
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Το Πρωτόκολλο DNS ως
Πολυλειτουργικός Φορέας Επίθεσης

Συγγραφέας:

Μάριος Αναγνωστόπουλος

Επιβλέπων:

Αναπληρωτής Καθ. Γεώργιος Καμπουράκης

Διατριβή

για την απόκτηση Διδακτορικού Διπλώματος του

Εργαστηρίου Ασφάλειας Πληροφοριακών και Επικοινωνιακών Συστημάτων

Τμήματος Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Σεπτέμβριος, 2016

http://www.aegean.gr
http://www.icsd.aegean.gr/managn
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/

University of the Aegean

Doctoral Thesis

DNS as a multipurpose attack vector

Author:

Marios Anagnostopoulos

Supervisor:

Associate Prof. Georgios Kambourakis

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy

at the

Laboratory of Information and Communication Systems Security

Department of Information and Communication Systems Engineering

September, 2016

http://www.aegean.gr
http://www.icsd.aegean.gr/managn
http://www.icsd.aegean.gr/gkamb
http://www.icsd.aegean.gr/group/index.php?group=L1
http://www.icsd.aegean.gr/

Declaration of Authorship

I, Marios Anagnostopoulos, declare that this thesis entitled, “DNS as a multipurpose

attack vector” and the work presented in it are my own. I confirm that:

� This work was done wholly while in candidature for a research degree at this

University.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date: September 28, 2016

i

Advising Committee of this Doctoral Thesis:

Georgios Kambourakis, Supervisor

Department of Information and Communication

Systems Engineering

Panagiotis Rizomiliotis, Advisor

Department of Information and Communication

Systems Engineering

Elisavet Konstantinou, Advisor

Department of Information and Communication

Systems Engineering

University of the Aegean, Greece

2016

ii

Approved by the Examining Committee:

Stefanos Gritzalis

Professor, University of the Aegean, Greece

Vasilios Katos

Professor, Bournemouth University, UK

Georgios Kambourakis

Associate Professor, University of the Aegean, Greece

Panagiotis Rizomiliotis

Assistant Professor, University of the Aegean, Greece

Elisavet Konstantinou

Assistant Professor, University of the Aegean, Greece

Konstantinos Kolias

Assistant Professor, George Mason University, USA

Dimitrios Geneitakis

Researcher, Joint Research Centre - European Commission, Italy

University of the Aegean, Greece

2016

iii

“Οἱ καιροὶ οὐ μενετοί.’’

(Θουκυδίδης 455-399 π.Χ.)

Abstract

Few will argue that DNS security is a complex, multi-faceted, and of growing concern

research topic. This is simply because virtually any protocol or service in the Internet

depends its operation on the DNS service. Putting it another way, attacks on DNS

can paralyze the network infrastructure of entire countries or even continents. Even

worse, the original DNS design was concentrated on availability not security, and thus

up to 1997 (and practically prior to 2008) the protocol did not afford any ilk of security

protection, not even origin authentication of the offered DNS data. In this context, the

primary aim of this PhD thesis is to alert the community by the investigation of novel

ways of DNS exploitation, and thus our work can be mainly classified under the umbrella

of offensive security. Specifically, we show that DNS can be exploited as a multipurpose

attack vector that may severely threaten the integrity, authenticity, confidentiality, and

availability of the offered resources in the cyberspace.

Nowadays, DNS security inefficiencies have been addressed in practice by DNSSEC, and

at least up to now, only on a limited scale by DNSCurve. Both these mechanisms utilize

public key cryptography with the aim of extending the core DNS protocol. Therefore,

one of the contribution of this thesis is to provide a comprehensive and constructive side-

by-side comparison among the aforementioned security mechanisms. This is anticipated

to greatly aid the defenders to decide which mechanism best suits to each particular

deployment.

Furthermore, there are overwhelming evidences that DNS is frequently abused by cyber

crooks in Denial of Service (DoS) type of attacks. This is because that - even the typical

- DNS records can greatly amplify the attack effect, meaning vastly augment the volume

of network traffic reflected and destined toward victims. This amplification effect is

foreseen to be far more devastating in the case of DNSSEC records, which normally are

considerably bigger. In this mindset, an additional contribution of the thesis at hand is

the investigation and assessment (in terms of attack amplification factor) of novel types

of DNSSEC-powered DoS kind of attacks. The role of DNS forwarders as reflectors in

such attack incidents is studied as well. Moreover, we examine some novel options about

which publicly available resources (in terms of DNS servers) could be particular fruitful

for the attacker to include them to their arsenal. In this direction, the potential of

entangling the infrastructure of upper DNS hierarchy as both amplifiers and reflectors

is thoroughly investigated. Regarding this point, the main advantage of our research

compared with the standard type of DNS amplification attack is that we demonstrate

that even a naive attacker is capable of executing a fruitful attack by simply exploiting

the great amount of DNS machines existing out there.

This thesis also deals with the exploitation of DNS protocol by bot herders with the

purpose of building hidden Communication and Control (C&C) channels for their bot-

nets. In this respect, we delve into the so called DNS- and IP-fluxing techniques, and

propose and evaluate three novel botnet architectures which solely rely on DNS to de-

liver the botnet’s C&C infrastructure. Given the mushrooming of smart mobile devices,

the proposed architectures utilize not only mixed structures consisting of both mobile

and desktop bot agents, but more importantly, structures that are purely mobile. This

aspect of our work also includes the evaluation of the robustness of the proposed botnet

formations.

Finally, besides the contributions devoted to legacy DNS attacks, we investigate the

potential of DNS as an attack vector to evade user’s privacy by means of harvesting

private sensitive information from, say, smartphone owners. To this end, we design and

implement a privacy-invasive mobile application (spyware) able to manipulate the DNS

service running on devices based on the Apple’s iOS platform. The spyware is capable

of acting as a man-in-the-middle to the tethering and intelligent personal assistant (such

as Siri and Goggle now) services present in virtually every modern mobile platform. In

this case, the aim of the spyware coder is that of redirecting all users connected via

the device to a malicious website in order to phish user’s credentials, harvest sensitive

personal information, and so forth.

Greek Abstract

Αδιαμφισβήτητα, τα ζητήματα ασφαλείας για την υπηρεσία ονοματοδοσίας χώρου του Δια-

δικτύου (DNS) αποτελούν ένα πολύπλοκο, πολυδιάστατο και ιδιαίτερης βαρύτητας πεδίο

έρευνας. Ουσιαστικά, κάθε πρωτόκολλο ή υπηρεσία που παρέχεται μέσω του Διαδικτύου

βασίζει την απρόσκοπτη λειτουργία του στην υπηρεσία DNS. Συνεπώς, κάθε τύπος επίθε-

σης που στοχεύει το DNS ενδέχεται να επιφέρει σοβαρές επιπτώσεις στη δικτυακή υποδομή

οργανισμών ή ακόμα και ολόκληρων κρατών. Δυστυχώς, οι αρχικές εκδόσεις του συγκε-

κριμένου πρωτοκόλλου εστίαζαν στη διαθεσιμότητα της υπηρεσίας παρά στην προστασία

της από πιθανές απειλές. ΄Ετσι, σχεδόν μέχρι το 1997, αλλά πρακτικά όχι νωρίτερα από το

2008, το πρωτόκολλο DNS δεν υποστήριζε κάποιο μηχανισμό προστασίας, ούτε καν αυτόν

της διασφάλισης της αυθεντικότητας προέλευσης των παρεχόμενων δεδομένων. Σε αυτό το

πλαίσιο, η παρούσα διδακτορική διατριβή έχει ως βασικό στόχο να ενημερώσει και να θέσει

σε επιφυλακή την επιστημονική κοινότητα μέσω της διερεύνησης και επισήμανσης νέων

μεθόδων κακόβουλης εκμετάλλευσης του DNS. ΄Ετσι, μπορούμε να πούμε ότι η εν λόγω

διατριβή επικεντρώνεται στην επιθετική ασφάλεια, δηλ., εστιάζει στον επιτιθέμενο πάρα στον

αμυνόμενο. Με άλλα λόγια, η διατριβή φιλοδοξεί να καταδείξει ότι το πρωτόκολλο DNS

δύναται να χρησιμοποιηθεί ως ένας πολύπλευρος φορέας επίθεσης (attack vector) με σκοπό

την παραβίαση της ακεραιότητας, αυθεντικότητας, εμπιστευτικότητας και διαθεσιμότητας

των προσφερόμενων πόρων στον κυβερνοχώρο.

Σήμερα, οι ανεπάρκειες του DNS θεραπεύονται από δύο κρυπτογραφικούς μηχανισμούς· στην

πράξη με την επέκταση ασφαλείας του DNSSEC και (μέχρι στιγμής σε μικρή κλίμακα) το

DNSCurve. Αμφότεροι οι μηχανισμοί αυτοί χρησιμοποιούν κρυπτογραφία δημοσίου κλειδιού

με σκοπό την προστασία των μηνυμάτων του βασικού πρωτοκόλλου DNS. Ως εκ τούτου,

μία από τις συνεισφορές της παρούσας διατριβής είναι η διεξαγωγή μιας συγκριτικής και

εποικοδομητικής παράθεσης των δύο προαναφερθέντων μηχανισμών ασφαλείας. Μια τέτοια

αντιπαραβολή είναι βέβαιο ότι βοηθάει σημαντικά τους αμυνόμενους στο να επιλέξουν ποιος

μηχανισμός είναι καταλληλότερος για κάθε περίπτωση.

Επιπλέον, υπάρχουν σημαντικές αποδείξεις ότι το πρωτόκολλο DNS χρησιμοποιείται κα-

κόβουλα από τους κυβερνο-εγκληματίες προκειμένου να διεξάγουν επιθέσεις άρνησης υ-

πηρεσίας (DoS). Συγκεκριμένα, τα περιστατικά αυτά ανήκουν σε μια ειδική κατηγορία ε-

πιθέσεων που ονομάζονται επιθέσεις ενίσχυσης μέσω DNS (DNS amplification attack).

Κάτι τέτοιο είναι εφικτό, διότι ακόμα και μια τυπική DNS απόκριση (response) ενδέχεται

να ενισχύσει σημαντικά την δικτυακή κίνηση που καταφτάνει στην πλευρά του θύματος.

Ουσιαστικά, το πρωτόκολλο ενισχύει (amplify) σε μεγάλο βαθμό τον όγκο της δικτυα-

κής κίνησης που ανακλάται (reflect) και κατευθύνεται μέσω της υποδομής DNS εναντίον

του στόχου. Το εν λόγω φαινόμενο της ενίσχυσης αναμένεται να είναι ακόμα ισχυρότερο

και συνεπώς να επιφέρει καταστροφικότερες επιπτώσεις στην περίπτωση χρήσης εγγραφών

(records) DNSSEC, οι οποίες είναι μεγαλύτερες σε μέγεθος από αυτές του βασικού πρωτο-

κόλλου. Σε αυτήν την κατεύθυνση, η παρούσα διατριβή διεξάγει μια λεπτομερή μελέτη νέων

τύπων DoS επιθέσεων που βασίζονται αποκλειστικά σε δεδομένα DNSSEC. Η αποτίμηση

της επίπτωσης των προτεινόμενων επιθέσεων επιτυγχάνεται με τον υπολογισμό του συντε-

λεστή ενίσχυσης (amplification factor) της επίθεσης. Συμπληρωματικά, διερευνούμε τις

διαφορετικές μεθόδους εκμετάλλευσης των προωθητών DNS (DNS forwarders) με σκοπό

την αποτελεσματικότερη ανάκλαση της επιτιθέμενης δικτυακής κίνησης. Επιπλέον, η δια-

τριβή απαντάει στο ερώτημα σχετικά με το ποιοι δημόσια διαθέσιμοι εξυπηρετητές DNS θα

μπορούσαν να είναι προσοδοφόροι για τους σκοπούς του επιτιθέμενου έτσι ώστε να τους

συμπεριλάβει στο οπλοστάσιο του. Για το σκοπό αυτό, εξετάζεται εκτενώς το αποτέλεσμα

της εμπλοκής των εξυπηρετητών της ανώτερης ιεραρχίας της υποδομής DNS σε περιστατικά

επιθέσεων ενίσχυσης. Συνεπώς, το κύριο πλεονέκτημα της ερευνητικής μας προσπάθειας

σε σύγκριση με τις τυπικές επιθέσεις ενίσχυσης μέσω DNS έτσι όπως αναφέρονται στην

σχετική βιβλιογραφία, είναι ότι καταδεικνύουμε ότι ακόμα και ένας ανεπαρκής επιτιθέμενος

με ελάχιστα υπολογιστικά μέσα στην διάθεση του, είναι ικανός να διεξάγει μια επιτυχημένη

επίθεση DoS εκμεταλλευόμενος τις υπάρχουσες (δημόσιες) υποδομές.

Επιπροσθέτως, η έρευνά μας εστιάζει στην εκμετάλλευση του πρωτοκόλλου DNS από τους

διαχειριστές (bot herders) δικτύων υπολογιστών-ρομπότ (botnets). Συγκεκριμένα, με σκο-

πό τη μετάδοση των εντολών του διαχειριστή στα μέλη του δικτύου (bots), είναι απαραίτητη

η υλοποίηση συγκεκαλυμμένων καναλιών επικοινωνίας (Command & Control-C&C chan-

nels). Τέτοια κανάλια επικοινωνίας κατά κόρον αξιοποιούν τις τεχνικές DNS- και IP-Flux.

΄Ετσι, στο πλαίσιο της παρούσας διατριβής, σχεδιάζουμε και αξιολογούμε τρείς νέες βοτνετ

αρχιτεκτονικές, οι οποίες βασίζονται στο πρωτόκολλο DNS για τη δημιουργία της υποδομής

C&C. Δεδομένης της ευρείας διάδοσης των έξυπνων κινητών συσκευών, οι προτεινόμενες

αρχιτεκτονικές αξιοποιούν τόσο μικτή δομή (αποτελούμενη από κινητά και σταθερά bots)

όσο και πιο εξειδικευμένη, αποτελούμενη αποκλειστικά από κινητές συσκευές. Εκτός των

άλλων, η συγκεκριμένη ερευνητική συνιστώσα της διατριβής περιλαμβάνει μια αναλυτική

αποτίμηση της ευρωστίας των προαναφερθέντων αρχιτεκτονικών botnet.

Εκτός των τυπικών μεθόδων εκμετάλλευσης του πρωτόκολλου DNS από τους επιτιθέμενους,

η παρούσα διατριβή εστιάζει στη διερεύνηση της δυνατότητας αξιοποίησης του πρωτοκόλ-

λου για την παραβίαση της ιδιωτικότητας των χρηστών. Πιο συγκεκριμένα, εξετάζουμε την

περίπτωση υποκλοπής ευαίσθητων προσωπικών δεδομένων από τους χρήστες έξυπνων κινη-

τών συσκευών. Για το σκοπό αυτό, σχεδιάζουμε και υλοποιούμε μια εφαρμογή κατασκοπίας

(spyware) για κινητές συσκευές που έχει ως στόχο τη χειραγώγηση της υπηρεσίας DNS

που παρέχεται από κινητές πλατφόρμες και συγκεκριμένα την iOS της εταιρίας Apple. Η

εφαρμογή δρα ως ενδιάμεσος (man-in-the-middle) στην υπηρεσία διαμοιρασμού του ασύρ-

ματου δικτύου (tethering) ή/και σε αυτή του έξυπνου προσωπικού βοηθού (Siri). Αφού

μολύνει τη συσκευή, η εφαρμογή ανακατευθύνει τον ανυποψίαστο χρήστη σε κακόβουλες

ιστοσελίδες ώστε να συλλέξει συνθηματικά, στοιχεία λογαριασμών, προσωπικά δεδομένα,

κ.ά.

Acknowledgements

Φτάνοντας στο τέρμα αυτής της πολύχρονης πορείας και κατ’ επέκταση στην ολοκλήρωση

των φοιτητικών μου χρόνων, θεωρώ καθήκον και υποχρέωση μου να ευχαριστήσω όλους

αυτούς που συνέβαλαν με τον έναν ή τον άλλον τρόπο στην επιτυχή περάτωση αυτής της

διατριβής.

Πρώτα και κύρια θα ήθελα να εκφράσω τις βαθύτερες ευχαριστίες μου στον επιβλέποντα

Αναπληρωτή Καθηγητή κ. Γεώργιο Καμπουράκη, που δεν υπήρξε απλά ένας επιβλέπων

αλλά και ένας καλός φίλος και συνεργάτης στην όλη προσπάθειά μου. Επιπλέον θέλω να

ευχαριστήσω και τα υπόλοιπα μέλη της τριμελούς και επταμελούς επιτροπής για τον χρόνο

που αφιέρωσαν για την ολοκλήρωση αυτής της εργασίας. Φυσικά δεν πρέπει να παραλείψω να

ευχαριστήσω τον Καθηγητή κ. Στέφανο Γκρίτζαλη για την αμέριστη αρωγή του στα όποια

εμπόδια και δυσκολίες παρουσιάστηκαν όλα αυτά τα χρόνια. Σε κάθε περίσταση επενέβαινε

για να βοηθήσει στην αντιμετώπιση τους και συνέβαλε στην απρόσκοπτη συνέχιση της

ερευνητικής μου πορείας.

Επιπλέον θέλω να ευχαριστήσω τους Παναγιώτη Κόπανο και Γεώργιο Λουλουδάκη, που

ως προπτυχιακοί και αργότερα ως μεταπτυχιακοί φοιτητές με βοήθησαν να αποκτήσω αυ-

τοπεποίθηση στην εκτέλεση και την υλοποίηση πειραμάτων. Η συνεργασία μας, μου έδειξε

ότι καμιά ιδέα δεν είναι αδύνατον να υλοποιηθεί και κάθε πείραμα καλά σχεδιασμένο και

καθορισμένο θα φέρει τα επιθυμητά αποτελέσματα. Καλή επιτυχία στην ζωή σας, παιδιά!

Ακόμα θέλω να ευχαριστήσω τους καλούς φίλους και συνεργάτες, Ζήση Τσιάτσικα και

Δημήτριο Παπαμαρτζιβάνο, για την εποικοδομητική ανταλλαγή ιδεών και απόψεων οι οπο-

ίες συνέβαλαν στην διευκόλυνση της προσπάθειας μας. Με το καλό να ολοκληρώσετε το

διδακτορικό σας και να επιτύχετε τους στόχους σας!

Φυσικά θέλω να εκφράσω τις θερμότερες ευχαριστίες και ευχές μου στους αδελφικούς

φίλους Γιάννη Αχιλλιά, Δημήτρη Παπαγιαννούλη και Παύλο Χατζηδημητρίου, που από τα

πρώτα χρόνια της φοιτητικής μας ζωής έως τώρα στα χρόνια της ωρίμανσης και υλοποίησης

των ονείρων μας, αποτελούν τον βασικό πυλώνα στήριξης και συμπαράστασης και ως φίλοι

συνεχίζουμε όλα αυτά τα χρόνια να συμβουλεύουμε αλλήλους και να στηριζόμαστε στις

δύσκολες αλλά και να μοιραζόμαστε τις ευχάριστες στιγμές. Γιάννη, ήσουν και παράμεινες

το πρότυπο και η ψυχή της παρέας μας! Είναι ιδιαίτερη τιμή που σε γνώρισα και απολαμβάνω

την φιλία σου. . .

Ιδιαίτερες ευχαριστίες θέλω να εκφράσω στην συνοδοιπόρο και επ-Αναστάτρια της ζωής

μου, που όλα αυτά τα χρόνια μου συμπαραστάθηκε και με βοήθησε να μη καταβάλλομαι

από τις απογοητεύσεις και τα εμπόδια, αλλά με θάρρος και χαμόγελο να συνεχίζω προς τον

επιδιωκόμενο σκοπό.

x

Δεν πρέπει να παραβλέψουμε και όλες αυτές τις αθόρυβες ψυχούλες, που σαν αόρατοι

άγγελοι στέκονται πάνω από τον ώμο μας, και με τον δικό τους μοναδικό τρόπο φωτίζουν

τα βήματα μας και δείχνουν τον δρόμο προς την ψυχική ανάταση και την ολοκλήρωση μας

ως ανθρώπινη οντότητα.

Τελευταία μα πιο σημαντικά θέλω να ευχαριστήσω τους γονείς μου, για την ψυχική και ηθική

συμπαράσταση τους όλα αυτά τα χρόνια. Τους ΕΥΧΑΡΙΣΤΩ που μου παρείχαν όλα τα

απαραίτητα υλικά εφόδια για την επιβίωση και επένδυσαν στην μόρφωση μου. Κυρίως όμως

τους ΕΥΓΝΩΜΟΝΩ που σαν γνήσιοι Εκπαιδευτικοί μου παρείχαν όλα τα ηθικά εφόδια και

την αγάπη για την γνώση και την μόρφωση, προκειμένου να γίνω ένας σωστός και χρήσιμος

άνθρωπος. Ευχαριστώ και τον αδελφό μου τον Στάθη, που με το πείσμα του, την επιμονή

του, το θάρρος και τον –ας μου επιτραπεί η έκφραση- ‘‘τσαμπουκά’’ του, μου έδειξε ότι δεν

πρέπει να απογοητευόμαστε στις πρώτες δυσκολίες, αλλά πρέπει να προσπαθούμε και να

στοχεύουμε στο καλύτερο, καμία φορά δε το καλύτερο δεν είναι αυτό που εμείς επιδιώκουμε

αλλά αυτό που κάποιος ‘‘΄Αλλος’’ μας επιφυλάσσει.

� Mes chers parents je pars

Je vous aime mais je pars

Vous n’aurez plus d’enfants

Ce soir

Je ne m’enfuis pas je vole

Comprenez bien je vole

Sans fumée sans alcool

Je vole, je vole �

(Louane-Je vole)

To those who enlighten the path of our life,

To my parents

Σε αυτούς που φωτίζουν το μονοπάτι της ζωής μου,

Στους γονείς μου

xii

Contents

Declaration of Authorship i

Advising Committee of this Doctoral Thesis ii

Approved by the Examining Committee iii

Abstract v

Greek Abstract vii

Acknowledgements x

List of Figures xvii

List of Tables xix

Abbreviations xx

1 Introduction 1

1.1 Motivation and Objectives . 4

1.2 Contributions . 6

1.3 Thesis Structure . 9

2 Background 13

2.1 DNS Service . 13

2.1.1 Introduction . 13

2.1.2 DNS Domains . 14

2.1.3 DNS zones . 15

2.1.4 DNS Reverse Mapping . 15

2.1.5 DNS Operation . 16

2.1.6 DNS Queries . 17

2.1.7 Entities in a DNS transaction . 17

2.1.7.1 Resolver . 18

2.1.7.2 Name Server . 18

Primary Authoritative Name Server 18

xiii

Contents xiv

Secondary Authoritative Name Server 18

Authoritative-only Name Server 19

Recursive Name Server . 19

Forwarding Name Server . 20

2.1.8 Format of Zone File . 21

2.1.9 Resource Record Types . 22

2.1.9.1 SOA Record . 22

2.1.9.2 NS Record . 24

2.1.9.3 A and AAAA Record . 25

2.1.9.4 CNAME Record . 25

2.1.9.5 TXT Record . 25

2.1.9.6 MX Record . 26

2.1.9.7 PTR Record . 26

2.1.9.8 CSYNC Record . 27

2.1.10 DNS Message Format . 27

2.1.11 Zone Update . 29

2.1.11.1 Full Zone Transfer . 29

2.1.11.2 Incremental Zone Transfer 30

2.1.11.3 Notify . 30

2.1.11.4 Dynamic Update . 30

2.1.11.5 Wildcards . 31

2.1.12 Resolution of a domain name . 31

2.2 Legacy DNS Attacks . 33

2.2.1 Attack Surface specific to Integrity of DNS transactions 33

2.2.2 Exploiting DNS infrastructure for DDoS 35

3 DNS Cache Poisoning 36

3.1 Introduction . 36

3.1.1 Target of Cache Poisoning . 37

3.1.2 Steps for a Cache Poisoning Attack 38

3.1.3 Kaminsky-Style Poisoning Attack 42

3.2 Poisoning Antidotes . 44

3.2.1 Interim Solutions . 45

3.2.1.1 Transaction ID Randomization 46

3.2.1.2 Source Port Randomization 46

3.2.1.3 0x20-Bit Encoding . 47

3.2.1.4 WSEC DNS . 49

3.2.1.5 Multiple Queries . 51

3.2.2 Cryptographic Solutions . 51

3.2.3 DNSSEC . 52

3.2.3.1 Security Operations . 53

3.2.3.2 DNSSEC-related RR types 55

DNSKEY Record . 55

RRSIG Record . 56

NSEC/NSEC3 Record . 58

DS Record . 62

Cryptographic Algorithms for DNSSEC 64

Contents xv

3.2.3.3 DNSSEC-related header flags 65

3.2.3.4 DNSSEC in action . 67

3.2.3.5 Trust Anchor . 69

3.2.3.6 DNSSEC Lookaside Validation 69

3.2.3.7 Challenges of DNSSEC Deployment 71

3.2.4 DNSCurve . 72

3.2.4.1 Security Operations . 73

3.2.4.2 Publication of Public Key 74

3.2.4.3 DNSCurve message format 75

3.2.4.4 DNSCurve operation . 75

3.2.4.5 Trust anchor . 77

3.2.4.6 Elliptic Curve Cryptography 78

3.2.5 DNSSEC vs. DNSCurve: A side-by-side Comparison 78

3.2.5.1 Cryptography . 78

3.2.5.2 Integrity and Origin Authentication 79

3.2.5.3 Confidentiality . 81

3.2.5.4 Authenticated Denial of Existence 83

3.2.5.5 Amplification Attacks . 84

3.2.5.6 Modification of DNS Infrastructure 85

3.2.5.7 Zone Administration . 85

3.2.5.8 Key Management . 86

3.2.5.9 Performance . 88

3.2.5.10 Conclusion . 93

3.2.6 DNS over DTLS . 94

3.2.7 DNS over TLS . 95

4 Novel DNS amplification attack vectors 103

4.1 DNS Amplification . 103

4.1.1 Amplifiers and Reflectors . 105

4.1.2 Victims of DNS amplification attack 109

4.2 Going one step further: Obfuscating DNS amplification 110

4.2.1 Attack Scenario . 111

4.2.2 Results . 113

4.2.3 Discussion . 119

4.3 Authoritative TLD nameserver-powered DNS amplification 121

4.3.1 Methodology and Results . 124

4.3.1.1 Types of Queries . 125

4.3.1.2 Examining the response size for a single query 125

4.3.1.3 Examing RRL mechanism for positive responses 127

4.3.1.4 Examing RRL mechanism for negative responses 130

4.3.2 Discussion . 131

4.4 Countermeasures . 133

4.4.1 Proactive Measures . 134

4.4.1.1 Lowering the Amplification Factor 134

4.4.1.2 Eliminate Reflection Capabilities 135

4.4.2 Reactive methods . 136

Contents xvi

5 DNS-driven botnet C&C architectures 139

5.1 Introduction . 139

5.2 Botnet Architectures . 140

5.3 Life Cycle of a Bot . 141

5.4 DNS Fluxing . 142

5.5 C&C channels . 144

5.6 DNS as C&C Channel . 144

5.7 Mobile botnets . 146

5.7.1 Benefits and Limitations of Mobile Botnet 148

5.8 New facets of mobile botnets . 149

5.8.1 Preliminaries and attack planning 149

5.8.2 Architecture I: A purely mobile botnet 151

5.8.2.1 Architecture II: Mobile Botnet with PC-based proxies . . 155

5.8.2.2 Architecture III: Exploiting DNS as covert C&C channel 156

5.8.2.3 Other considerations . 158

5.8.3 Comparison of architectures and Results 158

5.9 Countermeasures . 161

5.9.1 DNS-based Botnet detection . 162

5.9.1.1 Detection of DNS fluxing 162

5.9.2 Botnet shutdown operation . 165

5.9.2.1 Botnet Sinkholing . 165

5.9.2.2 Botnet Infiltration . 167

6 DNS as an attack vector in Mobile Platforms 184

6.1 Introduction . 184

6.2 Preliminaries . 185

6.2.1 mDNS . 186

6.2.2 The Tethering and Siri services . 187

6.3 Implementation . 188

6.3.1 The DNS poisoning malware . 188

6.4 Attack Scenarios . 192

6.4.1 Scenario I: DNS Hijacking . 193

6.4.2 Scenario II: Privacy leak over Siri 193

6.4.2.1 Exposing User’s Geographical Location 196

6.4.2.2 Obtaining sensitive information via SMS 196

6.4.2.3 Acquiring user’s password 198

6.5 Related Work . 198

7 Conclusions and Future Directions 202

7.1 Thesis Contributions . 203

7.2 Future Directions . 205

Bibliography 208

List of Figures

1.1 Contribution of PhD thesis with the relative security services 12

2.1 DNS tree structure . 14

2.2 DNS Reverse Tree . 16

2.3 DNS transaction . 32

2.4 Attack Surface specific to Integrity of DNS transactions 33

3.1 DNS poisoning attack . 39

3.2 Time window for DNS cache poisoning attack 96

3.3 Algorithm of DNS-0x20bit encoding . 97

3.4 WSEC DNS query process . 98

3.5 Typical example of DNSSEC chain of trust 99

3.6 Example of a DNSSEC transaction . 100

3.7 Example of a DNSCurve transaction . 101

3.8 Message Flow for Full DTLS Handshake 102

4.1 High-level architecture of a typical DNS amplification attack 105

4.2 DNS forwarders discovery process . 112

4.3 High-level architecture of the attack introduced in this work 114

4.4 Progress of Resource Consumption at the victim-side 117

4.5 Exploiting ANSs administrating TLD zones 123

5.1 Botnet Structure . 168

5.2 The life cycle of a Bot . 169

5.3 TCP Flooding Attack . 170

5.4 Architecture I: Initialization Phase . 171

5.5 Architecture I: Migration Phase . 172

5.6 Architecture I: Recovery Phase . 173

5.7 Architecture I: Amplification Attack . 174

5.8 Architecture I: TCP Flooding Attack . 175

5.9 Architecture II: Initialization Phase . 176

5.10 Architecture II: Migration Phase . 177

5.11 Architecture II: Recovery Phase . 178

5.12 Architecture II: Amplification Attack . 179

5.13 Architecture II: TCP Flooding Attack . 180

5.14 Architecture III: Initialization Phase . 180

5.15 Architecture III: Amplification Attack . 181

5.16 Architecture III: TCP Flooding Attack . 181

5.17 Inbound traffic in MBps for both attack variations of Architecture I . . . 182

xvii

List of Figures xviii

5.18 Architecture III: Network traffic generated due to botnet coordination . . 183

6.1 Malware module . 189

6.2 The /etc/hosts file after poisoning . 190

6.3 Source code snippet for disabling/enabling mDNSResponder 191

6.4 Network architecture utilized for the attack scenarios 192

6.5 Siri protocol flow . 194

6.6 Basic source code example of a custom plugin 196

6.7 Snippet of the plugin responsible to retrieve user’s location 196

6.8 Log file created when sending an SMS . 197

6.9 Message flow for acquiring user’s password 199

List of Tables

2.1 Common DNS Resource Record Types 28

2.2 DNS Message Format . 28

3.1 Definition of symbols for DNSSEC Resolution Algorithm 67

3.2 DNSSEC vs. DNSCurve . 92

4.1 Percentages of open forwarders per country in regards to the size of re-
sponse they return . 115

4.2 Effects on target proportional to the power and number of attacking nodes
per scenario . 118

4.3 Demographics of the TLD ANSs . 126

4.4 Amplification factor for a single query with EDNS0 buffer size 8,192 . . . 127

4.5 Percentage of authoritative NSs for positive responses (ver. 1) 129

4.6 Percentage of authoritative NSs for positive responses (ver. 2) 129

4.7 Percentage of truncated positive responses 130

4.8 Percentage of authoritative NSs of negative responses (ver. 1) 131

4.9 Percentage of authoritative NSs of negative responses (ver. 2) 131

4.10 Percentage of truncated negative responses 131

5.1 Inbound traffic in MBps proportional to the number of attacking bots per
architecture . 161

7.1 Overall PhD Thesis Contribution . 205

xix

Abbreviations

2-TLD Second Top-Level Domain

ANS Authoritative Name Server

AP Access Point

AS Autonomous System

ASN Autonomous System Number

BCP Best Current Practice

CA Certification Authority

ccTLD country code Top-Level Domain

CDN Content Delivery Network

CVE Common Vulnerabilities & Exposures

DDNS Dynamic Domain Name System

DDoS Distributed DoS

DGA Domain Generation Algorithm

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DNSSEC DNS SEcurity Extentions

DoS Denial of Service attack

DTLS Datagram Transport Layer Security

EC Elliptic Curve

ECC EC Cryptography

ESSID Extended Service Set ID

FQDN Fully Qualified Domain Name

GPS Global Positioning System

gTLD generic Top-Level Domain

HTTP Hypertext Transfer Protocol

xx

Abbreviations xxi

HTTPS HTPPypertext Secure

ICANN Internet Corporation for Assigned Names & Numbers

IDS Intrusion Detection System

IP Internet Protocol

IPv4 IP version 4

IPv6 IP version 6

ISO International Organization for Standardization

ISP Internet Service Provider

KSK Key Singing Key

MAC Message Authentication Code

mDNS multicast DNS

MitM Man-in-the-Middle attack

NAT Network Adress Translation

NN Neural Network

NONCE Number used Once

NS Name Server

NXDOMAIN Non-existent Domain

ORDNS Open Recursive NS

OS Operating System

PAT Port Adress Translation

PC Personal Computer

PH Personal Hotspot

PKC Public Key Cryptography

PKI Public Key Infrastructure

PSK Pre-Shared Key

RDNS Recursive NS

RFC Request For Comments

RIR Regional Internet Registry

RR Resource Record

RRL Response Rate Limiting

RTT Round Trip Time

SMS Short Message Service

SOA Start of Authority

Abbreviations xxii

SPR Source Port Randomization

TCP Transmission Control Protocol

TLD code Top-Level Domain

TLS Transport Layer Security

TTL Time to Live

TXID Transaction ID

UDP User Datagram Protocol

ZCN Zero Configuration Networking

ZSK Zone Signing Key

Chapter 1

Introduction

Undoubtedly, Domain Name System (DNS) [1, 2] is one of the most decisive elements

of Internet infrastructure. In fact, excluding IP protocol, DNS is the most utilized

network protocol. DNS Name Servers (NS) provide the mapping of a domain name to

its corresponding IP address. This simple process constitutes the cornerstone of Internet

due to the fact that it comes before any other transaction takes place. It is well-known

that resources in the Internet or an internal network are assigned with a domain name

which corresponds to a unique IP address. This way, whenever a users wishes to access

a network resource of any type, they find first the IP address of the server by resolving

the appropriate host name. The usage of domain names instead of numerical addresses

is more convenient for the users, since they need to remember the domain name rather

than the 32-bit number of IP address. In any case, DNS permits the smooth and reliable

operation of Internet, since otherwise, the end-users would have to memorize and provide

the numerical IP address of any network resource that they desire to access.

DNS is based on the client-server architecture. The server side of the service forms a

distributed database that utilizes a hierarchical multi-tiered tree structure to organize

the domain name space into zones. For each zone, there is an Authoritative NS (ANS)

responsible to provide answers to incoming requests regarding the resources of the zone

under its administration. For this reason, the ANS contains a zone file with the ap-

propriate answers in the form of Resource Records (RR). Each RR maps the resources

of the zone to its corresponding domain name. Whenever an application running on a

given host needs the IP address of a domain name (or other related DNS RR), it issues a

1

Chapter 1. Introduction 2

query to a predefined Recursive DNS NS (RDNS). In turn, RDNS undertakes to traverse

DNS hierarchy and locate the appropriate answer. Moreover, for performance reasons,

RDNS maintains a cache memory for storing the received RR with the aim of fulfilling

subsequent similar requests stemming from the same or another client of the internal

network.

Security has become a critical issue for modern computer information systems due,

among others, to the rapid and fast growth of computer networks during the past two

decades. This growth has exposed computer networks and related protocols to an in-

creasing number of security threats, thus increasing their attack surface. As expected,

DNS is not exempt from this rule. However, it can be safely argued that the effects of

violating DNS are more devastating compared to any other protocol. Originally, DNS

protocol design was not focused on the protection of data’s authenticity, but rather on

the scalability of the service. Consequently, the initial implementations did not include

cryptographic mechanisms that could ensure the validity of the provided data. As a

result, the inherent absence of protection and authentication mechanisms have lured

potential attackers to manipulate DNS for providing forged responses. Today, however,

attacks on DNS have become more sophisticated; the attackers’ target is not solely DNS

protocol and infrastructure per se, but aim to exploit the protocol for accomplishing

various objectives, including assaults against other valuable targets or the construction

of advanced and stealth Communication & Control (C&C) channels for coordinating

Botnets.

Since the introduction of DNS and until recently, the protocol has proved itself vulnerable

to of critical flows. For instance, Bellovin in 1990 [3] discovered a flaw that allow an

attacker to breach a system. More recently, Kaminsky in 2008 [4] found a weakness

on DNS protocol that permits the violation of DNS data integrity. Specifically, the

effect of the so called Kaminsky-style cache poisoning attack is so devastating that its

announcement was initially considered as the end of DNS infrastructure as we know it.

Also, DNS infrastructure is frequently exploited by DNS amplification attacks, which

is a perilous type of DDoS attack. For instance, in a recent DDoS incident, which was

characterized as the biggest cyber-attack of this kind in Internet’s history, the network

infrastructure of Spamhaus was targeted [5]. Actually, Spamhaus suffered for at least

a week period a network flood of DNS data that reached 300 Gbps at its peak. As

already pointed out, DNS protocol messages can be used for the coordination of a

Chapter 1. Introduction 3

botnet, i.e., a network of compromised machines that act at the will of their botmaster.

In such a scenario, DNS provides a way for the bots to locate their botmaster and

communicate with him. In fact, as discussed in chapter 5, this is commonly achieved

with Domain Fluxing scheme [6]. It is not to be forgotten that DNS is also utilized for

attack reconnaissance, namely an attacker is able to identify their target and/or defensive

mechanisms inside an internal network by interacting with DNS service [7]. From the

above discussion, it becomes evident that DNS represents a multipurpose vector for a

potential aggressor to achieve their malicious objectives.

On the other hand, as DNS is abused for malicious purposes, the aggressors leave no-

ticeable traces of their actions in DNS traffic. Thus, passive and/or active monitoring

of DNS network traffic could significantly contribute to the objectives of the defenders.

In this way for example, one may be able to detect botnet through group activities in

DNS queries [8]. Similarly, spamming services based on worms can be disclosed due to

DNS queries related to Mail Exchange (MX) servers [9]. Moreover, detection of malware

scanning and zero-day worm outbreaks can be identified with the correlation of DNS

and IP traffic [10]. Finally, DNS reputation systems could assist to the identification of

malicious domain names [11].

At some point in DNS evolution, DNS Security Extensions (DNSSEC) was proposed.

Its aim was the protection of DNS data integrity and verification of their origin. More

specifically, the initial proposal was published in 1997 in the form of RFC 2065 [12], but

attempts to implement RFC 2065 led to a revised version in 1999 as RFC 2535 [13].

However, RFC 2535 specification had significant problems for scaling to the Internet,

so it soon became evident that was unusable for large networks. Finally, a new specifi-

cation which is fundamentally modified compared to the previous one, was introduced.

