[hs matches part of the current state, this portion may be substituted with the consequent
rhs.

2.5. RULES 27

It is convenient to make protocol rules parametric so that the same rule can be used
in a number of slightly different scenarios (e.g. without fixing interlocutors or nonces). A
typical rule will therefore mention variables z1,...,x, that will be instantiated to actual
terms during execution. Typed universal quantifiers can conveniently express this fact so
that rules assume the form Vz; : 7....Va, : 7,,.(lhs — rhs). This idea is more precisely
captured by the following grammar:

Rule: r == [lhs — rhs (Rule core)
| Vo7 (Parameter closure)

Both the right-hand side and the left-hand side of a rule embed a finite collection of
parametric message predicate, some ground instance of which execution will respectively
add to and retract from the current state when the rule is applied.

—

Predicate sequences: P Empty predicate sequence)
N(t) Esztension with a network predicate)

: (
P, (
P,L(é) (Eztension with a role state predicate)
P, (

::|:
|
| M4 (%)

Esztension with a memory predicate)

The left-hand side, or antecedent, of a rule is a finite collection of parametric message
predicates guarded by finitely many constraints on interpreted data. It is therefore given
by the following grammar:

—

Left-Hand sides: lhs = P (Sequence of message predicate)
| lhs,x (Eztension with a constraint)

The right-hand side, or consequent, of a rule consists of a predicate sequence possibly
prefixed by a finite string of fresh data declarations such as nonces or short-term keys.
We rely on the existential quantification symbol to express data generation. We have the
following grammar.

—

Right-Hand sides: rhs = P (Sequence of message predicate)
| Jx:71.rhs (Fresh data generation)

Rules are presented using the format shown in the following diagram:

0
Universal Left-hand Existential Right-hand e
quantifiers side quantifiers side

28 CHAPTER 2. THE SPECIFICATION LANGUAGE: TYPED MSR

2.6 Roles and Protocol Theories

Role state predicates record the information accessed by a rule. They are also the mech-
anism by which a rule can enable the execution of another rule in the same role. Relying
on a fixed protocol-wide set of role state predicates is dangerous since it could cause un-
expected interferences between different instances of a role executing at the same time.
Instead, we make role state predicates local to a role by requiring that fresh names be
used each time a new instance of a role is executed. As in the case of rule consequents,
we achieve this effect by using existential quantifiers: we prefix a collection of rules p that
should share the same role state predicate L by a declaration of the form 3L : 7, where the
typed existential quantifier expresses the fact that L should be instantiated with a fresh
role state predicate name of type 7. With this insight, the following grammar defines the
notion of rule collection:

Rule collections: p = (Empty role)
| JL:7 (Role state predicate parameter declaration)
|

r,p (Eztension with a rule)

A role is given as the association between a role owner A and a collection of rules p.
Some roles, such as those implementing a server or an intruder, are intrinsically bound to
a few specific principals, often just one. We call them anchored roles and denote them
as p.

Here, the role owner A is an actual principal name, a constant. Other roles can be
executed by any principal. In these cases A must be kept as a parameter bound to the
role. We use the syntax p"“ to represent these generic roles, where the implicitly typed
universal quantification symbol implies that A should be instantiated to a principal before
any rule in p is executed, and sets the scope of the binding to p. Observe that in this
case A is a variable. With a slight abuse of notation, we sometimes refer to roles of either
kind with the letter p, variously subscripted.

A protocol theory, written P, is a finite collection of roles:

Protocol theories: P (Empty protocol theory)
(Eztension with a generic role)

(Eztension with an anchored role)

2.7 < A Critique of Typed MSR’s Encryption

In Typed MSR, symmetric and public-key encryption is deterministic, i.e. the ciphertext
depends only on the plaintext and the key. However, this is not the case.

Symmetric Encryption Block ciphers are indeed deterministic. However, encryption
employs block ciphers in various modes of operation, of which only one — the electronic
codebook (ECB) mode — retains the property of being deterministic. All the others require

2.7. & A CRITIQUE OF TYPED MSR’S ENCRYPTION 29

an initialization vector: a random block to kick off the process for the first real block, and
also to make the process non-deterministic. Moreover, the ECB mode is generally not
recommended for cryptographic protocols, as it reveals patterns in the plaintext.

Asymmetric Encryption The encryption process of non-probabilistic public-key cryp-
tosystems, such as the RSA, is indeed deterministic. However, RSA must be combined with
some form of padding scheme, so that no plaintext encrypts into an insecure ciphertext.
These padding schemes use random numbers in order to calculate an appropriate padding
for the plaintext.

Although modeling encryption as deterministic may be acceptable for the specification
of, say, authentication protocols, it is however unsuitable for the specification of privacy-
preserving protocols, as it can trigger false alarms for linkability attacks.

30

CHAPTER 2. THE SPECIFICATION LANGUAGE: TYPED MSR

Chapter 3

Privacy-Preserving Cryptographic

Abstractions

This chapter presents Typed MSR abstractions of cryptographic techniques that are com-
monly used in privacy-preserving protocols. These abstractions are either primitive, i.e.
they consist of one or more Typed MSR message constructors, or they are derived, i.e.
they are modeled using existing message constructors.

3.1 < Primitive Cryptographic Abstractions

Our proposed changes and additions are contained in the following grammatical production:

Messages:
t =

t1.19
{3k
e
[t]5
#{t i
#[1]
an

()

ZBS(tansakanfah)
ZAE(t,t,,TL, k’, h)

Pt} ...
S(tl,tg, e

7t1,)

At)

Atomic messages)

Variables)

Concatenation)

Symmetric encryption)

Asymmetric encryption)

Digital signature)

Probabilistic asymmetric encryption)

Commitment)

Blinding)

Credential proof)

Number’s upper bound proof)
Vote aggregation)

(

(

(

(

(

(

(
(Probabilistic digital signature)
(

(

(

(

(

(Vote tallying)

As discussed in Section 2.7, we need to modify message constructors for symmetric and
public-key encryption to model the necessary non-determinism. In order to achieve this,
symmetric encryption, asymmetric encryption and digital signatures are made to depend

31

32 CHAPTER 3. PRIVACY-PRESERVING CRYPTOGRAPHIC ABSTRACTIONS

additionally on a nonce. Whenever referring to this nonce is of little importance and we
would rather not name it, we denote it using v().

Moreover, to be able to specify privacy-preserving protocols, we need to add mes-
sage constructors for probabilistic asymmetric encryption, probabilistic digital signatures,
blinding, commitment, zero-knowledge proofs, vote aggregation and vote tallying.

We also add types for probabilistic public and private keys:

= ... (see Section 2.4)
| pubKP” A (Probabilistic public keys)
| privK? &k (Probabilistic private keys)

Type pubKP A4 is used to classify the probabilistic public key of principal A. Type privK" k
is used to classify the private key that corresponds to the probabilistic public key k.

In the rest of this Section, we discuss our newly introduced message constructors and
their properties.

3.1.1 Asymmetric Encryption and Digital Signatures

In order to accommodate homomorphic encryption in the context of e-voting, we assume
the use of an homomorphic encryption compatible cryptosystem featuring the additive
homomorphic property, such as the Paillier cryptosystem [33]. Paillier is a probabilistic
cryptosystem, so the nonce used to model the non-determinism employed in its mode of
operation, is assumed to model the non-determinism of the core cryptosystem as well.

3.1.2 Commitment

Cryptographic commitment allows principals to choose and commit to a value without
revealing it, in such a way that they are able to prove at a later time that the value they
reveal is indeed the originally committed value.

Our abstraction of commitment is based on the non-interactive bit commitment using
one-way hash functions. According to this method, the commitment of a message is the
hash of the concatenation of the message with a salt value, which we can abstract as
nonce n. The fundamental properties are that observing |t ||, will not reveal the values
of t and n, and that there is only one commitment for each distinct message-nonce pair.
Note that the latter property is implicit, because Typed MSR messages are atomic and
can solely be constructed by message constructors.

3.1.3 Blind Signatures

A blind signature is a form of digital signature in which the content of a message is disguised
(blinded) before it is signed. The resulting blind signature can be publicly verified against
the original unblinded message in the manner of a regular digital signature.

3.1. €& PRIMITIVE CRYPTOGRAPHIC ABSTRACTIONS 33

Blind signatures are typically employed in privacy-preserving protocols where the signer
and message author are different parties. In order to prove to the signer a statement about
the blinded message without disclosing the unblinded message, blind signatures are usually
used together with a zero-knowledge proof.