The current version, known also as DNSSEC-bis is mainly specified in RFCs 4033 [14],

4034 [15] and 4035 [16]. Nevertheless, the DNSSEC deployment in large-scale networks

still remains challenging. For the end-user to benefit from the protection offered by

DNSSEC, the majority of the DNS infrastructure should adopt DNSSEC. For the root

and TLD (upper DNS hierarchy) this is mandatory, but eventually, DNSSEC was first

fully deployed at the root level on July of 2010.

Although, DNSSEC intend to add a protection layer to DNS service, as it is discussed

in the context of this thesis it can also facilitate the launching of DNS amplification

Chapter 1. Introduction 4

attacks. In fact, the introduced modification to DNS protocol augment the size of DNS

RR, so a potential aggressor favor DNSSEC-related data in order to raise the effects

of their actions. Although in such an attack incident the target of the attack is not

necessarily the DNS infrastructure itself, the involuntary involvement of DNS entities in

DDoS incidents hamper DNS availability to the legitimate users.

1.1 Motivation and Objectives

From the findings of DNS security pioneer Steve Bellovin almost 30 years ago until the

present days, it is obvious that the battle amongst aggressors and defenders concern-

ing DNS is continuous and intensive. Although in the literature exist a great amount

of publications concerning DNS security, constantly new security issues emerge that

require the urgent attention of the research community. Novel threats appear almost

every day whose implications affect the normal operation of information systems and

organizations. Since, DNS precedes virtually any other online transaction, a disruption

to its normal operation is reflected to the functionality of the remaining network proto-

cols. Nonetheless, the inconsistent operation of DNS influence substantially the way an

end-user experiences the Internet.

Indeed, DNS security is a challenging topic of research. As already mentioned, the pro-

tocol is abused in many ways and for various malicious objectives. On the one hand,

the violation of DNS data integrity is notably profitable for the attacker, while it may

simultaneously put the end-user at great risk. On the other hand, DNS can facilitate

evildoers to fulfill their actions by, say, exploiting it to build covert communication chan-

nels. The openness of DNS protocol and the absence of full-fledge security mechanisms

(with the exception of DNSSEC) allows anyone without restriction and unconditionally

to interact with DNS infrastructure.

As already pointed out, DNSSEC was only until recently widely deployed in the upper

DNS hierarchy. Therefore, only recently the power of DNSSEC protection and the asso-

ciated deployment challenges can be scrutinized by the security community in realistic

network conditions. Nevertheless, alternative proposals, such as DNSCurve, aspire to

take the lead on DNS safeguarding. So, a comprehensive side-by-side comparison that

will aid the community to take the necessary decisions for shielding the service is missing.

Chapter 1. Introduction 5

At the same time, the contribution of DNSSEC to facilitate DNS amplification attacks

is neglected. Namely, although there exist scattered concerns about the hefty size of

DNSSEC-related RR, so far none of them have studied DNSSEC-powered amplification

attacks in much detail.

Given the above mentioned observations, the motivation of the PhD thesis at hand is at

the offensive side rather on the defensive one. That is, our intention is to demonstrate

and alert the community that DNS service can be exploited as a multipurpose instrument

that threatens to violate the integrity, authenticity, confidentiality and availability of the

offered resources in Internet. Also, we elaborate on new ways of misuse that render even

more challenging for the monitoring mechanisms to detect and repel the corresponding

attacks. In a nutshell, the objectives (and simultaneously the research pillars) of the

thesis at hand are as follows:

Objective 1: We aim to shed light on the various ways attackers are able to forge the

integrity of DNS data. This is critical because if this kind of attack is successful, then

the aggressors are in position to provide unauthenticated DNS data to the end-users,

and put them at risk. This goal also mandates the exhaustive review of the literature

regarding the interim countermeasures and cryptographic mechanisms that aspire to

defend against forging attempts and theoretically assess their performance.

Objective 2: This objective delves into DNS amplification attacks, which as already

pointed out, takes advantage of the open nature of DNS protocol and infrastructure to

hamper the availability of specific targets on the Internet. That is, DNS amplification

attack does solely aim at DNS infrastructure but it can be triggered against any target

ranging from personal computer to corporate server. In this context, we indent to

explore, propose and evaluate new flavors of DNS amplification that will ensure the

qualities of anonymity and reduced resource requirements at the aggressor side.

Objective 3: Another significant and emergent misuse of DNS pertains to botnet

coordination. More specifically, our goal is to research the contemporary trends of DNS

fluxing and DNS-based C&C covert channels used by botmasters to hide their armies.

By combining the latter goal with the results of obj. 2, we aspire to design and evaluate

novel botnet topologies with particular focus to mobile ones. Actually, nowadays, mobile

botnets are still in their nascent stages of development but it is for sure to dominate

Chapter 1. Introduction 6

the future botnet architectures. This is because such botnets greatly benefit from the

mobility of the bots and consequently their detection becomes much harder.

1.2 Contributions

As already pointed out in the previous subsection, the main goal of this PhD research

work is to elaborate on the different ways that DNS service can be exploited as a multi-

purpose vector for fulfilling the malicious desires of malevolent entities in the Internet.

Namely, one can abuse DNS for threatening the integrity, authenticity, confidentiality

and availability of the offered resources in Internet. The realization of this intention is

in line with the objective described in the previous section. Overall, the contributions of

the current thesis are in accordance with the aforementioned objectives, but also consist

novel proposals which considerably add to the literature of DNS security.

Specifically, to deal with obj. 1, we study the current trends on DNS cache poisoning

attacks and the possible countermeasures. Moreover, we conduct a side-by-side compari-

son of the so far prevailing cryptographic mechanisms, namely DNSSEC and DNSCurve,

that aim to protect, among others, the integrity and authenticity of DNS data [17]. This

comparison will aid the defenders to infer which defensive mechanism best fits to their

needs. Chapter 3 details on the aforementioned contributions.

Considering obj. 2, we deal with DNS amplification attacks which target the availability

of Internet services. In regards to obj. 1 outcomes, which highlight on the fact that

DNSSEC-related RR are considerably sizeable, the facilitation of advanced types of

DNSSEC-powered amplification attacks is examined. Precisely, we study the ways a

competent and smart attacker can orchestrate and launch wide-scale DDoS attacks which

only utilize DNSSEC-related RR [18]. A detailed assessment of the impact of these

attacks is also offered. As a side contribution, the performance of (open) DNS forwarders

as reflectors is investigated. Generally, the main advantage of our research compared

with the standard type of the attack as described in the literature up to now is that

it does not disclose any illegal or suspicious activity during its execution. This quality

make the attack especially attractive from an aggressor’s standpoint. Essentially, we

demonstrate that the attacker is able to trivially take advantage of the available resources

existing in the Internet without the need to acquire some of their own. To the best of

Chapter 1. Introduction 7

our knowledge, our research on this particular issue constitutes the first comprehensive

study of DNS amplification attack involving DNSSEC-related RRs. Further details of

this work is provided in chapter 4.

Additionally, we investigate the potential of taking advantage the ANSs of TLD as both

amplifiers and reflectors [19]. From a contribution point of view, this is also the first

work in the literature which assess the involvement of the upper DNS hierarchy ANSs

in DNS amplification incidents. More precisely, we measure for all ANSs (including root

NSs) the size of their response for DNSSEC-related RR, that is, we evaluate the ampli-

fication factor these servers may produce. Moreover, we assess the degree of adoption

of RRL mechanism which constitutes the primary defensive barrier against involvement

in amplification attacks at ANS side. The outcomes of our research exhibit that a wor-

ryingly large number of ANSs could be entangled involuntarily to the actions of DDoS

attackers. This contribution is also detailed in chapter 4.

As already highlighted in the previous sections, an important part of this doctoral thesis

is dedicated to botnets. Since, botmasters consistently misuse DNS for concealing their

actions, we concentrate our effort on conducting a comprehensive survey of mechanisms

that detect botnets based on their DNS activities, that is, mechanisms that analyze pas-

sively and/or actively DNS network traces stemming from bot-infected devices. Based

on the results, we propose and evaluate novel botnet architectures, which either rely

solely on mobile bots or mixed ones, i.e., include both mobile and desktop agent [20].

The proposed architectures exploit DNS as C&C channel for coordinating the botnet and

disseminating botmaster’s commands. Chapter 5 further analyzes these contributions.

In addition to legacy DNS attacks, we offer the first to our knowledge work in the lit-

erature aimed at examining the potential of DNS as an attack vector to harm mobile

users. Specifically, we implement a privacy-invasive mobile app able to manipulate the

DNS service provided by an iOS device [21, 22]. This app manages to interfere (acting

as man-in-the-middle) to the tethering service present in Apple’s mobile devices with

the aim to redirect all users connected via it. In this way hijacks the DNS service and

enables the attacker to phish user’s credentials while they are trying to access legitimate

websites. Additionally, by targeting on the popular Siri facility [23], the spyware ex-

poses sensitive user information including its geographical location, account credentials,

telephone numbers, sent/received messages, etc. Actually, by using this case study, we

Chapter 1. Introduction 8

emphasize on the ways DNS forging attempts can by especially profitable to attackers

targeting the continuously growing population of mobile users. This contribution fulfills

both obj. 1 and 4. Chapter 6 elaborates on this kind of attack.

To sum up, the contribution of the current PhD thesis with reference to publications in

scientific journals and conference proceedings is as follows:

• A side-by-side comparison1 of the prevailing DNS cryptographic mechanisms,

namely DNSSEC and DNSCurve, that aim to protect, among others, the integrity

and authenticity of DNS data. The aforementioned security extensions aspire to

safeguard DNS protocol against DNS cache poisoning attacks.

• Design and evaluation of a new kind of DNS amplification attack2 that:

– utilizes solely DNSSEC-related RR as attack amplifiers.

– takes advantage of the vast number of (open) DNS forwarders existing out

there as reflectors.

• A detailed assessment of the potential of taking advantage the TLD’s ANSs as both

attack amplifiers and reflectors3. The great advantage of this attack variation is

that it does not require zone walking of the exploited domain zones, but rather

utilizes publicly available information. Precisely, this aspect of our research is

realized via the following steps:

– evaluation of the amplification factor these servers may contribute to the

attacker.

– estimation of the degree of RRL adoption by these servers.

• Design and evaluation of novel architectures of mobile botnets4 with emphasis to

mobile ones. We demonstrate that the proposed architectures are:

1Anagnostopoulos M., Kambourakis G., Konstantinou E., Gritzalis S., DNSSEC vs. DNSCurve: A
side-by-side comparison, chapter in Situational Awareness in Computer Network Defense: Principles,
Methods and Applications, Onwubiko C., Owens T., (eds), pp. 201-220, 2012, Hershey, USA, IGI Global.
doi:10.4018/978-1-4666-0104-8.ch012

2Anagnostopoulos M. , Kambourakis G., Kopanos P., Louloudakis G., Gritzalis S., DNS Am-
plification Attack Revisited, Computers & Security, Vol. 39, pp. 475-485, 2013, Elsevier.
doi:10.1016/j.cose.2013.10.001

3Anagnostopoulos, M., Kambourakis, G., Antonakakis, M., Gritzalis, S., Never say never: Authori-
tative TLD nameserver-powered DNS amplification, Under Preparation, 2016.

4Anagnostopoulos M. , Kambourakis G., Gritzalis S., New facets of Mobile Botnet: Architecture and
Evaluation, International Journal of Information Security, 2016, Springer. doi:10.1007/s10207-015-0310-
0

Chapter 1. Introduction 9

– robust, stealth, and flexible mainly due to the use of mobile bots and DNS

as a covert C&C channel.

– particularly effective in launching DNS amplification attacks.

It is to be noted that in the context of our research we also investigated5 the

Session Description Protocol (SDP)[24] part of Session Initiation Protocol (SIP)

[25] request messages as a different way of creating covert C&C channels [26].

However, as this direction of our research is not directly associated to DNS but to

botnets we opt to exclude it from the current thesis.

• Desing and implementation of an iOS based spyware app6,7, which hijacks and

forges the DNS service offered by operating system of the mobile platform with

the mission of:

– poisoning the device’s tethering service, thus redirecting the user to bogus

websites.

– leveraging on the specific to iOS devices Siri facility to intercept sensitive

user information, including their geographical location, account credentials,

address book, etc.

Furthermore, Fig. 1.1 illustrates these contributions with reference to the security ser-

vices they aim to address.

1.3 Thesis Structure

The next chapter starts by providing the basic background of DNS service. This includes

the entities that participate in a typical DNS transaction, the type of DNS data, and

the possible configurations. This way, the reader acquires the essential concepts to

5Tsiatsikas Z., Anagnostopoulos M., Kambourakis G., Lambrou S., Geneiatakis D., Hidden in
plain sight. SDP-based covert channel for Botnet communication, 12th International Conference on
Trust, Privacy & Security in Digital Business (TrustBus), September 2015, Valencia, Spain, Springer.
doi:10.1007/978-3-319-22906-5 4

6Damopoulos D., Kambourakis G., Anagnostopoulos M., Gritzalis S., Park J.H., User-privacy and
modern smartphones: A siri(ous) dilemma, FTRA AIM 2012 International Conference on Advanced IT,
Engineering and Management, S. Rho, N. Chilamkurti, W.-E. Chen, S.-O. Park, (eds), February 2012,
Seoul, FTRA.

7Damopoulos D., Kambourakis G., Anagnostopoulos M., Gritzalis S., Park J., User privacy and
modern mobile services: Are they on the same path?, Personal and Ubiquitous Computing, Vol. 17, No.
7, pp. 1437-1448, 2013, Springer. doi:10.1007/s00779-012-0579-1

Chapter 1. Introduction 10

Figure 1.1: Contribution of PhD thesis with the relative security services

comprehend the remaining doctoral thesis. The chapter concludes by briefly presenting

all legacy attacks against DNS. Precisely, we highlight on DNS attack vectors and pave

the way towards chapter 3 which aims at addressing more advanced attacks on the

protocol.

Chapter 3 details on DNS cache poisoning attack that threatens the integrity of DNS

data. Specifically, this chapter details on the the aforementioned type of attacks, exam-

ines the attacker’s strategy, and highlights on its consequences for an end-user’s view-

point. Furthermore, possible countermeasures are given. First off, we discuss interim

measures that intend to increase the entropy of a DNS query, and therefore to obstruct

poisoning attacks. The same chapter succinctly overviews the prevailing cryptographic

mechanisms, namely DNSSEC and DNSCurve, that extend DNS protocol and aim to

safeguard against forging attempts. A detailed comparison between the two aforemen-

tioned DNS security mechanisms is also presented. Lastly, the until now most recent

Internet drafts related to DNS security, namely DNS-over-TLS and DNS-over-DTLS

DNS over DTLS and TLS Internet drafts are briefly described. At a glance, these Inter-

net drafts incorporate the well-known and reliable DTLS and TLS protocols to DNS.

The DNS amplification attack problem is addressed in chapter 4. Based on the literature,

Chapter 1. Introduction 11

the chapter elaborates on the ways a typical DNS amplification attack unfolds and what

entities are exploited as amplifiers and reflectors. Next, based on our research, two

novel attack strategies are presented. The first one takes advantage of the hefty size of

DNSSEC-related RR and the available (open) DNS forwarders that operate on Internet.

The latter investigates the potential of entangling ANSs of the upper DNS hierarchy to be

unknowingly engaged by attackers in DNS amplification attacks. We specifically assess

the amplification factor that these entities may provide when replying to both individual

and multiple DNS queries and measure the adoptation degree of RRL mechanism at

ANS side. The chapter ends by suggesting possible countermeasures against this kind

of attacks.

Chapter 5 is devoted to exploring DNS as a vehicle for controlling botnets. Actually,

this research aspect constitutes the second pillar of our research. Precisely, we detail on

the ways DNS protocol can be exploited by botmasters for the coordination of their in-

frastructure. We specifically focus on mobile botnets and examine different architectures

- both purely mobile and mixed - that may be used by bot herders to build a robust

and potentially untraceable botnet. The construction of effective C&C based on DNS

to control the botnet is also demonstrated and assessed under various attack scenarios.

The chapter concludes by presenting a comprehensive survey of countermeasures, both

passive and active, that are based on DNS trace analysis.

Another aspect of our research this time pertaining to mobile applications is given in

chapter 6. Namely, we detail on the development of an iOS based privacy-invasive

malware application. Interestingly, the malware interferes with the DNS service to

redirect the user to bogus websites and hijack Siri’s personal assistant session aiming at

stealing sensitive user information.

The last chapter concludes the thesis by summarising and commenting on the results

of the conducted research. Best practices regarding the protection of DNS service and

directions for future work are provided alongside.

Chapter 2

Background

In this chapter, we elaborate on the basic concepts of DNS protocol. Initially, we explain

the purpose of this service and analyze the process of domain name resolution. In this

respect, the chapter is also includes a list of the various DNS data types. Finally,

the two legacy DNS attacks, namely DNS cache poisoning and DNS amplification, are

briefly described. The goal of this chapter is to provide the necessary information for

understanding more advanced DNS attack vectors included in the following chapters.

2.1 DNS Service

2.1.1 Introduction

The Domain Name System (DNS) is the service that translates domain names, e.g.,

www.example.com, into the numerical IP address of a host in a network. Any network

or the Internet operates by allocating a locally or globally unique IP address to every

endpoint (host, server, switch, router, etc). This address, which an end-user has to

utilize in order to access a resource available on the network, is formed by a 32-bit

number in case of the IPv4 or a 128-bit number in the case of IPv6. Consequently, the

absence of the DNS service would imply that whenever a user desires to access a resource

they need to memorize its physical IP address. For that reason, every public node in

the network is assigned with a descriptive domain name, as it is more convenient for the

users to remember its name rather than a numerical address.

12

Chapter 2. Background 13

DNS constitutes a distributed database organized into a hierarchical tree structure (sim-

ilar to Fig. 2.1) to form the domain namespace. This tree structure is comprised of

labeled nodes, each one corresponding to a domain. The Fully Qualified Domain Name

(FQDN) of a node is composed of the bottom-up concatenation of the nodes, i.e., labels,

with each label separated by a period.

Figure 2.1: DNS tree structure

2.1.2 DNS Domains

The namespace of Internet is divided in domains, which are groups of names with a

logical relationship amongst them. For example, a domain can specify names that

belong to a particular country, organization or university, etc. Further, any domain can

be subdivided into sub-domains aiming at better organization of the contained domain

names. As previously mentioned, DNS utilizes a hierarchical tree structure that is

similar to the structure of the Unix filesystem. The whole DNS database is pictured as

an inverted tree. At the top of the tree is located the root node [27], which is represented

with a dot “.”. Next, are the Top-Level Domains (TLDs), then the Second-Top-Level

Domains (2-TLDs) followed by any other number of lower levels. Each one of the labels

of the domain name separated by a dot corresponds to a level in the tree structure. The

root level has an empty label, while the most right label represents the most general

domain, i.e., TLD. Accordingly, the second most right fragment corresponds to the 2-

TLD (more specific domain) and so forth. The left fragment of the domain name is the

distinct host within this domain.

TLDs are split into two main categories [28], namely generic Top-Level Domains (gTLD)

and country code Top-Level Domains (ccTLD). The domains under gTLD are the ones

Chapter 2. Background 14

that operate directly under policies established by Internet Corporation for Assigned

Names and Numbers (ICANN) processes for the global Internet community. These

gTLD domains are used mainly for services located in the USA. The core group of

generic top-level domains consists of the .com, .info, .net, and .org domains. On the

other hand, ccTLD are used for the organization of domain names within individual

countries. These are two-letter domains and correspond to ISO 3166 [29] country codes

as described in RFC 1591 [28]. Examples of ccTLD are the .gr domain for Hellas, .es

domain for Spain and .cn for China to name a few.

2.1.3 DNS zones

A DNS zone is a group of nodes with a common parent, which forms a subtree structure.

Specifically, a zone comprises of a collection of domain names with common upper level

domain. The parent of a zone is called the Start of Authority (SOA) and is stated

as such in the corresponding database. Authoritative Name Servers (ANS) have the

responsibility to administer the nodes inside their zones, i.e., to provide answers for the

contained domain names. Hence, either they delegate such authority for their subzones

downwards to others authoritative servers (delegation points) or they have this authority

for their leaf nodes [1]. In other words, an ANS either provides referrals for sub-zones

whose authority the ANS has delegated or supplies mappings for its leaf nodes [1].

Essentially, the separation to zones materializes the distributed administration of the

whole namespace.

2.1.4 DNS Reverse Mapping

Besides providing mappings from memorable domain names to corresponding IP address,

DNS also offers mappings from IP addresses to domain names. This process, called

reverse mapping or reverse lookup, determines the domain name of a host having a

particular IP address. This type of operation could be useful for security reasons, for

instance can be used by a mailing software to resolve IP address to domains in order to

authenticate the sender. For performing reverse mapping using DNS infrastructure, a

special tree structure is defined and specialized domains are reserved. The domain names

formulated by IP addresses are called Reverse Domains and are within the in-addr.arpa

zone for the case of IPv4 and the ip6.arpa for the case of IPv6 [30]. As it is observed

Chapter 2. Background 15

from Fig. 2.2 [31] under the inaddr-arpa zone there are domains, whose name is the first

number of the IP address. This in turn means there are 256 distinct domains with names

from 0 to 255. Similarly, under each of them there are 256 domains representing the

second number of the address etc. The domain name of reverse domains is composed by

the IP address in reverse order and the in-addr.arpa label at the end. For example, the

IP address 15.16.192.152 corresponds to the 152.192.16.15.in-addr.arpa domain name.

Figure 2.2: DNS Reverse Tree

As it is well-known, the 127.0.0.1 IP address is a special address which is reserved for

loopback, i.e., for communication of the host with itself. Hence, this address is utilized

by every host. Therefore, each server is also authoritative for the domain 0.0.127.in-

addr.arpa and it should have the proper configuration to support queries for that domain.

2.1.5 DNS Operation

The basic entities that are involved in a DNS transaction are (a) the end-user, (b)

Recursive Name Server and (c) Authoritative Name Server.

Basically, a DNS transaction takes place every time a user desires to access a resource

available in the Internet by utilizing its corresponding domain name. The user’s ma-

chine and in particular its stub-resolver library is responsible for resolving, namely fully

translate, the remote machine’s domain name. This means that the stub-resolver has to

find the IP address and other relevant information of that machine. The stub-resolver

depends on a Recursive NS (RDNS) for obtaining the required information about the

remote machine. Usually, the RDNS is operated by the ISP of the network that the

Chapter 2. Background 16

machine is connected to. In turn, the RDNS undertakes to traverse the DNS hierarchy

for locating the ANS for the domain name in question. Then, it directly contacts this

ANS and acquires the response in the form of resource records (RRs). The ANS re-

sponds to incoming requests according to the zone file stored in its file system. Finally,

the recursive caches the RRs contained in the response for a given Time to Live (TTL)

and delivers them back to the initiator stub-resolver [32].

2.1.6 DNS Queries

There are two types of queries that a NS can respond to (a) recursive and (b) iterative

(non-recursive) query:

A recursive query is a query that the receiving NS endeavors all the necessary tasks

to locate the responsible ANS in order to find and return the complete answer (or an

error). Resolving a query recursively may involve the NS in multiple transactions with

a number of other NSs. It is optional for a NS to support recursive queries [1]. On

the other hand, in the case of an iterative query, the receiving NS provides a complete

answer for the queried domain name if the NS is authoritative for that domain or it

provides a partial result (or an error). This means that if the queried domain name is

contained in the NSs zone file, it replies with the appropriate RRs. While if the NS

does not contain the answer, it provides referrals to other NS that do so. The default

requirement is that NSs must support iterative queries [1]. By default NSs listen on

port 53 for DNS transactions. For performance reasons this transaction is based mainly

on the User Datagram Protocol (UDP) Protocol with packet size limited to 512 bytes

in the initial versions of protocol. The limitation of response’s size intends to primarily

hamper the entanglement into denial of service (DoS) incidents.

2.1.7 Entities in a DNS transaction

This section elaborates on the basic entities of DNS infrastructure, that participate in

the resolution of a domain name [33].

Chapter 2. Background 17

2.1.7.1 Resolver

The DNS resolver represents the client-side of DNS architecture. A resolver, software

or library, is installed on every host (for example it may be contained in a web browser)

and provides the appropriate functionality for translating a user’s request into queries

to a RDNS. Also, it is responsible for interpreting the received RRs from the RDNS

into a proper answer for the requesting program. The RDNSs utilized by a resolver

depend on the network that the resolver is connected to and usually are defined by the

user’s ISP. Basically, the resolver creates recursive queries and accredit the full resolution

process to the responsible recursive server of its connected network. As already pointed

out in section 2.1.5 a resolver is also known as stub-resolver because of its simplistic

implementation and absence of cache memory. The lack of cache memory constrains the

resolver to solely depend on a RDNS for each request for resolution of a domain name.

2.1.7.2 Name Server

A Name Server (NS) accepts DNS queries from a resolver or another NS that acts on

behalf of a resolver and aims to fulfil this request. Depending on its configuration the

NS provides full or partial answer to a DNS query. Its configuration also determines the

mode that the NS operates and consequently the way it stores or locates the requested

data. The operation mode is controlled by its configuration file, which in the case of

BIND is called named.conf [32]. Next, we analyze the variant types of NS.

Primary Authoritative Name Server

A Primary ANS contains one or more zone files stored in its local filesystem. Recall

that as explained in 2.1.3, a zone file consists of domain names for which the server is

authoritative. The main operation of a primary ANS is to respond to DNS queries for

those names. Putting it another way, a primary ANS provides answers only for domain

names of its zone file. The zone file is created and updated by the administrator of the

zone. Also, the primary ANS is responsible for transferring the contents of the zone files

to one or more Secondary ANS whenever the file is modified [34].

Secondary Authoritative Name Server

A Secondary ANS obtains the data of the zone that is authoritative, via a zone transfer

Chapter 2. Background 18

operation from the Primary ANS [34]. Hence, it polls periodically the Primary ANS for

changes at a time interval that is defined by the SOA record. The Secondary ANS also

provides authoritative answers for the specific zone.

Authoritative-only Name Server

An Authoritative-only NS is a type of NS that provides authoritative answers, namely it

is primary or secondary NS for one or more domains, and also does not support recursive

queries and cache capabilities. The root NS and authoritative NSs for TLD zones or

for domain names with high traffic are operating in this mode as they have excessive

performance requirements.

A Root NS is a special authoritative-only name server. It is authoritative for the root

zone, and thus it provides referrals to the corresponding ANS of the TLD zones. The cur-

rently 13 root NS have assigned with names from A.root-servers.net to M.root-servers.net

[35]. Actually, their number is much larger as for each root NS multiple instances in

various location on the globe exist, which still have the same IP address. Actually, the

operation of multiple NS with the same IP address but different physical location is

feasible with anycast routing [35]. Nevertheless, the choice of utilizing only 13 root NS

was made in order to comply with the limitation of 512 bytes of a UDP message packet

in DNS protocol.

Recursive Name Server

A RDNS or commonly known as recursive resolver is not authoritative NS for any zone.

Instead, its role is to accept recursive queries and provide back to requestors complete

answers. This is the reason why recursive servers are considered as part of the client-side

of the infrastructure. Whenever a RDNS accepts a query from a stub-resolver, it firstly

examines if it has the desired answer in its cache memory. If not, it traverses the tree

hierarchy from the ANS of root zone downwards to ANS of the specific domain issuing

iterative queries for the required domain name. Afterwards, it caches the acquired RRs

locally in its cache memory and returns the response to the requesting resolver. Upon

subsequent requests for the same data, the recursive will respond with its locally stored

data from the cache rather than search again for and query the responsible ANS. These

data remain in the cache memory until their TTL value expires and so they are discarded.

Following requests for the specific RRs will force the recursive to lookup and contact

Chapter 2. Background 19

again the respective ANS. Every recursive bootstraps with the list of the 13 root ANS

preconfigured. This way, it knows from which node of the DNS hierarchy should start

the traversal. For performance, reasons the recursive remembers the response time of

each root server and selects to consult the one that is closer to it.

Whenever a RDNS obtains the required RRs directly from an authoritative, it qualifies

the response as authoritative. Otherwise, in the case the records are picked from his

cache, the answer is marked as non-authoritative. The use of the cache memory is for

performance reasons, as it prevents the redundant communication between the recursive

and the ANS. Due to cache capabilities the recursive does not overwhelm the root

or TLDs ANS with queries for identical or similar RRs. Furthermore, cache memory

facilitates the rapid resolution of frequently accessed resources by distinct end-users

connected to the same internal network. In fact, the recursive obtains an authoritative

copy of the frequently requested RRs and keeps them available for TTL value with no

additional overhead.

Usually, such type of NSs are deployed by ISPs to provide naming services to their

customers. In most cases, the access to a RDNS is limited to the internal users only.

However, recently, there have been deployed recursives that allow recursive queries from

anyone on the Internet. Such servers are called Open Recursive NS (ORDNS) [36].

Forwarding Name Server

A Forwarding NS, or simply forwarder, is a special type of NS which is utilized for

performance reason on slow networks. As implied by its name, a forwarder just forwards

all receiving DNS queries to another NS, which is capable to handle recursive queries,

and then it caches the acquired RRs. Such formation is useful when the access to

an external network is slow and expensive. This is because the resulted response will

take a single DNS transaction, while multiple transactions would occur in the case the

local NS recursively resolves the DNS queries and not simply forwards them. Also,

the forwarder is capable to supply rapidly responses for popular resources, and thus

eliminates unnecessary external traffic by caching the RR.

Summarizing, it is worth noticing that the existing DNS software permits the hybrid

usage of the variant modes. So, a contemporary NS may act as a primary for a given

domain, meaning that administers its zone files, as a secondary for others zones, and

Chapter 2. Background 20

at the same time will accommodate recursive or forwarding functions for internal users

[32].

2.1.8 Format of Zone File

As explained previously in section 2.1.5, a zone file is a text file that is stored in the Pri-

mary NS’s filesystem and represents the available resources of the specific zone. When-

ever, the NS receives a query for a domain that is authoritative, it consults the zone file

in order to respond. The translation of a domain name into the characteristics, proper-

ties or entities contained within the domain is defined by the Resource Record (RR). A

RR is spread on a single line with the exception that entries enclosed in parenthesis can

expand across multiple lines. The formation of the file is standardized by RFC 1035 [2].

The syntax of each line, which represents a single RR, is as follows [37]:

[Name] [TTL] [Class] Type Type-specific-Data

The fields inside brackets are optional and when they are omitted the corresponding

field takes the value of the previous line record.

• Name: This field contains the name of the domain, either in FQDN (that name

ends with a dot) or in relative format. Also, this field could have the @ value in

the case of a SOA type RR, which means that the field has the domain name of

the zone as its value as specified in the configuration file.

• TTL: The TTL field determines the time in seconds for which the particular record

is valid. In other words, when the TTL expires, this RR has to be discarded from

the cache of the NS.

• Class: The Class field can take the values IN (Internet), CH (Chaos) and HS

(Hesiod). Each one of these classes forms a completely independent tree. Usu-

ally, the class is set to IN as the records refer to Internet hostnames, services or

addresses, while the other types of classes are considered as stale.

• Type: This field determines the form of the RR and its intended use. The possible

values of this field are presented in section 2.1.9.

• Type-specific-Data: This last field takes values depending on the type of the

RR.

Chapter 2. Background 21

Additionally, a zone file may contain directives, which are utilized to control the file

processing. Directives start with the symbol ‘$’. Mostly, the following three directives

are employed:

• $ORIGIN: The $ORIGIN directive determines the domain name of the zone. So,

if a domain name is in relative format, namely does not terminate with a dot ‘.’

symbol, then it is concatenated with the value of this directive [2].

• $INCLUDE: The $INCLUDE directive dictates to insert the defined file into the

zone file [2].

• $TTL: The $TTL directive defines the default TTL value for the RRs of this zone.

Thus, if the TTL value in a RR is omitted, then its TTL is equal to the directive‘s

value [38].

2.1.9 Resource Record Types

In the following, we detail on the prevailing RR types that are employed in a typical

zone file. We decided to exclude the DNSSEC-related RR types, from the analysis and

instead present them in section 3.2.3.2. Table 2.1 summarizes the common RR type of

DNS protocol.

2.1.9.1 SOA Record

The Start of Authority (SOA) RR type specifies the Primary ANS of the zone. There

is only one SOA record per zone file and is placed at the beginning of the file. As an

example, the following listing contains the SOA RR of the root.zone file, which is the

zone file administer by root ANS [39]:

. 86400 IN SOA a.root-servers.net. nstld.verisign-grs.com. (

2016062900 ; serial number

1800 ; Refresh every 30 minutes

900 ; Retry after 15 minutes

Chapter 2. Background 22

604800 ; Expire after 7 days

86400 ; Negative Cache TTL for 24 hours

)

We can easily notice that the previous example of the SOA RR consists of the following

fields [1]:

• Name: In the name field we observe the ‘.’ value, which is the domain name of

the root zone.

• TTL: As TTL value, the RR has 86400 seconds that is equivalent to one day.

• Class: The class is IN, so this record refers to an Internet domain.

• Type-specific-Data: The specific data provided by SOA RR are as follows:

– Primary ANS: The Primary ANS of the zone is a.root-servers.net., the

ANS’s domain name is specified in FQDN format.

– Email Address: The email address of the administrator of this zone is

nstld@verisign-grs.com. The first dot in the email address field represents

the symbol @, as this symbol has a different meaning in zone file’s syntax.

– Serial Number: The serial number defines the current version of the zone file

and it is used to determine when a zone transfer is needed. Any modification

of the file should increase the serial number. Usually, that number is based

on the date when the modification happens. For instance, the specific zone

file has been modified on 06/29/2016.

– Subsequent values are expressed in seconds and designate the frequency of

specific administration processes:

∗ Refresh: The refresh interval defines how often the Secondary ANS polls

the Primary to infer whether the data of the zone is up to date. This is

done by comparing the serial numbers of the zone files. If a modification

has occurred, then the Secondary ANS should initiate a zone transfer,

namely it should request the file in order to update its zone.

Chapter 2. Background 23

∗ Retry: The retry value designates the time period to pause before the

Secondary ANS retries to reconnect the Primary ANS after a failed poll.

∗ Expire: The expire value determines the time after which the data stored

in the Secondary ANS will become invalid in the case it fails to contact

with the Primary one. After that time, the Secondary ANS will cease to

act as authoritative of the zone as the RRs are considered obsolete.

∗ Negative Caching TTL: The Negative Caching TTL value applies to

negative responses by all the ANS of the specific zone. It signifies for how

long a response for a non-existent domain (NXDOMAIN) of the zone will

remain in the cache memory of the requesting recursive.

2.1.9.2 NS Record

The NS RR type specifies the ANSs of a zone, both Primary and Secondary. If the

ANS provided is within that zone, then the file should also contain its IP address with

a corresponding A RR. The next listing depicts a fraction of the NS RR contained in

the root.zone with the name field in FQDN format [39]

. 518400 IN NS a.root-servers.net.

gr. 172800 IN NS gr-m.ics.forth.gr.

gr. 172800 IN NS estia.ics.forth.gr.

estia.ics.forth.gr. 172800 IN A 139.91.191.3

gr-m.ics.forth.gr. 172800 IN A 194.0.4.10

The right part of RR lists the ANS of the domain comprized of the name field. As

shown in the listing, a NS RR also is used to indicate the delegation of a subzone. For

instance, the authority of the gr. subzone has been delegated to gr-m.ics.forth.gr. and

estia.ics.forth.gr. ANS. Additionally, the file should specify the IP address for these

ANS. This way, RDNS are able to reach the subzone’s ANS. Such a RR, namely RR

that maps IP address of ANS, is called glue record.

Chapter 2. Background 24

2.1.9.3 A and AAAA Record

The A and AAAA RR types are the most frequently requested RRs. This kind of

RR provides mappings between hostnames and IP addresses. An A RR maps to IPv4

addresses while an AAAA maps to IPv6 addresses.

a.root-servers.net. 518400 IN A 198.41.0.4

a.root-servers.net. 518400 IN AAAA 2001:503:ba3e:0:0:0:2:30

As the above example implies, the host of A Root ANS is in 198.41.0.4 (IPv4) and

2001:503:ba3e:0:0:0:2:30 (IPv6) address. Both records refer to the same domain name,

but provide IP addresses of different versions.

2.1.9.4 CNAME Record

The CNAME RR type supplies alias of hostnames, which allows one host to be defined

as the alias name for another host.

www1 IN CNAME www.example.com.

www IN A 93.184.216.34

The above statements for example result to that www1.example.com. and

www.example.com. domain names match to the same host with 93.184.216.34 IP ad-

dress. CNAME record is applicable for hosts that run different services.

2.1.9.5 TXT Record

The TXT RR type contains a textual description for the specific domain name. Usually,

this RR type is capitalized for declaring that the zone supports specific mechanisms like

Sender Policy Framework (SPF) [40], which is a validation mechanism for detecting

email spoofing. SPF utilizes a specially formatted TXT RR that defines the list of

authorized email servers for the particular domain.

Chapter 2. Background 25

example.com. 59 IN TXT ”v=spf1 -all”

example.com. 59 IN TXT ”$Id: example.com 4415 2015-08-24 20:12:23Z davids $”

As observed in the previous example, a given domain zone can posses more than one

TXT records. Whenever a domain supports the SPF mechanism, then it encloses a RR

similar with the first one.

2.1.9.6 MX Record

The Mail Exchanger (MX) RR type determines the liable email servers of a domain.

Therefore, whenever a user desires to send an email, the email software inquires these

type of RR to detect the responsible mail exchanger that accepts email messages for the

specified recipient. Additionally, a MX RR indicates a priority number that specifies

the order that email exchanger servers will be utilized in case of connection failures. For

instance the following records:

gmail.com. 3600 IN MX 5 gmail-smtp-in.l.google.com.

gmail.com. 3600 IN MX 10 alt1.gmail-smtp-in.l.google.com.

gmail.com. 3600 IN MX 20 alt2.gmail-smtp-in.l.google.com.

gmail.com. 3600 IN MX 30 alt3.gmail-smtp-in.l.google.com.

gmail.com. 3600 IN MX 40 alt4.gmail-smtp-in.l.google.com.

determine that the gmail.com zone has five mail servers. Thus, one desires to send a mes-

sage to an @gmail.com address, the message is firstly sent to gmail-smtp-in.l.google.com

server, if that connection fails then it is sent to alt1.gmail-smtp-in.l.google.com, and so

on.

2.1.9.7 PTR Record

As described in section 2.1.4, the PTR RR is used to implement reverse DNS mapping.

Opposite to A RR type, PTR maps IP Address to hostnames. In the following example,

we can see the host that responds to the IP 195.251.124.222 address.

Chapter 2. Background 26

222.134.251.195.in-addr.arpa. 900 IN PTR hra.aegean.gr.

2.1.9.8 CSYNC Record

Most recently, a new RR type called CSYNC is proposed for informing a parent zone

about which of the child’s RRs are renewed and should be updated [41]. Specifically,

there exist some RRs associated with the delegation from the parental zone to the child

which have to be synchronized whenever modified, otherwise the child zone would be

inaccessible. Prior to the proposition of RFC 7477, that notification was manual, so

CSYNC aims to automate this process. An example of a CSYNC record is given below

[41]:

example.com. 3600 IN CSYNC 66 3 A NS AAAA

As it is easily observed, the CSYNC contains in its RDATA part the serial number of

the SOA RR, a set of flags, and a list of RR types. The SOA’s serial number determines

the version of the child’s zone file. The flags define the time when the synchronization

should take place, where the two possible values are 1 (immediate) and 2 (soaminimum)

or combination of them. Finally, the set of RR types indicates which of the RR types

in the child zone should be queried by the parental in order to revise the delegation

RRs within its zone. From the paradigm we can deduce that for the example.com child

zone the A, NS, and AAAA types should be queried by the parental ANS and the latter

entity should extract the corresponding RRs only if that zone has no less than 66 as

SOA serial number. Whenever the administrator of the child zone reform the delegation

RR, they have to publish the corresponding CSYNC RR at the zone for informing about

the necessary update.

2.1.10 DNS Message Format

The format of a DNS transaction message is similar for both queries and responses [2].

As we can see in table 2.2, the message contains five sections some of which can be

empty depending on the type of message or requested RR type.

Chapter 2. Background 27

RR RFC Description

A RFC 1035 32-bit IPv4 Address record

AAAA RFC 3596 128-bit IPv6 Address record

CNAME RFC 1035 Canonical Name. Alias of the domain name

HINFO RFC 1035 Host Information. Description of hardware and software of
the server

MX RFC 1035 Mail Exchanger domain name

NS RFC 1035 Name Server. The authoritative name server for the particular
zone

PTR RFC 1035 Pointer record. Reverse mapping from IP address to domain
name

SOA RFC 1035 Start of Authority. Determines the Primary ANS, email of
administrator and serial number of zone file

SRV RFC 2782 Defines Service available in the zone

TXT RFC 1035 Textual description

URI RFC 7553 Defines the full URI of a service

Table 2.1: Common DNS Resource Record Types

Header

Question Question to the NS

Answer RRs answering the question

Authority RRs pointing toward an authority

Additional RRs holding additional information

Table 2.2: DNS Message Format

The Header section is always present and is comprised of control fields. The fields

declare which of the remaining sections are present, whether the message is query or

response, etc. The most important control field is the transaction ID (TXID). This field

is a 16 bit message identifier randomly generated by the software that initiates the DNS

query. This number is copied unchanged in the corresponding response and its usage

is to distinguish a transaction. Therefore, the requestor is able to match up responses

with pending queries.

The Question section carries the queries which are sent to a NS, regardless it is RDNS

or ANS. It contains at least one entry with the according parameters which specify

what the client asks to find out. These parameters should include the domain name,

the type and the class of the resource in question. Subsequently, the question section is

copied to the response without modification so the client can check the genuineness of

the response.

The remaining three sections compose the response from a NS and they all have the

same format, as they carry a set of RRs. Each section consists of zero or more records

Chapter 2. Background 28

and the only difference is the semantics that the client assigns to the contained RRs. The

Answer section contains RRs that answer the initial question. The Authority section

carries RRs (of type NS) which refer to the ANS responsible to resolve the domain

in question. Finally, the Additional section conveys records that provide additional

information relevant to the query, but not directly resolving the query. Usually, the

Additional part is utilized to supply address mappings for the ANS contained in the

authority. These mappings are also called glue records, as they are companying NS type

RRS and are employed for traversing the DNS hierarchy.

2.1.11 Zone Update

In order to simplify the operation of multiple ANS, it will be useful whenever the ad-

ministrator of a zone needs to update the zone to just modify the zone file of a single

ANS and propagate the changes to the rest of the ANS. This is accomplished through a

zone transfer process which deploys features of DNS protocol. Thus, the zone transfer

is a DNS transaction that allows the replication and synchronization of DNS data (zone

files) amongst the primary and one or more secondary ANS of that zone. This trans-

action can only be initiated by the secondary ANS, although the primary ANS could

inform its secondary ANSs that an update has occurred. Albeit DNS communication is

mainly based on UDP protocol, zone transfer operates over Transmission Control Proto-

col (TCP). Recall from section 2.1.6 that this is because the that initial version of DNS

protocol limits UDP packet size on 512 bytes for security reasons. Usually, however,

zone transfer needs more than 512 bytes, since the transferred data contain far more RR

than a typical DNS response. In the rare case that the transferred data have size less

than 512 bytes, UDP protocol can be used by the primary ANS.

2.1.11.1 Full Zone Transfer

At regular intervals the secondary ANS should poll the primary ANS about updates of

its zone. As analyzed in section 2.1.9.1, the time interval between pollings is determined

by the refresh value of SOA record. The secondary ANS firstly request the SOA record

and checks its serial number. If the serial number is greater than the serial number main-

tained by the secondary, then is asks for a Full Zone Authoritative Transfer (AXFR).

Chapter 2. Background 29

This means that the secondary ANS asks the primary server to send all RRs contained

in its zone file [34].

2.1.11.2 Incremental Zone Transfer

The latter mode of zone transfer generates redundant network traffic since it transmits

even RRs that have not been modified. Therefore, an Incremental zone Transfer (IXFR)

would be desirable, videlicet a transfer mode that would send only the RRs that have

changed (added, updated or removed) since the last zone transfer. This way, the primary

ANS preserves network bandwidth by avoiding unnecessary transmissions. As a result,

whenever the secondary ANS perceives through the regular polling process that it has

an out-of-date zone file informs the primary one about the current version of its SOA.

A primary ANS that supports IXFR should keep track of the recent version of its zone

and the differences amongst the various versions. Thus, it is able to send only those

RRs that have been modified since the last transfer to the secondary ANS [34, 42].

2.1.11.3 Notify

The choice of refresh time interval is challenging. Long time interval could cause slow

propagation of modified RRs and incoherence of zone files amongst the ANS. On the

other hand short intervals would increase the load on the side of the primary ANS. The

DNS Notify message type introduced in [43] comes to rescue. The primary ANS of a

zone is able to send a NOTIFY message to the secondary ANS, which are defined in NS

RRs in the zone file, whenever the zone is loaded or updated. Following, the secondary

ANS will request the SOA record from the primary one. If the SOA serial number is

greater since the last time the zone was fetched, the secondary ANS will request for a

zone transfer (full or incremental). This process can considerably reduce the propagation

time of zone changes to secondary ANS.

2.1.11.4 Dynamic Update

Initially, DNS was designed to support queries on statically configured zone files. So, the

typical practice to update the zone was to manually edit the zone file and then to restart

the name service. Thus, as already pointed out, the primary ANS reads the file and

Chapter 2. Background 30

propagates the changes to the secondary ANS. This approach imposes the ANS to be out

of operation every time there is a modification in the zone. A process called Dynamic

DNS (DDNS) [44] allows modifications on the zone records from external sources while

the NS stay still operational. This method permits all types of RR except SOA to

dynamically added, deleted or modified within an existing zone. However, DDNS does

not enable the addition or deletion of new domain or zone. Whenever the administrator

updates the zone file on-the-fly, it is essential to update only the primary ANS. The

remaining of the secondary ANS will update their database via zone transfer (AXFR

or IXFR). Moreover, in the configuration file of the DNS software the administrator is

able to determine the sources from which dynamic updates for the zone are allowed.

2.1.11.5 Wildcards

The wildcard character ‘*’ (asterisk) can be used as the most left label of the domain

name in a RR [1]. RRs containing wildcard will match requests for non-existent domain

names within the zone. To exemplify this situation the following RR will force DNS

queries for subdomains of example.com zone that they have not been explicitly specified

with other RR to have a MX RR resolved from that one. For instance, if there is no

record for random.example.com. then a query for that name of type MX will return the

specified record.

*.example.com. 3600 IN MX 10 mail.example.com.

2.1.12 Resolution of a domain name

After explaining the basic terminology around DNS, in this section we analyze the

resolution process for a domain name. In the following analysis derived by [45] (fig.

2.3), we aim to resolve the IP address of www.example.com domain name. In the figure,

the query is denoted as www.example.com A?. Note that, the process is akin for any

DNS transaction irrespective of the requested RR type or domain name. We assume

that this is the first time that the specific RR is inquired, and thus this record or other

intermediate results are not already stored in the cache memory of the recursive.

Chapter 2. Background 31

1. The process is initiated by the stub-resolver issuing the query. The stub-resolver

creates a recursive type query and relies on the RDNS for the full resolution.

2. Upon reception, the recursive sends an iterative type query towards the root ANS.

3. The latter entity provides a referral along with the IP address of the ANS for the

next responsible domain, i.e., the .com domain.

4. Following, the RDNS sends the same query to the ANS of .com zone.

5. This one replies with the referral of example.com ANS.

6. Once again, the RDNS dispatches the request to the acquired ANS.

7. Finally, as this server is authoritative for the zone containing the requested domain

www.example.com, it supplies the RR in question, namely the mapping IP address.

8. Hereafter, the RDNS is capable to provide the full answer to the end-user and

9. cache the response including all intermediate results for TTL value. Thereby,

the RDNS is able to fulfill subsequent similar requests without the obligation to

contact again the root or the TLD’s ANS.

10. However, when the TTL value expires, the specific RR is discarded from the cache

memory and the recursive should repeat the same procedure upon request.

Figure 2.3: DNS transaction

Chapter 2. Background 32

2.2 Legacy DNS Attacks

It can be safely argued that DNS suffers from the same inherent problems as it did at

the inception of its deployment [46, 3]. Two are the major attacks that involve DNS

protocol and infrastructure. The first one threatens the integrity of the provided RR,

while the second exploits DNS to unleash DDoS attacks against targets on the Internet.

DNS plays an important and crucial role in Internet communication. Normally, before

any other connection, all network protocols, such as email, web, ssh, fpt, etc, before any

other connection they employ DNS to acquire the necessary information for connecting

to the remote hosts. Particularly, DNS resolution precedes every other communication

transaction. Therefore, DNS’s potential vulnerabilities could set at risk the secure op-

eration of Internet applications and influence the perspective of end-users about the

Internet [47].

2.2.1 Attack Surface specific to Integrity of DNS transactions

As discussed previously in section 2.1.12, the full resolution of a domain name, could

divided into two distinct phases. In the first phase, the stub-resolver inquires recursively

the RDNS. Then in turn, the RDNS traverses iteratively the DNS hierarchy aiming to

locate the suitable ANS. For accomplishing the full resolution of a domain name however,

various data flows in the DNS infrastructure take place. These internal data flows are

shown in Fig. 2.4 in terms of numbered steps.

Figure 2.4: Attack Surface specific to Integrity of DNS transactions

Chapter 2. Background 33

The information about a zone is contained in the corresponding zone file. This file

is kept in the primary ANS of the zone, and modified by the administrator whenever

needed 1 . At the same time, data are added dynamically from various external sources

2 . The contents of the zone file are transferred to the secondary ANSs, during a zone

transfer. Thus, these servers can act as ANS of the zone 3 . On the other hand, the

DNS recursive resolver requests information about the resources of the zone on behalf of

the end-user. Note that this server cannot differentiate whether it contacts the primary

or the secondary ANS 4 . Finally, it provides the requested information to the stub-

resolver (end-user side) who was responsible for the initiation of the resolution process

5 .

Several threats are identified that aim to exploit each above mentioned process of data

transfer and inject bogus DNS records. First off, an attacker could corrupt the zone file

if they succeed in compromising the ANS 1 . Then, the attacker could trick the primary

ANS and maliciously perform a dynamic update of false records 2 . Also, the aggressor

may impersonate the primary ANS to any secondary and force them to initiate a zone

transfer 3 . Another effort to pass bogus data could target the connection in 5 , where

an attacker could forge the reply provided by the recursive resolver, or impersonate the

recursive to the stub resolver. However, the most common target of forging attempts is

the connection between the RDNS and the ANSs 4 , as they reside in the open Internet

and are therefore exposed to any kind of external attack.

In section 3 we are dealing with the latter case 4 , where the attacker strives to delude

the DNS recursive and enforce it to accept and store in its cache memory forged RRs.

This type of attack takes place more often, because the communication happens through

external networks, and thus it is more trivial for the aggressor to manufacture the

proper DNS packet and exploit the recursive. Furthermore, the impact of the attack

is more profitable since it affects all the clients served by the targeted recursive. On

the downside, for the remaining attacks they are taking place inside internal networks,

that are more controlled, and thus limited. The countermeasures aiming to block and

deter such attacks include specific for DNS, cryptography mechanisms based on TCP

protocol, such as TSIG or SIG(0) [48]. Other DNS independent protection measures

could involve IPsec, TLS/SSL or SSH, which provide mutual authentication of both

parts of the communication.

Chapter 2. Background 34

2.2.2 Exploiting DNS infrastructure for DDoS

Due to the nature of the DNS protocol, an attacker is able to exploit DNS for launch-

ing DDoS attacks. DNS amplification attack is a type of DDoS attack that combines

amplification and reflection characteristics. Namely, it multiplies the attacking network

traffic and simultaneously reflects the traffic by third-party servers towards the target.

The amplification attribute of the attack augments the impact on the targeted victim,

while the reflection obfuscates the forensic signal of the attack. In section 4, we explain

the standard type of DNS amplification attack as long as we present how an attacker can

enhance the effects of their attack by taking advantage of DNSSEC security extension.

Chapter 3

DNS Cache Poisoning

Despite the fact that DNS constitutes the cornerstone of Internet, until very recently, it

lacks a mechanism to provide origin authentication of its data. This way, DNS is vulner-

able to poisoning attacks. This security gap is addressed by two public key cryptographic

mechanisms, namely DNSSEC and DNSCurve. In the meantime, only short-term and

custom-tailored solutions were deployed for the sake of suppressing poisoning attacks.

In this chapter, we detail on DNS cache poisoning attack and explain its impact. A

discussion on the cardinal interim solutions for dealing with this type of attacks also falls

under the scope of this chapter. Finally, for better grasping the benefits of each proposal,

the chapter includes a detailed side-by-side comparison of DNSSEC and DNSCurve

based on nine distinct criteria for comprehending the benefits of each proposal.

3.1 Introduction

Nowadays, the majority of popular services, such as web, mail, ftp, and business crit-

ical computational resources are accessible over the Internet with the usage of DNS

protocol. Hence, the potential vulnerabilities of DNS could set at risk the secure use

of any Internet application that depends on the proper operation of the DNS service.

Therefore, the smooth operation of DNS service constitutes a fundamental consideration

for accomplishing the availability of Internet services and the connectivity to valuable

resources.

35

Chapter 3. DNS Cache Poisoning 36

Despite its crucial significance, DNS still suffers from the same vulnerabilities that it

had at the beginning of its deployment. Potential attackers aim to exploit the lack

of protection mechanisms and corrupt or undermine the integrity of the authoritative

responses. Although the motivation for DNS-oriented attacks varies, the ultimate goal of

any aggressor is to provide misleading or bogus data to the end-user. Usually, however,

the attackers aim to monetary profit, e.g., by identity theft, or phishing. In such an

attack incident, called DNS cache poisoning, the attacker tries to deceive the DNS

recursives resolvers into accepting and storing forged DNS data in their cache.

Generally, DNS cache poisoning attack aims at maliciously injecting non-authoritative

RRs to the cache memory of a RDNS. When a recursive resolver receives and caches

such non-authentic data, it is considered as poisoned. As a result, it supplies bogus data

to its clients, and thus the end-users based on these resolvers are redirected to malicious

sites instead of what they have requested [47]. Currently, DNS cache poisoning attacks

constitute a constant, ongoing threat to DNS infrastructure since they aim to tamper

the integrity of DNS data and provide to the end-users fabricated records. As a result,

successful cache poisoning could change the way the end-users experience the Internet

and expose them to a variety of serious threats. For instance, consider the case where

a user is redirected to a malicious site that mimics the original one. Then the attacker

would be able to delude the user and collect its personal information.

3.1.1 Target of Cache Poisoning

As already pointed out, the target of cache poisoners are the cache memory of a RDNS.

This type of attack is extremely profitable as it affects all the internal users that depend

on the targeted recursive for DNS service. In the case an attacker achieves to introduce

forged RR about a frequently accessed or valuable site, then all the users served by the

poisoned recursive are redirected to the malevolent site instead of the original. Moreover,

the attackers tend to target open recursive as it is more feasible to launch a poisoning

attack against them. As in the case of a non-open recursive, the attacker needs to be

located in the internal network or to control the behavior of an insider stub-resolver in

order to trigger the attack.

Chapter 3. DNS Cache Poisoning 37

3.1.2 Steps for a Cache Poisoning Attack

Normally, a cache poisoning attack unfolds in two phases [49]. Firstly, the attacker

persuades the recursive to perform a DNS lookup. Next, whilst the recursive awaits

for the authoritative response by the ANS, the attacker crafts a number of spoofed

DNS answers that seem to originate from the ANS and immediately sends them to the

recursive.

Fig. 3.1 [49] depicts a simplified view of the three DNS entities that are involved in a

DNS poisoning attack incident. In the typical case, the stub-resolver queries the recursive

resolver about the IP of a domain name 1 . This query is notated as www.google.com

A?. It is assumed that the recursive does not posses the specific RRs in its cache

memory, so it needs to contact the ANS of the domain in question 2 . In the case that

the requested information exist in the cache, the recursive will respond directly and the

attacker will not have the opportunity to launch the attack. The ANS in turn replies

with the appropriate data 3 . In the figure, the corresponding answer is denoted as

www.google.com IN A: 64.233.167.99. Finally, the recursive sends the answer to the

resolver 4 and caches the data for future use.

Figure 3.1: DNS poisoning attack

As already mentioned, the proper time for executing the poisoning attack is when the

targeted domain name is not stored in the cache memory of the recursive. For this

reason, the poisoner would query the recursive about the particular name in order to

deduce whether it is in the cache and for how long it will reside there. After that,

Chapter 3. DNS Cache Poisoning 38

the aggressor initiates the attack the moment the TTL value expires and therefore the

recursive should consult the ANS again. Let us assume the hypothesis that the poisoner

desires to forge the IP address of www.google.com. Initially, they begin by forcing

a stub-resolver under their control to query the targeted recursive about the specific

address. In this way, they initiate a DNS resolution like the aforementioned one. The

time period the recursive interacts with the ANS of google.com domain, it is the perfect

time for the attacker to unleash the second phase of their attack.

In the second phase, the poisoner dispatches numerous packets that seem to originate

from the ANS (IP source spoofing) and hopes that eventually one of them will be

accepted and stored in the recursive’s cache as legitimate. In the figure, the crafted

packets are illustrated as answers in the form www.google.com IN A 85.255.112.230

5 . Where 85.255.112.230 is the IP that the attacker desires to redirect all the users

that request the IP of the domain name www.google.com. From the above discussion it

becomes clear that it is more trivial for a potential attacker to poison an open recursive,

because they can directly trigger the resolution of a domain name. Nevertheless, as

already pointed out in section 3.1.1, in the case of a restricted RDNS, the poisoner has

to be located in the internal network served by the recursive or control a stub-resolver

inside that network.

At this point, we have to mention that a recursive accepts only responses that are

correlated with pending queries and all other unexpected packets are rejected. Thus,

the recursive applies the following criteria to incoming responses in order to distinguish

the legitimate from the forged ones [50].

• The Question Section of the response should be identical with that of the query,

due to the fact that the responding ANS copies the question section from the query

to the reply unmodified.

• The TXID should be equivalent for both the request and reply packet. Therefore,

the recursive checks the 16-bit TXID contained in the incoming DNS message

header whether it matches with any unresolved query.

• The response packet originates from the same IP addresses to which the query was

sent.

Chapter 3. DNS Cache Poisoning 39

• The response packet arrives on the same IP address and port from which the query

was sent.

If all of these conditions are met, the recursive will accept the message as valid and it

will cache the included RRs. In any other case that the received packet is not associated

with any pending query, it is discarded.

A successful poisoning attack requires the attacker to craft a DNS message that ap-

pears to come from the ANS. This will force the recursive to accept the fake message as

authentic. Since normally the transaction takes place over UDP protocol, it is straight-

forward for the aggressor to manufacture such a message. Firstly, the fabricated reply

should has the IP of the ANS as its source IP address. In the case the targeted zone

maintains more than one ANS, the aggressor needs to predict which of the ANS was

queried. Additionally, they need to guess correctly the transaction elements used in the

recursive’s query packet. That is the unique 16-bit TXID of the transaction and the

port that the recursive send the query and expects the response. The domain name used

in the question section is known to the attacker because they initiated the resolution.

Finally, the message will contain spoofed RR. Namely, this record will have the domain

name of the target, but the mapping IP address will be fraudulent.

Consequently, the attacker sends forged answers to the recursive and hopes that one of

them will match with the anticipated. The more packets they manage to send the more

probabilities they have to succeed. Thus, if one of these packets looks authentic and

arrives prior to ANS’s answer, then the recursive accepts and caches the forged RRs.

The subsequent received answers about the same domain are ignored, including that

from the authoritative. One can liken a DNS poisoning attack to a packet race [49].

The recursive server accepts whichever answer arrives first, as long as it matches with

the query. As it is well-known, due to the nature of UDP protocol, it is common for

these packets to be lost or delayed during the transmission. Hence, the pairing between

outgoing queries and received responses is not always one to one. So, it is typical for a

DNS server to receive unsolicited DNS messages that eventually are ignored.

Figure 3.2 [49] shows the time window for a DNS resolution to complete. We can deduce

that the time interval between the moment the recursive resolver dispatches the query

and the moment it receives the response by the ANS constitutes the vulnerability window

Chapter 3. DNS Cache Poisoning 40

for a DNS poisoning attack. During this interval, the attacker is able to send numerous

packets to the recursive hoping that one of them will match with the query. Dagon et al.,

[49] estimate that the time of the transaction amongst recursive and authoritative server

is 100ms on average. They calculate this time window by measuring the Round-Trip

Time (RTT) of sequential queries. Namely, they probe continuously open recursives for

the same domain name. The first time the ORDNS contacts the ANS of that domain

name, while the subsequent times it responds from its cache. Thus, the difference

among these RTT values represents the time needed for a recursive to contact with the

responsible ANS. This time value is crucial for the accomplishment of a poisoning attack,

because the greater the more forged packets the attacker has the ability to send.

Figure 3.2: Time window for DNS cache poisoning attack

Equation (3.1) [50] aims to calculate the probability of a successful cache poisoning

attack. Essentially, this probability is equal to the volume of the forged packets the

attacker is able to send during the vulnerable time window divided by the size of the

problem space, that is, the number of possible TXID and UDP port combinations [50].

The success probability P s of a cache poisoning after F spoofed DNS responses within

the time window is equal to:

P s =
D * F

N * P * I
(3.1)

Chapter 3. DNS Cache Poisoning 41

where N is the number of ANS serving the targeted domain name. The value of N is

estimated around 2.5 in average [50]. The P parameter is the number of the available

UDP ports, which at maximum is around 60,000. This is because ports under 1024 are

reserved. Also, I is the number of TXID with a maximum of 216. When the recursive

has D multiple outstanding queries for identical responses, each spoofed packet has a

proportionally higher chance of matching any of these queries. In equation (3.1), we

assume that the values TXID and UDP port are randomly selected, and thus their

values are non-deterministic.

Once the matching response arrives, it is accepted and the corresponding records are

cached for as long as defined in the TTL field. In the case the attack fails, the poisoner

must wait until the TTL of the RR expires and the data are discarded from the cache. At

this moment they have again the opportunity to attempt poisoning the same recursive

for the same domain name. Therefore, in the case of unsuccessful attempt, the next

retry will be possible after a time period depending on TTL, whose typical value is one

or more days. Otherwise, if the attack is successful, the recursive has stored a poisoned

RR with a long TTL. The choice of TTL is induced by the attacker, so it is expected

that they select the highest possible value. The poisoned record resolves the targeted

domain name to an IP address under the control of the attacker. Therefore, all clients

of the recursive in subsequent requests for the same domain name will be redirected to

the malicious site. This certainly will expose the end-users to imminent risks, such as

information theft, infection by malware, etc.

In this type of attack, it is assumed that the attacker is not capable of monitoring the

network traffic between the recursive and the authoritative. Alternatively, they are in

position to intercept the transferred packets, they could be able to capture the query and

observe the contained fields. In such case, the poisoner needs only one crafted response

to poison the cache. The creation of the forged packet could be fast enough, so the

fake response could arrive before the legitimate from the ANS. This kind of attack is

only possible when the attacker is in position to capture the traffic amongst the two

transaction entities [51]. For instance, as discussed in [52], they could compromise a

router on the transit network and accomplish a Man in the Middle (MitM) Attack.

Chapter 3. DNS Cache Poisoning 42

3.1.3 Kaminsky-Style Poisoning Attack

As already pointed out, by performig a conventional type of poisoning attack the attacker

is able to modify the corresponding IP address for a domain name, and hence they would

redirect the users to a site under their control. The aforementioned method requires

several days or weeks to succeed in a properly configured recursive resolver. This is

because the attacker should wait lengthy TTL periods after unsuccessful attempts. In

August of 2008, Dan Kaminsky, a security researcher, announced a serious flaw in DNS

[4], that allows a successful cache poisoning attack in significantly limited time compared

to the traditional attack. By exploiting this flaw the aggressor could populate the cache

with a forged A RR within approximately 10 seconds, as it bypass the TTL constrains.

The deployment of the proposed type of attack is so straightforward and the effects

are so devastating that its discovery was initially considered as the end of the DNS

infrastructure.

Expanding the previous example let us assume the scenario where the attacker desires to

poison the IP address of www.google.com domain name. They put a stub-resolver under

they control to query the targeted recursive about the address of a non-existent domain

name within the zone of google.com, say RANDOM1.google.com. Since this domain

name is meaningless and probably does not exist, it is expected that it is not stored in

the cache memory of the recursive. Therefore, the recursive is forced to transact with

the ANS of google.com zone and request the corresponding RRs. Simultaneously, the

attacker sends numerous spoofed packets towards the recursive that seem to originate

from the ANS and they try to guess the appropriate transaction elements akin to the

traditional type of attack. Normally, the ANS responds with NXDOMAIN in such a

query. However, the attacker’s forged responses provide a referral for the authoritative

of the random name. Videlicet, the DNS messages defines into the authority section of

the response the www.google.com as the ANS for the random domain (NS type RR)

and into the additional section the mapping IP address (glue record) [4]. Obviously,

the contained A RR points to a location under the control of the attacker. Unlike the

typical poisoning attack which provides malicious data in the answer section, in this type

of attack the poisoner takes advantage of the authority and additional section. In other

words, the aggressor supplies a misleading A record for the forged NS record. Because

Chapter 3. DNS Cache Poisoning 43

glue records are deemed more trustworthy [53, 54], it is sure to replace any existing A

RR for the www.google.com name stored in the cache.

Assuming the foreseen transaction elements are valid, the recursive will store in its

cache the malicious IP address for www.google.com. But if the first attempt of poison-

ing fails and the NXDOMAIN response from the ANS arrives first, then the attacker

can immediately retry by requesting another random name in the zone, such as RAN-

DOM2.google.com. The evildoer has the ability to continuously query fictitious random

names within the targeted zone until they succeed to poison the cache. From the previ-

ous analysis, one can conclude that the considerable improvement of Kaminsky’s style

attack is that after a failed attempt the attacker does not have to wait until the TTL of

the cached RR expires. But rather they can retry immediately. This fact undoubtedly

decreases the success time from weeks to few seconds and reduces the effort of the at-

tacker [49]. The particular flaw derives from the inherent design of DNS protocol and

is not limited to any software implementation. The majority of the software products

so far suffer from the described vulnerability and only few implement from scratch sim-

ple countermeasures that contribute to the prevention of the attack. For this reason,

as further discussed in section 3.2.1.2, the vendors respond by releasing a patch that

increments the entropy of the DNS message by introducing Source Port Randomization

(SPR) [55]. This way, it is more challenging for the attacker to predict correctly the

parameters of a DNS response.

Alexiou et al. [56] utilized the PRISM probabilistic model checker to formally model

and analyze the Kaminsky-style poisoning attack. The authors aim to validate the

existence of Kaminsky-style cache-poisoning attack and to evaluate the effectiveness of

the proposed remediation, namely SPR. Indeed, the model confirms the possibility of

the attack even in the presence of a poisoner with essentially no knowledge of the victim

RDNS’s actions. In addition, they demonstrate that the attack probability is inversely

proportional to the number of the available UDP ports utilized to issue the DNS query.

3.2 Poisoning Antidotes

Overall, two types of antidotes are deployed to protect DNS from poisoning attacks [47].

The first one includes long-term solutions that utilize secure cryptographic mechanisms.

Chapter 3. DNS Cache Poisoning 44

Such mechanisms are able to eliminate the forgery of DNS messages as they enable origin

authentication. That is, with the utilization of digital signature, responses originating

from non-legitimate sources will be discriminated. However, the major drawback of these

solutions is that they require the partial modification or total substitution of the current

infrastructure. Namely, the RDNSs and ANSs including root servers should change their

functionality and be enhanced with operations of Public Key Infrastructure (PKI). It

is obvious however that this process is complex and time consuming to complete. In

this direction, two main solutions exist; DNSSEC, which is the most prevalent security

extension of DNS, and its competitor DNSCurve. Both these solutions are presented

and compared to each other in section 3.2.2. Also, in the same section, the most recent

DNS over DTLS and DNS over TLS are presented. These proposals do not introduce

cryptographic security to DNS protocol per se, but rather enable it to the underlying

protocols, UDP and TCP respectively.

Until the global-scale adoption of DNSSEC, which will safeguard the end-users against

cache poisoning attacks, interim short-term solutions have been also recommended and

deployed. These methods contribute to the smooth transition to more secure architec-

tures. Usually, they affect only the configuration of the recursive, and therefore it is

much easier to implement. Mostly, interim solutions intend to increase the entropy of

a DNS message. To wit, the proposed mechanisms aim to magnify the possible values

a DNS message containing specific RR can take, and thus decrease the possibilities of

the poisoner to achieve the attack. The concept of the specific methods is analyzed in

section 3.2.1.

3.2.1 Interim Solutions

This section presents simple countermeasures that intend to preclude cache poisoning

attacks. This type of measures are effective until the moment DNS cryptographic mech-

anisms will be widely adopted. As already mentioned in section 3.2 with the extensive

compliance of DNSSEC, it will be impractical for the poisoner to spoof DNS messages

that seem to originate from ANS, because the integrity and authenticity of the contained

RRs will be protected via digital signatures. Therefore, the basic characteristic of the

interim antidotes is that they endeavor to increase the entropy of DNS queries to the

point that the poisoning attacks would become practically infeasible [47]. Namely these

Chapter 3. DNS Cache Poisoning 45

methods propose means to augment the uncertainty or the possible values that a DNS

query packet (for the same RR in question) could have. This way, an effective fabrication

of a valid response would be much more laborious to be accomplished.

The basic advantage of the proposed techniques is that they are based on the standard

DNS protocol and thus do not involve any extension. This implies that they do not re-

quire massive modifications to the existing DNS infrastructure and adjustments on the

functionality of NSs and stub-resolvers. Generally, it is desirable for the interim mech-

anisms to only introduce changes to the operations of recursive resolvers. Nevertheless,

whenever it is necessary to alter the functionality of a NS, it should be introduced with

backward compatibility. This is because any mechanism should be optional and not

disturb the normal operation of the NS [49].

3.2.1.1 Transaction ID Randomization

In the initial versions of DNS software products, the TXID field was incremented deter-

ministically. This allows the attackers to predict TXID effectively and therefore to poison

the cache more easily. This is because they only need few interactions with the server in

order to estimate the next TXID number. As a result, Theo de Raadt, OpenBSD devel-

oper, suggested [49] that TXID should be randomized. As TXID field is 16-bit long, it

offers 16 bit of entropy or 65,536 distinct TXID values. Furthermore, the randomization

should be based on cryptographically secure methods instead of techniques that that

are based on weak random number generators.

3.2.1.2 Source Port Randomization

An additional source of entropy could be the UDP source port from which the DNS

query is issued. D. J. Bernstein firstly introduced Source Port Randomization (SPR) on

his DNS software product, djbdns [57]. A SPR-enabled recursive dispatches his queries

using at random one of the possible 65,536 ports. Thereafter, the recursive expects the

matching response on the same UDP port. Certainly, not all of the available 216 ports

could be utilized since the first 1024 typically are bound by protocols (well-known ports)

[58]. In a nutshell, this measure contributes approximately 14 to 16 bits of entropy.

Chapter 3. DNS Cache Poisoning 46

Unfortunately, SPR may not be usable in all information systems. This applies to

the case where the recursive resides behind network devices, such as routers, firewalls,

proxies or other gateways that implement network and port translation (NAT/PAT).

This kind of devices transparently modifies the IP address and port number in the

outgoing IP packets. Thus, the PAT devices could revoke the randomness of UDP source

port generated by the recursive, and this way become straightforward for the attacker

to predict the source port [55]. In any case, the widely employment of SPR was the

response of DNS community to the Kaminsky-style poisoning attack, as recommended

in the vulnerability note of US-CERT [55].

3.2.1.3 0x20-Bit Encoding

Dagon et al., [49] presented a simple and easily deployed method that could increase

notably the entropy of a DNS query. This method is based on the observation that while

the case sensitivity of a domain name in the question section is preserved during a DNS

transaction, this is not taken into consideration during the resolution process [59]. The

authoritative just copies the question section of the query to the response packet. So,

the authors propose to use mixed upper and lower cases of the queried domain name as

the ANS usually preserves the case pattern in the answer. Therefore, the attacker has

to also predict correctly the mixed-case of the questioned name besides the remaining

parameters involved in poisoning attempts. This way the proposed method will increase

the difficulty of the attack. The method was named 0x20-bit encoding due to the fact

that any upper and lower letter differ by the 0x20 bit in ASCII representation. Hence,

the modification of a letter’s case only requires the alteration of the 0x20 bit.

Generally, domain names are case insensitive, and for this reason queries for the same

domain name and different case pattern will be resolved the same way. Also, for per-

formance reasons, the majority of DNS software copy bit by bit the question section

from query to response packet. In other words, a responding NS instead of creating

from scratch the response, it rewrites the packet as soon as it is received, then adds

the answer section and only changes the communication parameters. This way, the case

pattern is preserved in the response packet.

This fact offers an opportunity for taking advantage the question section as a covert

channel that could encode transactional information. The recursive could send a query

Chapter 3. DNS Cache Poisoning 47

with some randomly chosen letters of the name written in capitals. The case pattern of

the queried name, which is unique to every transaction among recursive and authorita-

tive, could be used to identify the communication. All the combination of case pattern

are treated as equivalent by the receiving ANS, but only one would be valid for the recur-

sive. The number of different combinations depends on the number of letters contained

in a given domain name. Obviously, only letter characters could be encoded with 0x20

mechanism, while the remaining (such as digits) should remain unaffected. Whenever

the recursive receives a response for the required domain name, it inspects the encoding

to verify if the message originates from the ANS or it is forged.

Figure 3.3 [49] depicts the proposed algorithm for encoding the queries according to

DNS-0x20.

1. As input the algorithm takes the queried domain name. This could be the question

section of the query by the stub-resolver or of the response by the ANS.

2. The letters of the query string are all converted to lowercases.

3. The encryption scheme is used to encipher the string and calculate a cipher block.

Possibly, the keys of the scheme should alter frequently in order to avoid cryptan-

alytic attacks.

4. Each bit of the generated block is used to determine whether the corresponding

letter would appear on the query with upper or lower case. Since the size of the

block is longer than the number of “0x20 capable” characters, only the first bits

from the block are read, one by one.

• If the bit is 1, make the character upper case (i.e., calculate char |=0x20)

• If the bit is 0, make the character lower case (i.e., calculate char &=0x20)

where char represents the ASCII numerical value of the letter.

This procedure generates the 0x20-encoded domain name. In the case the packet comes

from a stub-resolver is sent to the ANS. On the other hand, if it is a response is used to

verify the authenticity of the answer.

The improvement of DNS forgery resistance with this method depends solely on the

number of letters in the domain name. For example, for the domain name xe.gr which has

Chapter 3. DNS Cache Poisoning 48

Figure 3.3: Algorithm of DNS-0x20bit encoding

small size it only provides 4 bits of entropy, but for the domain name www.icsd.aegean.gr

adds 15 bits. Unfortunately, there are many sites that contain only few letters and some

additional digits. For example, popular sites ranked to the top 500 sites on the web

[60], such as 163.com, t.co or qq.com have maximum 25 different combinations. The

proposed mechanism makes the poisoning of shortened domain names more difficult to

succeed, but certainly not impossible. Consequently, the contribution of the particular

method is minimal for a significant fraction of frequently accessed domain names.

However, 0x20 encoding does not disrupt the operation of DNS protocol neither requires

modification to the DNS infrastructure. It only introduces additional functionality on

the side of the recursive. Thus, it provides backward compatibility for the vendors that

do not choose to support.

3.2.1.4 WSEC DNS

Another proposal for augmenting the entropy of DNS messages is Wild-card SECure

DNS (WSEC DNS) by Perdisci et al. [61]. WSEC utilizes an one-time random number

prefixed to each queried domain name. Such queries are resolved with the usage of

wildcard records of CNAME RR type. As mentioned in section 2.1.11.5, wildcard domain

Chapter 3. DNS Cache Poisoning 49

names are defined as domains that have on their left-most label the ‘*’ (asterisk) symbol.

This label is interpreted as any valid combination of characters. The aggressor who wants

to poison the cache of a WSEC-enabled recursive, needs to guess correctly the random

nonce of the query besides all the other parameters required in typical poisoning attacks.

WSEC is based on characteristics of standard DNS protocol and infrastructure, and

thus it does not require changes on the existing implementation. However, it introduces

modifications on the zone files of the ANS that desire to support WSEC. Namely, for

each RR of any type, it inserts two RRs of CNAME type. These RRs are utilized to

resolve the randomly prefixed domain name to its actual data. Whenever a user queries

for a RR, a process similar to that depicted in Fig. 3.4 [62] will take place.

Figure 3.4: WSEC DNS query process

Say for instance that a stub-resolver wishes to query for the IP address of

www.example.com (www.example.com IN A?) 1 . Then, the recursive generates a ran-

dom alphanumeric string <rand> of length N, which is distinct for each query, and

queries for the TXT record of <rand>. test . wsecdns .www.example.com 2 . In the

case the example.com zone has enabled the WSEC method and its zone file has been

modified accordingly, this question will be resolved with the record

*. test .wsecdns .www IN CNAME test .wsecdns

Namely, the queried name is an alias of test .wsecdns example.com and the correspond-

ing response is the string |wsecdns=enabled|. On the other hand, if the zone does not

support WSEC queries, then NXDOMAIN response is returned. Therefore, the recur-

sive should continue by issuing the standard query (www.example.com IN A?). Steps 2

and 3 constitute a form of handshake between the recursive and the ANS of the zone

in order to examine whether the ANS is WSEC enabled. Since the zone of our example

is WSEC compatible 3 , the recursive will query for the RR of type A of the domain

Chapter 3. DNS Cache Poisoning 50

name <rand>. wsecdns . www.example.com., which is the initial queried name with the

random prefix 4 . The specified name will be resolved with the wildcard CNAME RR

*. wsecdns .www IN CNAME www

This RR states that the random requested name is an alias for www.example.com.

Consequently, the ANS will respond with a message that contains the ran-

dom prefixed queried name, the CNAME resource record which states that the

<rand>. wsecdns . www.example.com is an alias for www.example.com, and the RR of

type A that provides the IP address which is initially requested by the user 5 .

In order to validate the authenticity of the response, the recursive will examine if the

domain name in the question section matches with the queried name, i.e., the initial

name with the random prefix. If the random prefixes are not equal, then the response

will be rejected as forged. Otherwise, the response originates from the ANS, and thus

the recursive accepts it as legitimate. Finally, the RDNS will normalize the response by

stripping out the records related with WSEC, that is, the wildcard CNAME RR, will

cache the normalized record which was initially requested, and finally send back that

record to the requestor. This query process is entirely transparent to the end-user. The

reason for this is the normalization algorithm that clears the responses from WSEC-

related data. The user will receive the correct message independent of the requested

type of record.