Our abstraction of blind signatures and blinding is based on Chaum’s blinding [17],
according to which the construction of a blinded message depends on a blinding factor,
which we can abstract as nonce n, and on a public key k. The fundamental property is
that if message (t)* is signed using private key k' (which corresponds to public key k),

the resulting message can be unblinded using nonce n to produce the digital signature of
message ¢ signed using k’. Chaum’s blinding assumes the use of the RSA cryptosystem.

3.1.4 Zero-Knowledge Proofs

A zero-knowledge proof is a method for one principal to prove to another that a statement
is true, without revealing anything other than the veracity of the statement.

Zero-knowledge proofs are not proofs in the mathematical sense of the term because
there is some small probability that a cheating prover will be able to convince the verifier
of a false statement. However, there are standard techniques to decrease the soundness
error to any arbitrarily small value.

Credential proof using blind signatures

Suppose Alice wants to get a credential ¢ signed by an authority. To do this she blinds the
credential m times using different blinding factors, with the credential each time committed
with a different salt value. She then hashes the blinded credentials, together with the
hashing nonce h (chosen by the authority), to determine the one blinding factor (n;) and
the one salt value (ny) she will not reveal to the authority (non-interactive cut and choose).
Lastly, she sends to the authority the blinded credentials, together with the blinding factors
and the salt values that must be revealed. The authority can check that everything was
formed correctly, and can sign ([[n,)7, -

Our abstraction of a zero-knowledge credential proof using blind signatures uses a
variation of the non-interactive cut-and-choose protocol used in the selective disclosure
protocol of Holt and Seamons, as described in Section 3.2.2 of [25]. Making the cut-and-
choose protocol non-interactive has the following advantages: (i) it eliminates the extra
complexity of the zero-knowledge credential proof and allows us to treat it in the same
way as all other message constructors, (ii) it eliminates at least an extra step from the
specification of the protocol, thus making it easier to reason about, and (iii) it simplifies
the protocol’s implementation.

The fundamental property of message Zpg(t,ns, k,np, h) is that it can convince a
principal that ¢ was used in the construction of (|t |,, }* without disclosing nonces n

ny
and ny, as long as it was the principal who chooses the hashing nonce h.

34 CHAPTER 3. PRIVACY-PRESERVING CRYPTOGRAPHIC ABSTRACTIONS

Number’s upper bound proof using asymmetric encryption

Our abstraction of a zero-knowledge number’s upper bound proof is based on the work of
Boudot [11], who devised a zero-knowledge proof which is efficient and exact in demon-
strating that a committed number lies in a specific interval. The fundamental property of
message Zag(t,t',n,k,h) is that it can convince a principal that the value of ¢ in #{ ¢ }} is
no greater than ¢' without disclosing message ¢, nor nonce n, as long as it was the principal
who chooses the hashing nonce h.

3.1.5 Homomorphic Encryption

Homomorphic encryption refers to certain properties of probabilistic public key cryptosys-
tems where correspondences can be proved to exist between functions on a certain group
in the message space and functions on the corresponding group in the ciphertext space.
Our abstraction of homomorphic encryption is based on properties of the Paillier cryp-
tosystem [3], and is formalized in terms of functions P and S. The first property is that

P(#{{tl Zl,...,#{ti }}ZZ) = #{S(tl,...,ti) }}Z

where £ is a public key and %, ..., t; are messages. The second is that, assuming #, ...,
t; represent the votes to be considered, S(ti,...,t;) represents the result of the tallying
procedure. The third is that

PP 0B #3726 1) = P a e, o+ 1)

which allows for vote aggregation without keeping all the encrypted votes, but only the
result of function P applied to its previous result and the newly acquired encrypted vote.

3.2 < Derived Cryptographic Abstractions

We now discuss mixes and onion routing, and how these cryptographic abstractions can
be modeled in Typed MSR.

3.2.1 Mixes

Generally considered the father of anonymous communications, David Chaum first pro-
posed a system for anonymous email in 1981 [16]. The system he proposed used a special
mail server, called a mix, to process email. A mix is a store-and-forward device that ac-
cepts a number of fixed-length messages from numerous sources, performs cryptographic
transformations on the messages, and then forwards the messages to the next destination
in an order not predictable from the order of inputs. Mixes enable anonymous communi-
cation by means of cryptography, scrambling the messages, and unifying them (padding to
a constant size, fixing a constant sending rate by sending dummy messages, etc.). They
support sender anonymity, and protect from traffic analysis.

3.2. € DERIVED CRYPTOGRAPHIC ABSTRACTIONS 35

Chaum’s mix makes use of deterministic asymmetric-key encryption and nonce cre-
ation!. Here’s how A can send a message to B using mix M:

A= M:f{n.{n . t}).BYY
M — B :{n .t}

3.2.2 Onion Routing

The primary innovation in onion routing [22] is the concept of the routing onion. Routing
onions are data structures used to create paths through which many messages can be
transmitted. To create an onion, the router at the head of a transmission selects a number of
onion routers at random and generates a message for each one, providing it with symmetric
keys for decrypting messages, and instructing it which router will be next in the path. Each
of these messages, and the messages intended for subsequent routers, is encrypted with the
corresponding router’s public key. This provides a layered structure, in which it is necessary
to decrypt all outer layers of the onion in order to reach an inner layer.

The onion metaphor describes the concept of such a data structure. As each router
receives the message, it peels a layer off of the onion by decrypting with its private key,
thus revealing the routing instructions meant for that router, along with the encrypted
instructions for all of the routers located farther down the path. Due to this arrangement,
the full content of an onion can only be revealed if it is transmitted to every router in the
path in the order specified by the layering.

In Typed MSR, onion routing can be specified in the same way as a mix, because the
number of onion layers is irrelevant for the abstraction.

L Chaum uses nonce creation in order to guarantee that the asymmetric encryption result is intractable. In our formal-
ization, this is sometimes redundant.

36 CHAPTER 3. PRIVACY-PRESERVING CRYPTOGRAPHIC ABSTRACTIONS

Chapter 4

Case Study: Specifying e-Voting
Protocols

At this point, we demonstrate how the cryptographic abstractions described in the previous
Chapter may be used to make Typed MSR specifications of two privacy-preserving proto-
cols: an e-voting protocol based on blind signatures and mixes, and an e-voting protocol
based on homomorphic encryption.

4.1 <> Protocol based on Blind Signatures and Mixes

We fist give an informal description of the protocol, then list its security properties, and
finally provide a formal specification of the protocol in Typed MSR.

4.1.1 Description

Preparing the ballot Alice wants to participate in an electronic election held by a
voting Server. To do this, Alice sends to the Server a zero-knowledge credential proof
for each of the two possible votes of this election, encrypted using their shared key. The
Server verifies the proofs, checks that Alice is eligible for voting and that messages v
and vy represent the possible votes, signs the blind commitment of each vote and sends the
signatures back to Alice.

S — A: hl.hg
A= S: {ZBS(UlalflakSaflahl)-ZgS(U%S%kSafZahQ)}ZSS
S = A [(Jouls)3 I - [Cvz Lo Y55 Tt

Voting Alice unblinds the signatures of the blinded commitments, which gives her the
signatures of the commitments. She can now cast her vote vg by sending the signature of
the vote’s commitment — together with the vote itself and the nonce used in the compu-
tation of the commitment — to the Server via a Mix. Alice must also send to the Server

37

38 CHAPTER 4. CASE STUDY: SPECIFYING E-VOTING PROTOCOLS

all the other possible votes she possesses, so that they can be canceled. Otherwise, Alice
could cast more than one (albeit different) votes, thus destroying the election. The Server
verifies its own signature and, after checking that the commitment is indeed computed
using the data send, it accepts Alice’s vote.

A —>M:{TLQ.{{nl.UB.SB.[”UB”sB]Zé).UA.SA.[”UAHSA Zg}}ggS}}Zf{
M— S :{ni.vg.sp.[|ve]|s, Z,(S).UA.SA.[||UA||SA]Z§}}Z(S)

Tallying The Server posts the commitment signatures, together with the votes and
nonces used in their computation, to a world-readable bulletin board, so that every voter
can verify the election result and check that his vote has been counted in.

4.1.2 Specification

Here is the Typed MSR specification of Alice’s role in the protocol:

. VA
dL: tract x tract X nonce x nonce X pubK S x nonce x nonce x shK 4 S x privK kg

xnonce X nonce.
dL': tract x tract x nonce X nonce X pubK § x nonce x nonce x shK 4 S x privK kg
Xnonce X nonce X nonce X nonce X tract X nonce X tract X nonce x principal X pubK M.