The one-time random string, prepended to each queried domain name, consists of lower-

case letters and digits. Therefore, assuming that this prefix has a length of 5 characters,

the proposed method magnifies the DNS messages space by 365. Consequently, the

potential attacker has to make a considerable effort to guess correctly the prefixed string

in WSEC transactions, besides the other parameters protecting the DNS messages. This

improvement is independent of the length of the domain name or the effectiveness of

any other introduced method.

From the previous analysis, it is obvious that the WSEC mechanism has the side effect

of duplicating the traffic amongst the recursive and the ANS, since every query requires

a preceding handshake. As a result, it consumes network bandwidth and causes delay

of a query resolution. Also, it requires revisions on the configuration file of any name

Chapter 3. DNS Cache Poisoning 51

server willing to support this method and needs certain additional functionality on the

part of the recursive.

3.2.1.5 Multiple Queries

A different approach for evading forged DNS responses is by issuing multiple DNS

queries. For instance, Trostle et al. [63] proposed a DNS proxy implemented within

BIND RDNS, that sends multiple DNS queries when cache poisoning attempts are de-

tected. Specifically, the proxy listens on a number of additional random UDP ports

apart from those opened from the RDNS. Whenever a forged DNS response, i.e., an

unsolicited response, is received on one of the monitoring ports, then RDNS is probably

suffering cache poisoning attack. During the duration of the attack for every outstand-

ing DNS query, the proxy issues one additional query for the same domain name and

RR type but with different parameters, namely TXID, source port, etc. This way, it is

expected that the effort of the attacker will be exponentially harder to successfully fabri-

cate two subsequent DNS responses. In this mindset, the RDNS caches the (non-empty)

intersection of the corresponding responses.

3.2.2 Cryptographic Solutions

The original design of DNS protocol [64, 65] was focused on the availability of the pro-

vided information not on the protection of data authenticity. Consequently, as it is

discussed in the previous sections, the initial implementations did not include crypto-

graphic mechanisms that could ensure the validity of their data. In fact, as explained,

the absence of authentication mechanisms have lured cache poisoners for subverting the

legitimacy of DNS records by poisoning the cache of DNS recursives. The fact that the

validity of a record lies only on transaction parameters, that could trivially forged, and

not on cryptographic operations facilitate the attainment of the attack.

Nowadays, this security gap is attempted to be addressed by two cryptographic mecha-

nisms: DNSSEC and DNSCurve. They both utilize PKI and aim to extend the core DNS

protocol. The first mechanism was initially proposed in 1997 with RFC 2065 [12]. Since

then, several modifications have been introduced that lead to the current version of the

security extension, known also as DNSSEC-bis. This new version is mainly described

Chapter 3. DNS Cache Poisoning 52

in RFCs 4033 [14], 4034 [15] and 4035 [16]. On the other hand, DNSCurve was lately

proposed [66, 67] by Daniel J. Bernstein and is based on Elliptic Curve Cryptography

(ECC). Essentially, it constitutes part of an effort to deploy public key cryptography

(and specifically ECC) in every Internet protocol. This effort’s purpose is to secure

the confidentiality and integrity of all transactions on Internet based on ECC. Unfortu-

nately, so far DNSCurve has not been documented in detailed, it is only implemented by

a handful of vendors [68] and introduced in a limited scale. Therefore, its effectiveness

cannot be examined in practice but only theoretically. Until now, only one internet draft

has been published that provides a general overview of DNSCurve [69].

The following analysis aims to provide a comprehensive and constructive comparison

between the aforementioned security mechanisms (extensions). Towards this direction,

we theoretically cross-evaluate and assess the benefits and drawbacks of each particular

mechanism based on several distinct criteria. This is prerequisite in order to decide

which mechanism is the best fit for each particular deployment.

3.2.3 DNSSEC

The Domain Name System Security Extensions (DNSSEC) constitutes a set of specifica-

tions aiming to protect certain aspects of DNS protocol. The introduced cryptographic

mechanisms satisfy the following security requirements on behalf of the DNS end-users:

• Data origin authentication (of DNS messages).

• Data integrity (of DNS messages).

• Authenticated denial of existence (of DNS RRs).

For accomplishing the aforementioned requisites certain modifications to the existing

DNS specifications and infrastructure are introduced. Moreover, DNSSEC requires the

proposition of four new RR types, these are the DNS public key (DNSKEY) [15], the

resource record digital signature (RRSIG) [15], the delegation signer (DS) [15] and the

next secure (NSEC[15]/NSEC3[70]). Furthermore, DNSSEC requires the EDNS0 exten-

sion mechanism [71] in order to support hefty DNS packets resulting from the use of the

DNSSEC-related RR. Finally, it needs the utilization of new flags of DNS packet header

Chapter 3. DNS Cache Poisoning 53

that are used to indicate the support of DNSSEC and the mode of verification for the

DNSSEC responses.

DNSSEC is mainly described in RFCs 4033 [14], 4034 [15] and 4035 [16]. RFC 4033

declares the DNS security requirements [14]. RFC 4034 presents the required new RR

types [15]. While in RFC 4035 are clarified the necessary modification for the DNSSEC

protocol [16]. Furthermore, RFC 5155 defines an alternative RR type, the NSEC3, which

intends to replace NSEC RR type [70]. NSEC RR type allows zone enumeration and

for this reason is considered as a threat to the confidentiality of a zone’s contents, as we

will see further down in section 3.2.3.2.

3.2.3.1 Security Operations

Every DNSSEC-enabled zone possesses a pair of public and private key. With the private

key of the zone a digital signature is generated for each authoritative RRset contained

in the zone. These signatures are placed within the zone file in the form of RRSIG

record type. As a result, whenever a properly configured resolver, namely security-

aware resolver, requests a RR, it receives the corresponding signature along with the

desired RR. This way, the resolver has the ability to verify the authenticity and the

integrity of the response and to perceive whether it is fabricated or not. Certainly, in

order to prove the validity of the records, the resolver should hold the legitimate public

key of the zone. The public key of a zone is available to the clients in the form of

DNSKEY record type. On the opposite, a security oblivious client, a client that cannot

support DNSSEC, has not the capability to verify the DNSSEC-related RR. Therefore,

such a client is unable to discriminate between authentic answers and forged ones.

A security-aware resolver holds the public key of a zone built-in in its configuration,

as trust anchor, or obtains it through a DNS transaction. In the first case, the client

trusts unconditionally the configured public key, while in the latter it should verify its

authenticity. In such a case, the resolver consults the parental zone of the zone that

provided the public key. Eventually, the resolver tries to construct an authentication

chain from a recently learned public key to a formerly verified public key. For this

reason, any client should be configured with at least one trust anchor, which is the

public key of the root zone.

Chapter 3. DNS Cache Poisoning 54

Finally, DNSSEC supports the authenticated denial of existence with the use of NSEC

record type. NSEC allows the authentication of negative answers, which normally return

a NXDOMAIN or NODATA response in typical DNS protocol. Without authenticated

denial of existence, an attacker could persuade a client to accept a forged response

with referral for a domain which actually does not exist. Moreover, the attacker will

not include a DS RR, so the victim will apprehend that the domain does exist and is

unsecured. A NSEC record permits a security-aware resolver to validate the negative

answer for a non existing name or type. The NSEC RRs form a chain, as each record

points to the next existing name sorted in a canonical order. So, this chain shows the

gaps, i.e., the missing and non-existent domain names, and denotes the types of records

belonging to an existing name. Every NSEC RR is accompanied with a RRSIG RR,

and thus it is validated the same way as any other RR.

Summarizing the operations of a security-aware resolver, we can denote that this entity

is able to:

• Authenticate that a DNS RRset is actually contained in a specific domain zone.

• Verify the integrity of a message, so as to ensure that it is not modified during the

transmission.

• Verify that in the case of a negative response, then indeed the queried RR does

not exist.

Finally, the specification of DNSSEC mechanism determines the subsequent four states

that a validating resolver can categorize the received data [14]:

• Secure - the resolver has a trust anchor and a chain of trust, so it can verify all

the signatures in the response packet.

• Insecure - the resolver has a trust anchor and a chain of trust, but at some delega-

tion point there is an authenticated denial of existence of a DS record. This fact

designates that subsequent child zones are unsigned and therefore insecure.

• Bogus - the resolver has a trust anchor and indications that the data are signed,

but the answer fails to authenticate for some reason.

• Indeterminate - there is no trust anchor for the domain.

Chapter 3. DNS Cache Poisoning 55

3.2.3.2 DNSSEC-related RR types

In order to accomplish the security operation described in the previous subsection,

DNSSEC mechanism needs the introduction of four new RR types. Subsequently,

these new types of RR are described in RFC 4034 [15]. All the following paradigms

of DNSSEC-related RR types have been generated with dnssec-keygen [72] and dnssec-

signzone tool [73] both part of BIND DNS software.

DNSKEY Record

The DNSKEY RR type advertises the public key that would be used for the verification

of signed data in the zone file.

Name TTL Class RR flags protocol algorithm key-data

example.com. 3600 IN DNSKEY 256 3 5 (

AwEAAeujRvs5RhgUDXwf0m/pIHtlTX8IhHB6

soYpBBP7TAg18StP27rTZKTG4sbK3MqwlQb1

VAZJgeaCJleK16LBfKBkUIw6dRXVI6G5rUlJ

2GAg7ydk0OPQCRRUqvP7tN1PEapeCQxGv/6o

ia9eQJn9w7vK1s+IqnhUfEK1/y4jGG2d

) ; key id = 64677

The public key of the paradigm belongs to example.com zone. The private part of this

key, used to create the appropriate digital signature, should be stored in a safe place

with limited access. The flags field a 16-bit length. Bit 7 of this field determines the

zone key flag. This implies that if it is on, then the RR contains the DNS zone key and

the name field must have the zone name. In the case this bit is off, the RR carries some

other type of DNS public key that should not be used to verify signatures. Bit 15 is the

Secure Entry Point (SEP) flag. If it has the value 1 (in this case also the bit 7 must

be 1) the RR encloses a key for use as a secure entry point. This also means that the

corresponding public key should be advertised in the parental zone (in order to delegate

the chain of trust) or will be used as the beginning of the trust [74]. All other bits (0-6,

8-14) of the same field are reserved and must be zeroed. Thereupon, the possible values

of the field in decimal representation are 0, 256 and 257. A zero value indicates that this

Chapter 3. DNS Cache Poisoning 56

is not a DNS zone key and therefore should not be used to verify signed zone’s data.

The value 256 implies that the key is a Zone Signing Key (ZSK), while the value 257

indicates that the key is a Key Singing Key (KSK).

The private pair of ZSK is used for the digital signing of the RRs contained in the zone,

including DNSKEY RR itself. On the other hand, the private pair of KSK is used to

create only the digital signatures of the zone’s keys (both ZSK and KSK). Also, this kind

of key is either used for the generation of the DS type record, which will be published in

the parental zone as part of the trust chain, or is configured in security-aware resolvers

as trust anchor of the zone. Although, the same key could be used as ZSK and KSK,

the deployment of separate keys is recommended [70]. As one can observe, KSK is used

for the authentication of the DNSKEY records and therefore its role is more crucial

than that of ZSK. For this reason, it is suggested to have larger size in order to be more

resistant and require renewal less often (longer key effectivity period).

The next field, protocol field, takes only value 3. All other values are invalid and the

record should not be used for verification in the case it has other value than 3. The

algorithm field specifies the algorithm of the public-key cryptographic mechanisms uti-

lized in the particular zone. There is a number of cryptographic algorithms available to

be used in DNSSEC. The complete list along with the corresponding values are detailed

in section 3.2.3.2. The last value of DNSKEY record type, key-data field, includes the

base64 representation of the public key of the zone.

RRSIG Record

The Resource Record Signature (RRSIG) type contains the digital signature of a unique

RRset. The latter consists of all RRs with the same name, class and RR type. In other

words, an RRSIG RR authenticates all the records that have the same name and type.

In the subsequent example both the RRset (in this case constituted by only one RR)

that is protected and the corresponding RRSIG record are represented.

Name TTL Class RR type-covered algorithm labels ottl

expire

inception key-tag signer-name signature

www.example.com. 3600 IN A 192.168.254.7

Chapter 3. DNS Cache Poisoning 57

www.example.com. 3600 IN RRSIG A 5 3 3600 20160210145637 (

20160111145637 64677 example.com.

Ig2ED4UOxdXJEmTJ7AqBF7MiSBmVWeO0d1Pp

9pheb8QlcGJoTnkYxG/x7/4lhKHdnFkXoLWm

ZEDd/pAsbHx70IjPMmSs1xwgtclmnZo75QV6

5KTZxiJxLDGuCOm4lbKN8XDOxrlN64C5yKEa

xk/kRrlgvNDe1fj1mNkM+61/wLE=)

The type-covered field identifies the type of the RRset that is protected by the signature

of this RRSIG. In this example, the RRset is of type A (IPv4 address). There should

be separate RRSIG RR for each different type with the same domain name.

The next field, algorithm, determines the cryptographic algorithm which is used to

produce (and should be used to verify) the signature. This field has identical behavior

as that of the respective field of DNSKEY type. As it is explained in section 3.2.3.2, the

value 5 indicates that the signature is created with the RSA-SHA1 algorithm.

The labels field provides the number of the labels that the initial domain name in FQDN

form of the RRset consists of. This number is used during the validation process in order

to specify whether the response was synthesized from a wildcard RR, and therefore to

determine the name of the record used in the creation of the signature.

Following, the original TTL field defines the TTL of the protected RRset’s as stated

in the original zone file prior to the signing process. This value is vital, because the

TTL value of the cached records stored in the recursive is constantly modified. For this

reason, it is infeasible to calculate the valid signature of the RR without the ottl value

field.

The two subsequent fields define the signature expiration and inception respectively.

This way is determined a validity period for the contained signature. As a result the

corresponding RR should not be used for authentication prior to the interception and af-

terwards the expiration time. In their textual form these fields have the format YYYYM-

MDDHHMMSS, where YYYY represents the year, MM the month, DD the day, HH

the hour, MM the minute, and SS the second. As we can observe, the specific RRSIG

Chapter 3. DNS Cache Poisoning 58

record becomes valid the 11th of January of 2016 at 14:56:37 and it expires on the 11th

of February of 2016 at 14:56:37. Usually, the inception time is the time when the signa-

ture is generated, and the default period of validity is thirty days. After the expiration

time the zone file should be signed again in order to be verifiable.

The key-tag field stores the key-tag of the DNSKEY that should be used to validate

the signature. Since multiple DNSKEY RR may be present in a single zone file, e.g.,

ZSK and KSK, this tag is used to determine the correct one. The tag is created by the

dnssec-keygen tool during the creation of the public and private key and corresponds to

the DNSKEY example given in section 3.2.3.2.

The signer-name field declares the owner’s name of the DNSKEY which its private key

was utilized to produce the contained signature, in our example the owner of the public

key is example.com.

Finally, the last and most important field is the digital signature itself, which is repre-

sented in base64 format. The signature is generated by firstly calculating a hash of the

RDATA of the RRSIG record, except off course the signature, and the covered RRset.

Then the hash value is encrypted with the signer’s private key. The digital signatures

for the zone’s records are created with the execution of the dnssec-signzone tool during

the signing process of the zone.

NSEC/NSEC3 Record

The Next Secure (NSEC/NSEC3) RR type is used to provide authenticated denial of

existence for records. Namely, this kind of RR is returned when a non-existing domain

name or RR’s type (for existing domain name) is requested. Typically, an ANS will

return a NXDOMAIN or NODATA response respectively in standard DNS protocol

[38]. Upon reception, the security aware resolver utilizes NSEC response in conjunction

with the corresponding RRSIG to prove the non-existence of the requested information.

Name TTL Class RR RR-list

example.com. 3600 IN NSEC ftp.example.com. NS SOA MX TXT RRSIG NSEC

Chapter 3. DNS Cache Poisoning 59

As we observe, the NSEC RR firstly points to the next existing name in the canonical

ordering of the zone file, that contains either authoritative data or a delegation point,

i.e., RRs of NS type. The canonical order is defined as the sorting of the domain names

based on their alphabetical order of the most significant label. Firstly, the domain names

are sorted according to their most right label, then to the second most right label, and

so forth. Finally, the record lists the types of RR that the domain name of the record

also holds.

Every domain name has a respective NSEC record that points to the next authoritative

name in the zone. The last one record of the zone file points back to the owner of the

SOA RR, thus creating a circle. Consequently, a chain of valid domain names is formed

and any other domain name not contained to this chain does not exist in the zone.

Similarly, any other type not listed in the record list does not exist for this name.

From the preceding example, one can perceive that for the example.com domain name

the zone file includes the NS, SOA, MX, TXT, RRSIG and NSEC RR types, listed in

RR-list field. Also, the subsequent authoritative record has the name ftp.example.com.

Therefore, for this example zone, it is certain that firstly there is no other record with

a name between example.com and ftp.example.com in canonical ordering (for instance

with domain name aaa.example.com), and secondly there is no record with other type for

example.com (for instance of type A). The NSEC RR are created automatically during

the signing process of the zone with the help of the dnssec-signzone tool.

However, the proposition of NSEC type produced a new security vulnerability, the zone

enumeration, also known as zone walking. Generally, DNS deployment does not concern

about the confidentiality of a zone’s data since its typical functionality is as directory of

the contained hosts. Yet a client should know the name of the host in order to request the

relative RR. So, a potential attacker has to exhaustively investigate the possible domain

names, aiming to find out the host within a zone and their corresponding types of RR.

Although with the adaptation of DNSSEC and the usage of NSEC type such discovery

is almost straightforward. A NSEC RR links two consecutively names (in the canonical

sorting) in order to prove that intermediate domain names do not exist. Thereupon, for

retrieving the zone’s data, the attacker only has to follow the chain created with this

type of records. This way, the attacker is able to acquire valuable information about the

structure of a targeted network. The specific enumeration is not an attack on the DNS

Chapter 3. DNS Cache Poisoning 60

protocol itself, but rather is a threat to the privacy of the zone’s data [14]. The main

issue of NSEC RRs type is that the records are calculated and signed beforehand and

each negative answer is independent of the request. For instance, if it is applicable to

generate the negative responses on the fly, it will prevent the zone walking. RFC 4470 [75]

suggests a scheme that discloses the minimum possible information about a DNSSECf-

enabled zone. Namely, a new RR of NSEC type is constructed for each negative answer,

which indicates a gap between two random names that falls lexicographically before

(but after any existing) and after (but before any existing) the queried domain name

[76]. This RR is signed on-the-fly and returned to the requestor. Obviously, the scheme

expects the online storage of the private key.

The response to the above mentioned threat is the introduction of a new extension called

DNS Security (DNSSEC) Hashed Authenticated Denial of Existence, specified in RFC

5155 [70]. With this mechanism, the DNSSEC-enabled name servers should respond

with an NSEC3 record instead of a NSEC, whenever a requested RR does not exist.

The NSEC3 type provides also authenticated denial of existence for DNS RRsets, but

additionally does not permits zone enumeration.

Next, we can see an example of NSEC3 RR that corresponds to the domain name

example., as described in [70]:

Name [TTL] [Class] RR HashAlg Flags Iteration Salt

NextHashed RR-list

0p9mhaveqvm6t7vbl5lop2u3t2rp3tom.example. NSEC3 1 1 12 aabbccdd (

2t7b4g4vsa5smi47k61mv5bv1a22bojr MX DNSKEY NS

SOA NSEC3PARAM RRSIG)

As observed, the NSEC3 RR has as domain name the cryptographic hash value of the

original owner name concatenated with the zone name. Furthermore, it points to the

next hashed owner name sorted in hash order. This sorting is defined as the order

in which hashed owner names are arranged according to their numerical value. So,

all domain names with hashes between the owner name and this value do not exist.

Additionally, the RR indicates the records’ types with the same original owner name.

Finally, it defines which hash function is used to generate the hash, the salt value

Chapter 3. DNS Cache Poisoning 61

concatenated, and how many iterations of the hash function are performed over the

original owner name.

After the RR’s type follows the Hash Algorithm field, which identifies the cryptographic

hash algorithm that was used to calculate the hash value. The possible values for this

field are

I 0 : Reserved.

I 1 : SHA-1.

I 2-255 : Unassigned.

Following is the Flag field that contains 8 one-bit flags. These flags can be used to

indicate different processing. Currently, the only flag defined is the Opt-Out one, which

notifies if the NSEC3 record covers unsigned delegations. Putting it another way, the

gaps indicated by NSEC3 records could contain existing but unsecured subdomains.

The usage of the specific flag facilitates the modification of unsecured delegations points

without re-adjustment of the gaps.

Next is the Iteration field, which declares the number of times that the hash function is

applied over the owner name. The multiple iterations aim to increase the strength of the

generated hash value against dictionary attacks. Definitely, the additional calculations

of the hash function raise the computational load for both the server and the security-

aware client.

The Salt field provides the salt value that is concatenated to the original owner name

before the calculation of the hash. This field is represented as a sequence of hexadecimal

digits. As with password security, the usage of the salt value intends to protect against

pre-computed dictionary attacks. So, is suggested to rotate frequently.

The Next Hashed owner name contains the next (hashed) existing domain name in hash

order. This field holds the hash of the owner name that immediately follows the owner

name of the NSEC3 record. Obviously, the last NSEC3 RR points back to the first

hash name in the zone. Finally, the last field carries all the types with the same original

domain name as this NSEC3 RR.

Chapter 3. DNS Cache Poisoning 62

The NSEC3 RR is accompanied with the corresponding signature (RRSIG) and thereby

it provides proof of non-existence. But instead of containing the domain name directly,

which enables zone enumeration, NSEC3 record employs a cryptographically hashed

value of its name. This hash value is computed with multiple iterations and the use

of a salt. As already pointed out, the salt increases the resiliency against attackers

who utilize pre-computed dictionary attack (rainbow table), while additional iterations

complicate the execution of dictionary attacks. Nevertheless, the additional calculations

raise the computational cost, both at server and client side.

Also, RFC 5155 [70] determines the NSEC3PARAM RR type. This type contains the

NSEC3 parameters, such as hash algorithm, flags, iterations, and salt, that is used by

authoritative NS to create the hashed owner name. The presence of a NSEC3PARAM

record indicates that the contained parameters may be used to determine the proper

NSEC3 RRset for negative responses. But by any means this type of RR should not

be used by security aware resolvers. The corresponding NSEC3PARAM RR for the

previous example is [70]:

Name TTL Class RR HashAlg Flags Iteration Salt

example. 3600 IN NSEC3PARAM 1 0 12 aabbccdd

DS Record

A record of Delegation Signer (DS) type is placed in the parental zone file in order

to create a chain of trust from the parental toward the child zone. DS RR holds the

hash, also called digest, of the (KSK) DNSKEY RR of the child zone and is used for the

authentication of its zone’s public key. Actually, this record could be considered as a

fingerprint of the child’s KSK key and accompanied with the related RRSIG RR (which

is signed with the parent’s private key) constitute a form of certification of the child

zone’s public key. Both records’ types, DS and DNSKEY, have the same name but are

located in different places. The DS RR is authoritative data of the parental zone’s file,

while the corresponding DNSKEY is published in the child zone’s file. So, along with

the NS RR of the child zone the parental zone also holds its DS RR with the aim to

form a trusted point of delegation.

Chapter 3. DNS Cache Poisoning 63

Name [TTL] [Class] RR key-tag algorithm digest-type digest

; RRs in parental’s zone file

secure.example.com. NS ns.secure.example.com.

secure.example.com. DS 35761 5 2 (

06E284B0532C6D1AF3587A12AF4B8BF47B94

99C7822108C8E393EEFDA59E4D16)

; the corresponding RR in child’s zone file

secure.example.com. DNSKEY 257 3 5 (

AwEAAdzyF96pzF8bxiIqjmKc15kYoStbcsmB

O5Pf7iTclAEYe7HomXR2K4vQaWb9fyeIbjAZ

tglNTrDQqIL2cxLcVWjl6itsWy5vBHoF7R1l

GmIQ3dGW1DdGcqenOugaDY0Ok1RJ7P2pVP36

4H/c6lyWIqEi+phKqnaKaz+qKpka/ScN

) ; key id = 35761

As noticed in the paradigm above, the DS RR specifies on the respective key-tag field the

tag of child zone’s public key. This is necessary in order to distinguish the appropriate

key, as more than one DNSKEY RR could exist in the child zone. Furthermore, the

RR lists the algorithm of the cryptographic function (algorithm field) of the public key

and the algorithm of the hash function (digest-type field) used to calculate the digest.

The values for the algorithm field of this record are identical with that of the DNSKEY

and RRSIG records (see section 3.2.3.2. On the other hand, the possible values for the

hash algorithm are listed below [77]. Both these hash functions are mandatory for the

authoritatives to implement.

I 0 : Reserved.

I 1 : SHA-1.

I 2 : SHA-256.

I 3-255 : Unassigned.

Chapter 3. DNS Cache Poisoning 64

Finally, DS supplies the digest of the DNSKEY RR that is referred to. The digest

is represented as a sequence of hexadecimal digits, while its size depends on the di-

gest algorithm. Consequently, from the example, we notice that the child zone se-

cure.example.com has a public key of the cryptographic algorithm RSA-SHA1 with tag

35761, which is advertised with the relevant DNSKEY RR in the child’s zone file. Also,

the digest of the DS record was created using the SHA-256 hash function.

A DS RR could be optionally created during the signing process of the child’s zone with

the use of the dnssec-signzone tool. Then, the resulting record should be transferred

and inserted to the parental’s zone file which in turn should be resigned.

Cryptographic Algorithms for DNSSEC

So far, there have been a number of cryptographic algorithms that have been adopted for

usage in DNSSEC. Their detailed list including the corresponding field value is provided

thereunder:

I 0 : Reserved [15].

I 1 : RSA-MD5 is specified in RFC 2537 [78] and deprecated with RFC 3110 [79, 80]

due to security weaknesses of MD5 hash algorithm.

I 2 : Diffie-Hellman is specified in RFC 2539 [81]. Diffie-Hellman keys are not used

for signing purposes, but for facilitating other security operations.

I 3 : DSA-SHA1 is specified in RFC 2536 [82].

I 4 : Initially, the value 4 was reserved to indicate the usage of ECC, which was

not implemented at that time (placeholder). However, RFC 6725 determines this

value as reserved [83].

I 5 : RSA-SHA1 is specified in RFC 3110 [79] and is mandatory for the ANS and

the security aware recursives to [80].

I 6 : DSA-NSEC3-SHA1 is specified in RFC 5155 [70] and is an alias for algorithm

3, with only updates the support of NSEC3 record type.

I 7 : RSA-NSEC3-SHA1, also specified in RFC 5155 [70] and similarly to 6 is an

alias for algorithm 5, with only updates the support of NSEC3 record type.

Chapter 3. DNS Cache Poisoning 65

I 8 : RSA-SHA256 is specified in RFC 5702 [84] and incorporates the employment

of SHA256 hash function.

I 9 : RFC 6725 determines value 9 as reserved [83].

I 10 : RSA-SHA512 is specified in RFC 5702 [84] and incorporates the employment

of SHA512 hash function.

I 11 : RFC 6725 determines this value also as reserved [83].

I 12 : ECC-GOST. RFC 5933 describes how to utilize the GOST R 34.10-2001 and

GOST R 34.11-94 algorithms in DNSSEC [85]. GOST algorithm are based on

ECC.

I 13 : ECDSA-P256-SHA256. RFC 6605 describes how to utilize the Elliptic Curve

Digital Signature Algorithm (ECDSA) with curve P-256 in DNSSEC [86]. As

implied from its name, ECDSA algorithm is based on ECC. ECDSA key of 256

bit size is equivalent to RSA key of 3072 bit.

I 14 : ECDSA-P384-SHA384. RFC 6605 describes how to utilize the ECDSA with

curve P-384 in DNSSEC [86].

I 252 : Indirect. Reserved for indirect keys, i.e., keys that are stored in different

places [15, 13].

I 253 : Private (testing purposes) [15].

I 254 : Private (testing purposes) [15].

I 255 : Reserved [15].

As concerns the remaining values for algorithm field, 15 to 122 are available for as-

signments by IETF standards Action [83], while 123 to 251 are determined as reserved

[87].

3.2.3.3 DNSSEC-related header flags

From the previous paradigms, we can deduce that the size of a DNSSEC packet con-

taining these new introduced records is considerably increased. Since the standard

Chapter 3. DNS Cache Poisoning 66

UDP-based DNS payload is limited to 512 bytes (excluding IP and UDP headers) [2],

it is necessary for DNSSEC protocol to support EDNS0 extension. Otherwise, the mes-

sages most likely will be received truncated, and the client should retry the request using

TCP. The Extension Mechanism for DNS (EDNS0), firstly defined in RFC 2671 [71] and

redefined in RFC 6891 [88], allows the usage of DNS UDP packets with larger payload

than 512 and up to 4096 bytes [88]. Consequently, messages containing DNSSEC-related

RR, such as RRSIG and DNSKEY, which are sizeable enough could be received intact

by the security aware clients.

Furthermore, DNSSEC employs DNSSEC OK (DO) header bit of EDNS0 extension, as

specified in RFC 3225 [89] in order to advertise the ability of a client to handle DNSSEC-

related RR. Setting the DO bit in a query declares to the receiving NS that the client

desires to accept such records. Hence, a NS supporting DNSSEC is forced to include

DNSSEC-related RR in the response. This way, the DNSSEC-enabled NS avoids to

send meaningless data to clients not supporting the security extension, and hence they

increase the performance of DNSSEC usage [16, 89].

Finally, DNSSEC adds two new DNS header flags, namely Authenticated Data (AD)

and Checking Disabled (CD) [14, 90]. Both these flags are part of the standard DNS

header and they are allocated from previously unused space. Their purpose is to be

used in the transactions between a resolver and a recursive server, that both support

DNSSEC [16]. The AD flag is controlled by NSs. A NS sets the AD bit in the responses

when it successfully verifies the authenticity of all the contained RRsets, including NSEC

records. A NS failing to verify the returning RRs should set this flag to zero. The usage

of this flag is for the clients that desire to query a DNSSEC supporting NS, but they

are unable to validate the authenticity of its response. As a result, they authorize the

corresponding recursive to authenticate the data for their behalf. On the other hand,

the CD bit is controlled by the resolvers. When a resolver sets this flag in a query, then

it forces the security aware recursive not to validate the RRSIG records of the answer.

The meaning of that action is that the requestor wants to perform the validation by

itself according to its local security policy. It therefore undertakes the responsibility for

the validation process and the NS does not need to verify the authentication of the RRs.

Chapter 3. DNS Cache Poisoning 67

3.2.3.4 DNSSEC in action

Now that we have seen the basic components of DNSSEC, we can analyse the procedures

of the security aware ANS and RDNS. The following description is based on the most

simplistic example of a DNSSEC transaction between a client and a server. Algorithm

1 illustrates a pseudocode of the verification procedure based on [91], while table 3.1

clarifies the symbol utilized in the algorithm. The exact same procedure takes place

when more than one ANSs are involved during the resolution.

Symbol Description

r A RR

k A DNSKEY RR

sk A RRSIG verifiable by k

R A RRset defined as (r0,...,ri,s0,...,sj

Rs A secure R

K A DNSKEY RRset

Ta A k trust anchor

z A secure zone containing only secure R and corresponding K

Ni The set of NS for zone zi

Zs The set of all secure zones

Table 3.1: Definition of symbols for DNSSEC Resolution Algorithm

Algorithm 1 : Resolution Algorithm for DNSSEC

Input: Query (Q) “www.example.com IN A?” for zone example.com (zi)
1: if get Ki from Ni then
2: if able to create chain of trust from known Ta then
3: send Q to Ni

4: if ∃ Rs ∈ zi such that Q ∈ Rs AND verify signatures in Rs against Ki then
5: Data is verified
6: else
7: Unable to verify data
8: end if
9: else

10: Ki can not be verified as to zi
11: end if
12: else
13: No data for zi can be verified
14: end if

Let’s say that the RDNS desires the A RR’s type of www.example.com domain name.

We assume that it has already located the ANS of this zone and that all intermediate

ANS are DNSSEC-enabled. Furthermore, all the following queries have the DO flag

equal to one, so the receiving NS can perceive that the requestor supports DNSSEC,

and hence it includes the RRSIG RR along with the requested RR types. This record

represents the digital signature of the answer’s RRset. Firstly, the recursive queries

Chapter 3. DNS Cache Poisoning 68

for the DNSKEY of the zone. If the answer does not contain any DNSKEY, then the

records of the zone cannot be verified. Afterwards, the resolver tries to create a chain of

trust from a known (and trusted) DNSKEY towards the public key of the example.com

zone. That is achieved through the DS RR (fingerprint of the public key) pointing to

the DNSKEY record of example.com. This RR is stored in the zone file of the parental

zone, i.e., .com zone. Hence, the recursive requests from the ANS of .com zone the DS

record with domain name example.com. The answer from this server contains the DS

record along with the relevant RRSIG RR, which is signed with the private key of the

.com zone. Once again, for the recursive to confirm the validity of the signature of the

DS RR it needs to possess the authenticated public key of its parental zone. That is why

subsequently it queries for the DNSKEY RR of .com. This DNSKEY record is certified

by a DS RR in the root zone file, which its authenticity could be proved with the root’s

public key. Certainly, the root’s public key is known and should be hardcoded on every

recursive. Of course, in the case the recursive has already in its cache a verified copy

of the required RRs, for instance, the trusted DNSKEY of the parental zone, it utilizes

the cached copy instead of traversing the DNS hierarchy again.

Since the recursive accomplishes to verify the authenticity of the zone’s public key, it can

now make the initial query. Following, it has to verify the accompanying signature with

the authenticated public key of the zone. To do so, it matches the key-tags (of DS and

DNSKEY RR) in order to locate the proper key, as example.com could have multiple

DNSKEY RRs. In the case the RRSIG is unable to be verified, this is an indication

that the data have been modified during the transmission.

The overall concept is that the DNSKEY RR of the root zone would be distributed

in a secure manner beforehand and stored at the security aware resolvers [92]. So,

as we notice in Fig. 3.5 every client possesses the public key of the root as a trust

anchor and it therefore is able to authenticate any zone’s key downwards the DNSSEC

hierarchy. The root, which is the highest authority and everyone trusts it, certifies that

the DNSKEY record listed in .com file actually belongs to the organization that owns

the zone. Similarly, the .com zone certifies the authenticity of the example.com, and so

on. Thus, a chain of trust is created from the root of the DNS infrastructure towards to

the leaves.

Chapter 3. DNS Cache Poisoning 69

Figure 3.5: Typical example of DNSSEC chain of trust

3.2.3.5 Trust Anchor

As pointed out in section 3.2.3.1, a trust anchor is the public key of a zone in the form

of DNSKEY RR’s type, that is trusted by all clients and therefore its authenticity has

not to be proven. Generally, the trust anchor is utilized by the recursive resolvers as

starting point for building the chain of trust. Certainly, the ultimately trust anchor is

the public key of the root zone. The KSK of root zone should be statically configured

in security aware resolvers in order to facilitate the validation of DNS data and in turn

they will be utilized to create the authentication chain towards the required domain

zone. The administration of the root zone’s KSK is provided by ICANN [93]. Also, the

security aware resolver could contain trust anchors for islands of security, i.e., DNSSEC-

enabled zones with insecure parental zone. These trust anchor are utilized to prove

the authenticity of the records contained in the islands or to verify any of the child

zones, considering the child’s public key is pointed by a DS record. For simplifying the

authentication of trust anchor an automatic update mechanism is proposed [94, 95].

Additionally, a recursive could be configured with a negative trust anchor (NTA) [96]

for temporarily disabling the DNSSEC validation for a specific domain. So, the resolver

treats the domain in NTA as insecure and does not set the AD bit in its response. In

some cases, there are misconfigurations in the DNSSEC-related RR of a zone that will

lead to the verification failure of the zone’s data. Hence, that zone will be invisible

and the end-users will experience difficulties to access the desired resources. For this

cases, the NTA will restore access to the domain until the misconfiguration errors are

corrected by the domain’s administrator. It is suggested that the inclusion of a zone as

Chapter 3. DNS Cache Poisoning 70

NTA should take place only after the confirmation of failure due to operational errors

and is limited to a specific time period.

3.2.3.6 DNSSEC Lookaside Validation

The DNSSEC Lookaside Validation (DLV) constitutes an alternative method for creating

a DNS chain of trust. Typically, a chain of trust is generated along the delegation from a

trust anchor, which ideally is the root zone. However, at the time period that a handful

of root or gTLD/ccTLD zones were signed the security aware resolver should maintain

a substantial amount of preconfigured trust anchors’ keys for each of the islands in

order to securely communicate with them. In contrary, the DLV mechanism permits

the advertisement of trust anchors located outside the DNS infrastructure and this

way eliminates the demand of storing a trust anchor for every isolated island. This

is accomplished with the proposition of a new RR type called DLV. This new RR is

defined in RFC 4431 [97], while RFC 5074 [98] describes the mechanism of validation.

The predominant DLV repository is maintained by Internet Systems Consortium (ISC

DLV Registry).

The DLV RR is identical to DS record in terms of functionality and syntax. As we can

see in the example below, a DLV RR looks like DS. Specifically, it has the same fields

with same possible values except of course the type field. But unlike DS, which is stored

to the parent zone file, a DLV RR is inserted in a special signed zone called the lookaside

zone. Such zones should contain only DLV and DNSSEC-related RR for validating the

DLV RRs. The advantage with the lookaside zone is that it is located somewhere else in

the DNS tree structure and not necessarily in the same branch with the domain name.

In the following paradigm, we assume that the zone of example.com is secure but its

parent is not and consequently could not be used as trust anchor for the certification of

its DNSKEY. Rather, the lookaside domain dlv.isc.org is used as a trust anchor. The

dlv.isc.org domain is a repository that provides the publication of DLV RR pointing

to secure zones. Initially, DLV RR is generated by the administrator of example.com

zone using the dnssec-signzone tool. Then, this record is added to the zone file of the

lookaside zone and next the zone file is resigned for generating the corresponding RRSIG

records.

Chapter 3. DNS Cache Poisoning 71

Name TTL Class RR key-tag algorithm digest-type digest

; Record in lookaside’s zone file

example.com.dlv.isc.org. 3600 IN DLV 51316 5 2 (

3B822636C70A46CFBBA2ECC3925E72F154

C2DB6B994CD9E98577CF9D F58D02B5)

In the case a security aware client supports DLV mechanism, it is forced to browse the

lookaside repository as to whether the repository could certify the key of the domain

name in question. This method is used whenever any other validation method is inap-

plicable. Apparently, the client should known that the lookaside zone is actually such a

zone and also possesses its authentic public key. For this reason, modification should be

applied to its configuration file. Namely, the appropriate lookaside zone name should be

specified with the dnssec-lookaside statement and the trusted anchor for the lookaside

zone should be included with a trusted-keys statement. Afterwards, the resolver is qual-

ified to query for the DLV RR of the domain name example.com.dlv.isc.org. In the case

the client receives a proper RR it uses it to validate the authenticity of the example.com

DNSKEY. On the other hand, if the DLV record does not exist for the queried domain

name, then this zone could be regarded as insecure. The procedure of the DLV RRs

verification is identical as in the occasion of the DS RR.

3.2.3.7 Challenges of DNSSEC Deployment

Although the latest specifications of DNSSEC were announced in 2005, the complete

deployment on the 13 root name server was finalized on 2010. This means that for a

significant period the adoption of DNSSEC mechanism was limited to certain segments

of DNS infrastructure, which are called islands of security. The main reason for the delay

of the immediate deployment of DNSSEC was the fact that DNS is consisted of millions

of autonomous administrative domains collaborating in a decentralized infrastructure.