V A :; principal.

V S :; principal.

VY M :; principal.

YV vy i tract.

Y vs i tract. N(h1 . h2)

V s :; nonce. 3

V s :; nonce. N({ Zps(v1,51,ks, fi,h1).ZBs(vz, s2, ks, f2, h2) }225)
Vks :; pubK S. L(v1,v2, 51,82, ks, f1, fa, kas, kg, h1, ha)

Y f1 :; nonce.

Y f1 :; nonce.

Vkas:shK A S. N[s) T - [vz 1o)55 T2
Vg privK ks. L(vy,v2,51, 82, ks, f1, f2, kas, ks, hi, ha)
V¥ ns :; nonce. 4

V¥ n, :; nonce. N{nz-{n1.vg.58-[|velss Zfs) va-84-[valsa]Z,(S) }}Z(S) S}}Z}?J)
Vwvpg i tract.

L' (v, v2, 81,82, ks, fi, f2, kas, kg, hi, ha,n2,n1,0B,5B,v4,54, 5, k)
VY sp :; nonce.
Vwvg i tract.
V s4 :; nonce.
VEkur iz pubK M.

Together, the roles of Alice, the Mix and the Server form the protocol theory.

4.1.3 Security Analysis

The protocol has the following security properties:

1. Only registered voters can have votes issued for them.

4.2. & PROTOCOL BASED ON HOMOMORPHIC ENCRYPTION 39

2. The server cannot link an actual vote with the voter neither when issuing nor when
casting the vote.

No voter can have votes issued more than once.

No voter can cast more than one vote.

All voters can find their vote in the election result.
Everyone can verify the election result given the votes.

Everyone can count the votes.

© NS ot W

The server may infringe the elections by casting its own votes, assuming that there
are voters who do not try to find their own vote in the election result.

4.2 < Protocol based on Homomorphic Encryption

Again, we fist give an informal description of the protocol, then list its security properties,
and finally provide a formal specification of the protocol in Typed MSR.

4.2.1 Description

Voting Alice wants to participate in an electronic election held by a voting Server and a
Voting authority. To do this, Alice sends to the Server a zero-knowledge number’s upper
bound proof of the vote v4 she wishes to cast, encrypted using their shared key. The Server
checks that Alice is eligible for voting and verifies that her vote is valid, i.e. that it is no
greater than the maximum allowed vote v'. However, it cannot decrypt her vote #{{ vy J}p,
as it is encrypted using the Voting authority’s public key.

S—A:h
A= S {Zap(va, v na kv, b) ¥

kas

Tallying The Server applies the additive homomorphic encryption property and com-
putes the election result, encrypted using the Voting authority’s public key. It then sends
it to the Voting authority, encrypted using their shared key.

S_>V:{#{{S(...,UA,"')}}ZV}Z;)V

Furthermore, the Server posts the encrypted votes to a world-readable bulletin board, so
that every voter can check that his vote has been counted in, and also verify the cal-
culation of #{ S(...,va,...) },.. Finally, the Voting authority posts the result of the
election S(...,v4,...), as well as nonce n, so that every voter can verify the election
result.

40

CHAPTER 4. CASE STUDY: SPECIFYING E-VOTING PROTOCOLS

4.2.2 Specification

Here is the Typed MSR specification of Alice’s role in the protocol:

JL: tract x tract X nonce X pubK V' x shK A § x nonce. A
V A :; principal.
VS :; principal.
VYV :; principal. N(h)
Yy i tract. d
Vo' i tract. N({ Zap(va,v',na, kv, h) }0)
Vna4 i nonce. L(va,v',na, kv, kas,h)
Vky :; pubK V.

Vk?AS iz shK A S.

Together, the roles of Alice, the Voting Authority and the Server form the protocol theory.

4.2.3 Security Analysis

The protocol has the following security properties:

1.

N Ot W

Only registered voters can vote.

The server cannot link an actual vote with the voter.
No voter can cast more than one vote.

All voters can find their vote in the election result.
Everyone can verify the election result given the votes.
Everyone can count the votes.

The server may infringe the elections by casting its own votes, assuming that there
are voters who do not try to find their own vote in the election result.

Chapter 5

A Simple Linkability-Oriented Type
System

As argued by Pfitzmann and Kohntopp [34] in reasoning about unlinkability, the item of
interest is the sending and receiving of messages. In this Chapter, we elaborate on this
and propose simple types that qualitatively classify messages according to their effect on
the linkability of the sender.

5.1 <& Types

To be able to reason about linkability in privacy-preserving protocols, we introduce types
for tractable, semitractable and intractable messages:

Types: T = (see Section 3.1)
| tract (Tractable messages)
| semitract (Semitractable messages)
| intract (Intractable messages)

These types are used to classify messages according to their commonness, which we
claim is the defining characteristic of messages being considered for linkability exposures.

Type tract is used to classify messages that are very common. Because of the tractable
number of their possible values, we consider that an intruder (regardless of whether these
messages are publicly known or not) is able to to find them out by successfully employing
a brute-force dictionary attack on them. On the other hand, if a principal reveals the
same (tractable) message in more than one protocol or subprotocol execution, the intruder
will not be able to link these executions together (at least not because of this particular
message). Therefore, this classification isolates pieces of information on the secrecy of
which it is erroneous to base the correctness of a protocol, but on the unlinkability of
which it is safe to do so.

Type intract is used to classify messages that are very uncommon. These are pieces of
information on the secrecy of which it is safe to base the correctness of a protocol, but on
the unlinkability of which it is certainly erroneous to do so.

41

42 CHAPTER 5. A SIMPLE LINKABILITY-ORIENTED TYPE SYSTEM

Type semitract is used to classify messages that are common enough to be considered
realistic candidates for brute-force dictionary attacks, but not common enough to be con-
sidered unlinkable. Tt is not safe to base the correctness of a protocol neither on the secrecy
of such pieces of information, nor on their unlinkability.

We now classify each of the standard types according to their linkability. Private keys,
shared keys and nonces should be regarded as intractable. Principals should be regarded as
semitractable: we should not base the correctness of protocols on the number of available
principals. Public keys should also be regarded as semitractable for the same reason.

Similarly to the standard types, tract, semitract and intract should be regarded as sub-
sorts of msg.

The classification of messages that are not keys, nor nonces, nor principals is dealt with
by signatures, which are described in Section 5.2.

5.2 Signatures

Typed MSR has typing rules that check whether an expression built according to the
syntax of messages can be considered a ground message. These rules systematically reduce
the validity of a composite message to the validity of its sub-messages. In this way, it all
comes down to what the types of atomic messages are. Typed MSR uses signatures to
achieve independence of rules from atomic messages. A signature is a finite sequence of
declarations that map atomic messages to their type. The grammar of a signature is given
below:

Signatures: X = . (Empty signature)
| X, a:7 (Atomic message declaration)

For our extended type system, we need two signatures. Signature ¥ maps atomic
messages to one of the standard types, and signature I' maps them to one of the extended
types, i.e. classify them into tractable, semitractable or intractable. We will write ¢ :; 7 to
say that message ¢ has type 7 in signature ¥, and we will write ¢ :; 7' to say that message t
has type 7’ in signature I". Hence the following two rules:

(SIG1) (51G2)

C,a:n,Y) FanT Tya:n,I") FanT

5.3 <& Type Rules

We now introduce type rules for all the message constructors presented in Section 2.1 and
Chapter 3. These rules use the new types introduced in Section 5.1 to further check the
groundness of messages.

5.3. & TYPE RULES 43

Concatenation The concatenation of two messages of the same type will yield a message
of that type.

't:7 TEty:7T
Fl_tl.tng

(CONCAT)

The concatenation of two messages of different types will yield a message of the least
tractable type among the types of the original messages.

' = ¢, :tract T F %3 : semitract
[' - ¢, .t : semitract I' F ¢y.%¢; : semitract

(CONCAT1)

' = ¢ :tract T F £y :intract
[' = ¢, .ta s intract T' F t5.¢; : intract

(CONCAT2)

I' - ¢; : semitract I F ¢y :intract
[' = ¢, .ta s intract T' F t5.¢; : intract

(CONCAT3)

Note that in Typed MSR concatenated messages can be taken apart.
Symmetric-key encryption The ciphertext may be considered to be intractable be-
cause of the nonce used in the calculation.

F't:7 Y FEk:shKk AB
= {t};" :intract

(SYMENC)

Asymmetric-key encryption and digital signatures Similar reasoning applies to
asymmetric-key encryption and digital signatures.

'Ht:7 Y F k:pubK A C'Ht:7 S FE:privKk
V0 - (ASYMENC) 70 B
' {¢t}, :intract '+ [t] intract

(SIGN)

Probabilistic asymmetric-key encryption and digital signatures Probabilistic
asymmetric-key encryption and digital signatures may be considered to be intractable
because of the nonce used in their calculation.

I't:r Y F k:pubKP A ¥ F n:nonce
'+ #{t}7:intract

(PASYMENC)

FCHt:7 S FEK:privkP & ¥ F n:nonce
' - #[t]} : intract

(PSIGN)

44 CHAPTER 5. A SIMPLE LINKABILITY-ORIENTED TYPE SYSTEM

Commitment Commitments may be considered to be intractable because of the nonce
(salt value) used in the calculation.
I't¢t:7 X F n,:nonce
-t

(COMMIT)

n, © Intract

Blind signatures Blind signatures may be considered to be intractable because of the
nonce (blinding factor) used in the calculation.
I'Et:7 ¥+ k:pubKA ¥ F ng:nonce

I' = (t)y, «intract

(BLIND)

Zero-knowledge proofs The zero-knowledge credential proof can be considered to be
intractable, as three nonces are used in its calculation. However, we require that the
underlying message t of a zero-knowledge credential proof is tractable in order to protect
privacy.
I'=t:tract X F ng:nonce ¥ - k:pubKA X F np:inonce ¥ = h:nonce
' = Zps(t,ng k,ns, h) :intract

(ZEROBS)

The zero-knowledge number’s upper bound proof can be considered to be intractable, as
two nonces are used in its calculation. However, we require that upper bound ' of message t
is tractable in order to protect privacy.
F't:r ThFt:tract Y Fn:nonce X F k:pubKP A X F h:nonce
I't Zap(t,t',n,k, h) :intract

(ZEROAE)

Vote aggregation The vote aggregation function P can be considered to be tractable
when applied to zero encrypted votes (because P() is a known constant), and intractable
when applied to a non-zero number of encrypted votes (because each probabilistically
encrypted vote is intractable). Furthermore, the unencrypted votes should be considered
tractable for homomorphic encryption to give meaningful results.

(AGGBASE)

I' - P() : tract

't :tract T Fty:tract --- D Ft:tract ¥ F k:pubKP 4
YFmni:nonce X F ng:nonce - X F m;:nonce

L' PE{t Y #{t 3., #{ 6t }i) « intract

Vote tallying The vote tallying function & can be considered to be always tractable.

(AGGSTEP)

(TALLYBASE)

' = 8() : tract

' = +¢;:tract ' F ¢y :tract -+ I' ¢ : tract
I' + S(tl,tz,...,ti) : tract

(TALLYSTEP)

Chapter 6

The Dolev-Yao Intruder

The Dolev-Yao abstraction [19] assumes that elementary data, such as keys or nonces, are
atomic rather than strings of bits, and that the operations needed to assemble messages,
such as concatenation or encryption, are pure constructors in an initial algebra. Typed
MSR fits very well in this abstraction: elementary data are indeed atomic and messages
are constructed solely by message constructors.

In [14], a standard version of the Dolvel-Yao intruder was formalized in Typed MSR.
In this Section, we present a extended version of the Dolev-Yao intruder, which is able to
discover attacks in privacy-preserving protocols.

It has been proved [39] that there is no point in considering more than one Dolev-Yao
intruder in any given system. Therefore, we can select a principal, | say, to represent, the
Dolev-Yao intruder. Furthermore, we associate | with an MSR memory predicate M,(-),
whose single argument can hold a message, to enable | to store data out of sight from other
principals.

6.1 The Standard Version

The standard version of the Dolev-Yao intruder can do any combination of the following
operations:
e Intercept and learn messages
Make copies of known messages
Transmit known messages
Decompose known (concatenated) messages
Concatenate known messages
Decipher encrypted messages if he knows the keys
Encrypt known messages with known keys
Sign messages with known keys
Access public information
Generate fresh data

The interested reader can refer to [14] for the formal specification of these operations in

45

46 CHAPTER 6. THE DOLEV-YAO INTRUDER

Typed MSR.

6.2 < An Extended Version

The version of the intruder that is presented here is an extended version in two ways.
Firstly, one of the intruder’s standard operations is generalized in line with the new types
introduced in Section 5.1. More specifically, we replace the last operation, i.e. the intruder’s
ability to generate fresh data, with two new operations: the ability to generate fresh
intractable data, and the ability to guess tractable and semitractable data. The intruder is
able either to guess the exact message required for his/her attack (if this is possible), or to
generate a fresh message of the required type otherwise. Secondly, the intruder is now able
to handle messages constructed using the message constructors introduced in Chapter 3.
We now formally specify the new operations in Typed MSR.

Generate fresh intractable data The intruder may generate fresh nonces, fresh private
keys, fresh shared keys, as well as other intractable messages.

|
(CAP—GEN—1I)

(- — It intract. M, (t))

Guess tractable and semitractable data The intruder may guess or get access to
public keys, principals, as well as other tractable or semitractable messages.

|
(CAP—GUESS—T)

(Vi tract. - — M (1))

|
(CAP—GUESS—S)

(V1 :r semitract. - — M ()

Notice that this rule can be used together with the previous one to allow the intruder
to generate a key-pair by first generating a fresh private key, and then by guessing the
corresponding public key.

Probabilistically encrypt The intruder may probabilistically encrypt a message given
a public key and a nonce.

Vit msg.

o M, (t)
YV A :; principal. "
Yk, ;)ubKPpA. Mi(k) = M (4 35

M| n
¥ n :; nonce. ()
(CAP—PASYMENC)

6.2. € AN EXTENDED VERSION 47

Probabilistically decrypt Probabilistic decryption reveals to the intruder who holds
the necessary private key not only the cleartext, but also the nonce representing the prob-
abilistic nature of encryption.

Vt:; msg.

YV A :; principal. "
Vs pubk? A, W CREED ()
VK privk? k. 1 (k) !

¥ n :; nonce.
(CAP—PASYMDEC)

Blind messages The intruder may blind a message given a public key and a blinding
factor (nonce).

YVt :; msg.
TR M, ()
V A :; principal. &
Wk pubK 4. MR} — M ((1)%)
Ve M (n)
n :; nonce.

(CAP—BLIND)

Unblind messages The intruder may unblind a (blinded) message given the blinding
factor (nonce).

Vt:; msg. ()
V A, principal. M, ((t)*
VE s pubK A, M))

V¥ n :; nonce.
(CAP—UNBLIND—MSG)

Unblind signatures The intruder may unblind a (blinded) signature given the blinding
factor (nonce), if the public key used in the blinding corresponds to the private key used
in the signing.

Vt:; msg.

YV A :; principal. k100

Wk, pubK 4. M ([E0) — M ([]")
. ; IVII (n)

VE - privK k.

V¥ n :; nonce.
(CAP—UNBLIND—SIG)

Commit to a message The intruder may commit to a message given a salt value
(nonce).

(o iy = el

Vn i nonce. M (n) nr-commm)

48 CHAPTER 6. THE DOLEV-YAO INTRUDER

Generate a zero-knowledge proof The intruder may generate a zero-knowledge proof,
given the necessary messages.

YVt :; msg.

V¥ ng :; nonce.
YV A :; principal.
VEk :; pubK A.
Vny i nonce.
¥V h :; nonce.

— M| (ZBs(t,ns, k,nf, h))

(CAP—ZEROBS)

YVt :; msg.

V' msg.

¥ n :; nonce.

YV A :; principal.
Vk : pubKP A.
¥V h :; nonce.

— M| (ZAE(t, t’,n, k, h))

(CAP—ZEROAE)

Observe a zero-knowledge proof The intruder will get the information revealed by
the zero-knowledge proof.

V't :; msg.

YV ng :; nonce. M ()

YV A :; principal. M (k)

Vh s pubK 4. HZpsUh s Bns)5 (g e

Vn; :; nonce. M (h)

VI :; nonce. (CAP—ZEROBS—P)
Vt:; msg. !
Vit msg. M (t')

Vn :; nonce. , M, (k)

VA - principal. MHZan(b sk R)) = ey
Yk pubKP A, M, (h)

Y h :; nonce.

(CAP—ZEROAE—P)

Aggregate votes The intruder may generate! the image of zero votes under function P
(induction base case).

(' - Ml(lp()))l(CAP—AGGBASE)

Furthermore, the intruder may aggregate encrypted votes as he picks them up by holding
their image under function P (induction step).