Substantially, DNSSEC constitutes an effort to apply PKI by leveraging the existing

DNS delegation hierarchy [99]. For this reason, it requires coordination amongst zones

which in the most cases belong to different administration domains with probably diverse

Chapter 3. DNS Cache Poisoning 72

policies and priorities. In other words, it is meaningful for a zone to implement DNSSEC

only in the case its parental also does.

Essentially, the islands of security are domain zones that have enabled DNSSEC but

their parental zones have not, thus there is not a secure delegation towards them. So

in order a security aware resolver to initiate a chain of trust, it should configure the

DNSKEY of the islands as trust anchor or obtain an authentic public key from the ISC

DLV Repository with the use of DLV RR type as described in section 3.2.3.6. The ISC

DLV Repository is operating since 2006, however due to DNSSEC’s wider adaptation

during the recent years, the administrators are planning the termination of its operation

in 2017 [100]. Currently, from the total of 1232 TLDs contained in the root zone 1069 are

signed, of which 1062 have published a DS RR in the root zone and the remaining have

published a trust anchor in the ISC DLV Repository [101]. However, only a negligible

portion of 2LD zones (approx. 3%) are signed [102].

Another issue that hampers the utilization of DNSSEC is the increased complexity of

DNSSEC enabled zones’ management, which in turn could impose administrative errors.

Mainly, DNSSEC misconfigurations are related with missing DNSKEY and DS RR or

improperly signed RRsets that violate the chain of trust [103, 104], thus render the secure

zones unreachable to secure-aware resolvers. Finally, it is estimated that a significant

portion of recursive resolvers do not support DNSSEC [105] or even worst they query

for DNSKEY and DS RR, but neglect to validate the RRSIG records [106]. Similarly,

the majority of the stub-resolvers do not verify the accompanying DNSSEC related RR

[107]. Eventually, in overall, the end users do not benefit from the protection of DNSSEC

wider deployment.

3.2.4 DNSCurve

DNSCurve constitutes an alternative method to introduce public key cryptography to

DNS protocol. This method is based on Elliptic Curve Cryptography (ECC), having

appealing characteristics like the short key-length and the high speed of the encryption

and decryption process. According to its creator, DNSCurve is aiming to offer the

following security requirements to the entities that implement DNS protocol:

• Confidentiality of exchanged DNS packet.

Chapter 3. DNS Cache Poisoning 73

• Integrity of DNS responses.

• Availability of DNS service.

Essentially, DNSCurve creates a secure communication link amongst a ANS and a

RDNS. So, new types of DNS messages are necessary. Furthermore, there is the need for

DNSCurve-enabled NS and clients to implement the suitable functionalities in order to

benefit from the usage of ECC. Finally, the ANSs require a way to publish their public

key, so the clients could obtain it.

Unfortunately, so far, DNSCurve has neither been documented in detail nor deployed

in a large scale. Therefore, the accuracy and effectiveness of its operations can not be

tested in practice but solely theoretically. As already pointed out in section 3.2.2, until

now, only one internet draft has been published that provides the general overview of

the DNSCurve [69].

3.2.4.1 Security Operations

Every DNSCurve-compliant NS or client maintains a pair of EC public and private key.

Whenever the client desires to query a NS or the NS wants to return the response to a

query, then the sender enciphers the message with its private key for authentication and

with the recipient’s public key for confidentiality. Moreover, every pair of query/response

is characterized by a distinct nonce, that is, a random number used only once. The usage

of this unique number distinguishes each transaction.

Currently, the contents of a DNS packet are not encrypted during its transmission, which

stands also true for DNSSEC. Therefore, the data of the message are not protected

and are visible to any eavesdropper who is sniffing the network. On the other hand,

DNSCurve encrypts DNS messages [108] with the aim to protect their confidentiality, so

an attacker is not able to perceive the contained information, either in a query or response

message. However, it does not cover the packet’s information, such as source/destination

IP address and length. In addition, it protects against replay attacks with the usage of

nonce, so an eavesdropper is unable to record DNS traffic and transmit it later. Since,

every packet is calculated with the sender’s private key, the receiver’s public key and a

nonce, this packet cannot be recorded and later sent to another receiver, because the

Chapter 3. DNS Cache Poisoning 74

attacker does not hold the proper private key to decrypt the message. Even this specific

packet cannot be sent to the same receiver at a later time, because of the nonce value.

The receiver will comprehend that the packet is related to an earlier transaction and he

will discard it.

Concerning the protection against forged RRs, DNSCurve authenticates DNS messages.

Therefore upon the reception of a response, the client verifies the message with the

sender’s public key, in order to detect bogus packets. The involved parties utilize a 255-

bit key length ECC. Due to ECC, the operation of encryption/decryption are signifi-

cantly faster than the corresponding cryptographic operations based on RSA algorithm.

The same approach is applied for the case of the authentication of negative responses.

Instead of pre-computing signatures, which indicate the gaps between existing domain

names, DNSCurve encrypts on the fly the negative answers, in the same way it does

with positives. The enhanced performance of ECC allows the NS to handle all the nec-

essary cryptographic operations online. Finally, DNSCurve does not expand the size

of DNS packets, neither introduce large RR types. As a result, the amplification ratio

for DNSCurve is at the same level as that of typical DNS protocol. Consequently as

detailed in section 3.2.5.5, it does not provide to attackers the means to launch amplifi-

cation attacks [108].

3.2.4.2 Publication of Public Key

In order to send a query to a ANS, the client needs to locate its public key. This key is

published in domain’s parental zone file as part of the domain name of the delegating

NS RR. The same NS RR is also included in the child’s zone file. That is the only

modification introduced to DNS RR. Following, we present an example of the requisite

modification [66], as added to both parental’s and child’s zone files. Assuming that the

IP of ANS of the nytimes.com domain name is 199.239.137.201, the corresponding NS

record with its relative glue record is:

nytimes.com. IN NS

uz5xgm1kx1zj8xsh51zp315k0rw7dcsgyxqh2sl7g8tjg25ltcvhyw.nytimes.com.

uz5xgm1kx1zj8xsh51zp315k0rw7dcsgyxqh2sl7g8tjg25ltcvhyw.nytimes.com. IN A

Chapter 3. DNS Cache Poisoning 75

199.239.137.201

As we notice, the first label of the domain name of NS type RR is a lengthy string of

54 alphanumeric characters that constitutes the EC public key. The first 3 characters

(uz5) is an indication that the remaining characters are a valid EC public key. These

characters are the base-32 representation of the 255-bit public key. Hence, for a client

to distinguish the public key inside a domain name it should examine each label of the

name whether it contains precisely 54 base-32 characters, from which the first three are

the string “uz5”.

3.2.4.3 DNSCurve message format

The clients have the ability to send a DNS query in two different formats. These are

“streamlined” and “TXT” expanded DNS packet format. The first one is smaller and

exposes lesser information about the transaction, as it carries a cryptographic box con-

taining the original DNS query and response. The latter has actually the same format

as a typical DNS query and a reply of TXT type. So,“TXT” packets are expected not

be blocked by firewalls with rigid format constrains on DNS messages. The NS should

send the response in the same format as was the received message of the client’s query.

A streamlined query packet carries a cryptographic box containing the encrypted initial

DNS query packet. In addition, the box incorporates the public key of the client and a

nonce selected by him. Similarly, the matching response packet has a cryptographic box

containing encrypted the initial DNS response packet, plus the nonce of the client and

a nonce chosen by NS. As the response does not contain the queried domain name or

the client’s public key, the client’s nonce is used to match the answer with the pending

query.

On the other hand, a TXT packet has actually the same format as a DNS TXT message

of typical DNS protocol. It only differs in the semantics of the queried domain name

and the RDATA of the response that conveys the encoded message. The domain name

in the query section, that should be in compatible domain name format, is constituted

by several labels, while the requested RR is of TXT type. From the concatenation

Chapter 3. DNS Cache Poisoning 76

of the labels one can extract the base-32 string of the cryptographic box that holds

the encipherment of the original query, accompanied with the client’s nonce and public

key. The endmost labels carry the name of the zone. In the response packet, the

string of the RDATA is the encrypted response also transformed to base-32 format.

Namely, the string contained in the answer’s TXT RR provides the server’s nonce and

the cryptographic box that encodes the initial DNS response.

3.2.4.4 DNSCurve operation

Initially, every DNSCurve-compliant server and client possesses a 32-byte private key (s

and c respectively). The corresponding public keys are produced with the use of the

Curve25519 function, namely Curve25519(s) and Curve25519(c) [109]. This key pair can

be generated during the installation of the system or the reboot process. The public key

of each ANS is published as part of its domain name in order to be accessible by various

clients. This NS RR type is located in the parental’s zone file. Therefore, whenever

a recursive resolver desires to query a server, firstly it examines if the authoritative’s

domain name contains a valid DNSCurve public key. Then, it can produce a shared

secret key k from its private key and the server’s public key. The server is able to

produce the same shared key from its own secret key and the client’s public key. This

key is calculated by Curve25519(sc). The same shared key could be used for subsequent

transactions between these two entities and for performance reasons can be stored locally

[66].

Afterwards, the client selects the format of the packet that it will send to NS. The

possible options are “streamlined” and “TXT” expanded DNS query packet as explained

in 3.2.4.3. The client expects that the server would respond back using the same format.

Thereafter, the client selects a 12-byte nonce and assigns it to the packet. Then, it uses

the shared key k to expand the nonce into a long stream key with the usage of the

Salsa20 stream cipher function [110]. The input nonce to the stream cipher is a 24-byte

long string, which consists of the 12-bytes chosen from the client and 12 zeroed bytes.

The resulting key is then used for the encryption and authentication of the packet

[66]. At this point, the client uses the first part of the previously computed keystream

to create the authenticator of the message. In this calculation, the client utilizes the

Poly1305-AES message-authentication code function [111]. Then, it encrypts the initial

Chapter 3. DNS Cache Poisoning 77

query by XORing it with the remaining part of the key stream. The final encipherment

is comprised of the authenticator followed by the ciphertext itself. Now the client is

ready to create and send the query packet to NS. This packet will contain in cleartext

the client’s DNSCurve public key and the packet specific 12-byte nonce, followed by

the cryptographic box that encodes the original query packet [66]. The use of the

cryptographic box provides origin authentication (due to the sender’s private key) and

confidentiality (due to the recipient’s public key) for the original packet.

Upon reception, the NS extracts the sender’s public key and the nonce for the specific

transaction and generates the shared stream keys. Then, it calculates and validates the

authentication code of the received packet so as to ensure that the sender truly possesses

the private key corresponding to the public key located in the packet. Following, the

NS decrypts the box and extracts the query. If any of the previous process fails, then

the server should handle the packet as unprotected. Otherwise, it should create the

corresponding response and send it encrypted to the client.

As previously noted, the steps for the construction of the answer are similar to the steps

followed by the client. The only difference is that the input to the Salsa20 function

is a 24-byte long string, of which the 12-bytes are the nonce chosen by the client and

the remaining are the nonce chosen by the server. This 12-bytes string is attached in

cleartext to the answer. Therefore, the response packet, which is in the same format as

the query, includes the 12-byte nonce of the server in cleartext and the cryptographic

box containing the original response. The box is created with the usage of the server’s

private key, the client’s public key and the 24-byte nonce. The client verifies and decrypts

the box to extract the desired response. If this process fails, it means that the packet

is forged. Therefore, the client should silently reject it and continue to wait for the

legitimate one. Provided that the opening of the box is successful, the client would find

the initial response packet, which would be treated the same as a typical DNS response

packet [66]. It is important to notice that the client and server should generate and use

a different nonce for each DNSCurve packet encrypted with the same shared key. This

requirement is crucial in terms of cryptography and applies during the whole period that

the same shared key is utilized.

Chapter 3. DNS Cache Poisoning 78

3.2.4.5 Trust anchor

In the ideal case, where every DNS ANS would support DNSCurve, the security exten-

sion would protect all transactions amongst ANS, including root servers, and DNSCurve-

aware resolvers during the resolution of a RR. Thereupon, a client should know the pub-

lic keys of the root and trust them unconditionally. So, the clients would be configured

with the list of the root as an trust anchor accompanied with their DNSCurve keys.

Consequently, the communication with the root will be protected and the client will

securely find the domain names of the TLD’s ANS, and so forth. These names should

conform to the requirements of section 3.2.4.2 in order to distribute their public keys to

the resolvers. In any case, a resolver could be configured with trust anchors for some

subtrees of the DNS hierarchy that form a DNSCurve protected island of security. The

knowledge of keys for isolated zones would eliminate the requirement of their parental’s

zone to support DNSCurve as well.

3.2.4.6 Elliptic Curve Cryptography

Recall from section 3.2.4 that DNSCurve deploys link-level public key protection of DNS

transactions using ECC. ECC takes advantage of the algebraic structure of elliptic curves

over finite fields. Its most prominent characteristic is the small key length compared

with other public key cryptosystems. Also, so far, only few attacks have been developed

against some specific type elliptic curves, which have special algebraic structure. Security

requirements for the elliptic curves used in ECC were specified with IEEE P1363 project

that developed standard specification for public key cryptography. In this context, as

pointed out in section 3.2.4.4, DNSCurve use the Curve25519 algorithm proposed also

by D. J. Bernstein [112]. This type of elliptic curve meets the security requirements

imposed by IEEE P1363 standard [108, 113], while it accomplishes immunity to side-

channel attacks.

3.2.5 DNSSEC vs. DNSCurve: A side-by-side Comparison

In the following sections, we compare DNSSEC and DNSCurve based on nine different

criteria. The analysis is based on the observations of section 2.2.1, which present the

attack surface specific to the integrity of DNS transactions, whilst Fig. 2.4 illustrates

Chapter 3. DNS Cache Poisoning 79

this surface. Table 3.2 provides a pivotal comparison of the analyzed security extensions

based on the selected criteria. In the rest of this section, these criteria are explained and

the two solutions are compared with each other. By using this approach, a clear view of

the advantages and disadvantages of each method is provided. At the end of the section

a discussion of the findings is furnished.

3.2.5.1 Cryptography

DNSSEC utilizes mainly RSA algorithm for Public Key Cryptography (PKC) and per-

mits the operation of various key lengths. The usage of ECC is compatible but imple-

mented recently [85, 86]. It is recommended that a zone should have two separate pairs

of keys, ZSK and KSK. The private part of ZSK pair is used for signing the RRsets

contained in the zone, including DNSKEY records themselves. On the other hand, the

private key of KSK pair is used to create only the signatures of the zones’ keys, for both

ZSK and KSK. This key is also used for the creation of DS RR. It is endorsed that the

KSK is used for the certification of DNSKEY records, and thus its role is more crucial

than that of ZSK. For this reason, larger key sizes are suggested in order to be more

resilient and require a rollover less often (i.e., longer key effectivity period). Overall, a

1024-bits key size is proposed as ZKS [114].

On the other hand, DNSCurve is based on Curve25519 algorithm [108, 113]. As already

pointed out, ECC takes advantage of the algebraic structure of elliptic curves over fi-

nite fields and its unique characteristic is the small key length and high performance.

However, the size of ECC public key is fixed to 255 bits. This is because each label

of a domain name is not allowed to have more than 63 characters [2]. So, the major

advantage of the DNSCurve is the usage of high speed ECC that provides a strong level

of security with significantly smaller key length. According to NIST recommendations,

the typical 1024-bit RSA algorithm provides equivalent security to 80 bits of symmetric

keys, while 255-bit ECC is equivalent to 128 bits of symmetric keys [115]. In addition to

Curve25519 algorithm, DNSCurve utilizes Salsa20 stream cipher and Poly1305 Message

Authentication Code (MAC). Both these functions are proposals of Daniel J. Bernstein.

Salsa20 is a stream cipher that maps a 256-bit key, a 64-bit nonce, and a 64-bit stream

position to a 512-bit output [110]. It was selected as a member of the final portfolio of

the eSTREAM project, part of European Union research directive [116]. On the other

Chapter 3. DNS Cache Poisoning 80

hand, Poly1305 is a MAC that can compute a 128-bit authenticator of a variable-length

message [111].

3.2.5.2 Integrity and Origin Authentication

The designers of DNSSEC extension primarily aim to offer robust means in order for

the clients, both resolvers and end-users, to be capable of validating the integrity and

origin of DNS responses, either positives or negatives. This is achieved with the pre-

computation of RRSIG for each authoritative RRset. The private key of the zone is

used during the signing process, while the rest of the time is stored in a safe place

offline. This way only whoever controls the private key can produce authenticated RR.

However, there are some cases where DNSSEC is not able to protect the integrity of

offered RRs. Firstly, a zone does not sign the delegating records, namely the NS RR of

a child zone with the corresponding A RR (glue records). This happens because these

records do not belong to the parental zone, and the zone ought only to authenticate its

own authoritative data [99]. Therefore, whenever a resolver receives a DNSSEC response

containing delegating records for a child zone is is unable to verify whether the contained

RR have been forged [117]. For example, in the response, the address of the glue record

can be forged, while the RR in the authoritative section will contain valid signatures.

For this reason, the response packet seems to the client legitimate and unmodified. The

resolver only through the DS RR is able to perceive that an forged attempt has occurred,

since the DNSKEY RR of the child zone will not match to the DS of the parental zone.

In the case the delegating zone does not support DNSSEC, then the resolver will fall

victim of forged RR that are DNSSEC protected.

Another related flaw of DNSSEC is the case when some data are administratively mod-

ified and the zone’s file is resigned. However, the signatures of the stale RRs could not

yet expired [91, 118]. In such a situation, an attacker may store the preceding RRs

with the accompanying valid signatures and exploit them until their expiration date as

part of a replay attack, also referred to as freshness attack [52]. This also means that

the aggressor is able to redirect the victim to a malicious site or just cause them DoS.

Up to the time the signatures become obsolete, the victim cannot tell if received data

are valid. Unfortunately, this expiration time could be lengthy as the RRSIG records

are pre-computed and not created on-the-fly, so they are generated with a high validity

Chapter 3. DNS Cache Poisoning 81

period (usually 30 days) for performance reasons. A possible countermeasure against

this flaw is proposed in [119], which utilizes hash chains in an effort to prove that RRs

are fresh and to limit down the replay window. However, this method is rather incom-

patible, requiring changes to both RRSIG type’s format and the functionality of the

servers and resolvers.

DoS could also be caused due to the manipulation of localized services’ RRs. Many

organizations install multiple copies of their resources in different network domains with

the purpose to offer specific services to individual local area groups. By doing so, these

groups access localized services, while the companies achieve load balancing. On the

other hand, an eavesdropper could capture records with their appropriate signatures

from a particular domain and replay it to the users of a different domain. Consequently,

even though these users are able to verify the authenticity of the records, they are not

able to access the content they request. So, by replaying valid RR, the attacker is able

to cause DoS to the unsuspecting users [66].

Summarizing, there are some occasions when the end-user may be deceived by seem-

ingly legitimate DNSSEC responses and redirected to a malicious site or experience

DoS. Moreover, as stated in [91], cryptographic verification is not always equivalent to

validation. In other words, there are some conditions that even verifiable RRs could still

contain false data and not what the zone administrator intended to provide initially.

On the opposite, DNSCurve performs its cryptographic operations online (in realtime).

Therefore, the private key of the zone is stored in the server and is used for the encryp-

tion and authentication of the original response upon the reception of the query. Each

response packet is created independently from other responses and is unique. Conse-

quently, authenticated answers, positives or negatives, can only be created by whoever

controls the (primary or secondary) authoritative server. Finally, with the usage of

nonce each response is bind to a specific transaction and cannot be used later to a

replay incident.

3.2.5.3 Confidentiality

Generally, DNS protocol does not concern about the confidentiality of DNS messages

or the zone’s contents. This is because the zone operates as a public directory of the

Chapter 3. DNS Cache Poisoning 82

contained hosts. Therefore, DNSSEC does not propose any mechanism to protect the

confidentiality of the packets in transit. Although DNS data are considered as public

information, the transaction between an end-user and a NS should not. Let us sup-

pose the case where the user utilizes an Hypertext Transfer Protocol Secure (HTTPS)

connection to access a website. Prior the HTTPS they deploy an unencrypted DNS

transaction which reveals significant information about the forthcoming request. Thus,

DNS protocol may become the weakest link amongst the network protocols regarding

privacy protection [120].

Moreover, the introduction of NSEC type [15] deployed for the authenticated denial of

existence creates a new security vulnerability, namely zone enumeration as described

in section 3.2.3.2. Using the standard DNS protocol the user must know the domain

name of the host in order to request the respective RRset. Therefore, an attacker has to

exhaustively scan possible names, aiming to find out the host names within a zone and

the corresponding types of RRs. However, with the deployment of DNSSEC and the

utilization of NSEC type such discovery is almost straightforward. A NSEC record links

two consecutive names of the zone (in canonical ordering) with the aim to prove that

intermediate domain names do not exist. Consequently, the aggressor only has to follow

the chain created with this type of RRs to eventually retrieve the zone’s data. This

way, a potential attacker is able to acquire valuable information about the structure of

a targeted network, referred to as reconnaissance attack. In other words, the evil-doer

is able to discover possible sensitive information about the internal configuration of the

network infrastructure or details about the offered services. This enumeration is not

considered as an attack against the DNS protocol itself, but rather as a threat against

the privacy of the zone’s data [15].

The response against this flaw is the proposition of a new extension called DNSSEC

Hashed Authenticated Denial of Existence given in RFC 5155 [70]. With this extension,

whenever a requested RR does not exist, DNSSEC-enabled NSs respond with a NSEC3

record’s type, instead of a NSEC. This RR type also provides authenticated denial of

existence for DNS RRsets, but does not permit zone enumeration. The main difference

of NSEC3 is that it links two consecutive hash values of domain names in order to prove

that domain names with intermediate hash values do not exist. Nevertheless, even with

the usage of NSEC3 record zone enumeration is still possible and can be argued that

it is more effective than in the case of original DNS protocol [108]. When an attacker

Chapter 3. DNS Cache Poisoning 83

wishes to determine the hosts and their respective attributes inside a zone implementing

DNS protocol, the only thing they have to do is to exhaustively query for any possible

combination of domain names. However, this action requires sending a vast amount of

packets towards the authoritative servers of the zone. Therefore, such an attack does

not remain unnoticed by the administrator of the server and could be easily blocked

during its execution.

Nevertheless, in the case of DNSSEC, the attacker could silently obtain the NSEC3

records through limited interactions with the ANS, and then offline test the hash values

in order to figure out the initial domain names. This can be achieved by performing a

dictionary attack, i.e., by calculating the hash value of likely possible domain names.

Such an attack is noiseless and the administrator of the server will not suspect anything

[121]. In fact, recently, a GPU-based attack accomplished to extract 64% of all domain

names in the .com domain zone. Namely, the researchers collected the majority of

NSEC3 RR in the .com zone and with cryptanalysis they managed to reveal a significant

portion of contained domain names. Specifically, they extracted nearly 62% of all the

contained domain names within 14 hours with dictionary attack and the remaining

portion within 4.5 days by applying a Markov chain attack [122]. Goldberg et al.,

[123] propose a RSA-based keyed hashing scheme instead of an unkeyed hash function

for offering authenticated denial of existence without the possibility of zone walking.

Specifically, they present NSEC5 RR type which likewise NSEC3 RR contains the hash

value of domain name singed with a private key. The RSA key pair is different from

that of the zone and is stored online for performing signing operations for every negative

answer at the time of the request.

On the other hand, DNSCurve calculates a different keystream for each DNS packet

for its encryption. By doing so, DNSCurve protects the contents of every DNS packet

(request or response) of the transaction from a passive Man-in-the-Middle attack. Cer-

tainly, the eavesdropper is able to determine the inquired zone, but they are not capable

of discovering the exact domain name and resource type requested. Also, concerning the

confidentiality of the zone, DNSCurve behaves as the original DNS protocol. Therefore,

an attacker should exhaustively query the DNSCurve-enabled NS in order to find out

the contents of the zone.

Chapter 3. DNS Cache Poisoning 84

3.2.5.4 Authenticated Denial of Existence

The typical DNS protocol provides NXDOMAIN or NODATA type of response, when-

ever a domain name or a RR are not contained in the zone. However, NXDOMAIN

response can trivially fabricated, and thus lead the victim to DoS. Let us consider that

a client issues a query for a RR that truly exist, but in the meantime the aggressor

injects successfully a forged NXDOMAIN response with a similar technique as that of

section 3.1.2. The client would accept the NXDOMAIN response as genuine and it

would be unable to connect to the resource that it desires. Besides their query section

NXDOMAIN responses do not differentiate to any other field of the answer section. For

this reason, a way to provide authenticated denial of existence is requisite. In DNSSEC

this is done with the NSEC/NSEC3 RR type.

Due to performance reasons, DNSSEC executes cryptographic signing operations on the

zone’s data prior to their publication. Therefore, to provide proof of non-existence a

ANS sends back a Next Secure (NSEC/NSEC3) RR rather than a simple NXDOMAIN

response. Unfortunately, as discussed in section 3.2.5.3 this type of RR leaks sensitive

information about the hosts within the zone.

DNSCurve operations are designed to operate on-the-fly and therefore the responses

(either positives or negatives) are encrypted and authenticated upon the reception of

the DNS query. By doing so, NXDOMAIN response is encrypted and authenticated

with the combination of client’s private key, server’s public key, and the nonce of the

session. Therefore, this negative response is unique for the specific transaction.

3.2.5.5 Amplification Attacks

During a DNS amplification attack, the aggressor tries to force multiple authoritative

NSs to produce large responses when processing corresponding queries. In these queries,

the attacker advertises the usage of a large size UDP buffer. Additionally, the queries

seem to originate from the victim system, as the attacker forges the source IP address

of the query packet. Therefore, the ANSs unconsciously flood the targeted system with

large UDP packets causing it DoS [124, 125].

Unfortunately, the size of DNS packets among transacting DNSSEC-enabled entities is

increased significantly, as the response packets carry a signature for every contained

Chapter 3. DNS Cache Poisoning 85

RRset. Even worse, the rest DNSSEC related RR have extensive size as well. Hence,

these entities should support EDNS0 extension. This way, DNSSEC facilitates successful

reflection attacks against targeted systems since it increases the size of the responses and

thus augments the amplification ratio of the attack even more.

Contrariwise to DNSSEC, DNSCurve does not augment the size of the messages, as it

restricts the size of the initial (prior to execution of any cryptographic function) DNS

responses to a maximum of 512 bytes. Whenever the initial response exceeds this limit,

the server sends the reply as a truncated packet, which is also protected by DNSCurve.

Possibly, after encryption, a DNSCurve packet would exceed the 512 bytes threshold;

these extra bytes are generated due to cryptographic operations. Moreover, DNSCurve

lengthens the name of each NS by 54 bytes, causing extensive glue records compared to

the original DNS. However, the overall amplification ratio is low and at the same level

as that of standard DNS. Consequently, DNSCurve does not provide to attackers the

means to launch an amplification attack [66].

3.2.5.6 Modification of DNS Infrastructure

Certainly, both DNSSEC and DNSCurve require major modifications to DNS function-

ality and infrastructure, which hampers the wider adoption of cryptographic solutions

to DNS protocol. Obviously, both DNS network entities, server and client, need to

change their software in order to perform cryptographic operations for carrying out the

necessary functions.

Furthermore, as already pointed out in section 3.2.3.2, DNSSEC utilizes four new RR

types. Also, it uses the DNSSEC OK (DO) EDNS0 header bit [89] to advertise the

ability of the client to handle DNSSEC RR. Finally, it adds two new DNS header flags,

namely the Authenticated Data (AD) and Checking Disabled (CD) [16]. These flags are

used in the transactions amongst a stub-resolver and a recursive NS, that both support

DNSSEC. A recursive sets the AD bit in the responses when it successfully verifies the

authenticity of all the contained RRsets, including the NSEC records. Also, a resolver

sets the CD bit, when it wants to perform the validation of the RRSIG records by itself

according to its local security policy. This way, it forces the recursive to not validate the

signatures of the response, but rather include the DNSSEC-related RR in the response.

Chapter 3. DNS Cache Poisoning 86

On the other hand, DNSCurve also requires means to carry out the encoded message

between the client and the server. Towards this direction, two expanded DNS message

formats, namely streamlined and TXT are introduced. The first is more compact and

transfers securely the encoded message. But, it differentiates from the standard DNS

packet, and thus could be blocked from firewalls imposing rigid format constraints on

DNS packets. In such cases, the second type could be utilized, which transfers the

encoded response as a string of TXT RR. However, the size of the latter is larger and

leaks more information compared with the first format. Additionally, it modifies the

domain name of ANS for announcing the public key of the zone.

3.2.5.7 Zone Administration

Regarding DNSSEC, the zone file should be re-signed whenever a modification of the

zone file occurs. This is because the signatures for the new or modified RRs and the

NSEC/NSEC3 RRs have to be regenerated (re-adjustment of the gaps). This process is

considered very computational intensive and time consuming. Nevertheless, a malicious

user, who has gained dynamic update permissions, is capable of consuming the compu-

tational resources of a DNSSEC-enabled NS with cryptographical operations by forcing

dynamic updates to its zone file [14]. Also, a re-signing process is necessary before the

expiration of the signatures. Otherwise, if the RRSIG RR expires, then the zone data

will not be validated by the clients and the domain will be invisible, i.e., the clients will

not be able to verify the authenticity of the RRs, and hence they will discard them.

Another disadvantage of DNSSEC is that it imposes time synchronization amongst the

transacting entities [114, 46]. Since every signature is valid for a particular time-duration

with specific time of inception and expiration, the resolver should have the same concept

of absolute time as ANS so as to be able to figure out if the signatures are still valid

or they have expired. Unfortunately, an attacker could fool a user into trusting expired

signatures or rejecting still valid records by manipulating the client’s perception of time.

Similarly, an attacker could also drive the NS to generate signatures with validity period

different than the current time.

DNSCurve on the other hand only changes the way the servers and clients communi-

cate. Besides this, it does not imply modifications to the core DNS protocol. The only

Chapter 3. DNS Cache Poisoning 87

difference is that they just send encrypted the initial message. Also, its operation is not

affected by modification of the zone file.

3.2.5.8 Key Management

Another important issue that applies to both these protection mechanisms is the storage

of the zone’s private key. Because DNSSEC pre-computes the signatures prior to their

publication, the key should be preserved offline for safety. However, in the case the zone

allows dynamic updates, the safe keeping is not possible. So, for such a case the private

key should be maintained online in the primary ANS in order to create the RRSIG

for the updated RR and re-adjust the gaps indicated by NSEC/NSEC3 RRs in real-

time. Concerning the key management, DNSSEC requires the regular replacement of

the asymmetric key and particular the ZSK. As this key is used often for the signing of

the records, an attacker could collect enough plaintext and ciphertext samples to launch

a known-plaintext attack. Also, for performance reasons, the ZSK length is smaller than

the rarely-used KSK. So, it is essential not to be used for long periods of time. However,

this rollover process is complex, lengthy and needs to be scheduled somehow [126].

Regarding ZSK, two ways have been proposed to maintain verifiability during key

rollover [114]. The first one, known as key pre-publication, designates to publish the

new ZSK in the zone file but without generating RRSIG with that key for a time pe-

riod. This way, the key will be diffused in the DNS infrastructure and reside in the

cache of the recursive before the definitive removal of the stale ZSK. The second method

known as double signatures determines the existence of RRSIG created by both ZSKs,

the old and the new one. On the other hand, as concerns the KSK a similar approach

to double-signatures scheme is followed; however the parental zone is also involved in

the procedure as dictates the reception of the new key and following the modification

and re-signing of the matching DS RR. In order to avoid the manual notification of the

parental zone about the change of KSK, RFC 7344 [127] proposes an automatic proce-

dure. Namely, two new RR types are presented called CDS (Child DS) and CDNSKEY

(Child DNSKEY). Similar to DS and DNSKEY RR, these two RR contain the KSK’s

fingerprint and public key respectively. They should be placed in the child zone after a

rollover process take places. So, the parent have to periodically poll for the specific RR

in order to get informed about the new delegations of the chain of trust. The precise

Chapter 3. DNS Cache Poisoning 88

procedure of key rollover are outlined in RFC 6781 [114] and RFC 7583 [128]. In case the

rollover is not successful, the DNSSEC clients are not able to obtain the proper public

key in time, and therefore cannot validate the signatures of the records they receive.

Additionally, a plan for emergency rollover of compromised key is essential since oth-

erwise the attacker possessing the private key of a zone would be able to create valid

signatures for malicious data as long as the trust chain exists. However, a trade-off

should be taken into consideration between the preservation of valid chain of trust and

the quick revocation of the compromised key. Maintaining the chain of trust will allow

the attacker to offered fabricated data as legitimate as long as the compromised key re-

sides in the cache of the resolvers, while the urgent replacement of the DNSKEY RR will

render the zone invisible to security-aware resolver. Also, for the case of compromised

KSK, the DS should be replaced as well.

On the opposite, DNSCurve-enabled ANSs store the private key online, as they use it

in every DNSCurve transaction. Naturally, this raises the risk that in case the server is

compromised the intruder would be in position to entirely control the DNS transactions

for this server. Moreover, the key rollover for DNSCurve should not necessarily take

place so often, since ECC is considered more resilient against this type of attacks. In

addition, when the process of the replacement takes place, it only affects the domain

name of the ANS, which should be added in the parental zone’s file. The propagation

of the new public key to the clients would happen within TTL value of the NS RR.

However, it is not clear which of the two public keys the server should use during that

time and how it should handle queries produced with the revoked key. Finally, in case a

malicious user discovers the private key of the zone, they would be able to masquerade

as the ANS for the duration of TTL of the corresponding NS RR.

3.2.5.9 Performance

For estimating the actual performance of the security mechanisms, one has to analyze

the actions taken by each of the DNSSEC and DNSCurve-enabled servers, when they

accept a query. Here, we assume that the client has located the ANS of the parent zone

for the inquired domain name. In the case of DNSSEC, we also assume that the client

has created a chain of trust towards the parent zone, and thus has authenticated the

DNSKEY of this zone. This is depicted in Fig. 3.5, where starting from the root zone

Chapter 3. DNS Cache Poisoning 89

the client trusts its public key as trust anchor, which in turn is used to authenticate

the public key of the .com zone and so forth. Also, we have to mention that the actual

behavior of the security-aware server and client may vary from that of the following

analysis, as it depends solely on the implementation. However, in this section we present

the common case.

Firstly, the client queries the parent zone for the NS RR of the child. This step is

illustrated as 1 in Fig. 3.6. The answer 2 indicates the ANS of the child zone and

the appropriate glue records. In the reply of the delegating RR is also included the DS

RR containing the fingerprint of the child’s public key. The inclusion of the DS RR

augments the size of the reply by 36 bytes [129]. The latter RR is accompanied by its

corresponding RRSIG generated by the private key of the parent zone. Each RRSIG

RR adds an overhead of 46 bytes plus the key size and the length of the zone name

[129]. Afterwards, the client requests from the child’s ANS the desired RR 3 . The

response contains this record, with its RRSIG calculated by using the private key of the

inquired zone 4 . In addition, this packet could carry more RRSIG RR in the authority

and additional sections for each authoritative RRset that the server chooses to include

in the response [129]. For verifying the authenticity of the response, the client needs as

well an authenticated copy of the DNSKEY RR of the zone. It is possible however that

the DNSKEY RR does not fit into the previous reply [14]. This is due to the extensive

volume this RR’s type might have. So, the client would again ask the authoritative

explicitly about its DNSKEY RR 5 . This final reply 6 is increased by 18 bytes in

addition to the size of the key for each DNSKEY RR plus the size of the corresponding

RRSIGs [129]. It is recommended that medium-value zones should have a KSK of 1300

bit size and a ZSK of 1024 bit size [130]. There are two accompanying RRSIGs, one

generated with the KSK’s private key and one with the ZSK’s. Upon the reception of

this final response, the client is able to authenticate the public key of the zone and then

the desired records.

In the case the desired RR does not exist, the DNSSEC-enabled server should respond

with a NSEC/NSEC3 RRset to provide authenticated denial of existence along with

the corresponding signatures. In most cases, the response is comprised of up to three

NSEC/NSEC3 RR, one that authenticates the non-existence of the exact name and

one or two that authenticates the non-existence of an applicable wildcard RR that can

expand to the desired domain name [131]. The size overhead for each NSEC record is

Chapter 3. DNS Cache Poisoning 90

Figure 3.6: Example of a DNSSEC transaction

23 bytes plus the length of the domain name and the length of the label [129]. If the

server also supports NSEC3 RR, it must first calculate the hash value of the requested

domain name before sending the response. This would introduce a computational over-

head that depends on the number of the iterations of the hash function. According to

recommendations, the number of iterations should not exceed 150 for small length ZSK

[70]. As long as the client possesses an authenticated copy of the public key of a zone,

the following interactions between this zone server and the client require only the final

query-response 3 , 4 . All steps of the complete DNSSEC transaction are depicted in

Fig. 3.6. Concluding the analysis of DNSSEC, we have to mention that for the ANS the

overhead for the computational load arises from the larger data that the server has to

send, as it does not have to perform any cryptographic operation online [129]. There-

fore, the computational load is almost infeasible to be estimated theoretically, but only

in practice.

Regarding DNSCurve, the client requests the NS RR of the ANS (step 1 of Fig. 3.7).

The domain name contains the public key of the zone, and therefore the reply 2 is 54

bytes greater than in the simple case (due to 54 alphanumeric characters representing

the 255-bit public key in base-32 format). Next, the client calculates the shared key from

its private key and the server’s public key with the usage of Curve25519 algorithm. The

process of creating the shared key is estimated not to take more than 957,904 cycles on

a Pentium 4 processor [112]. Then, the server uses this key to generate the keystream

by expanding the nonce with the Salsa20 stream cipher. If we consider that the size

of the input nonce is 24 bytes, the overall procedure of the stream cipher will require

Chapter 3. DNS Cache Poisoning 91

24*4.3=103.2 cycles on an Intel Core 2 1.83 GHz processor [132]. Afterwards, the client

utilizes the first part of the keystream to generate the authenticator of the message by

using the Poly1305 authentication code function. In addition to the encrypted query,

the packet contains the client’s public key (255 bits), the 96-bit nonce and the 128-bit

authenticator. When the NS receives the DNS message 3 , it calculates similarly the

shared key from its private key and the client’s public key and generates the keystream.

Then, it verifies the authenticator of the message and decrypts the query. Next, it

calculates the answer with a new nonce and keystream. The response 4 is comprised

of the requested RR encrypted, the 96-bit nonce and the 128-bit authenticator. Finally,

upon the reception of the response, the client generates the new keystream in order

to authenticate and verify it. Any subsequent interaction between the same client and

server does not request the calculation of the shared key. The above procedure is the

same for positive and negatives responses. An example of the way the DNSCurve client

interacts with the authoritative DNSCurve server is illustrated in Fig. 3.7.

Figure 3.7: Example of a DNSCurve transaction

Taking into account the performance of the proposed mechanisms, it seems that

DNSCurve is supposed to behave better than DNSSEC. First of all, DNSSEC uses pri-

marily RSA algorithm [15] for cryptographic procedures. RSA algorithm requires larger

key length and thus exhibits low performance. For this reason, and in order to reduce

its computational load to minimum possible, a DNSSEC-enabled server pre-computes

the signatures for every RRset of the zone. Consequently, the computational load is not

affected by the volume of the requests. However, a DNSSEC server should perform hash

calculations in the case it utilizes NSEC3 RR, whenever a non-existent domain name

Chapter 3. DNS Cache Poisoning 92

or type is inquired. If we consider that for such a response the server should iterate

repeatedly the hash function (the upper limit is 150 iterations for s small ZSK [70])

and the significant percentage of queries for non-existent RR toward the authoritative

servers, the computational load of the server is considerably increased. Overall, the com-

putational overhead because of the cryptographic operations peaks during the signing

process, while in normal operation it depends on the utilization of NSEC3. Secondly,

due to the new types of RR, the size of a signed zone is considerably augmented (by a

factor of 5 to 7 times) [52]. This occurs because for every RRset two extensive RRs are

inserted, e.g., RRSIG and NSEC/NSEC3. As a result, the computational load on the

server due to the larger size of the database is heavily aggravated.