!This rule is in fact redundant, as P() is of type tract, and therefore the intruder is already able to
generate it, but is included for the sake of completeness.

6.2. € AN EXTENDED VERSION 49

YV A :; principal.

Vk :; pubKP A,

Vit 1y msg. Mi(PCg t Bty # B t))
Mi(#{ t; B1°)

Vt; :x msg. 1

Vng :pnonce. My(P#Lt Bt # {6)

¥ n; :; nonce.
(CAP—AGGSTEP)

Tally votes The intruder may generate? the image of zero votes under function S (in-
duction base case).

(+ = M(S0))

(CAP—TALLYBASE)

Furthermore, the intruder may tally votes as he picks them up by holding their image
under function S (induction step).

Vit :; msg.

Vit msg. M(S(ti,... t1)) .
(1) M 1)
Vt; :; msg.

(CAP—TALLYSTEP)

Apply homomorphic encryption properties The intruder may convert the image of
the encrypted votes under function P to the image of the (cleartext) votes under function S,
and vice-versa.

YV A :; principal.
Vk :; pubKP A.
Vit :; msg.

Vt; 1 msg. Mi(P#L o 5t #{ t Be)) — Mi(#{S(tr,....6) }7)

V¥ ny :; nonce.

V n; :; nonce.
V¥ n :; nonce.

(CAP—PENCH—1)

2The previous footnote applies here too.

50 CHAPTER 6. THE DOLEV-YAO INTRUDER

V A :; principal.
Yk :; pubKP A.
Vit :; msg.

Vt; iy msg. Mi(#{ S(t1,...,ti) J7) — M(PE{t)", # 46 }e))

¥ ny :; nonce.

¥ n; :; nonce.

¥ n :; nonce.
(CAP—PENCH—2)

6.3 < Demonstrating Linkability Attacks

Informally, when we say that two executions of a protocol or a subprotocol cannot be
linked to a given principal (usually the principal whose privacy the protocol is supposed
to protect), we mean that it is not possible for the Dolev-Yao intruder to find out whether
the same principal participated in both occasions, even if he manages to overtake all the
other principals and get hold of their long-term or short-term secrets.

But how can the intruder’s capabilities help in demonstrating such weaknesses in pro-
tocols? Consider the case of the protocol of Section 4.1, and suppose that the intruder
has access to all public data, and, additionally, he manages to overtake the Server, so he
has access to all the server’s data as well. If he is able to deduce the same intractable or
semitractable message seperately in the context of the two subprotocols (the ballot prepa-
ration subprotocol and the voting subprotocol), and if he couldn’t deduce this message
without the information sent by Alice in each context, then we can consider this an attack
on Alice’s privacy, as her obtaining the votes and actually voting are now linked together.

In this sense, we argue that the intruder’s capabilities create a formal environment in
which linkability attacks on protocols may be demonstrated.

Part 11

Implementing Privacy-Preserving
Cryptographic Protocols

51

Chapter 7

The Implementation Language: Jif

Jif [30, 31, 29] is an object-oriented, strongly-typed language capturing a large subset of
the Java language. In Jif, the programmer must label types with security annotations.
The compiler uses these annotations during type-checking to ensure noninterference. Jif
was developed primarily by Andrew Myers.

7.1 The Decentralized Label Model (DLM)

Types in Jif are annotated with security labels based on the DLM. Similar to work in
mandatory access control that tags data with complete access control lists, the DLM allows
for the virtual tagging of data with owners-readers and owners-writers lists. Each label
consists of a set of confidentiality or integrity policies of the form {o:ry,ry,...,r,}
or {o!l:ry,ry,...,r,} respectively, where o and r; are principals with o being the owner
of the policy and r; being the authorized readers or writers of the confidentiality or integrity
policy.

Furthermore, a label can consist of multiple policies (allowing for multiple owners of a
piece of data).

As an example, int{Alice : } i; declares an int owned and readable only by Al-
ice (the owner is always implicitly included in the reader/writer list). The statement
String{Bob !: Charlie, Dana} str; declares a String which is owned by Bob but also
writable by Charlie and Dana. Data may also be annotated with multiple policies as in
int{Alice:; Bob:} j;. The policy on j indicates that it is owned and readable by both
Alice and Bob. In Jif, when a variable is used in a security label, it refers to its own label.
Thus, using i and str as defined above, float{i; str} f; declares a float that is owned
by both Alice and Bob and which can be written by Charlie and Dana.

7.2 Program Counter

The label of an expression’s value varies depending on the evaluation context. This is
needed to prevent leaks through implicit flows: channels created by the control flow struc-

53

54 CHAPTER 7. THE IMPLEMENTATION LANGUAGE: JIF

ture itself. To prevent information leaks through implicit flows, the compiler associates a
program-counter label with every statement and expression, representing the information
that might be learned from the knowledge that the statement or expression was evaluated.

7.3 Language Features

In a Jif method declaration, the return value, the arguments, and the exceptions may
each be annotated with a label. There are additionally two optional labels in a method
declaration called the begin-label and the end-label. The begin-label specifies an upper
bound on the program counter at the point of invocation of the method. The begin-
label allows information about the program counter of the caller to be used for statically
checking the implementation, thereby preventing assignments within the method from
creating implicit flows of information. When these labels are missing, some conservatives
rules are used to assign restrictive default labels:

e Default field label: the empty label, {}. This label is the least confidential, and the
least trusted. This conservatively ensures that no confidential or trusted data can be
stored in the field.

e Default argument label: the top label, {*: }. The label on the type of a formal
argument is an upper bound for labels of actual arguments.

e Default method begin-label: the top label, {* : }. The method begin-label is an
upper bound on the pc of the caller, and a lower bound on the side effects of the
method. The default method begin label is the most restrictive label, meaning that
the method has no side effects.

e Default method end-label: The join of the declared labels of any exceptions declared
to be thrown. If the method does not throw any exceptions, or if the declared
exceptions do not have any labels, the default method end-label is the bottom label,

{* 1%}

e Default method return value label: the join of all the argument labels and the end-
label. This is the common case, as most of the time the value returned by a method
is the result of computation on all of its arguments.

e Default declared exception label: the method end-label.

e Default array base label: the empty label, {}.

7.4 Selective Declassification

Jif implements selective declassification. Principals in Jif are defined external to the pro-
gram. Each one has a delegation set containing all the principals it trusts. This forms

7.5. CLASS PARAMETERIZATION 55

a runtime principal hierarchy. Each process maintains an authority set which contains
principals from the runtime principal hierarchy. A process is only authorized to declassify
policies that are owned by principals in its authority set.

7.5 Class Parameterization

Another feature in Jif which we utilize is class parameterization. A Jif class can be pa-
rameterized by a principal or security label. This means that a class may be defined once
and then be instantiated at various security levels. For example, we might want a Vector
class which contains secret data and another Vector class that contains public data.
Without having to implement the Vector class multiple times, it could be parameterized
with a label and then instantiated at different levels. In Jif, such a class could be defined
as follows:

public class Vector[principal P]

{
Object{P:}[1{P:} elements;

¥

Note that the member array elements has two labels. One is the label of the Objects
stored in the array. The other is the label of the array itself. Since Vector has been
parameterized by P, P can now be used throughout the body of the class to denote a
principal. This principal will be instantiated when an object of type Vector is declared,
as in the following code, where Alice and Bob are two principals:

Vector[Alice] vectori;
Vector [Bob] vector2;

7.6 Dynamic labels

Labels and principals can be used as first-class values, represented at runtime. These
dynamic labels and principals can be used in the specification of other labels, and used as
the parameters of parameterized classes. They can be constructed as shown below:

final label 1b = new label {Alice: Bob; Alice!:x*};

7.7 Handling Exceptions

One thing which makes Jif particularly challenging for programming is handling the in-
formation leaks that occur through function termination, exceptions and side-effects. For
example, an encryption method that throws an InvalidKey exception releases information
about the key (which is secret data) both by throwing the exception (indicating the key is

56 CHAPTER 7. THE IMPLEMENTATION LANGUAGE: JIF

invalid) and by not throwing the exception, i.e. by terminating normally (indicating the
key is not invalid). For this reason, it can be advantageous to catch exceptions and handle
them locally in order to bound information leakage they might cause.

Chapter 8

Linkability-Checking in Jif

This Chapter demonstrates how Jif (a security-oriented extension of a subset of the Java
programming language dealing with information flow) can be employed in such a way that
linkability vulnerabilities in protocol implementations can be detected with a mixture of
static and runtime checks. The code presented in this Chapter was compiled with Jif 3.0.

8.1 <& A Cryptographic Framework

In this Section, we demonstrate how the theory described in Sections 5.3 and 6.2 can
be employed in a Jif cryptographic framework, which can be used to implement privacy-
preserving protocols, such as those analyzed in Sections 4.1 and 4.2. Our goal is to enforce
the well-formedness of message construction, as defined by the type rules of Section 5.3,
and to embed the Dolev-Yao intruder’s capabilities, as described in Section 6.2. Our scope
is the secure handling of intractable messages, which, as described in Section 5.1, if revealed
more than once to the intruder, will be linked together, thus compromising the anonymity
of the sender.

First, we introduce a dynamic label, L, which annotates references to objects depicting
intractable information. To define this label, we need to introduce a special principal,
Linkable, the owner and sole reader of all intractable data. We place our label L in the
Jif interface LinkLabel, so that every Jif interface/class that needs to use the label can
simply extend/implement this interface.

interface LinkLabel

{
final label L = new label{Linkable:};

¥

Then, we establish the interface Message, which all message classes must implement. To
implement the interface, message classes must provide the method getObservedMessage,
which returns the other messages one learns by observing the message. These messages are
returned one-by-one by invoking this method and increasing the index argument at each

S7

58 CHAPTER 8. LINKABILITY-CHECKING IN JIF

iteration. At the first invocation, the index must be 0. When the method returns null,
there are no more messages to learn.

interface Message extends LinkLabel

{
Message{L} getObservedMessage{L}(int{L} index);
}

We now demonstrate how a selection of message constructors can be expressed as Jif
classes implementing the Message interface.

Nonce A nonce can be created without the knowledge of any other message. Further-
more, observing a nonce reveals no other message.

public class NonceMessage implements Message

{
public NonceMessage():{L} { }
public Message{L} getObservedMessage{L}(int{L} index)
{ return null; %}

}

Zero-knowledge credential proof According to capability (CAP-ZEROBS), in order
to create a zero-knowledge credential proof, one needs to have the underlying message,
the public key of the principal who is to sign the blinded commitment, and two nonces:
the blinding factor and the salt used in the commitment. Furthermore, according to
capability (CAP-ZEROBS-P), observing a zero-knowledge credential proof allows one to
learn the underlying message, the public key and the blinded commitment. Note that we
assume the existence of the two classes BlindMessage and CommitMessage for the blinding
and the commitment respectively.

public class ZeroBlindSigMessage implements Message
{

final private Message{} t;

final private NonceMessage{L} n_s;

final private PublicKeyMessage{} k;

final private NonceMessage{L} n_f;

final private NonceMessage{L} h;

/* CAP-ZEROBS */

public ZeroBlindSigMessage (Message{} t,
NonceMessage{L} n_s,
PublicKeyMessage{} k,
NonceMessage{L} n_f,
NonceMessage{L} h):{L}

{ this.t = t; this.n_s = n_s; this.k = k;

8.2. €& RUNTIME LINKABILITY-CHECKING 29

this.n_f = n_f; this.h = h; }

/* CAP-ZEROBS-P */
public Message{L} getObservedMessage{L}(int{L} index)

{
switch(index)
{
case 0: return t;
case 1: return k;
case 2: return new BlindMessage(new CommitMessage(t, n_s),
k,
n_f);
case 3: return h;
default: return null;
}
}

Conditional messages According to capability (CAP-UNBLIND-SIG), the observation of
a blinded signature reveals the signature only if the observer knows the blinding factor. To
be able to incorporate such dependencies in method getObservedMessage, we introduce
the class ConditionalMessage. The constructor of this class takes as arguments the
conditionally observed message, and the message the observer needs to know in order to
observe the first. If multiple messages are needed to specify the condition, they can be
concatenated into a single message.

This new message constructor is denoted in Typed MSR as C(t1,s), and in order to in-
corporate it into the extended version of the Dolev-Yao Intruder (discussed in Section 6.2),
we need to include the following intruder capability:

|
Vi, msg. Mi(t)
(Vtz ;. msg. M(C(ta, t1)) — Mi(t1,t9)

(CAP—COND)

Notice that this message constructor does not model any new cryptographic primitive
or technique. Its sole purpose in our model is to support the Message interface of our Jif
framework.

8.2 < Runtime Linkability-Checking

Having in place a mechanism to annotate linkable messages, we now focus on message
sending with runtime checking of possible linkability exposures.

We first argue that, in the general case, this checking cannot be done at compile time,
as the following pseudocode illustrates:

60 CHAPTER 8. LINKABILITY-CHECKING IN JIF

send_message (m) ;
if (theorem)
send_message (m) ;

Suppose that message m is linkable. If this is the case, then sending it twice would cause
a linkability exposure. But, if it was possible to have this check done at compile time,
then we would have a compiler capable of proving any theorem. Therefore, in the general
case, we can do no better than runtime checking for linkability exposures. Although such
an attempt raises the effort needed to implement the protocol, it also has the advantage
that it is the actual protocol’s implementation that is being verified, not a possibly flawed
abstraction.

Our proposed approach is based on having a single point in the Jif program that is able
to send messages to the network, which distinguishes between linkable and other messages,
is able to store and search through all previously sent messages, and will throw an exception
when an attempt is made to send a message that could be linked with a previous one.

interface Network

{
void send(Message m) throws PossibleLinkabilityException;
Message receive();

¥

If the message is not linkable, it is freely send on the network. However, if it is linkable,
then it is send only if the following conditions are met:

1. The message has not been previously sent.

2. The linkable messages inferred by the intruder from this, and all previously sent
messages, have not been sent before.

Otherwise the PossibleLinkabilityException is thrown.

Regarding the latter condition, the linkable messages inferred by the intruder can be
found using the method described in Section 7 of [14]. The method is presented (and
expanded to include rules for our introduced cryptographic primitives) in Section 8.3.

Therefore, implementing the send method involves: (i) storing all previously sent mes-
sages, and (ii) using a theorem prover that works on these stored messages (axioms) and
on the rules of Section 8.3 to check whether the message to be sent can be inferred from
the stored messages. If the last statement is proved (i.e. it is a theorem), the message is
not sent.

8.3 <& Message Inference

The intruder’s capabilities were formalized as Typed MSR rules in Section 6.2. However,
these rules are too non-deterministic to use in a model checking simulation to uncover

8.3. €& MESSAGE INFERENCE 61

attacks on protocols. What is needed is an operational version of the intruder, which
retains the intruder’s capabilities, while not allowing him to undo his own work.

As proposed in [26], to construct this version we have the intruder decompose messages
he learns into atomic messages, store these atomic messages, and then use them to construct
new complex messages. In other words, we partition the actions of the intruder into
three distinct constituents: message decomposition, storage of elementary information, and
message construction. The memory predicate M;(_) is replaced by the following memory
predicates:

e Di(): intended to contain messages while they are disassembled into their elementary
constituents

e Ai(): intended to contain atomic messages learnt this way

e Ci(.): intended to contain messages while they are used to construct more complex
ones

Therefore, we have the following rules for interception and transmission:

(Vt: msg. N(t) — Dy(t))!

(DECOMPOSE—INIT)

(Vt:msg. C(t) — N(&))

(COMPOSE—END)

We always keep a copy of intercepted messages, so that we can use information we acquire
in the future to break them into more atomic messages:

!
<Vt:E msg. Di(t) — 2'(t)>
(DECOMPOSE—COPY)

Atomic messages acquired during the decomposition process, will be moved in the appro-
priate memory predicate:

(Va patm. Di(t) = At))

(MEMORIZE—ATOMICS)

Finally, the atomic messages are used to feed the composition process (copying is required
as these messages may be needed later):

|
(Va:Z atm. Ai(a) — Q(a))
I(a) (COMPOSE—COPY)

We now express the intruder capabilities of Section 6.2 using our new memory predi-
cates.

62 CHAPTER 8. LINKABILITY-CHECKING IN JIF

Generate fresh intractable data The intruder may generate fresh nonces, fresh private
keys, fresh shared keys, as well as other intractable messages, as long as they are atomic.

|
(L—CAP—GEN—I)

(- — Tt intract. ¢ :; atm. A (1))

Guess tractable and semitractable data The intruder may guess or get access to
public keys, principals, as well as other tractable or semitractable messages, as long as
they are atomic.

(Vt: tract. Vit atm. - — A (1))

(L—CAP—GUESS—T)

(Vt: semitract. Vt:atm. - — A (1))

(L—CAP—GUESS—S)

Probabilistically encrypt We consider this to be part of the construction phase.