Moreover, the size of DNS packets among the transacting DNSSEC-enabled entities is

increased notably, since the packet in this case carries a signature for every contained

RRset. The remaining DNSSEC-related RR types are as well sizeable enough. Thus, the

limit of 512 bytes per DNS packet is no longer applicable and thereby the deployment of

EDNS0 mechanism is compulsory. The increased size of UDP DNS packets augments the

network traffic between server and client and consumes valuable bandwidth. Overall,

the total amount of bandwidth is estimated to increase by a factor of 2 or 3 [133].

Nonetheless, the increased size of DNSSEC-related DNS responses facilitates the launch

of DNS amplification attacks with notable amplification factor. This kind of attacks is

extensively discussed in chapter 4. Another disadvantage of DNSSEC is that it augments

the amount of messages that a resolver sends towards a DNSSEC-enabled ANS [129]. In

order to locate and verify the authenticity of a zone’s public key, the resolver must first

consult the zone about its DS and DNSKEY records. This way, the client approximately

sends two new queries for every new zone in question. Accordingly, the total network

bandwidth allocated for DNSSEC traffic is increased. Furthermore, the overhead of the

ANS is also augmented. This is because now the ANS possesses a larger size zone and

serves more queries. Also, the signature validation process increments the workload of

the client [52]. All these factors affect substantially the overall time of a transaction

to complete. Ultimately, these overheads are reflected in the way that the end-users

experience their access to the Internet and other related network resources and services.

On the downside, DNSCurve is based on ECC, which is characterized by short key

lengths and high speed of cryptographic operations. The computational load because

of the cryptographic operations depends on the queries as the server encrypts/decrypts

Chapter 3. DNS Cache Poisoning 93

each response/request. However, the average overhead is expected to be tolerable, be-

cause of the ECC characteristics. Furthermore, DNSCurve does not imply extensive

modifications to the zone file of a domain. It only requires the modification of the NS’s

domain name of the zone in question. This RR provides the public key of the zone, so a

client is able to obtain the public key by requesting the specific RR. The extra size for

each NS RR/public key is 54 bytes, which is negligible compared to the size of a zone

file. Additionally, it does not increase notably the size of the packet. It always keeps

the original DNS response smaller than 512 bytes. The extra bytes exceeding this 512

bytes threshold are generated because of the cryptographic operations and the carried

nonces. In such a case, the DNSCurve server is allowed to send the expanded response

packet through UDP. Also, as already pointed out, DNSCurve lengthens the name of

each NS by 54 bytes, causing extensive glue records compared to the original DNS [66].

Finally, since the public key is embedded in the domain name of the server, the client

does not need additional queries to acquire it, as in the case of DNSSEC. Therefore, the

volume of DNS messages exchanged among DNS entities remains the same.

3.2.5.10 Conclusion

DNS constitutes one of the most critical services of Internet infrastructure, since many

other protocols base their undisturbed operation on it. Therefore, any DNS security

breach could cause severe problems to affected network domains and in the worst case

to Internet as a whole. Potential attackers could take advantage of the design and

implementation flaws of the DNS service and provide the end-users with forged data.

By acting this way, they may be able to redirect end-users to network locations controlled

by them instead of what was requested in the first place. The impact of such attack

could be identity theft, commercial and financial loss, malware infection to mention

just a few. Ultimately, successful cache poisoning attacks change the way the users

experience Internet. To cope with this kind of attack, DNSSEC and DNSCurve aspire

to be the secure replacement of DNS protocol. It is true that so far DNSSEC leads

the way having several of its features standardized. Both protocols utilize public key

cryptography and aim to protect the DNS transaction among ANS and clients. Based on

the cryptographic operations the proposed mechanisms are able to protect the integrity

of DNS messages and ensure that cache poisoning attacks are very difficult to achieve,

if not infeasible.

Chapter 3. DNS Cache Poisoning 94

Criterion Sub-criterion DNS DNSSEC DNSCurve

Impact
Documentation 3 3 Limited

Implementation 3 3 Limited

Cryptography

Performance - Low speed (PKC) High speed (ECC)

Security - 80-bit 128-bit

Key length - 1024-bit (variable) 1255-bit (fixed)

Security

Protection - End-to-end Link-level

Confidentiality of
Transaction

- 7 3

Confidentiality of zone
(Zone walking)

3 7(NSEC/NSEC3) 3

Integrity & Origin
Authentication

- Yes, in the general case.
Not provided for

delegating, stale but not
expired, localized records

3

Authenticated Denial
of existence

- 3(NSEC/NSEC3) 3

Attacks Amplification - 3 7

Performance

Size of Zone File - x 5-7 times Same

Packet size 512
bytes
limit

Support of EDNS0 The original packet size is
limited to 512 bytes, the

domain name of the NS is
increased by 54 bytes

DNS traffic - Increased (queries for
DNSKEY and DS)

Same

Total query-response
time

- Increased Same

Modification

Change of SW - 3 3

Message format - Same Different (TXT &
streamlined packet

format)

New RR types - 4 7

Administration
Modification of the

zone
- Requires singing and

re-adjustment of the gaps
None

Absolute time
synchronization

7 3 7

Key management
Private Key storage - Offline Online

Key Rollover - Often, complex, lengthy,
scheduled process

Seldom

Table 3.2: DNSSEC vs. DNSCurve

Based on the side by side comparison of the two solutions given in section 3.2.5, we can

conclude that DNSCurve offers stronger security against active and passive man-in-the-

middle attacks, while it keeps the computational load at the ANS side minimal. However,

DNSCurve only protects the communication between ANS and recursive resolver by

creating an encrypted link amongst them. Yet, it fails to offer end-to-end security.

A DNSCurve-enabled recursive resolver does not have the means to notify the stub-

resolver about the validity of the response, and thus the stub-resolver should trust it

blindly. In addition, DNSCurve differentiates itself from the core DNS protocol and in an

effort to offer enhanced security obscures some of the basic DNS protocol characteristics,

Chapter 3. DNS Cache Poisoning 95

making it less “open”. For instance, a firewall may block a DNSCurve packet because

it is impossible to process it and identify that it comprises part of a DNS transaction.

Certainly, we have to wait until an implementation of DNSCurve is announced in order

to estimate its behavior in actual scenarios.

On the other hand, DNSSEC covers all DNS transactions and hence end-users can fully

benefit from its deployment. It aims to protect the integrity of authoritative data against

active attacks. However, there are some cases where it fails to accomplish this purpose.

Another disadvantage of DNSSEC is that it augments the workload of NSs and imposes

a significant penalization in DNS traffic. As a result, DNSSEC increases the overall

time for the involved entities to respond and loads the network with additional traffic.

Nevertheless, DNSSEC appears to comply better with traditional DNS protocol and be

the cryptographic descendant of it.

Taking all the above into account a mechanism that combines the advantages of both

methods, would be highly appreciated. Such a new mechanism should utilize ECC

cryptography, which is characterized by the high speed of encryption and decryption

process. Also, it should guarantee both the integrity and confidentiality of transmitted

messages. On the other hand, it should protect all the aspects of a DNS transaction,

not only the communication link between the NS and the client. This way, the end-

users would obtain secure, reliable and smooth DNS services. Unfortunately, such a

mechanism is impractical for the moment. The main reason is that it would impose

significant changes to the current DNS infrastructure and severe modifications to DNS

protocol messages format. It is also obvious that such changes would not be backward

compatible. Another issue is that the usage of ECC is not widely adopted for use in

DNSSEC protocol.

3.2.6 DNS over DTLS

As outlined previously in section 3.2.3, even with the presence of DNSSEC, the confi-

dentiality of the transmitted DNS data is not guaranteed. This absence of protection

may rise privacy concerns, since DNS data often contain sensitive private information

[120]. To remedy this inefficiency, the specifications for employing DNS over the Data-

gram Transport Layer Security (DNS-over-DTLS) were very recently introduced [134].

These specifications are published in the form of and experimental Internet Draft. As it

Chapter 3. DNS Cache Poisoning 96

is well known, the Datagram Transport Layer Security (DTLS) specified in RFC 6347

[135] constitutes the equivalent of Transport Layer Security (TLS) for the case of UDP

protocol. With the help of DTLS, a secure channel between the DNS transacting entities

is built, and thus the data are protected from eavesdropping and active injections at-

tempts. The DNS-over-DTLS mechanism mainly benefits the stub-resolvers, as they can

safely communicate with their corresponding RDNS. The proposed mechanism listens

for connections on 853 UDP port.

Particularly, once a DNS client desires to make a DNS request, it should first determine

whether the DNS server supports DNS-over-DTLS. To do so, it sends a DTLS Clien-

tHello message to port 853 of the server. This situation is illustrated in Fig. 3.8 [136]

as message Flight 1. In the case the DNS server does not support the mechanism, it

will not respond to the Hello message. Otherwise, the DTLS handshake procedure is

initiated, during which the cryptographic parameters are negotiated for establishing a

secure session between the two parts. In order to eliminate the creation of half-open

sessions (from the same client) and for the verification of the requostor, the exchange

of Cookie in the initial phase of the handshake is introduced (flight 2 & 3). Subsequent

transactions are cryptographically protected, namely the DNS queries and responses are

encrypted.

Figure 3.8: Message Flow for Full DTLS Handshake

Chapter 3. DNS Cache Poisoning 97

3.2.7 DNS over TLS

Similarly to DNS-over-DTLS mentioned above in section 3.2.7, DNS over Transport

Layer Security (DNS-over-TLS) [137] aims to provide protection from passive listeners

and on-path tampering in the case of DNS transactions over TCP protocol. The TLS

protocol specified in RFC 5246 [138] provides cryptographic protection of TCP connec-

tions. The establishment of a secure session is similar to that of the DNS-over-DTLS,

however this time the communication channel takes place over TCP. Whenever a DNS

client wishes to send a DNS query over TLS, they initiate a TLS handshake as described

in [138, 139] for negotiating the session’s cryptographic suite. Once the secure session is

successfully set up, DNS queries and responses are transmitted encrypted. The proposed

mechanism listens on 853 TCP port and applies for the case of connections among stub

resolvers and recursive servers.

Chapter 4

Novel DNS amplification attack

vectors

In this chapter, we detail on legacy DNS amplification attack and also propose and

evaluate new flavors of the same attack. As already pointed out in chapter 2, DNS

amplification is a type of DDoS attack that takes advantage of DNS infrastructure to

amplify and reflect the attack traffic. In this context, we propose and assess DNSSEC-

powered amplification attacks, which are based on DNSSEC-related RR. Alongside, we

evaluate the entanglement of the upper DNS hierarchy to attack incidents. The main

goal of this chapter is to demonstrate that even an unsophisticated aggressor is capable

of launching devastating DDoS attack by exploiting publicly available resources of the

Internet.

4.1 DNS Amplification

DNS amplification is a type of DDoS attack that combines amplification and reflection

characteristics [140]. Namely, it multiplies the attacking network traffic and simultane-

ously reflects the traffic by third-party servers towards the target. Usually a possible

victim of a DNS amplification attack could be anything connected to the Internet, from

a user machine to a high-end server. The amplification attribute of the attack augments

the impact on the targeted victim, while the reflection obfuscates the forensic signal of

the attack.

98

Chapter 4. Novel DNS amplification attack vectors 99

In a nutshell, the effectiveness of DNS amplification attack lies on the fact that a small

DNS request could trigger a much larger response. The efficiency of the attack is mea-

sured by the amplification factor; the greater the amplification factor, the quicker the

bandwidth and resource consumption on the victim’s side. Typically, in the literature,

two equations are used to express the amplification factor:

Amplification Factor =
length(response)

length(request)
(4.1)

Amplification Factor =
sum of length(responses)

sum of length(requests)
(4.2)

Equation (4.1) [141] illustrates the ratio of the size of the response versus the size of the

initiating request. This formula is applicable when one sends a single request towards

the exploited DNS NS. Equation (4.2) [140] on the other hand, indicates the cumulative

size of the responses divided by the size of all requests. Therefore, it is suitable in

cases where a batch of requests is dispatched against a NS, but the size of the disparate

responses varies, for instance because some of them are truncated. It is to be noted that

from the aforementioned calculations usually the packet headers are excluded and are

taken into consideration only the size of DNS packet (UDP payload).

For accomplishing reflection, the aggressor manipulates the network traffic to make it

appear as it originates from the victim, for instance via IP source spoofing. Thus, the

attack traffic is reflected by unconscious third servers towards the clueless victim. This

way, neither the reflector nor the victim are aware of the true source of the attacking

traffic. The reflection is trivially implemented when connectionless protocols are utilized

[142]. Especially in the case of protocols that mostly rely on UDP, such as DNS, the

attacker is in position to easily spoof the source IP address to that of the victim’s.

This faculty is extended by the fact that many ISPs do not check for falsified source

addresses in outbound packets. So here, we are mostly interested for the case where

DNS transactions take place over UDP. DNS amplification attack is not applicable for

the case of DNS over TCP protocol.

As depicted in Fig. 4.1, a typical amplification attack begins by instructing the attacking

nodes to continually issue DNS requests which normally correspond to sizeable responses

Chapter 4. Novel DNS amplification attack vectors 100

1 . These requests are directed to preferably multiple NSs with the capability of serving

recursive queries 2 , e.g., open recursive NS or recursive ones (see section 2.1.7.1) that

belong to the ISP the nodes are connected to. Nevertheless, the request is crafted in

such a way that its source IP address is that of the victim. As DNS protocol is based

on UDP, such fabrication is straightforward. Therefore, after the recursive NSs resolve

the received requests 3 , they are deceived into directing their responses towards the

sufferer 4 .

Figure 4.1: High-level architecture of a typical DNS amplification attack

4.1.1 Amplifiers and Reflectors

In the first documented study of DNS amplification attack, Vaughn and Evron [124]

observed that the perpetrators tended to exploit large TXT RR as amplifiers and open

recursive resolvers as reflectors. Namely, the attackers placed a sizeable TXT RR of

about 4 KB in the DNS hierarchy and repeatedly inquired for the specific RR numerous

open resolvers with the capability of serving recursive DNS queries. Moreover, each in-

quiry was crafted in such a way that it seemed to originate from the victim. The authors

reported an amplification factor of 60. However, to achieve their goal the aggressors had

Chapter 4. Novel DNS amplification attack vectors 101

to control an ANS. This is possible by compromising an ANS and corrupting its zone

file or by registering a domain of their own in order to insert a hefty TXT RR into its

zone file.

Furthermore, the authors indicated that the analyzed attacks were able to create a flood

of 2.8 Gbps in average, while in some cases the ingress traffic could reach an amount of

10 Gbps [124]. They estimated that the assailants were able to employ a maximum of

about 140,000 open recursive NS as their reflector. Typically, to mitigate this threat,

the network administrators are advised to disable open recursion [143]. Substantially,

they should restrict the services of their DNS recursive only to the users of their internal

network. However, as recorded by [144], to circumvent this restriction, the aggressors

utilized a query for the NSs of root. The corresponding answer contains the list of the

13 root servers and their IP addresses. Its size is about 500 bytes, which provide an

amplification factor of 8. By doing so, NS that support only non-recursive requests are

forced to get engaged in the attack.

For augmenting the impact of their attack, the perpetrators aim to send a query which

resolves to a response containing multiple RRs. Typically, the ANY query type is

suitable for their objectives [145]. Since, this type of query essentially returns all the

available RRs about the queried domain name. There is no guarantee about what types

and how many records the response will contain. However, it is expected to be sizeable

enough compared to the rest type of queries. To this direction the adaptation of EDNS0,

which allows a NS to create a response with size by far larger than the basic limit of 512

bytes, contributes to the significant increase of the amplification factor. The reader can

also refer to section 3.2.3.3 about EDNS0.

From the initial announcement of DNSSEC-bis there were concerns that its deployment

would facilitate aspiring aggressors to mount improved DNS amplification attacks due

to the increased record size. Ager et al., [146] calculated the packet overhead of a DNS

response as a result of the new introduced DNSSEC-related record types. Likewise,

Ariyapperuma and Mitchell [52] expressed worries about the size of a DNSSEC response.

In the same direction, Cowperthwaite and Somayaji [147] evaluated the amplification

factor of two DNSSEC-enabled NSs. They observed an amplification factor of 17.3,

while they were expecting a much higher factor in the case the response fully complies

with RFC 4033-4035 [14, 15, 16].

Chapter 4. Novel DNS amplification attack vectors 102

The first comprehensive study of DNS amplification attack involving DNSSEC-related

RRs is given in [18]. As detailed in section 4.2, an attacker could exploit the increased

size of DNSSEC-related RR for amplifying DDoS effects. Furthermore, they could take

advantage of the vast number of open DNS forwarders existing out there as reflectors.

Overall, it is shown that an attacker is able to utilize available resources (DNSSEC-

signed zones and open DNS forwarder/recursive NSs) in the DNS infrastructure for

accomplishing DDoS, without the need to register or install a NS of their own. This

way, the forensic signal of the attack is minimized.

More recently, van Rijswijk-Deij et al., [141] highlighted that DNSSEC-related RR can be

exploited to augment the amplification factor of a DNS amplification attack. Specifically,

they calculated the provided amplification factor of almost 2.5 million DNSSEC-signed

zones under 6 major TLSs. They concluded that ANY type query could provide an

amplification factor of around 47 on average, while the worst case had a factor of almost

179. On the other hand, Rossow [148] evaluated the potential of exploiting 14 UDP-

based network protocols for amplification attacks, including DNSSEC. From a sample

of 1,404 ANSs crawled from IP space, they calculated that the top 10% of them provide

an amplification factor of nearly 98 for ANY query type.

On the other hand, for reflecting their attacking traffic, the aggressors exploit open DNS

resolvers. The work in Dagon et al., [36] in 2007 was the first to highlight on the open

resolvers issue. The authors realized that almost 10.5M devices functioned globally as

open resolver at each run of their probe. Utilizing a similar testbed environment, Takano

et al., [149] detected in 2013 about 25M open resolvers. Primarily, those resolvers were

located in APNIC and RIPE NCC Regional Internet Registry (RIR), while there was

existing a portion that operated on obsolete version of naming software. Also, alarming

was the fact that many open resolvers resided in networks suspicious for spamming

campaigns.

In 2010, the initiative of Open Resolver Project begun its operation with the purpose to

locate and shutdown open recursive resolvers. From the initial results, it was evident that

nearly 30M devices functioned as open resolvers. Currently, after their effort to eliminate

open recursion, the Open Resolver Project records about 17.5M open resolvers at each

probe [150]. This fact is further verified by the DNS Factory Measurement [151].

Chapter 4. Novel DNS amplification attack vectors 103

Furthermore, Kührer et al., [152] examined the population of open resolver for a period

of 13 months. During January 2014 and February 2015, the authors probed weekly

the IPv4 space for locating devices that operate as open resolvers. The initial results

indicated a number of 26.8M, while the final probe discovered about 17.8M distinct

devices. The authors also identified that a number of 630K to 750K of devices functioned

as open DNS forwarders. Further analysis of the Autonomous Systems (AS) that the

devices were connected to, indicated that the majority of the resolvers were related

with telecommunication or internet service providers worldwide. Moreover, software

fingerprinting showed that from the identified DNS software a significant portion existed

that operated vulnerable versions of DNS software. Regarding hardware fingerprinting,

the same authors demonstrated that most devices were network equipment such as

routers and broadband modems. This is an indication that devices supplied by network

providers could be misconfigured as open resolvers without their users being aware of

this fact (and the vulnerability it creates). There were also evidences that although

the total number of resolvers remained similar through time, the corresponding devices

migrate their IP address. The authors observed that only 4% of the initially discovered

open resolvers were still alive after one year of experiments, namely maintain the same

IP address. Essentially, 40% of the resolvers disappeared within one day, while half

of them vanished in one week. Finally, the geographical distribution of resolvers’ IP

addresses illustrated that the Top 10 countries, including USA, China, Turkey, Mexico,

Venezuela, and others hosted almost the half of their population.

In an effort to explain the existence of so many open resolvers Kaizer et al., [153] discov-

ered that 17M out of 29M (almost 60%) identified open resolvers were ADSL modems

made by well-known network equipment manufacturers. In fact, these home devices

exhibited a strange behavior and responded to DNS request with different destination

port than the source port of the query. This anomaly was considered as misconfiguration

of Network Address Translation (NAT) implementation. Furthermore, their population

was elevated to specific ASs, an indication that ISPs supplied their consumers with

defective devices.

Despite the notable reduction of open resolver population, it is straightforward for an

aggressor to acquire a large pool of them appropriate for their objectives. Rossow proved

that someone needs only 92.5 sec for compiling a pool of 100K open resolvers [148].

Chapter 4. Novel DNS amplification attack vectors 104

At this point, we should note that ANSs are also frequently exploited as reflectors. The

work in MacFarland et al., [154] showed that from a random sample of ANSs serving

2-TLDs belonging to 9 different g-TLDs, only 2.69% of the examined servers employed

Response Rate Limiting (RRL) [155]. However, we have to acknowledge that at that time

the RRL countermeasure was not implemented by popular NS vendors [145]. However,

more recently, as it is detailed in section 4.3, a substantial portion of ANSs of TLDs

are still poorly implementing or neglecting RRL mechanism. Hence, they constitute an

alluring means of reflecting the attacking traffic of DNS amplification attacks. More

details on RRL countermeasure mechanism are given in section 4.4.1.1.

Recently, the ANSs of root encounter an unusual type of DNS amplification attack.

Specifically, several of the root NSs were flooded with a surge of queries. The queries

were well-formed, valid DNS messages about a single domain name. However, their

source IP address appear to be random and evenly distributed throughout the IPv4

address space. In total, the network traffic reached a peek of 5 million queries per

second for each root NS involved in the attack [156]. It is believed that the utmost

objective of the aggressors was not the end-clients receiving the responses but rather the

root themselves which reflect the DNS traffic.

4.1.2 Victims of DNS amplification attack

A plethora of DNS amplification attack incidents have been reported over time against

large corporations, banks, top ranked e-commerce sites, DNS infrastructure servers etc.

A recent report by Symantec [157] confirms that DNS amplification represents a per-

sistent threat and possess a prevalent place among the diverse types of DDoS attack.

Specifically, the report indicates a remarkable raise on DNS amplification DDoS inci-

dents during the period 2014-15.

The latter years, some notorious hacker groups have threatened to blackout the Internet

by launching a DNS amplification attack against root servers [158]. Although for the

moment such allegations are proven to be pretentious [159], no one can exclude the

possibility this kind of attack to be used with the aim to tear down the operation of the

NS of a critical domain name. For instance, in May 2007, US-CERT has received a report

that Estonia was experiencing a national DDoS attack [160]. According to that source,

the attacks consisted of DNS flooding of Estonia’s root level servers. By that time 2,521

Chapter 4. Novel DNS amplification attack vectors 105

unique IPs have been identified as part of the attacking botnets. More recently, in a DNS

amplification incident that is characterized as the biggest cyber-attack of this kind in

Internet’s history, the network infrastructure of Spamhaus was targeted [5]. Spamhaus,

which is an organization responsible for blacklisting spam-related sources, sustained for

at least a week period a network flood that reached 300 Gbps at its peak, originating

from 30,000 unique DNS resolvers. The attack was considered as an act of retaliation

on the part of blacklisted operators.

Finally, one should not overlook the fact that the third-party servers which are not the

targeted victim per se, but are unwillingly entangled in DNS amplification incidents,

are affected also from this type of attacks. Namely, DNS providers or ANSs of domain

zones, whose infrastructure is exploited as reflector, are overwhelmed from the volume

of ingress requests and high computation load due to DNS query resolution. Eventually,

they get frequently incapable of serving their legitimate clients [161].

4.2 Going one step further: Obfuscating DNS amplifica-

tion

As already explained in section 4.1 for a typical DNS amplification attack, the perpe-

trator needs to perform the following actions. First, they have to place in the DNS

hierarchy at least one large RR, either by compromising an ANS or by registering a

domain zone of their own. Usually, they prefer to exploit a RR of TXT type, since

this type has variable length and is trivially constructed. Second, they need to recruit

a botnet by distributing a malware. The final step is that of locating a pool of open

recursive NS. However, it is conceivable that the first two steps are bound to leave traces

that might put the attacker at the risk of being detected.

In the following, we present a new flavor of DNS amplification attack which grants the

privilege of almost full anonymity to the attacker. Among others, the main advantage of

our proposal compared with the standard type of the attack as described in the literature

so far is that it does not disclose any illegal or suspicious activity during its execution.

Namely, the network flow during the coordination of the attack seems to be perfectly

legitimate, except of course the attacking traffic itself. Moreover, the attack is very hard

to be traced back to the perpetrator who, as a result, enjoys the advantage of anonymity.

Chapter 4. Novel DNS amplification attack vectors 106

Specifically, the attack scenario is separated into two parts. First off, the aggressor needs

to perform a degree of reconnaissance to identify the devices, in a specific geographical

area or IPv4 address block, which operate as open DNS forwarders. Second, they need to

repeatedly send spoofed queries of ANY query type requesting DNSSEC-related RR [14,

15, 16] to this pool of forwarders. The forwarders consider the victim as the originator of

the queries because the (spoofed) source address of the query packet contains the victim’s

IP address. Overall, the outcomes we obtained indicate that with proper planning and

a relatively fair amount of resources, an attacker is capable of creating a large torrent

of bulky DNS responses towards its target. Certainly, as shown in the next subsections,

the power of the attack increases proportionally to the number of attacking nodes.

4.2.1 Attack Scenario

As already pointed out, the attack scenario is divided into two independent phases. First

off, a large pool of IP addresses belonging to network devices that operate as (open) DNS

forwarders needs to be collected. Recall that a DNS forwarder accepts DNS queries, and

after it consults a DNS recursive, it returns the appropriate answer to the initiator of

the request. Bear in mind that usually DNS forwarders afford cache capabilities as well.

Namely, as explained in section 2.1.5, they cache the received RRs with the intention to

fulfill subsequent similar requests.

The discovery process of DNS forwarders is akin to that given in [36]. First, for the

countries of interest, we acquire their block of IP addresses. A straightforward way to

do so is to utilize data from www.countryipblocks.net. In our case, as explained later

in this section, these countries are Greece, Ireland and Portugal (in alphabetical order).

Next, a DNS query is dispatched for a given RR to each IP address in the country-list.

Specifically, the requested RR belongs to a domain zone under the attacker’s administra-

tion. The first label of the domain name in the question section (QNAME) contained in

the request is an indication of the IP address of the device that the packet is headed to.

Moreover, the request has the DO flag enabled. This flag designates if the machine being

queried supports DNSSEC. Therefore, by doing so, we distinguish which forwarders are

able to send back DNSSEC-related RR. On the other hand, with the help of a typical

Chapter 4. Novel DNS amplification attack vectors 107

packet sniffer we capture the DNS requests reaching our authoritative NS. These re-

quests are trying to resolve the queried RR of the previous step, meaning that they are

originated from devices that have the ability of resolving DNS queries recursively.

Comparing the IP address contained in the QNAME with that of the source IP address

of the request, one can determine whether the device operates as recursive NS or as

forwarder. That is, in the case of a request originated from a recursive NS both IPs are

identical. Otherwise, if the IP addresses are different, the examined machine operates

as forwarder. The resolution of RRs that differ in the first label of the QNAME is

performed with the help of wildcards following the directions given in RFC 1034 [1].

This situation is exemplified in Fig. 4.2. Specifically, the client asks every IP (excluding

reserved IPs like 127.x.x.x) found in the IP blocks of the country of interest, to resolve

the corresponding queried domain name. Every device that operates as open recursive

NS or open forwarder receiving the query will undertake to resolve it. But to do so

this device will send the query to the attacker’s ANS informing them that this IP truly

belongs to a machine that acts as a recursive or forwarder.

Figure 4.2: DNS forwarders discovery process

In the incoming queries, the EDNS0 section of the packet is examined. In fact, we select

only those forwarders that are able to handle queries with DO flag enabled (i.e., they

support DNSSEC) and simultaneously advertize a large EDNS0 buffer size (e.g. 4096

bytes or larger). As we have already discussed in section 3.2.5, DNSSEC-related RR

(RRSIG, DNSKEY, DS, NSEC/NSEC3) are large in size [17]. As a result, our aim is

to filter and keep only forwarders that support DNSSEC and are configured to respond

with large payload size. These devices are appropriate for our objectives, and thus they

will be used in the latter phase of the attack in order to augment its amplification factor.

After compiling the pool of preferable forwarders, one is ready to launch the actual

attack. To do so, we utilize a network of attacking nodes that repeatedly send DNS

Chapter 4. Novel DNS amplification attack vectors 108

requests of ANY query type for DNSSEC-related records toward the forwarders con-

tained in the final list. Though, the source IP address of the packet is being spoofed

to the IP of the victim, so that all replies are eventually reflected toward the target.

The requested domain names are related with TLD zones that have already adopted

DNSSEC and their corresponding ANSs are verified to provide sizeable responses. The

process of locating the desired zones and afterwards examine the size of their reply

is straightforward, because the information of which zones have adopted DNSSEC is

publicly available.

We execute two variations of the attack scenario depending on the destination port the

attack flood is delivered. In the first one, this port is 53, while in the second is totally

random. Bear in mind that typically all DNS queries are sent from an ephemeral source

port (≥49,152) to destination port 53, while responses are sent from source port 53 to

the same ephemeral, but this time, destination port. The tool used for coding the script

that fabricates DNS packets is Scapy [162]. Algorithm 2 presents a pseudocode version

of the script, while Fig. 4.3 depicts the actual way the attack unfolds.

Algorithm 2 : Scapy pseudocode

1: procedure SendSpoofedPacket(LIST)
2: READ Forwarders IP Addresses from LIST
3: while notEndOf(LIST) do
4: CREATE UDP PACKET
5: UDP PACKET.DestinationAddress← IPAddress
6: UDP PACKET.DestinationPort← 53
7: UDP PACKET.Protocol← DNS
8: UDP PACKET.DNS.RD ← 1 /*Recursion is desired*/
9: UDP PACKET.DNS.QR← QUERY

10: UDP PACKET.DNS.QNAME ← “DNSSEC − enabledTLD”
11: UDP PACKET.DNS.QTY PE ← ANY
12: UDP PACKET.DNS.QCLASS ← IN
13: UDP PACKET.EDNS FLAG← DO /*Enable DNSSEC*/
14: UDP PACKET.DNS.SourceAddress← 195.251.161.155 /*IP address of target*/
15: UDP PACKET.DNS.SourcePort← 53 /*version 1, port of DNS service*/
16: //OR for the second variation of the attack
17: UDP PACKET.DNS.SourcePort← Random /*version 2, Not a specific service*/
18: SEND UDP PACKET
19: end while
20: end procedure

4.2.2 Results

For compiling the pool of forwarders, we considered to examine the network IP blocks of

three European countries which have more or less the same allocation of IP addresses,

but are expected to differ on the level of security awareness. In fact, this assumption

Chapter 4. Novel DNS amplification attack vectors 109

Figure 4.3: High-level architecture of the attack introduced in this work

is proved to stand true by the results presented in the following subsections. Those

countries are Greece, Ireland and Portugal. We test the first phase of the attack (i.e.,

detection of open forwarders) several times in different days (working days, weekends

and holidays) and time zones (working hours and nights), with the purpose to figure

out whether their existence is something ephemeral or ordinary. This procedure have

been performed twice in a time frame of six months. In the case of Greece, we detected

about 60K open forwarders on average per execution. For Portugal the probing process

returned about 35K, while for Ireland 10.5K forwarders on average. The exact numbers

per country used for implementing the attack are given in the last line of Table 4.1.

To further investigate the contribution of each forwarder to the efficacy of the attack,

we examine the size of the responses these devices return to the DNSSEC-related query.

These results are also summarized in Table 4.1. As it can be observed from the table,

a small but not negligible portion of the forwarders return an answer that exceeds

2,900 bytes. For instance, this number for Greece is 1,094, while for Ireland is much

smaller, about 65. In any case, these forwarders are very important to be included in

the arsenal of the described attack, as they present two significant benefits. Firstly,

by exploiting them an attacker is able to accomplish an amplification factor of at least

40 (assuming an average size of 70 bytes per DNS request). Secondly, due to its large

Chapter 4. Novel DNS amplification attack vectors 110

size, the response is fragmented into three or more IP datagrams. This means that

the reassembling (and perhaps reordering and fragment loss) process of packets also

conduces to the consumption of resources at the victim side. An attacker is able to

integrate this filtering of forwarders in the first phase of their attack as the case may be.

Size of response in bytes Amplification Factor Greece Portugal Ireland

< 1000(or No response) < 14 42,569 (69.95%) 25,983 (74.17%) 8,809 (82.35%)

1000 − 1500 14 − 21 15,112 (24.83%) 6,603 (18.85%) 963 (9.00%)

1500 − 2000 21 − 28 1,962 (3.22%) 2,205 (6.29%) 802 (7.50%)

2000 − 2500 28 − 35 80 (0.13%) 26 (0.07%) 42 (0.39%)

2500 − 2900 35 − 41 41 (0.07%) 9 (0.03%) 16 (0.15%)

≥ 2900 >= 41 1,094 (1.80%) 204 (0.58%) 65 (0.61%)

Total forwarders: 60,858 (100%) 35,030 (100%) 10,697 (100%)

Table 4.1: Percentages of open forwarders per country in regards to the size of re-
sponse they return

As already mentioned, the amplification factor is the most crucial element for an attack

to be effective. With the purpose to better estimate its magnitude in the context of the

attack described in this section, we initially run only one instance of the script for both

attack variations and counted how many responses arrived at the victim and what their

size was. More specifically, the script dispatched a single DNS query towards the 1,363

forwarders given in the last but one line of Table 4.1. As already pointed out, each DNS

query packet created by scapy has a size of approximately 70 bytes. Considering the

first variation of the attack, the total number of packets arrived at the target machine

reached 3,110 packets having a total size of 3,526,046 bytes. For the second variation,

we recorded 3,539 packets with a total size of 4,187,901 bytes. Therefore, it can be safely

argued that utilizing equation (4.2) the amplification factor for the first version of the

attack is almost 37, whereas for the second is nearly 44.

From the above result, one is able to observe that for every query the attacker dispatches,

the target receives 3 packets that are reassembled in one DNS response sized about 3,100

bytes. Furthermore, the volume of the incoming packets is a little smaller in the first

variation of the attack, which means in the case the destination port of the responses

is not 53 but rather random, we are able to accomplish a slightly bigger amplification

factor. This difference is anticipated as many firewalls are configured to block egress

DNS queries originated from sources other than their internal network recursive NS.

Chapter 4. Novel DNS amplification attack vectors 111

For the needs of the actual attack, we utilized 22 typical Personal Computers (PC) each

one connected to a 100 Mbps network interface. Our tests demonstrated that every

attacking node is capable of sending nearly 880 DNS queries per second on average, or

61.6 KBps. This is the case when a device runs 25 instances of the attack script simul-

taneously. In the ideal case, this means that each attacking node is capable of flooding

the target with 880 DNS responses per second. However, this data volume is magnified

by the amplification factor, that is, 37 and 44 for each attack variation correspondingly.

Consequently, a single attacking node unleashes on average a stream of 2.28 and 2.71

MBps respectively towards the victim. In order to investigate the accumulative impact

of each node that joins the attacking group, we progressively triggered the scripts on

each one of them.

On the other side, the target, acting as DNS authoritative NS, was a desktop machine

equipped with a Dual 2.8 GHz CPU and 4 GB RAM connected to 100 Mbps network

interface. This NS had DNSSEC extensions enabled. Table 4.2 summarizes the progress

of the attack for both of its variations. Regarding the first variation, besides the inbound

traffic, we also recorded CPU overhead caused by bind process, i.e. how much the

incoming unsolicited DNS packets affect the performance of the victim as ANS.

Figure 4.4 depicts the level of resource consumption at the victim-side during both

attack variations. More precisely, Fig. 4.4(a) shows the incoming traffic in MBps for

both variations, while Fig. 4.4(b) depicts the CPU consumption due to bind process,

which runs as a service on port 53. Time 1050 signals the moment that the initial scripts

are beginning to terminate. However, the effects linger to recede because, as explained

further down, the use of more than 12 attacking nodes inflict the same impact on this

particular target.

As we can easily deduce from Table 4.2, with a small number of attacking nodes we

were able to exhaust the network bandwidth of the victim’s machine. To put it another

way, for both attack variations, it is apparent that only a dozen of nodes are capable to

flood a 100 Mbps network. More importantly, as it can be observed from Fig. 4.4(a),

the addition of new attacking nodes to the testbed does not achieve cumulative effects

on the target. In fact, in the last stage of each scenario, the network was so overflowed,

that a great amount of fragmented packets was dropped and the ratio of the crafted

requests versus the ingress corresponding responses is fallen below 1:1. Actually, due

Chapter 4. Novel DNS amplification attack vectors 112

(a) Incoming traffic in MBps for both attack variations

(b) CPU consumption (port 53)

Figure 4.4: Progress of Resource Consumption at the victim-side

to fragmentation, this ratio is anticipated to be 1:3, which for the initial phases of the

attack scenario stands true. Comparing the two attack variations, we can put forward

that for the second one the volume of the flow has augmented by 45% on average with

relation to the first variation. This is obvious when comparing the values contained in

the third and sixth column of Table 4.2. As a matter of fact, this applies to the first

three phases of the attack, because in the latter phases the network was so monopolized

leading a great amount of packets to be discarded. However, for the first variation of

the attack, in addition to the intense increase in the volume of incoming traffic, the

impact on performance is also significant. This is because when a DNS response arrives

at (standard) port 53 it is being processed by bind, thus consuming resources on the

Chapter 4. Novel DNS amplification attack vectors 113

victim’s machine. In contrast to this, when a DNS packet arrives at a random port

(second variation of the attack) it is simply dropped. Therefore, in the case the victim

is an authoritative or recursive NS, the most productive way of performing the attack

is to use the standard destination port.

Moreover, during attack escalation, we queried a group of 75 open recursive NS for

unique RR contained in the victim’s domain zone. Hence, these queries need to be

resolved by the victim. This would give us a clear estimation on how the sufferer - being

under continuous flooding - will behave when trying to serve legitimate DNS requests.

Thus, we record the average time a request needs to be fulfilled, as well as the ratio

of the abortive queries. That is how many queries are lost and return a “connection

timed out, no servers could be reached” error. Clearly, the average query time increases

proportional to the volume of flooding traffic the victim undergoes. It is remarkable to

point out that at the latest stages of the attack, where 550 instances of the script were

active, almost the half of the queries were lost.

Scenario 1: port = 53 Scenario 2: port = Random

Number of at-
tacking nodes

CPU uti-
lization
(bind)

Inbound
traffic

Average
query
time

Loss
Packet
Ratio

Inbound
traffic

Average
query
time

Loss
Packet
Ratio

None 0% 0.5 KBps 119 msec 0% 1.2 KBps 113 msec 0%

2 (50 scripts) 5.65% 1.48 MBps 125 msec 0% 2.16 MBps 118 msec 0%

4 (100 scripts) 10.8% 2.91 MBps 128 msec 0% 4.44 MBps 128 msec 0%

8 (200 scripts) 20.1% 5.67 MBps 137 msec 0% 8.06 MBps 149 msec 0%

12 (300 scripts) 25.78% 8.47 MBps 156 msec 0% 11.28 MBps 157 msec 40%

22 (550 scripts) 30.94% 12.05 MBps 241 msec 41% 12.50 MBps 243 msec 42%

Table 4.2: Effects on target proportional to the power and number of attacking nodes
per scenario

Each individual stage of the amplification attack, corresponding to the gradual activation

of new attacking nodes as described in Table 4.2, lasts for approximately 2 minutes,

while altogether the various stages have a duration of about 27 minutes. During this

time, the attacking nodes via the use of the scripts dispatched about 14,993,000 DNS

requests. If we consider that on average our DNS request has a size of approximately

70 bytes, in overall the attacking nodes dispatched approximately 0.97 GB of network

flow toward the 1,363 DNS forwarders contained in the joined list obtained for all three

countries. However, regarding the first variation of the attack, the victim was flooded

with 10,507,706 packets of roughly 12.8 GB volume, while in the latter the victim suffered

10,999,752 packets of nearly 14.2 GB. Amongst other reasons, it is evident that we have

Chapter 4. Novel DNS amplification attack vectors 114

a loss of roughly the half of the volume due to the excessive traffic. This is also verified

from the fact that in the last step of the attack 42% of the DNS queries were timed out.

4.2.3 Discussion

The first phase of the attack described above, sadly exhibits (and verifies the claims of

section 4.1.1 that a worryingly large number of machines operate in the open Internet

as DNS forwarders and do serve DNS requests originating from sources outside their

network. Further analysis of the hardware and Operating System (OS) of these devices

reveals that their majority are the so called Small Office Home Office (SOHO) network

devices, such as network printers, ADSL routers, NAT (Network Address Translation)

devices etc. OS fingerprint of the forwarders with XPROBE2 tool indicated that 75%

of the forwarders in Greece, 45% in Ireland and 55% in Portugal have HP JetDirect,

Foundry Networks IronWare OS or Cisco IOS as their OS. In any case, these devices

erroneously or due to misconfiguration operate as DNS proxies. Moreover, WHOIS

analysis attests that most forwarders belong to AS of ISP networks. Actually, the

possibility of malicious exploitation of a device in order to turn it into an open forwarder

is highlighted in a very recent Common Vulnerabilities and Exposures (CVE) report

issued by NIST [163]. This report notifies the corresponding vulnerability for DNS

related library, but it is quite possible this security weakness to stand true for other

software as well.

As we can observe from Table 4.2, at the time that a dozen attacking devices were run-

ning, the victim had to cope with an ingress traffic of nearly 10 MBps that overwhelmed

the victim’s network bandwidth capacity. Even though this rate cannot be considered

as a successful DoS attack for a real target connected to a Gbps network interface,

we believe that with proper scaling of the attacking network, a determined attacker is

able to achieve a very large volume of DNS flow. For example, think of a case where

a large group of ill-motivated persons scattered around the world start simultaneously

running several instances of the attack script. If we consider that a simple PC, as those

used in our experiments, is capable of dispatching a maximum of 880 DNS queries per

sec on average, ideally this machine could contribute a 2,5 MBps stream toward the

target. Naturally, this rate is the upper limit according to the testbed used, but with

proper equipment and a larger pool of forwarders (more countries under consideration)

Chapter 4. Novel DNS amplification attack vectors 115

the perpetrator could easily exceed these limits and paralyze the victim. Besides, the

amplification factor of the attack - which is independent of the number of attacking

nodes, and as already mentioned, is in the order of 37 to 44 - is self-evident about its

effectiveness.

As already emphasized, the advantage of our proposal compared to that of standard

amplification attack given in section 4.1 is the elimination of all traces that can be

used toward disclosing the attacker’s actions. Essentially, there is no need to infect

any machine with malware in order to turn it into a bot. For assembling a botnet, the

aggressor only needs to recruit in a transparent to them manner the available forwarders

existing out there. This is also strongly in favor of the attack as the usage of the

forwarders conceals the attack’s real source. Thinking of a large number of forwarders

participating in the attack, the only reaction left to the victim is to block the inbound

traffic arriving from numerous sources. This for example could be done by instructing

the firewall to ban the traffic originating from certain but constantly changing IPs.

Nevertheless, in practice this could be proved quite hard to achieve. Also, the attacker

does not have to penetrate into an authoritative in order to place a large RR in the DNS

hierarchy. Instead, to intensify the amplification factor of the attack, one simply has to

exploit the existence of large DNSSEC-related RRs.

Moreover, the recursive NSs that provide the large responses to the forwarders do not

possess any record of the attacker’s actions. They only observe legitimate queries coming

from devices residing in their internal network. Provided that some of the forwarders

may have caching capabilities (this is the usual case), the forwarders do not even consult

continuously the corresponding recursive NS, but only for the very first query. Finally,

with the presented attack scenario one becomes able to circumvent the countermeasures

against amplification attacks employed by the majority of recursive NS. This is because

the attack does not entangle any recursive NS but only forwarders, meaning that any

countermeasure deployed on the recursive-side is not applicable in this case. Since, all

recursives are queried not directly, but through devices located in their inner network,

we involve them in the attack like they operate as open recursive NS (see Fig. 4.3).

To put it in other way, these recursive NSs usually do not function as open, but by

following the aforementioned strategy we force them to act like they do. Moreover, our

attack is also immuned to the recently proposed DNS DNS RRL [155], which normally

is integrated in the functionality of ANSs.

Chapter 4. Novel DNS amplification attack vectors 116

One can argue that the first phase of the attack described in section 4.2.1, i.e., the dis-

covery of forwarders, is very noisy (due to its large volume of packets it produces) and

easily detectable. However, this is partially true. During the experiments of the first

phase, we sent legitimate DNS queries to all IP address allocated for all of the countries

in question. We executed this process twice during a six month period. However, as

already explained in section 5.8.3, each time we carried out the discovery process for

seven different occasions to include different days and time zones. This means, that we

sent almost 160M DNS packets towards IP addresses of these countries. However, the

detection of such legitimate but unusual traffic is entirely up to the administrator of

the corresponding network domain. From our experience in the conducted experiments

described above, only one network administrator noticed our bizarre queries and notified

our abuse list. Also, this information gathering process may be quite more chronologi-

cally separated from the actual attack, meaning that the exact time the attack will be

unleashed against its target is entirely up to the aggressor.

As previously mentioned, to the best of our knowledge, the only work in the literature

that analyzes data stemming from real DNS amplification attacks is given in [124]. In this

work the authors report a maximum amplification factor of nearly 60 but they exhibit a

DNS query size of 60 bytes. It should be noted that for achieving the aggressors placed

a large TXT RR in the DNS hierarchy that had a fixed size of 4000 bytes. On the other

hand, according to the scenario at hand the response’s size depends on the DNSSEC

related resource records that the forwarders opt to include in the packet. That is, the

attacker does not need to place a large RR, but rather to exploit a DNSSEC enabled

zone.

4.3 Authoritative TLD nameserver-powered DNS amplifi-

cation

Certainly, the authoritative NS of popular domain zones, and in particular the DNSSEC-

enabled ones, do not elude the attention of DNS amplification attackers for entangling

them in their actions. The ANS list of TLD are publicly accessible in the form of

root.zone file, so even a casual attacker is able to acquire the list of TLD zones and

their matching ANSs. In this context, in the following we examine the potential of

Chapter 4. Novel DNS amplification attack vectors 117

ANSs of TLD to be unknowingly engaged by attackers in DNS amplification attacks. In

particular, using two distinct versions of the root.zone file, we assess the amplification

factor that these entities may produce when replying to both individual and multiple

queries.

While until now several works in the literature deal with DNS amplification and exam-

ine DNSSEC-enabled zones for providing data alluring to amplification attackers, to our

knowledge none of them addresses the potential of taking advantage the authoritative

NSs of TLD as both amplifiers and reflectors. From an attacker’s viewpoint, the mo-

tivation is simple; the list of these ANSs are publicly known, so it can be obtained by

anyone, anytime. Even a unsophisticated attacker can efficiently compile the pool of

TLD ANSs by downloading the root.zone file [39] and then extracting the RRs of NS

type along with their corresponding glue records.

Today, the majority of TLD zones have already adopted DNSSEC [101], and thereby by

default these ANSs respond to DNSSEC-related queries. This gives more opportunities

to prospective attackers to maximize the amplification effect of their attack. As a result,

the aggressor does not have to extensively crawl DNS hierarchy for locating DNSSEC

enabled zones, but rather simply utilize those contained in the corresponding root.zone

file. As TLD zones constitute the pillars of Internet, they utilize rich computational and

network resources and cutting edge techniques (such as clustering and anycast routing)

for accommodating the high-load demands. This fact makes them even more tempting

to potential perpetrators having the aim to entangle them in DDoS incidents.

Also, it should not be overlooked the fact that FQDN of TLDs is comprised of only one

label with 2 or 3 characters for the majority of the domains. Consequently, the size of

the query packet is limited compared with the commonly used domain names. Since this

size is inversely proportional to the amplification factor, the lesser it is the larger the

amplification factor. More importantly, since the authoritatives of TLDs integrate the

foundation of DNS hierarchy, they are involved in every DNS resolution no matter what

the inquired name is. This means that it is rather futile to blacklist the traffic originating

from an authoritative exploited as reflector because it also provides crucial data to

legitimate users. On the contrary, in the case that only open DNS resolvers/forwarders

are utilized as reflectors, like these recorded by [150] and crawled from Internet [164], it

is quite easy for the defenders to ban the incoming traffic originated by them.

Chapter 4. Novel DNS amplification attack vectors 118

In the following section, we assess the potential of exploiting the authoritatives of TLDs

as both amplifiers and reflectors. First off, we measure the volume of the response

packet to a single DNS request for ANY and DNSKEY RR types which are expected

to convey large data. Following, we examine and evaluate the degree of adoption of

RRL mechanism which constitutes a defensive barrier from amplification attacks on the

side of ANSs. This is done by dispatching a stream of consecutive DNS requests during

a limited time window and observing the number of complete, truncated and missed

responses. For the latter case, we take into consideration both positive and negative

answers, namely, we inquire for both existent and non-existent domain names.

Figure 4.5 presents a typical DNS amplification attack, which is nevertheless amended

to illustrate the involvement of ANSs. The left side of the figure shows the way an ANS

is exploited as reflector, while the right side exemplifies the ANS as amplifier.

Figure 4.5: Exploiting ANSs administrating TLD zones

So far, two are the prevalent and simplest to implement countermeasures for preventing

a NS to be abused as amplifier and/or reflector; truncated responses (TC) and DNS RRL

[155]. For TC countermeasure, RFC 5966 [165] recommends that if a UDP response is

larger than 512 bytes then the responsive NS should truncate its response and enable TC

flag for signalling the requestor to retry in TCP mode. In this case, the NS responds with

a minimal size packet and enforces the requestor to repeat its query in a manner that is

infeasible to spoof its IP address, in the case he desires a sizeable answer. Capitalizing

on this functionality, in section 4.3.1.2 we investigate which ANSs in our list enforce

truncation, that is, TC flag in their response is on. This is measured when an individual

Chapter 4. Novel DNS amplification attack vectors 119

(unique) query is issued toward them, not a stream of it. As explained right after, this

is because a stream of queries would trigger the RRL mechanism, which mandates the

truncation of some of the replies.

On the other hand, DNS RRL limits the identical responses that can be returned by an

ANS to the same requestor within a time interval. As explained, RRL is applicable to

ANSs only, since the normal DNS flow towards an authoritative is expected to contain

limited duplicate queries from the same recursive resolver. This is due to the caching

facility every recursive affords, allowing it to locally store RRs for fulfilling subsequent

requests.

4.3.1 Methodology and Results

Initially, our approach consists of an reconnaissance phase to compile the list of profitable

ANSs. Specifically, we record which NSs are able to respond with a sizeable answer, and

thus how noteworthy is the generated amplification factor. Next, we aim to deduce

the adoption degree of RRL mechanism for the case of requests that return positive

and negative answers. So, our goal is to examine if and up to what degree RRL is

implemented by ANSs as a countermeasure.

Our experiments span over a period of six months and cover two versions of root.zone

file [39]. The first one corresponds to 2015090700 serial number of SOA record type,

while the second to 2016021300. We execute our experiments several times in different

days and time zones (working hours and nights), with the purpose to figure out whether

the investigated ANSs exhibit a constant behavior or their performance is affected by

workload peaks.

The first version of the root zone file contains 5,103 unique records of NS type, which are

accompanied with 2,431 glue records of A type. These RRs correspond to 1,056 unique

zones (including root zone “.”) that are served by 2,063 servers having a distinct IPv4

address. The second and newer version of the root file consists of 5,962 NS RR with

3,150 glue A RRs. The total number of discrete zones are 1,227 served by 2,755 servers

(distinct IPv4 address). From these numbers it becomes evident that some ANSs are

hosted to the same IPv4 address or there exist ANSs that map to two different IPv4

addresses. The fact that plenty of the NSs act as authoritative for multiple zones does

Chapter 4. Novel DNS amplification attack vectors 120

not affect our results as RRL mechanism examines the similarity of the responses, which

in this case vary in the queried domain name. In total, we extracted 5,079 and 5,938

distinct tuples of <domain name, IPv4 address> respectively. Note that the first and

the second version of root.zone file correspondingly contain 3 and 2 authoritatives that

only afford IPv6 address, and therefore were excluded from further investigation. Those

ANSs are included in 35 and 34 records of NS type respectively.

4.3.1.1 Types of Queries

The most alluring types of DNS queries for an amplification attacker are ANY and

DNSKEY. The first one essentially returns all the available RRs about the queried

domain name. There is no guarantee about what types and how many records the

response will contain. The latter type retrieves the RRs that contain the public keys

of the inquired zone. Obviously, the public keys are necessary for the validation of

DNSSEC-related RRs. The response is expected to be sizeable, because RFC 6781 [114]

suggests the usage of RSA public keys with key length of at least 1024 bits. Also, an

aspiring aggressor could exploit the response for non-existent domain names. Normally,

an authoritative returns a negative answer in the form of NXDOMAIN status, or in

the case of DNSSEC, includes NSEC/NSEC3 RR type in its response. Typically, such

a response is estimated to contain up to 2 NSEC or up to 3 NSEC3 [131] with the

accompanied RRSIG records, and therefore is expected to be sizeable enough.

4.3.1.2 Examining the response size for a single query

For each extracted pair of <domain name, IPv4 address> corresponding to an ANS, we

issue directly to the IPv4 address a DNS query about the matching domain name for

both types of records as detailed in section 4.3.1.1 with the DO bit enabled. That is,

we indirectly force the ANS to include DNSSEC-related RR to its response. We repeat

the execution three times, each of them advertising a different buffer size of EDNS0

extension mechanism, i.e., 1,024, 8,192 and 65,535.

As summarized in Table 4.3, the great majority of the available ANS in each version of

zone file produces no error responses. However, a tiny portion of them demonstrate no

interest for the context of our experiments. Specifically, several ANS returned FormErr,

Chapter 4. Novel DNS amplification attack vectors 121

ServFail or Refused response status, meaning that they are unable to process our request

or do not tolerate ANY query type. Also, it seems that an approximately 10% of the

authoritatives still do not support EDNS0 extension, namely they are unable to provide

responses with size larger than 512 bytes. Additionally, as observed from Table 4.3 a

constant portion of approximately 3% of ANSs timeout to respond. Essentially, plenty

of the latter ANSs do not respond to any of our request during both phases. Therefore,

an aspiring aggressor will apparently preclude those ANS from his arsenal since they

exhibit limited amplification capabilities. Nevertheless, for the sake of completeness, we

include them to the subsequent analysis. Note that if an authoritative fails to respond

to even one of our queries, we flag it as ‘timeout’. This means that in the case an ANS

is not always reachable, this ANS is not suitable for the objectives of the attacker.

Ver. 1 Ver. 2

NoError 1,939 (93.99%) 2,656 (96.41%)

NoEDNS0 11 (0.53%) 10 (0.36%)

FormError, ServFail or Refused 36 (1.75%) 14 (0.51%)

TimeOut 77 (3.73%) 75 (2.72%)

Total 2,063 (100%) 2,755 (100%)

Table 4.3: Demographics of the TLD ANSs

As pointed out, as the size of the query packet is limited, the amplification factor will be

elevated. Nevertheless, one has to consider that the usage of EDNS0, which is mandatory

throughout our experiments as we seek for DNSSEC-related RR, adds a burden of 11

bytes. Clearly, the smallest packet size is that of the query packet for the root zone,

which is 28 bytes. On the downside, the largest one is 53 bytes and corresponds to

a zone which has 24 in section 4.1, to calculate the amplification factor provided by

each ANS we apply formula (4.1). So, along with the size of the response, the size of

the query packet is recorded. Typical DNS queries have a size of around 20-60 bytes

[141]. However, commonly, a domain name consists of at least two labels from which

the second-level label is comprised by a number of characters. In our case, as we deal

with TLD zones, the inquired domain names contain solely one label with two or three

characters in most cases. Hecharacters in its domain name. The average packet size for

queries of distinct domain names is 34.3 bytes.

As expected, all ANSs comply with the limit of 1,024 bytes for both types of query,

when the buffer size of EDNS0 is 1,024. However, for larger values of buffer size, it is

observed a sizeable response packet. The majority of ANS responded similarly (same

Chapter 4. Novel DNS amplification attack vectors 122

size of packet) to both runs for the ANY query type, while only 12 tuples out of 5,079

displayed a packet size difference of at least 500 bytes. The corresponding variation for

the DNSKEY query type is also negligible.

For both versions of zone file, the largest response packet size has a size of 7,728 bytes,

containing in its Answer Section 32 answers and 37 additional RRs. Note that the

corresponding answer consists of 6 IP fragmented packets. Therefore, one can expect

that the authoritative can provide a hefty amplification factor of up to 249.3, as the

triggered query packet has a size of only 31 bytes. The aforementioned response was

received for a query of ANY type, no matter what was the defined buffer size (i.e. 8,192

or 65,535). The outcomes of the amplification factor imposed by the responses of ANSs

of TLD zones are outlined in Table 4.4. We choose to present the results for the queries

with buffer size of 8,192, since the difference amongst the two runs are insignificant and

a potential aggressor will probably prefer to advertise minimum possible buffer size for

avoiding suspicions. Also, a larger buffer size will probably create reachability problems

due to fragmentation [166].

For the examination of the amplification factor in the case of negative answer, we select

to query for a domain name that has a random string of 5 characters as second label.

Thereby, we intend to increase the possibility that truly the random domain name is

nonexistent. In any case, in total the size of the query packet increases by 6 bytes, that

is 5 bytes for the random string and 1 byte for the extra label. Table 4.4 also presents

the amplification factor of ANY query type for negative responses (labelled ANY NSEC)

for both versions of root.zone file.

Amplif. Factor
Ver. 1 Ver. 2

ANY DNSKEY ANY NSEC ANY DNSKEY ANY NSEC

<=20 or TimeOut 1,362 (26.82%) 1,270 (25.00%) 2,605 (51.29%) 1,173 (19.75%) 1,044 (17.58%) 2,976 (50.12%)

20−40 280 (5.51%) 3,247 (63.93%) 2,419 (47.63%) 367 (6.18%) 4,254 (71.64%) 2,797 (47.10%)

40−60 2,101 (41.37%) 537 (10.57%) 55 (1.08%) 2,489 (41.92%) 618 (10.41%) 137 (2.31%)

60−80 948 (18.67%) 22 (0.43%) 0 (0.00%) 1,265 (21.30%) 18 (0.30%) 28 (0.47%)

80−100 181 (3.56%) 2 (0.04%) 0 (0.00%) 395 (6.65%) 2 (0.03%) 0 (0.00%)

100−150 199 (3.92%) 1 (0.02%) 0 (0.00%) 241 (4.06%) 2 (0.03%) 0 (0.00%)

>150 8 (0.16%) 0 (0.00%) 0 (0.00%) 8 (0.13%) 0 (0.00%) 0 (0.00%)

Total 5,079 (100%) 5,938 (100%)

Table 4.4: Amplification factor for a single query with EDNS0 buffer size 8,192

4.3.1.3 Examing RRL mechanism for positive responses

In the context of this work, we are mostly concerned about the following parame-

ters of RRL mechanism: window, responses-per-second, nxdomain-per-second and slip

Chapter 4. Novel DNS amplification attack vectors 123

[155, 167]. The window parameter with a default value of 15 secs designates the time

period over which rate limiting is calculated and during which excesses are stored. The

responses-per-second parameter determines the maximum number of times that the same

response will be given to the same requestor (default 5). The nxdomain-per-second de-

fines the maximum number of times that the same negative response will be given to

the same requestor independently of the queried domain name (default 5). Finally, slip

specifies the rate that successive identical requests will be answered with a truncated

response. The default value for this last parameter is 2, meaning that every second

response is truncated.

For investigating the adoption of RRL mechanism [155], we dispatched a stream of 10,000

DNS queries from the same source IP address within a time window of 70-80 secs. Next,

we calculated the success ratio of this effort expressed as a percentage of the returned

answers versus the total submitted queries (in our case 10,000). We conducted this

experiment twice in different days and time zones to deduce possible variations due to

workload and congestion on the ANS’s side. Special care has been taken to minimize the

burden imposed by our experiments on the examined ANSs. Hence, in order to minimize

the window of the request bursts to minimum possible, we do not query consecutively

the same authoritative for a different domain name under its administration. For the

same reason, we examine the root ANSs only once. Naturally, it is expected that their

behavior to be similar between different runs. It is also to be noted that some responses

bear erroneous response code (REFUSED or SERVFAIL). However, as we are solely

interested in the volume of the response not its status, we include them in the final

outcomes. In any case, these erroneous responses decrease the overall amplification

factor, since their packet size does not exceed 50-60 bytes.

During the execution of this phase, for the first version of root file, we record that more

than 64% of the ANSs display a negligible difference of no more than 1% on success

ratio of positive responses (3,261 out of 5,079). Furthermore, most of the ANSs (91.8%)

demonstrate a variation of no more than 10% (4,665 out of 5,079). This means that

they show a reliable behavior as reflectors. Nevertheless, a small percentage (1.6% or

79 out of 5,079) has a deviation higher than 50% between the two runs. We can assume

that the performance of the specific ANSs are highly influenced from workload or similar

factors.

Chapter 4. Novel DNS amplification attack vectors 124

Regarding the second version of the root.zone file, we observe that almost 62% of the

NSs, exhibit a steady performance with a difference not exceeding 1% on success ratio

(3,679 out of 5,938). Moreover, the majority (90.1%) shows a variation of no more than

10% (5,347 out of 5,938). As with the first version of the root.zone file, there exists a

small portion (2.2% or 128 out of 5,938) that has a great deviation amongst the two

runs (50%-99%).

It should be remarked that the most beneficial reflector missed only one response out of

10,000 and its response had a size of 4,093 byte. In other words, the specific authoritative

reflects the ingress malicious traffic multiplied by 132.

Tables 4.5 and 4.6 summarize the results for the authoritatives that have a variation less

than 10%. In total, the tables include 91.8% and 90.1% of unique pairs <domain name,

IPv4 address> extracted correspondingly from the first and second version of the root

zone file. Apparently, a determined aggressor would consider only ANSs that reveal a

consistent performance on their behavior. Each table displays the success ratio of the

ANSs, meaning the number of the received responses versus the total queries, along with

the corresponding amplification factor calculated only from the successful queries. This

way, one is able to deduce the magnitude of the received response. To ease the reading

of the tables, we circle the actual cumulative amplification factor (considering all the

volume of the submitted queries) only for the most profitable ANSs.

Amplification Factor

<=20 20−40 40−60 >60 TOTAL

S
u
c
c
e
s
s

R
a
t
io <=70% 734 (15.77%) 8 (0.17%) 91 (1.95%) 142 (3.05%) 975(20.95%)

70%−80% 3 (0.06%) 0 (0.00%) 41 12 (0.26%) 49 22 (0.47%) 37(0.79%)

80%−90% 4 (0.09%) 0 (0.00%) 50 1 (0.02%) 58 6 (0.13%) 11(0.24%)

90%−100% 962 (20.67%) 37 231 (4.96%) 51 1,798 (38.63%) 73 641(13.77%) 3,632(78.02%)

TOTAL 1,703 (36.58%) 239 (5.13%) 1,902 (40.86%) 811(17.42%) 4,655 (100.00%)

Table 4.5: Percentage of authoritative NSs for positive responses (ver. 1)

Amplification Factor

<=20 20−40 40−60 >60 TOTAL

S
u
c
c
e
s
s

R
a
t
io <=70% 676 (12.64%) 11 (0.21%) 91 (1.70%) 151 (2.82%) 929(17.37%)

70%−80% 3 (0.06%) 1 (0.02%) 41 14 (0.26%) 53 43 (0.80%) 61(1.14%)

80%−90% 3 (0.06%) 0 (0.00%) 50 1 (0.02%) 58 6 (0.11%) 10(0.19%)

90%−100% 898 (16.79%) 38 348 (6.51%) 50 2,074 (38.79%) 76 1,027(19.21%) 4,374(81.30%)

TOTAL 1,580 (29.55%) 360 (6.73%) 2,180 (40.77%) 1,227(22.95%) 5,347 (100.00%)

Table 4.6: Percentage of authoritative NSs for positive responses (ver. 2)

Chapter 4. Novel DNS amplification attack vectors 125

Next, we examine how the endorsement of TC contributes to the reduction of the over-

all amplification factor. We record only those authoritatives that feature a considerable

success ratio (higher than 60%), since the remaining by default demonstrate a mod-

erate amplification factor. The corresponding outcomes are summarized in Table 4.7.

As observed, the results are ordered by the percentage of truncation on the successful

responses. The column labelled as “Number of zones” indicates the total of distinct

domain zones that reply with the corresponding rate of TC responses.

Ver. 1 Ver. 2

Truncated Responses Number of zones AVG Size (Bytes) Number of zones AVG Size (Bytes)

0 3,356 (81.85%) 1,628.54 4,014 (80.68%) 1,782.23

0−10 141 (3.44%) 2,076.40 197 (3.96%) 2,265.79

10−20 166 (4.05%) 2,009.55 216 (4.34%) 2,158.03

20−99 25 (0.61%) 214.64 29 (0.58%) 278.15

99−100 412 (10.05%) 133.73 519 (10.43%) 354.43

Total 4,100 (100.00%) 4,975 (100.00%)

Table 4.7: Percentage of truncated positive responses

4.3.1.4 Examing RRL mechanism for negative responses

An insidious attacker may assume that they could be able to evade the RRL mechanism

by inquiring continuously random domain names. Since the corresponding response will

probably contain different records of NSEC/NSEC3, the threshold of RRL mechanism

will not be triggered so often as in the case of positive responses, where the contents of

the response are exactly the same for all the queries.

For inspecting the validity of such an assumption, similarly to the previous phase, we

unleash a burst of 10,000 queries each time with a random string as the second label

of the queried domain name each time. Then, we calculate again the success ratio of

negative responses and the degree of compliance with TC mechanism.

As illustrated in Table 4.8, for the first version of root.zone file we observe that nearly

78% of ANSs demonstrate a difference of no more than 1% on success ratio of negative

responses (3,960 out of 5,079). Additionally, the majority of them (94.8%) exhibit a

variation that does not exceed 10% (4,817 out of 5,079), while only 0.4% (22 out of

5,079) present a high difference among the two runs.

Regarding the second version, we observe from Table 4.9 that about 76% of ANSs display

a negligible difference (4,498 out of 5,938), while 96.3% has a rather expected variation

Chapter 4. Novel DNS amplification attack vectors 126

of 10% (5,718 out of 5,938). Merely 0.9% or 57 out of 5,938 show a significant difference

that exceeds 50%.

Tables 4.8 and 4.9 summarize the results for the authoritatives that have a variation

less than 10% during the two runs of the experiment. Likewise, 94.8% and 96.3% of

unique pairs <domain name, IPv4 address> extracted from the two examined version

of the root zone file are included respectively. Finally, Table 4.10 details on the degree

of compliance with TC for the case of negative responses and only for those ANSs with

success ratio greater than 60%.

Amplification Factor

<=20 20−40 40−60 TOTAL

S
u
c
c
e
s
s

R
a
t
io <=70% 868 (18.02%) 192 (3.99%) 3 (0.06%) 1,063(22.07%)

70%−80% 26 (0.54%) 0 (0.00%) 0 (0.00%) 26(0.54%)

80%−90% 446 (9.26%) 47 (0.98%) 34 4 (0.08%) 497(10.32%)

90%−100% 1,378 (28.61%) 27 1,836 (38.12%) 46 17 (0.35%) 3,231(67.07%)

TOTAL 2,718 (56.43%) 2,075 (43.08%) 24 (0.50%) 4,817 (100.00%)

Table 4.8: Percentage of authoritative NSs of negative responses (ver. 1)

Amplification Factor

<=20 20−40 40−60 >60 TOTAL

S
u
c
c
e
s
s

R
a
t
io <=70% 924 (16.16%) 277 (4.84%) 3 (0.05%) 0 (0.00%) 1,204 (21.06%)

70%−80% 30 (0.52%) 3 (0.05%) 0 (0.00%) 0 (0.00%) 33 (0.58%)

80%−90% 495 (8.66%) 235 (4.11%) 35 100 (1.75%) 0 (0.00%) 830 (14.52%)

90%−100% 1,486 (25.99%) 27 2,106 (36.83%) 46 37 (0.65%) 69 22 (0.38%) 3,651 (63.85%)

TOTAL 2,935 (51.33%) 2,621 (45.84%) 140 (2.45%) 22 (0.38%) 5,717 (100.00%)

Table 4.9: Percentage of authoritative NSs of negative responses (ver. 2)

Ver. 1 Ver. 2

Truncated Responses Number of zones AVG Size (Bytes) Number of zones AVG Size (Bytes)

0 3,403 (80.83%) 816.04 4034 (79.27%) 911.90

0−10 10 (0.24%) 534.70 22 (0.43%) 1,022.50

10−20 317 (7.53%) 607.39 434 (8.53%) 794.30

20−30 88 (2.09%) 462.92 129 (2.53%) 516.65

30−40 24 (0.57%) 321.27 42 (0.83%) 761.78

40−50 0 (0.00%) − 20 (0.39%) 1,425.00

50−70 0 (0.00%) − 14 (0.28%) 1,419.29

70−99 27 (0.64%) 128.65 41 (0.81%) 478.92

99−100 341 (8.10%) 40.15 353 (6.94%) 40.15

Total 4,210 (100.00%) 5,089 (100.00%)

Table 4.10: Percentage of truncated negative responses

4.3.2 Discussion

Even from a cursory look at Table 4.4, we can assert that between the examined query

types ANY is more profitable for a potential aggressor. Also, as given in table 4.4,

Chapter 4. Novel DNS amplification attack vectors 127

more than 25% of the ANSs provide an amplification factor of higher than 60, which

is considered fatal. Furthermore, the second version of the root file exhibits worse

percentages from a defender’s viewpoint, meaning that the new introduced authoritatives

provide hefty DNS responses. Also, an interesting discovery is that only 5 out of the 13

permanent root NSs, as well as 43 out of 2051 (from the 1st ver. of the root.zone file)

and 58 out of 2,743 (from the 2nd ver.) remaining ANSs support truncated responses.

That is, considering both versions of the root.zone file, the TC bit was enabled in only

387 of 5,079 and 464 of 5,938 responses respectively, when we issue a single request.

As expected, the accomplished amplification factor is preferable when requesting posi-

tive responses rather negative. Nevertheless, the success ratio due to RRL mechanism

performs almost akin in both cases, which in turn implies that the relevant parameters

(i.e., responses-per-second and nxdomain-per-second) have similar values.

Overall, the results strongly support the view that ANSs of TLDs are attractive to

attackers for getting them involved in DNS amplification incidents. Depending on the

intention of the perpetrator and the resources available on his arsenal, he could take

advantage of the particular ANSs that best suit his purposes. In the case he already

possesses a pool of reflectors, such as open resolvers or open forwarders [18], he may

use only those authoritatives that provide high amplification factor. Since usually the

resolvers and the forwarders afford cache capabilities as well, the responsive ANSs will

not perceive that they are engaged in such an incident. To exemplify this, table 4.4 shows

the existence of a considerable portion (over 25%) of DNS queries towards TLDs that

contribute an amplification factor higher than 60. On the other hand, if the attacker

lacks reflectors, he may employ those ANSs that exhibit a high success ratio. There

is a substantial fraction of ANSs that respond to nearly all the queries and induce

an amplification of medium to high magnitude. Specifically, we realized that 1,197

distinctive authoritatives out of the total 2,755 serving TLDs (43%) for the most recent

version of root.zone file reflect the inbound network traffic by magnifying it by a factor

that exceeds 50. In any case, those ANSs are alluring for launching Slow-rate attacks.

The deployment of TC countermeasure [165] significantly reduces the overall amplifi-

cation factor. We can observe that the average message size decreases inversely with

the percentage of TC. Essentially, it diminishes the amplification factor to nearly 10,

Chapter 4. Novel DNS amplification attack vectors 128

when almost every response is truncated. Hence, this mechanism prevents ANSs uncon-

sciously participation in attacks, even though it preserves a high success response ratio.

As a result, it is desirable to endorse TC rather to drop suspicious incoming queries.

This is because the latter countermeasure may hamper legitimate clients from receiving

an answer, and thus force them into increasing their DNS traffic.

Compared with [141, 148], our methodology does not deploy zone walking nor requires

collaboration with the zone’s administrator for extracting domain zones and their match-

ing authoritatives. In contrary, we take advantage of publicly available data (root zone

file) and concentrate our research on TLDs instead of 2-TLDs. Furthermore, besides

their role as amplifier, we investigate the reflection capabilities of the examined ANSs.

It is also to be noted here that although there were some scarce and undocumented

concerns that the gradual adoption of DNSSEC (due to its increased RR size [52])

would facilitate aspiring aggressors to mount improved DNS amplification attacks, to

authors’ best knowledge this is the first study that involves DNSSEC-related RR in a

(D)DoS attack. So, although DNSSEC is used among others to drastically confine, if

not eliminate, the well-known cache poisoning vulnerability [47, 168], in the course of

the current research it will become evident that it may be used as a vehicle for launching

large-scale DDoS assaults. The authors in [169] observed that the increase of ANY type

DNS queries derived from the increase of DNS amplification incidents.

4.4 Countermeasures

Actually, even the most advanced DNS amplification attacks are not impossible to pre-

clude. The efforts of the defenders must focus on diminishing the ammunition available

in the arsenal of a DNS amplification attacker, and especially on eliminating miscon-

figured or unprotected infrastructure that facilitate the reflection of malicious network

traffic. Note, that the adaptation of these type of remediations does not prevent the

infrastructure itself to get targeted, but rather to get involved to an incident. Thus, it

contributes to the global protection of Internet. Section 4.4.1 elaborates on proactive

measures. Furthermore, mechanisms that aim to detect and suppress DNS amplification

attacks at their very beginning (reactive methods), should be deployed on the side of

alluring targets. Section 4.4.2 details on such proposals.

Chapter 4. Novel DNS amplification attack vectors 129

4.4.1 Proactive Measures

4.4.1.1 Lowering the Amplification Factor

From the discussion in the previous sections it becomes clear that the efficiency of DNS

amplification attack lies on the fact that a small request packet sent from the attacker

can generate a large toward the victim. Thus, the defenders should endeavor to eliminate

any potential source that can be exploited as amplifier by the aggressors.

• ANY query : From the available results in section 4.4, one can easily deduce that a

DNS query of ANY query type for DNSSEC-related RR, represents a fruitful type

of request for magnifying the effects of a DNS amplification attack. Consequently,

it is strongly advised for the defenders to put effort to restrict or totally cease the

support of this type of query by the NSs.

Although there are two certain softwares that rely on ANY query (qmail and

firefox) [170], its functionality can be substituted by other query types. In fact,

there is a trend among the naming software vendors to deprecate ANY query

and instead respond with NOTIMP (RCODE 4, Not Implemented) status in such

queries [170]. So, a debate about the necessity of ANY query and the possible

ways the remaining relying software could be patched to avoid its usage would be

very useful. While there exist other types of records that provide hefty responses,

their magnitude is notably smaller compared to those provided by ANY.

• Truncated Responses: Another remediation is the restriction of the response’s

size provided by NSs to an upper limit. According to RFC 5966 [165] and its

substitute RFC 7766 [171], DNS responses containing multiple RRs and thus,

having hefty packet size, should be truncated and retried in TCP mode. In this

case, the (truncated) UDP response should have a minimal packet size and its TC

flag should be on. Therefore, whenever a requestor desires a DNS answer with

numerous RRs, it should submit its query in TCP mode in order to verify their IP

address. From the results contained in Table 4.7 the reader can clearly notice that

although the success ratio of the responses is considerable, the overall amplification

factor remains low due to the high percentage of truncated responses. In other

words, the truncation of sizable responses will hinder the exploitation of NSs as

amplifier.

Chapter 4. Novel DNS amplification attack vectors 130

• Response Rate Limiting : DNS RRL is a mechanism that limits the identical re-

sponses that can be returned to the same requestor within a certain time interval

by a NS. Essentially, RRL forces a NS to respond with truncated responses or

drop them at all, whenever the ratio of the identical request from the same IP

or network address exceeds a predefined threshold within a time window. RRL

is applicable to ANSs only, as the normal DNS flow towards an authoritative is

expected to contain limited duplicate queries from the same recursive resolver.

As discussed in section 2.1.7.2, this is due to the caching facility every recursive

affords, allowing it to locally store RRs for fulfilling subsequent requests. As it is

clearly shown in Tables 4.5 and 4.6, whenever an ANS properly applies RRL, it

discourages the potential attacker to entangle this machine into DNS amplification

attack. Note that DNS RRL is already implemented in BIND 9.

4.4.1.2 Eliminate Reflection Capabilities

Recall from section 4.1 that for achieving the reflection capabilities of DNS amplification

attack, the aggressor performs source IP address spoofing and employs open recursives

resolvers, i.e., DNS entities that respond to DNS recursive queries originating from open

Internet. This way, they are able to involve unconscious third servers into their attack

and to conceal the traces of their actions. Following, we firstly introduce mechanisms

that aim to prevent IP spoofing, and then we present initiatives that address the issue

of open recursives.

• Source validation: Since this type of attack requires the spoofing of the requestor’s

source IP address, any IP address validation would block malicious packets. Of

course, it is not possible for every firewall or router to examine the source IP of

all UDP packets passing through it. Though, the devices located at the borders

of a network should inspect and allow a packet to pass through only if it has a

source IP address assigned from an internal subnetwork. This guideline is explicitly

outlined in RFC 2827 [172]. The specific measurement is also known as BCP 38.

Considering that almost 25% of the ASs [173, 174] permit spoofing, the adoption

of source validation from their side is compulsory.

Another solution could be the usage of sessions for the case of UDP protocol

[140]. Videlicet, session information should be included in UDP packet for each

Chapter 4. Novel DNS amplification attack vectors 131

request corresponding to a large response. Since UDP is the most vulnerable

transport protocol for IP spoofing the aforementioned restriction will force the

attacker to open multiple sessions to each open resolver, and thus lessen the surge

of attacking requests. A survey of research publications about methods to prevent

source address IP spoofing by utilizing session tokens is given in [140].