YVt msg.
- G (t)
V A :; principal. "
ke pubk? 4. &) = G
Ve ¢ (n)
n :; nonce.

(L—CAP—PASYMENC)

Probabilistically decrypt We consider this to be part of the destruction phase.

Vt:; msg. !

V A, principal. .
Vk :; pubKP A. Dy (#{t}7) . D, (t)

VE -, privKP k. D) (k) D1 (n)

¥ n :; nonce.
(L—CAP—PASYMDEC)

Blind messages We consider this to be part of the construction phase.

YVt msg.
. G (t)
YV A :; principal. k
ke pubk 4, 10 = G((E))
Vo G (n)
n :; nonce.

(L—CAP—BLIND)

Unblind messages We consider this to be part of the destruction phase.

Vt:; msg. () |
V A - principal. Dy ((t)k
Vk:pubK A. D (n = D)

V¥ n :; nonce.

~—

(L—CAP—UNBLIND—MSG)

8.3. €& MESSAGE INFERENCE 63

Unblind signatures This is not so obvious. We believe that this capability can be used
both in the destruction and in the construction phase.

Vt:; msg. !

YV A :; principal. k100

Wk pubK A, O (K0 — Dy ([t1)
/. . D| (TL

VE :; privk k.

¥ n :; nonce.
(L—CAP—UNBLIND—SIG—1)

Vt:; msg. !

YV A :; principal. k100

Wk pubK 4. O (LComme) G ([t
I ; G (n)

VE :; privk k.

V¥ n :; nonce.

(L—CAP—UNBLIND—SIG—2)

Commit to a message We consider this to be part of the construction phase.

(Ve €0~ c001)

(L—CAP—COMMIT)

Generate a zero-knowledge proof We consider this to be part of the construction
phase.

Vit : msg. !

V¥ ng :; nonce.
V A :; principal.
VEk :; pubK A.
Vny i nonce.
¥ h :; nonce.

— C| (ZBS'(t, Ng, k, ny, h))

(L—CAP—ZEROBS)

YVt msg.

V' msg.

¥ n :; nonce.

V A :; principal.
Vk :; pubKP A,

¥ h :; nonce.
(L—CAP—ZEROAE)

Observe a zero-knowledge proof We consider this to be part of the destruction phase.

V1 : msg. '
V¥ ng :; nonce. Dy (1)

YV A :; principal. Dy (Zps(t f " D1 (k)

ko pubK A, D' (ZBs(tmsking b)) = D)
Vny :; nonce. D, (< [, >nf)

Y h :; nonce.

(L—CAP—ZEROBS—P)

64 CHAPTER 8. LINKABILITY-CHECKING IN JIF

Vt:; msg.
/.
i Di (1)
\VIAE o | D, (ZAE(t,t',n,k,h)) — D (k')
;s principal. D\ (+{ ¢ }7)
VE :; pubKP A. ! k
Y h :; nonce.

(L—CAP—ZEROAE—P)

Aggregate votes We consider the induction base case to be part of the construction
phase.

(' — Cl(P()))I(L—CAPfAGGBASE)

We also consider the induction step to be part of the construction phase.
[

YV A :; principal.

Vk :; pubKP A.

V't 1 msg. Pt Bits -+t)
Glf i 1)

Vt; :; msg. {

Vnypnonce. CP(#{ e}y, .., #{t: }i))

V¥ n; :; nonce.
(L—CAP—AGGSTEP)

Tally votes We consider the induction base case to be part of the construction phase.

(' - Cl(8()))I(L—CAP—TALLYBASE)

We also consider the induction step to be part of the construction phase.
|

Vit :; msg.

Viy iy msg. C(S(tr,...,t1))

C|(tz) I((17)))
Vt; :; msg.

(L—CAP—TALLYSTEP)

Apply homomorphic encryption properties We believe that these capabilities can
be used both in the destruction and in the construction phase.

YV A :; principal.
Vk : pubKP A.
Vit :; msg.

Vi; :; msg. Di(P(#f ti B, ..., #{t: }r')) — Di(#{S(t,...,t:) }})

V¥ n; :; nonce.

V¥ n; :; nonce.

Vn :; nonce.
(L—CAP—PENCH—1)

8.3. €& MESSAGE INFERENCE 65

YV A :; principal.
Vk : pubKP A.
Vit :; msg.

Vt; :; msg. Di(#{ S(t1,....t) 1) — Di(P(#{ ta }it, - #{t: }i9))

V¥ ny :; nonce.

V¥ n; :; nonce.
V¥ n :; nonce.

(L—CAP—PENCH-2)

V A :; principal. !

Yk pubKP A.
Vit :; msg.

V', msg. CPELt B, #{ i 3) = GE{St, ..., t) D)

¥ ny :; nonce.

¥ n; :; nonce.
¥ n :; nonce.

(L—CAP—PENCH-3)

V A :; principal. !

Yk :; pubKP A.
Vit :; msg.

\V/tl 'y Msg. C|(#{{S(t1,...,ti) }}Z) — C|(P(#{{t1 }}Zl,...,#{{ti }}Zl))

¥ ny :; nonce.

V n; :; nonce.
V¥ n :; nonce.

(L—CAP—PENCH—4)

The important point here is that the implicit assumption found in the message inference
mechanism of Typed MSR that each capability of the Dolev-Yao intruder can either be
used constructively or destructively is not valid in the case of the capability to unblind
signatures and to apply the homomorphic encryption properties. This is because: (i) in
the destruction phase it may be beneficial to use these capabilities in order to continue the
search for atomic messages, and (ii) in the construction phase it is not (always) the case
that using these capabilities means that the intruder undoes his own work.

66

CHAPTER 8. LINKABILITY-CHECKING IN JIF

Chapter 9

Summary and Conclusions

In this thesis we demonstrate how, starting from an informal description of a privacy-
preserving protocol in natural language, one may use a modified and extended version
of the Typed MSR language to create a formal specification of this protocol, typed in a
linkability-oriented type system, and then use this specification to reach an implementation
of this protocol in Jif, in such a way that linkability vulnerabilities can be detected with a
mixture of static and runtime checks. This, of course, assumes that a suitable abstraction of
the protocol’s cryptographic primitives is included in our proposed Typed MSR extensions.

More specifically, in Chapters 2 and 3 we present our proposed modifications and ex-
tensions to Typed MSR, in Chapter 4 we show how protocols described in formal language
can be formally specified, in Chapter 5 we introduce the linkability-oriented type system
that type-checks the protocol’s specification, and in Chapters 6, 7 and 8 we present how
this specification can lead to a Jif implementation that detects linkability.

More analytically, in this thesis we make the following points:

1. [Section 2.7] We argue that the Typed MSR specification language should not model
encryption (both symmetric and asymmetric) as deterministic, not only because this
is not how encryption is usually employed in practice, but more importantly be-
cause this makes the language particularly unsuitable for the specification of privacy-
preserving protocols.

2. [Chapter 3] We propose high-level abstractions for blind signatures, commitments,
zero-knowledge proofs and homomorphic encryption.

3. [Section 3.1.4] We argue that making the zero-knowledge proofs non-interactive re-
sults in having protocol specifications that are easier to reason about and to imple-
ment.

4. [Chapter 4] We demonstrate that augmenting the standard language with the new
message constructors make it expressive enough to specify privacy-preserving proto-
cols, such as e-voting protocols.

67

68

10.

CHAPTER 9. SUMMARY AND CONCLUSIONS

[Chapter 5] We argue that a simple type system that exists in parallel with Typed
MSR’s type system is able to enforce basic message well-formedness, and to track
message linkability.

[Chapter 6] We propose an extended version of the original Dolev-Yao intruder based
on our linkability-oriented type system and the new message constructors.

[Section 6.3] We argue that the extended version of the Dolev-Yao intruder creates a
formal environment in which linkability attacks on privacy-preserving protocols may
be demonstrated.

. [Chapter 8] We illustrate how the above may be incorporated into a framework built

on the Jif language, in such a way that linkability vulnerabilities in protocol imple-
mentations may be detected with a mixture of static and runtime checks.

[Section 8.2] We argue that some privacy-related properties are not always easy or
even possible to prove statically, but need to be checked dynamically during the
protocol’s execution. Although such an attempt raises the effort needed to implement
the protocol, it also has the advantage that it is the actual protocol’s implementation
that is being verified, not a possibly flawed abstraction.

[Section 8.3] We argue that the implicit assumption found in the message inference
mechanism of Typed MSR that each capability of the Dolev-Yao intruder can either
be used constructively or destructively is not valid in the case of our introduced
message constructors.

Chapter 10

Future Work

In our view, further work based on the results obtained from this thesis can follow these
major directions:

1. The implementation of the underlying cryptography of the linkability-oriented cryp-
tographic framework, as described in Section 8.1. We need to be able to con-
vert Message objects to and from byte arrays. Some of the cryptography, like en-
cryption and digital signatures, can easily be implemented using suitable providers
for the Java Cryptography Architecture (JCA). The rest of the cryptography, like
blind signatures and zero-knowledge proofs, will be harder to implement, although
there is a lot of source code available on the internet to make the task easier.

2. The integration of the cryptographic framework with a theorem prover, fed with the
axioms and rules of Section 8.3, and the implementation of the runtime linkability
checks of Section 8.2. The first can be achieved using, for example, the Java Theorem
Prover (JTP), developed by Gleb Frank at Stanford University. The later, given that
the theorem prover is in place, is just a matter of invoking it and storing the results.
This task may be challenging performance-wise.

3. The creation of a library of cryptographic primitives, abstracted as Typed MSR mes-
sages, and implemented in our Jif cryptographic framework. This will significantly
increase the domain of protocols this work will apply to.

4. The extension of this work to make it able to deal with additional privacy concerns.
This will probably require comprehensive modifications.

69

70

CHAPTER 10. FUTURE WORK

Bibliography

1]
2]
3]

[4]
[5]

9]

[10]

Data protection act. UK legislation. 1984.
International covenant on civil and political rights. January 1997.

Alessandro Acquisti. Receipt-free homomorphic elections and write-in ballots. Tech-
nical Report 2004/105, International Association for Cryptologic Research, May 2004.

Aristotle. A treatise on government. 322 BC.

D. Aspinall and A. Compagnoni. Subtyping dependent types. In E. Clarke, editor,
Proceedings of the 11th Annual Symposium on Logic in Computer Science, pages 86—
97. IEEE Computer Society Press, July 1996.

Theodoros Balopoulos, Stefanos Gritzalis, and Sokratis K. Katsikas. Specifying and
implementing privacy-preserving protocols. Under revision, International Journal of
Information Security, Springer.

Theodoros Balopoulos, Stefanos Gritzalis, and Sokratis K. Katsikas. An extension
of Typed MSR for specifying esoteric protocols and their Dolev-Yao intruder. In
D. Chadwick B. Preneel, editor, Proceedings of the CMS’2004 IFIP TC6/TC11 8th
International Conference on Communications and Multimedia Security, volume 175,
pages 209-221. Springer, September 2004.

Theodoros Balopoulos, Stefanos Gritzalis, and Sokratis K. Katsikas. Specifying elec-
tronic voting protocols in Typed MSR. In S. De Capitani di Vimercati and R. Dingle-
dine, editors, Proceedings of the 2005 Computer and Communications Security Con-
ference — Workshop on Privacy in the Electronic Society, pages 35—39. ACM Press,
November 2005.

Theodoros Balopoulos, Stefanos Gritzalis, and Sokratis K. Katsikas. Specifying
privacy-preserving protocols in Typed MSR. Computer Standards & Interfaces,
27(5):501-512, June 2005.

Theodoros Balopoulos and Stephanos Gritzalis. Towards a logic of privacy-preserving
selective disclosure credential protocols. In J. Lopez and G. Pernul, editors, Proceed-
ings of the DEXA 2003 — TRUSTBUS’ 03 2nd International Workshop on Trust and

71

72

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

BIBLIOGRAPHY

Privacy in Digital Business, pages 396-401, Prague, Czech Republic, September 2003.
IEEE Computer Society Press.

Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT, pages 431-444, 2000.

Louis Brandeis and SamuelWarren. The right to privacy. In Harvard Law Review,
volume 4, December 1890.

Michael Burrows, Martin Abadi, and Roger Needham. A logic of authentication. ACM
Transactions on Computer Systems, 8(1):18-36, Feb 1990.

lliano Cervesato. Typed Multiset Rewriting Specifications of Security Protocols. In
A. Seda, editor, First Irish Conference on the Mathematical Foundations of Computer
Science and Information Technology — MFCSIT 00, pages 1-43, Cork, Ireland, 19-21
July 2000. Elsevier ENTCS 40.

Iliano Cervesato. Typed MSR: Syntax and Examples. In V.I. Gorodetski, V.A. Sko-
rmin, and L.J. Popyack, editors, First International Workshop on Mathematical Meth-
ods, Models and Architectures for Computer Networks Security — MMM’01, pages
159-177, St. Petersburg, Russia, 21-23 May 2001. Springer-Verlag LNCS 2052.

David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 4(2), February 1981.

David Chaum. Security without identification: transaction systems to make big
brother obsolete. Communications of the Association for Computing Machinery,
28(10):1030-1044, October 1985.

Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of Privacy
Enhancing Technologies Workshop (PET 2002), volume LNCS 2482. Springer-Verlag,
April 2002.

D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 2(29):198-208, 1983.

F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand
spaces: Why is a security protocol correct? In Proceedings of the IEEE Symposium
on Security and Privacy, May 1998.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In
Proceedings of the 19th ACM Symposium on Theory of Computing, pages 210-217,
May 1987.

BIBLIOGRAPHY 73

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]
[33]

[34]

David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing in-
formation. In R. Anderson, editor, Proceedings of the 1st International Workshop
on Information Hiding, volume 1174 of Lecture Notes in Computer Science, pages
137-150. Springer-Verlag, 1996.

Stefanos Gritzalis, Diomidis Spinellis, and Panagiotis Georgiadis. Security proto-
cols over open networks and distributed systems: Formal methods for their analysis,
design, and verification. In Computer Communications, volume 22, pages 697-709.
Elsevier Science, May 1999.

C. A. R. Hoare. Communicating sequential processes. In j-CACM, pages 21(8):666—
677, August 1978.

Jason E. Holt and Kent E. Seamons. Selective disclosure credential sets. Accessible
as http://citeseer.nj.nec.com/541329.html, 2002.

W. Marrero, E. M. Clarke, and S. Jha. Model checking for security protocols. In
Proceedings of the 1997 DIMACS Workshop on Design and Formal Verification of
Security Protocols, 1997.

Robin Milner. A calculus of communicating systems. In Lecture Notes in Computer
Science, volume 92, 1980.

Robin Milner. Communicating and mobile systems: the m-calculus. Cambridge Uni-
versity Press, 1999.

Andrew C. Myers. Practical mostly-static information flow control. In Proceedings of
the 26th ACM Symposium on Principles of Programming Languages (POPL), pages
228-241, January 1999.

Andrew C. Myers and Barbara Liskov. A decentralized model for information flow
control. In Proceedings of the 16th ACM Symposium on Operating Systems Principles
(SOSP), pages 129-142, October 1997.

Andrew C. Myers and Barbara Liskov. Complete, safe information flow with decen-
tralized labels. In Proceedings of the 1998 IEEE Symposium on Security and Privacy,
pages 186-197, May 1998.

United Nations. Universal Declaration of Human Rights. 1948.

P. Paillier. Public-key cryptosystems based on discrete logarithms residues. In Ad-
vances in Cryptology - Eurocrypt 99, pages 223-238. Springer-Verlag LNCS 1592,
1999.

Andreas Pfitzmann and Marit Kéhntopp. Anonymity, unlinkability, undetectabil-
ity, unobservability, pseudonymity, and identity management — a consolidated
proposal for terminology. Draft, version 0.29. Accessible as hitp://dud.inf.tu-
dresden.de/Anon_Terminology.shtml, July 2007.

74

[35]

[36]

[37]

[38]

[39]

BIBLIOGRAPHY

Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In ESORICS, pages
198-218, 1996.

Andrei Serjantov and George Danezis. Towards an information theoretic metric for
anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of Privacy
Enhancing Technologies Workshop (PET 2002), volume LNCS 2482. Springer-Verlag,
April 2002.

Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In Fabien Petitcolas, editor, Proceedings of In-
formation Hiding Workshop (IH 2002), volume LNCS 2578. Springer-Verlag, October
2002.

Paul Syverson and Iliano Cervesato. The logic of authentication protocols. In Foun-
dations of Security Analysis and Design, volume 2171 of Tutorial Lectures. Springer,
2001.

Paul Syverson, Catherine Meadows, and Iliano Cervesato. Dolev-Yao is no better
than Machiavelli. In P. Degano, editor, First Workshop on Issues in the Theory of
Security — WITS’ 00, pages 87-92, July 2000.