• Disable open recursion: Any DNS recursive should only accept DNS queries from

clients residing inside its network. However, there exist a vast number of devices

that operate as open resolvers and accommodate request originating from open

Internet. As given in section 4.1.1 initiatives, including Open Resolver Project

[150] and Measurement Factory [151], intend to discover such type of machines

and with the collaboration of the network administrators to cease their operation.

Yet, even in the case of restricted to internal users resolvers, as it is observed from

the results included in section 4.2, an attacker may be able to evade such a restric-

tion with the exploitation of open DNS forwarders. For this reason, the network

administrators must also disable DNS forwarding to all network devices. When-

ever, the installation of a forwarder is a requisite, its service should be restricted

to solely trusted or internal users.

4.4.2 Reactive methods

Regardless of the proactive measures, the responsible network administrators should

adopt solutions, which aim to detect and suppress DNS amplification attacks at their

very beginning. In this section, we shortly present the most important ones of them.

Kambourakis et al., [175, 176] were the first to propose a mechanism that could be

integrated into the functionality of a DNS NS. This solution capitalizes on the match-

ing of DNS requests and corresponding responses of the NS. Therefore, any response

reaching the server that does not correspond to a request, i.e., is not solicited by the

server, is inevitably characterized as suspicious. When the ratio of the unsolicited re-

sponses exceeds a predefined threshold, then an alert is generated and banning rules are

automatically set/updated in the firewall in order to block traffic stemming from the

attacking nodes. Di Paola and Lombardo [177] extended the aforementioned works by

incorporating bloom filters in an effort to speed up the process of detection. Further,

Chapter 4. Novel DNS amplification attack vectors 132

bloom filters have been also recruited by Sun et al., [178] to deal with DNS amplifica-

tion. Nevertheless, this time the proposed solution was based on hardware, aiming for

efficiency.

Other proposals apply machine learning techniques for identifying DNS amplification

attacks. For instance, Rastegari et al., in [179, 180] proposed an Intrusion Detection

System (IDS) capable of detecting DNS amplification with the help of Neural Networks

(NN) and Support Vector Machines (SVM). Similarly, Ni et al., in [181] employed char-

acteristics of attack traffic time series to produce SVM classifier for the detection of

attacks.

Furthermore, Deshpande et al., [182] introduced a probabilistic model based on Continu-

ous Time Markov Chain model to conduct a cost-benefit analysis for DNS amplification

countermeasures. In their work the three countermeasures under consideration were: 1)

filtering and blocking attack sources, 2) random drops of DNS (UDP) packets as de-

scribed in [183] with the purpose to regulate incoming traffic, and 3) aggressive retries

from the clients for increasing the legitimate traffic [184]. According to the authors,

this probabilistic model was able to deduce significant reductions in DNS amplification

attack probabilities when all the three aforementioned countermeasures are deployed.

Also, their model indicated that the usage of DNSSEC is more vulnerable than that of

DNS, and thus, DNSSEC gains noticeable fewer benefits from the proposed countermea-

sures.

A different approach has been followed by Fachkha et al., in [185, 169], where the

authors were detecting DNS amplification attacks by monitoring DNS traffic heading to

a darknet space. Specifically, the authors observed that amplification attackers trend to

scan the Internet for open resolvers. So, they analyzed benign DNS requests arriving to

unallocated IP addresses. This technique differs from the prevalent proposal [186] that

depended on backscattered network traffic.

MacFarland et al.,[154] proposed to outsource the service of DNS ANSs and to forward

the local DNS resolution requests to an off-site resolver during the time an organization

is under a DNS amplification attack. Thereby, the organization would be capable of

filtering the overall ingress DNS traffic. Even though such type of filtering would drop

both malicious and benign traffic, the organization’s normal operation would not be

affected due to outsourcing. However, the link between the internal DNS forwarder and

Chapter 4. Novel DNS amplification attack vectors 133

the remote DNS resolver should be tunnelled, via IPSec or TLS, in order to evade the

restrictions on the frontier firewall, i.e., to bypass typical DNS communication channels.

The authors estimated that the overall latency introduced for establishing the tunnel,

starting the remote resolver and reboot the local resolver to operate as forwarder does

not exceed 1.36 secs in average.

In the nutshell, based on the results gathered from the experiments described in section

5.8.3, we can easily deduce that a significant number of the inspected network devices

do not support any of the aforementioned countermeasures. In the aftermath of the

results obtained, we can safely argue that poor practices and omissions from the side

of network administrator and ISP companies may put the Internet at risk. Putting it

another way, usually, for reason of cutting down cost and work time, network providers

decide not to conform with security advisories which would greatly hinder the feasibility

of amplification attacks.

Chapter 5

DNS-driven botnet C&C

architectures

Recall that one of the purposes of this thesis is to highlight the manipulation of DNS by

botnets. In this chapter, we elaborate on the botnet issue and provide evidences of their

actions. In this direction, we propose three novel facets of mobile botnet that utilize

DNS for building their C&C channel. At the end, we conduct a comprehensive review

of DNS-based countermeasures against botnets.

5.1 Introduction

Undoubtedly, botnets pose a growing threat to the Internet, with DDoS attacks of any

kind carried out by botnets to be on the rise. Nowadays, botmasters rely on advanced,

hidden Command & Control (C&C) channels to achieve their goals and most impor-

tantly to remain undetected. A botnet [187] is considered as a network consisting of

infected and compromised devices, called bots, zombies or slaves, which are remotely

controlled by an attacker, known as botmaster or botherder. A basic architecture of a

botnet is given in Fig. 5.1 [187]. As seen from the figure, a bot agent obeys every com-

mand received by its botmaster ordering it to initiate, alter the parameters or terminate

an attack. Botnets pose a serious threat to Internet, since they are capable of disrupting

the normal operation of services, networks and systems at will of their botmaster. For

instance, botnets could be used for launching DDoS attacks [188], sending spam emails

134

Chapter 5. DNS-driven botnet C&C architectures 135

on a massive scale [189], identity theft [190], distributing malware or even copyrighted

material [191], just to name a few. Generally, botnets are considered as a relatively inex-

pensive and easy way to conduct illegal activities in the Internet, while their botherders

gain monetary profit by leasing the botnet to potential perpetrators for accomplishing

their criminal activities [192].

Figure 5.1: Botnet Structure

Usually, a device is turned into a bot client, by malware infection, for instance by a

malicious software or by accessing an infected website [193]. After that, the device joins

to a network of bots waiting for commands. The bot takes action only whenever the

botherder says so, through a (covert) C&C channel, while the remaining time stays

silent. In this respect, C&C enables a bot to acquire new instructions and malicious

capabilities, as injected by a remote ill-motivated entity. In the literature, a variety of

C&C topologies have been explored by botmasters with the dual aim to curtail network

breakdowns and system failures, and to cope with deployed defences, hijacking attempts,

and legal shutdowns.

Chapter 5. DNS-driven botnet C&C architectures 136

In this chapter, we firstly describe the basic architectures of botnets and elaborate on

the use of DNS to construct C&C channels. Next, based on the research done in the

context of this thesis, we detail on more advanced architectures with particular focus on

mobile botnets, and practically evaluate them in terms of different kind of attacks.

5.2 Botnet Architectures

Depending on how the bots are remotely controlled by their herder, i.e., how the C&C

channel is structured, one is able to classify them into centralized, decentralized or hybrid

architectures. Indeed, the C&C channel constitutes the most critical part of a botnet.

For the attacker is the way they coordinate the bots and disseminate their commands,

while for the defender represents the point which once it is detected the whole botnet

can be eliminated, hijacked or neutralized.

The centralized architecture (as that of Fig. 5.1) is based on the client server model,

where all bots are directly connected with one, or few, C&C servers. It is also known

as star topology [194]. The C&C servers undertake to coordinate the bots and instruct

them to take action. Although a centralized botnet exhibits optimum coordination and

rapid dissemination of the commands, it also poses a single point of failure. From the

moment the C&C server is detected and deactivated the entire botnet is turned off.

To overcome the aforementioned weaknesses and to evade detection, a decentralized

architecture may be selected to carry out the C&C operation. In this approach, no

central C&C server exists, but rather the various bots communicate with each other

via P2P protocols [195]. In other words, the bots behave as C&C server and client at

the same time. Therefore, if any of the bots is tracked down and deactivated, there are

minimal implications for the robustness of the entire network [196].

The hybrid architecture on the other hand combines the advantages of both centralized

and decentralized ones. That is, in this setting, the bot agents exhibit diverse func-

tionalities. Some of them, temporarily undertake the C&C server role, with the aim to

coordinate the botnet and disseminate the instructions, while the remaining connect to

those C&C servers for receiving instructions before springing to action [197].

Chapter 5. DNS-driven botnet C&C architectures 137

Moreover, the hierarchical architecture [194] allows bots to forward botmaster’s instruc-

tions to their descendants, which they have been previously infected. On the downside,

this topology suffers from network latency issues making it unsuitable for real-time ac-

tivities. Also, any bot client is unaware of the C&C location.

The work in [198] presents a rather theoretical “random” botnet infrastructure in which

the botherder, or any other member of the botnet possesses no information for the other

members of the same botnet. This model is completely contrary to the centralized

model, where the botnet operator knows beforehand all the members of the botnet.

In a random topology, whenever the botmaster wishes to command the bots, has to

randomly scan the Internet to locate them. This model has the benefit that the tracking

of a single bot will not reveal any information about the botnet or the botherder. Of

course, the applicability of such a random structure is questionable, as it imposes limited

coordination whenever an instruction needs to be delivered to the bots.

5.3 Life Cycle of a Bot

A device upon infection follows specific steps (phases) in order to turn into an active

member of the botnet. In the literature, the various phases are described with different

names, but in general they present similar functionality. In the current study, we will

describe the botnet’s life cycle as described in [187, 199] and depicted in Fig. 5.2 [187].

Phase one is the initial injection, where a host is infected into becoming a bot. As

already pointed out, the infection can caused by typical malware infection, for example

by malicious software or by accessing an infected website. The secondary infection phase

updates the device with bot capabilities and the means to contact with botnet’s C&C

channel. So then, the bot can connect to C&C server to receive instructions and updates.

This procedure is also called as rallying. Actually, the third phase is repeated regularly

to ensure that the bot is an active member of the botnet. It is to noted that since in

that phase the bots contact directly to C&C servers, they create distinguished traffic

patterns which can be identified by an IDS. Afterwards, the bot is ready to execute

malicious actions as instructed by its botmaster. During this phase, several messages

may be transmitted amongst botmaster and bots over a short period of time. However,

C&C traffic exhibits low volume and is hardly identified by defence mechanisms. The

Chapter 5. DNS-driven botnet C&C architectures 138

last phase is the maintenance and update of the bot client, so that the bot keeps up

with new capabilities or ways to evade detection techniques.

Figure 5.2: The life cycle of a Bot

5.4 DNS Fluxing

Perhaps the most vital demand for maintaining control of the entire botnet is the ability

for a bot to constantly stay in touch with C&C infrastructure. This requirement is

especially true for botnets that hinge on centralized C&C. That is, a bot will not be

able to receive new instructions if the C&C cannot be located, and as a result, will

continue to probe the vanished C&C in vain. Upon infection, the bot client should

know a way to contact with its botmaster. Simply embedding in the binary of the bot’s

malware a list of static IP addresses corresponding to the C&C servers will jeopardize

the botnet’s robustness. Namely, a reverse engineering of the binary would reveal those

IP addresses and the defenders could shutdown the botnet outright [187].

To cope with this issue, botmasters employ a number of advanced techniques to not only

minimize the probability of bots losing contact with their C&C infrastructure, but also to

render their botnet more agile to hijacking and stoppage attempts. “Fluxing” seems to

be the preferred technology to deal with the aforementioned issues, i.e., uninterrupted

provision of C&C location resolution and failover resilience. Currently, IP Flux and

Domain Flux are the two dominant ways of “Fluxing” [200]. The first one involves

the regular altering of IP address pertaining to a particular FQDN. This potential is

particularly fruitful for botnet operators because it enables them to associate multiple

Chapter 5. DNS-driven botnet C&C architectures 139

IP addresses with a specific host name and change the linked addresses at a rapid pace

(also well-known as “fast-flux”)[6, 201]. Two types of fast-flux are utilized. In Single-

flux, the botmaster correlates numerous, hundreds or thousands, IP addresses with one

domain name. This is accomplished with the exploitation of a RR of A type, which has

minimal TTL value and is registered and de-registered in a round-robin fashion [194].

On the other hand, Double-flux, apart from fluxing the IP addresses of the domain name,

it fluxes also the IP addresses of the corresponding ANS, i.e., the IP contained in the

NS type RR [194].

Domain flux on the other hand is essentially the opposite of IP flux, enabling botmasters

to continuously alter and associate multiple FQDNs to a single IP address or C&C in-

frastructure. An easy way to accomplish domain fluxing is by the utilization of wildcard

DNS records [194]. Recall from section 2.1.11.5 that wildcard records have an asterisk

(‘*’) as the leftmost label and resolve any domain name with the same remaining labels.

Lately, domain fluxing is achieved with the help of a technique known as Domain Gener-

ation Algorithm (DGA) [202]. Given a random seed, DGA produces a number of unique

pseudorandom domain names based on cryptographical operations (one-way hash func-

tion). However, only a small fraction of the generated domain names may resolve to the

IP address of the C&C server. On its initial implementations, the algorithm received

as input the current epoch. Torpig [203] and Conficker [204] for instance followed that

approach. The work in [205] proposes a more advanced method of automatic text gen-

eration that produces genuine-looking domain names. Furthermore, a DGA algorithm

could possibly take as input a secret key which is obfuscated in the malware’s binary,

so as the bot client to be able to authenticate itself with the C&C server. In addition,

the generated domain names are dynamically calculated in volume and are valid for a

limited time period. Thus, the defenders’ attempts focuses on the timely prediction

of the random domain names in an effort to confront them. In the case the defenders

accomplish a successful prediction in time, the bots will be unable to connect to the

C&C infrastructure and receive orders.

So, the bot client could contain in their binary either a list of domain names for the

case they adopt IP fluxing or the DGA accompanied with the seed for the case of DNS

fluxing. In any case, the use of DNS is mandatory. Therefore, as detailed in section

Chapter 5. DNS-driven botnet C&C architectures 140

5.9.1 the majority of the countering solutions focus on the analysis of DNS traffic for

the sake of locating botnets and hijack the C&C channels.

5.5 C&C channels

The bots are connected to C&C channels waiting for the botmaster’s instructions. As

a rule of thumb, these communication channels are based on HTTP or IRC protocol.

In the first case, the communication is disguised inside the normal Web network traffic,

as the usage of Web is allowed in most networks, including corporate ones [206]. On

the other hand, in IRC-based architecture, the bots join to IRC channels and await

commands. Considering that IRC allows multicast communication to specific groups

of clients or private unicast communication amongst two parties, the botherder can

customize the coordination of their bots, i.e., they are able to choose specific bots for

accomplishing a malicious action [187]. In any case, the messages on the IRC channel

are in an obfuscated custom dialect, e.g., encrypted or hashed to avoid disclosure [207].

Mainly, IRC and HTTP based C&C channels are utilized in centralized architectures.

5.6 DNS as C&C Channel

Apart from HTTP and IRC, DNS has been also exploited as a carrier protocol for

establishing a C&C channel. With the help of a technique called DNS tunneling, the

botnet entities transfer data embedded within the RRs of a DNS packet, either query

or response [208]. Usually, the first labels of the domain name in a query is utilized by

bots for transmitting data to the botmaster, while TXT RRs in responses contain the

botmaster’s commands [209]. The key benefit for employing DNS is that it is one of the

few protocols that is very rarely filtered out by firewalls [210].

Dietrich et al., [209] were the first to investigate botnets that take advantage of DNS

tunneling for C&C purposes. The authors analysed by reverse engineering techniques

Feederbot, a botnet malware, which exfiltrate data within sub-domain labels of DNS

query and disseminated the attack parameters in DNS responses. Actually, Feederbot

created an end-to-end communication channel among bots and botherder in the form of

DNS messages. Furthermore, they discovered that DNS queries were headed directly to

Chapter 5. DNS-driven botnet C&C architectures 141

DNS recursive resolvers under the control of the botherder, thus circumventing the DNS

hierarchy. Thereby, the botherder was in position to utilize any domain they desired,

even unresolvable or unregistered. In some other cases, the bot’s malware modifies

the host’s DNS settings, so all DNS traffic is directed to a malicious DNS recursive

[36]. This way, besides the covert channel, the botherder accomplishes to intercept and

possibly manipulate all the requests to Internet resources. Additional, Binsalleeh et

al., [211] classified the patterns of DNS traffic produced by bot malware inspection,

and described how these traces can be utilized for optimum and subtle communication

amongst the bots and botherder.

An extensive investigation about the practicability of DNS protocol as a C&C channel

was conducted by Xu et al., [205]. The authors identified two modes of C&C communi-

cation depending on the messages exchanged between the bots and botherder. The first

one, called codeword communication, permits one-way communication from botmaster

to bot, i.e., it is appropriate for propagating commands for attacks or other similar ac-

tivities. The client queries about the predefined domain name and the response contains

the botmaster’s commands. This type of mode only involves the creation of the proper

DNS response, which could be easily implemented through a free dynamic DNS service.

The second mode called tunneled communication allows for the transmission of data

in both directions, which facilitates the collection of stolen data. In fact, the client

embeds, usually encoded, his message to the queried name. In turn, the botmaster

extracts from the query the bot’s message and places his instructions in the response.

However, the latter needs the installation of ANS under the control of the botherder and

the registration of a zone in the DNS hierarchy. All the aforementioned DNS responses

have minimal TTL value for avoiding caching. Finally, the authors proposed two query

strategies for minimising the forensic signal of such a DNS covert channel. That is, the

attacker can follow an exponentially distributed query strategy, meaning that the bot

can issue DNS queries in such a way that their intervals comply with an exponential

distribution. Otherwise, the bot client can piggyback its queries, e.g., send a DNS query

when legitimate DNS queries are made by the legitimate applications.

A recent real example of botnet with DNS C&C capabilities is Morto worm. As Symantec

reported [212], this worm try to resolve a DNS TXT record. The textual description

Chapter 5. DNS-driven botnet C&C architectures 142

returned contains the encrypted IP address where the bot could find and download a

binary executable.

5.7 Mobile botnets

Over the last decade, mobile devices quickly evolved from pure telecommunication de-

vices to small and ubiquitous computing platforms. Nowadays, such devices are equipped

with enough capabilities to even replace the usage of laptops. Therefore, it comes at no

surprise that these devices attract the attention of resourceful attackers. Whereas the

first appearance of malware that spread via mobile devices has been reported back in

2004 with the emergence of Cabir worm for Symbian OS, the initial materialization of

malware with C&C capabilities happened some years later [22].

In 2009, Symbian/Yxes worm was detected to infect mobile devices with Sybian OS 9.

This worm has the functionality to stealthy communicate via device’s network interface

with a remote server in order to send an HTTP request. Although this malware does

not create a real C&C channel, it demonstrates that with few modifications to its func-

tionalities it can easily construct one [213]. In fact, later that year (Nov. 2009), the

first ever mobile botnet appeared, namely iKee.B bot client. This malware targeted

jailbroken iPhones with the aim of turning them to bots. When the binary of iKee.B is

installed on the infected iPhone, among other malicious functionalities, it periodically

sends a HTTP GET request to the C&C server (based on a centralized architecture)

with the aim of receiving new scripts to update its binary. The corresponding malware

was released in Europe, while the C&C server was located in Lithuania [214]. For the

case of Android platform, Geinimi malware emerged in Dec. of 2010, presented similar

to iKee.B C&C capabilities based on HTTP protocol. This malware actually receives

commands instructing it to steal private data from the mobile device [215]. A more ad-

vanced way for botnet coordination is exhibited by AnserverBot, where the bot agents

acquire the commands from encrypted contents posted in blogs [216].

Excluding legacy network interfaces for connecting to the Internet (Wi-Fi, 4G), in a

mobile botnet, the bots are able to communicate via Bluetooth, SMS or MMS messages

with their master or with each other [217]. Singh et al. [218] evaluated the Bluetooth

technology as a means for establishing a C&C channel. They proposed a scenario in

Chapter 5. DNS-driven botnet C&C architectures 143

which the herder sends the commands to devices with the “highest” Bluetooth connec-

tivity, that is, to bots that are connected with many infected devices. Afterwards, these

bots forward the commands to their own connections. The authors concluded that the

usage of Bluetooth will endorse the spread of the commands and reduce the detectabil-

ity of the underlying botnet, as the volume of traffic which passes through observable

channels (Wi-Fi or 4G data) will be minimum. Moreover, Hua and Sakurai [219] pre-

sented a botnet capitalizing on SMS messages to materialize its C&C channel. In this

decentralized architecture, the various bots forward the commands to neighboring nodes

via texting, thus forming a P2P infrastructure. Expanding this approach, Mulliner and

Seifert [220] proposed a hybrid botnet that combines SMS and HTTP protocol as C&C

for reducing the billing cost, and therefore avoid to draw the suspicion of the device’s

owner.

More recently, Xiang et al. [221] proposed Andbot, an advanced mobile botnet for

Android mobile devices. Andbot uses a centralized C&C topology, that is, the bots

connect to specific MicroBlog services. However, the herder utilizes different blog pages

of the services, with the URL of the blogs generated by a predefined algorithm, similar to

DGA as detailed in section 5.4. Therefore, if a blog is blacklisted, the bots will connect

to the next blog page to retrieve their orders. The authors call this technique as “URL

Flux” in correspondence with that of Fast Flux (see section 5.4. Similarly, SoCellBot

proposed by Faghani and Nguyen [222] takes advantage of the Social Networks (SN).

Specifically, this type of bot exploits the messaging system of a given SN to infect mobile

devices and also builds a covert C&C for the coordination among each bot and the herder.

In the same context, Zhao et al., [223] abuse cloud-based messaging services to distribute

orders to infected devices. Finally, an interesting approach is presented by Hasan et al.,

[224] where the authors do not investigate the network capabilities of a mobile device

but rather its embedded sensors including optical, audio, vibration and magnetic field

ones as a means for creating a covert C&C. For example, a potential botherder could

disseminate commands via acoustic or magnetic signals in nearby infected devices.

5.7.1 Benefits and Limitations of Mobile Botnet

Given the fact that mobile devices are equipped with powerful capabilities and features,

it is corollary to get targeted by potential attackers. As already pointed out in section

Chapter 5. DNS-driven botnet C&C architectures 144

5.7, nowadays, mobile devices have networking functionalities, i.e., they can connect to

Internet via WiFi connections or via mobile broadband, and hence are able to utilize

popular network protocols such HTTP, DNS, etc. Even more, their owners tend to

constantly keep the wireless or data connection turned on in order to stay tuned with

their favorite SN or connected to an Instant Messaging (IM) or Voice over IP (VoIP)

service. Another advantage of the mobile botnets is that they do not exhibit diurnal

behavior as that of the equivalent PC-based botnets [225], since mobile devices rarely get

turned off during the night period. Moreover, mobile devices are capable of acquiring

new IP addresses very often [226]. Thereupon, traditional defence mechanisms that

block requests stemming from blacklisted IP addresses are not normally applicable to

this case. Furthermore, a resourceful botmaster could configure the bots to utilize only

open Wi-Fi networks in an effort to eliminate the traces of the true perpetrator behind,

say, a DDoS incident [227].

On the other hand, there are several issues that complicate the deployment of a mobile

botnet and therefore it should carefully be considered by the botnet operator [221].

Firstly, the battery consumption of the mobile device is a critical factor. In the case the

power consumption - as the bot agent drains the device’s battery - is far more quicker

than that of normal usage, then it will notify the end-user that something goes wrong

with their device. This situation would probably alert them to deactivate the device

and, at least temporarily, disconnect it from the botnet. Secondly, providing that the

volume of the data traffic created by the C&C channel or the execution of the commands,

exceeds a normal threshold, then the overloaded network connection (or even worst the

increased billing cost) will certainly raise the suspicion of the device’s owner. Finally,

the allocation of internal IP addresses rather than external, it will hamper the creation

of C&C channel similar to PC-based botnets.

5.8 New facets of mobile botnets

Based on our research, this section introduces new facets of mobile botnets. Our inten-

tion is to propose and scrutinize new botnet architectures based on mobile proxies for

the sake of protecting the botmaster’s true identity. That is, the botmaster’s actions

are concealed behind the mobile devices that undertake to temporarily play the role of

the C&C server.

Chapter 5. DNS-driven botnet C&C architectures 145

As already pointed out in section 5.5, the most valuable asset for a botnet operator is

to retain its anonymity. So, the idea here is to employ one or multiple mobile proxies in

front of the botmaster. This means that all the bot agents communicate with a proxy

rather than the botmaster directly. More importantly, both this proxy’s FQDN and

IP address change constantly (by exercising both domain and IP flux) with the intent

of minimizing the chances of having the botnet detected. On the other hand, using a

mobile device as a HTTP proxy to carry out C&C could significantly deplete its energy

reserves. So, a betterment is offered, having a separate PC-based botnet as a sidekick

to handle proxy operations. Although this may slightly complicate the deployment of

the botnet, as the botherder needs to also infect typical PCs, it is estimated to increase

the overall stability of the botnet. On top of that, a third powerful setup of the C&C

infrastructure is put forward in which all botnet communications exploit DNS protocol

as a covert channel. This further contributes in keeping the botnet operation obscured,

as all C&C transactions appear to the security systems, say, a firewall or IDS perfectly

legitimate in the form of DNS queries and responses. Moreover, this layout infuses

simplicity given that no HTTP proxy or other intermediate server is required. All the

above mentioned architectures are evaluated through the use of a legacy TCP flooding

attack and a more advanced DNS amplification one as detailed in section 4.2.

5.8.1 Preliminaries and attack planning

The core idea behind the introduced C&C architectures is to design and evaluate a mo-

bile botnet that will be able to launch DDoS attacks against alluring targets based on

the DNS amplification attack scenario given in [18] and detailed in section 4.2. Bear in

mind that the latter section presents a new flavor of DNS amplification attack, which

is reported to achieve a 44 amplification factor depending on the scenario parameters.

Its main advantage is that it does not disclose any illicit or dubious activity during its

execution, and thus to our knowledge is the most advanced of its kind so far. Namely,

the network traffic during the execution of the attack seems to be perfectly legitimate

(excluding the flooding effect of course). Moreover, the attack is very hard to be traced

back to the perpetrator who, as a result, enjoys the advantage of anonymity. The sce-

nario exploits the existence of network devices which operate as (open) DNS forwarders

and simultaneously utilizes large DNSSEC RR as payload to maximize the overall am-

plification factor. A very recent work [141] strongly supports this argument, namely

Chapter 5. DNS-driven botnet C&C architectures 146

DNSSEC-related RR can be exploited to augment the amplification factor of a DNS

amplification attack. On the other hand, as already mentioned in section 5.7, the mush-

rooming of mobile devices connected to the network and the absence of security measures

predicts the spread of mobile botnets.

Furthermore, in this chapter, a second variation of DDoS attack, namely a TCP flooding

one is examined taking advantage of the proposed C&C architectures. Its aim is to

demonstrate that the proposed architectures can be employed also for any kind of DDoS

attack and are not solely dedicated to DNS amplification. In this case, the bots unleash

a hefty number of TCP packets towards network ports that are well-known to host

popular services, for example WEB, FTP, SSH, etc. Figure 5.3 depicts how the second

attack scenario unfolds.

Figure 5.3: TCP Flooding Attack

As explained in section 4.1, for the implementation of a DNS amplification attack or any

other type of reflection DoS attack, it is crucial for the bot to be capable of conducting

IP packet spoofing and in particular spoofing the source IP address of UDP packets.

As Google’s Android OS does not permit apps to invoke such actions, we develop a

dedicated malicious app that has embedded the necessary libraries for executing Scapy

tool [162] and other apps and scripts. However, this app needs to gain administrative

privileges (root) for being able to install itself on the infected mobile device. Therefore,

our intention is to disguise the aforementioned app into a legitimate looking one, such

as an anti-malware scanner. This way, the owner of the device will provide the required

permissions without knowing the true purpose of the app (given of course that the device

is rooted/jailbroken). However, it is to be noticed that the way the bots are infected

lies out of scope of this PhD thesis.

Chapter 5. DNS-driven botnet C&C architectures 147

In a nutshell, we design three scenarios for the creation of the C&C channel. The first

two employ a C&C HTTP-based server, while the third uses DNS protocol as the covert

communication channel.

5.8.2 Architecture I: A purely mobile botnet

The first architecture is given in Figs. 5.4 to 5.8. As observed from the figures, it involves

the following entities:

Figure 5.4: Architecture I: Initialization Phase

• A typical desktop computer that is responsible for the coordination of the bots,

and therefore is controlled by the botnet operator.

• An HTTP server (hereinafter also referred to as “proxy”). As detailed in the

following, the “proxy” role is interim; it is assigned to one of the mobile bots and

frequently reassigned to another.

• A DNS ANS which is responsible for the resolution of the proxy’s domain names.

Chapter 5. DNS-driven botnet C&C architectures 148

Figure 5.5: Architecture I: Migration Phase

• The bot agents, that is, infected mobile devices under the botmaster’s implicit

control.

In this architecture, the botmaster communicates directly only with the bot which is

currently the proxy. Then, the proxy undertakes to disseminate the commands to the

rest of the botnet’s members. Following, the various bot agents send a DNS request

to the DNS ANS with the aim to acquire the mapping IP address of the proxy. As

a final step, they transmit an HTTP request to the proxy and receive the commands

placed by the botmaster in the form of a HTTP response. It is therefore obvious that

the botherder remains always hidden behind the transient proxy. The various phases of

the botnet C&C establishment are analyzed below:

Chapter 5. DNS-driven botnet C&C architectures 149

Figure 5.6: Architecture I: Recovery Phase

• Initialization phase - For the botnet to boot up, we consider that the very first

proxy-bot exists on a specific IP address. This is a logical assumption as the

botnet operator can always employ a mobile device on their own. As the proxy

will shortly shift, we assert that this would not jeopardise the camouflage of the

botnet. First off, as it is depicted in Fig. 5.4, the botmaster queries whether the

initiatory proxy is alive and listening 1 . In the case of a affirmative response,

they update the zone file of the DNS server with the RR that links the domain

name of the proxy with its IP, that is, following a Fast-Flux strategy (see section

5.4). Naturally, this domain name is not a trivial one, but rather the output of the

keyed-hash message authentication code (HMAC-SHA256) of the current global

date with a secret code, which in our case is the string “hermes” 2 . Note that

with the use of the HMAC function, the domain name of the proxy will be different

every day, and thus evade suspicion. Also, this rapid turnover makes it very hard

Chapter 5. DNS-driven botnet C&C architectures 150

Figure 5.7: Architecture I: Amplification Attack

to track down or block every possible domain name. Although in our case only

the leftmost label of the domain label is generated, a potential attacker will easily

register FQDNs that will be produced by the aforementioned generation algorithm

or even employ dynamic DNS providers. In such a case, the cybercrook is able

to leak out even less traces of the botnet’s infrastructure. Following, all the bots

resolve the domain name of the proxy 3 and are able to connect with it via HTTP

protocol. This query is repeatedly issued for example every couple of minutes in

order the bots to become aware of any change regarding the proxy’s IP address.

After that, as the bots know their proxy, they create an HTTP GET request

that includes information of their operational status and settings, namely RAM,

CPU, level of battery power, device’s ID (International Mobile Equipment Identity

(IMEI) number) and OS version 4 . In our scenario, these values are transmitted

in cleartext. Nevertheless, a more careful botherder could encrypt them with the

help of, say, a symmetric cipher. On the opposite, an encryption process will

cause significant power consumption and require some sort of key management.

Chapter 5. DNS-driven botnet C&C architectures 151

Figure 5.8: Architecture I: TCP Flooding Attack

In any case, we obfuscate the IMEI by padding meaningless numbers at the front

and the end of the value. It can be safely argued that the remaining values do

not directly provide any useful info for the defender to trace the botnet. These

provided information are used later on for proxy migration. In turn, the proxy

collects all the information, adds to each record the bot’s IP and responds with

the status of the attack, indicating what action the various bots must take. For

the moment, as the botnet is in its initialization phase, the bots should remain

silent.

• Proxy migration phase - Every, say, five minutes the proxy should migrate to an-

other bot. This procedure is presented in Fig. 5.5. As observed in the figure, before

the migration begins, the botmaster requests the file that contains all the infor-

mation of the bots 1 . For the protection of the latter, this file is kept (and sent)

encrypted with the public key of the botmaster. When the herder receives and

decrypts the data with their private key, they update the corresponding database

Chapter 5. DNS-driven botnet C&C architectures 152

(DB) with the members of the bot. If a member is already registered in DB, they

simply update its IP address and battery level, otherwise they create a new entry

based on the device ID 2 . Next, the herder deduces which bots are capable of

undertaking the role of proxy, based on their status, i.e., have enough computa-

tional power and acceptable battery level 3 . From the possible candidates, they

choose randomly one, and notify it to change its mode from simple bot to proxy

4 . Also, they update the attack status in the new proxy to make it available to

the bots to acquire. In case a migration problem occurs, the botmaster selects an-

other candidate, otherwise they update the zone file 5 by modifying the relevant

RR with the new IP address. Finally, the herder informs the previous proxy to

change its mode back to bot and to erase any information related to the botnet,

namely the encrypted text file that contains the information for all the members

of the botnet 6 .

• Recovery phase - One significant issue that needs to be considered is the case

where the proxy fails. This, for example, may happen because the proxy-bot is

deactivated by its owner or its battery reserves have been depleted. In the case

a recovery process has not been foreseen, then the botnet will be uncoordinated

for some time until the next proxy migration phase takes place. For this reason,

as depicted in Fig. 5.6, the herder regularly sends an HTTP request (heartbeat)

to the current proxy to examine whether it is alive. If not, the recovery phase

initiates. Similarly to the mitigation phase, the botmaster chooses one of the

candidate bots for the role of the proxy, notifies it to change its mode and the

botnet attack status. At the same time the botmaster updates the zone file for

announcing the new proxy to the bots. As the connection with the previous proxy

was lost, in the case of restart, the app at the bot side is configured to operate

as client and to also erase the information of the botnet, if any. This way, the

previous proxy will begin to operate as a simple bot client, and therefore wipe out

all the valuable traces of the botnet members.

• Attack phase - Whenever, the botnet operator decides to launch an attack, he

triggers the attack phase. As depicted in Figs. 5.7 and 5.8, they notify the proxy

for the status of the attack 1 and the corresponding parameters 2 . As explained

in section 5.8.1, in our case, we implement two DDoS attacks; the first one is based

on [18] and targets mainly DNS authoritative servers (see Fig. 5.7), while the latter

Chapter 5. DNS-driven botnet C&C architectures 153

unleashes a typical TCP flooding attack targeting a multipurpose server (see Fig.

5.8). As illustrated in Fig. 5.7, for the amplification attack, the botmaster sends

the IP of the victim and a text file containing all the (open) DNS forwarders and

RDNS that will be exploited during the assault. Note that these two messages are

silently sent without an ACK, since the proxy affirms that it is alive in 1 message

round-trip. Following, the proxy changes its attack status to “Amplif”, meaning

that a DNS Amplification attack must be unleashed. After that, as soon as the

various bots connect to the proxy, they receive the attack status and the associated

parameters 5 . Soon after, they start to launch the DDoS attack. At the time the

botmaster wishes to terminate the assault, they change the attack status to the

string “NULL”. The bots are informed for that change since as already pointed

out in the initialization phase, the bots repetitively query the proxy to learn about

its status. Bear in mind that during the attack phase the proxy may migrate to

another bot. However, the attack continues uninterrupted because the new proxy

is updated with the current attack status and the relative parameters. In a similar

manner, for the case of a TCP connection flooding represented in Fig. 5.8, the

botmaster changes the attack status to “TCP” 1 and informs about the victim’s

IP address 2 . When the bots become aware of the target, they continuously

issue large TCP packets to the network ports of the victim that are well-known to

host popular services, e.g., WEB, FTP, SSH, DNS, etc.

It is stressed that depending on the size of the botnet, the botherder will enable two or

more proxies for the dissemination of the commands. Thus, the zone file will contain one

RR for each proxy and the various bots will randomly choose one of them to connect,

say, in a round-robin fashion. This segmentation is also backed up by the fact that the

mobile devices may not have the sufficient computational power to serve a large amount

of HTTP requests.

5.8.2.1 Architecture II: Mobile Botnet with PC-based proxies

The previous architecture could be considered as a pure mobile botnet, given that all bots

are mobile devices. However, for diminishing the communication and processing costs,

we came up with the idea of employing standard PC-based bots as proxies. Consequently,

this second architecture constitutes a variant of the first one, with the difference that

Chapter 5. DNS-driven botnet C&C architectures 154

only desktop PC bots acquire the role of the proxy machine (HTTP server) and not

mobile ones. The advantage of doing so is that a PC has fewer chances to become non-

operational due to power constraints etc. Also, it has far more computational capabilities

to serve a larger number of bots. Putting it another way, in this architecture, the burden

of the attack is undertaken by a mobile botnet, while the coordination of the mobile

botnet is carried out by a PC-based botnet. To sum up, this scenario uses the same

entities as the first one except the desktop PC bots. Similar with architecture I, we

perceive four distinct phases.

Figure 5.9: Architecture II: Initialization Phase

• Initialization phase - As depicted in Fig. 5.9, similarly to the first scenario, the

botmaster queries whether the proxy is alive 1 and updates the zone file with its

IP, if this is the case 2 . The main difference is perceived in steps 3 & 4 , where

the members of the PC-based botnet are introduced. In 3 the PC bots resolve

the domain name of the proxy to which following they send an HTTP request for

Chapter 5. DNS-driven botnet C&C architectures 155

Figure 5.10: Architecture II: Migration Phase

registering 4 . Additionally, the proxy manages a list with the details of the PC-

based botnet, from which the botmaster chooses the candidates for determining

the next proxy.

• Proxy migration phase - Like in the first scenario, the migration phase happens

regularly for the transition of the proxy to be completed. As shown in Fig. 5.10,

prior to migration, the botmaster requests the files that contain all the operational

information of both the PC and mobile bots 1 and updates the corresponding

DB 2 . From the available PC bots, the botherder chooses randomly one 3 and

notifies it to alter its mode from simple bot to that of a proxy 4 .

Chapter 5. DNS-driven botnet C&C architectures 156

Figure 5.11: Architecture II: Recovery Phase

• Recovery phase - This phase is exactly the same as in architecture I,, where the

candidates are picked up from the list of the infected PCs. This process is also

detailed in 5.11. However, we expect that the probability of PC-based proxy to

crash is much lesser than that of a mobile one.

• Attack phase - For the launch of the attack, the botherder changes the attack

status in the proxy 1 and provides the required parameters 2 , namely the IP

address of the victim and the type of the attack (Fig. 5.12 and 5.13). Through the

use of HTTP GET requests 5 the commands, either “Amplif” or “TCP” attack

status, are being disseminated to the mobile bots 6 for them to start the DDoS

assault. Note that the remaining PCs of the PC-based botnet do not participate

in the actual attack as an extra precaution against detection since their role is

Chapter 5. DNS-driven botnet C&C architectures 157

Figure 5.12: Architecture II: Amplification Attack

more valuable as proxies than attacking bots. Actually, this decision is up to the

botherder and usually depends on several factors, including the number of the

PC-based bots, their geographical dispersion, etc.

5.8.2.2 Architecture III: Exploiting DNS as covert C&C channel

The main concept behind this third architecture is to use DNS protocol as a covert

channel for coordinating the botnet. An overview of this architecture is depicted in Fig.

5.14. The core idea here is that the botmaster controls a DNS ANS and publish the

relative parameters of the attack as RRs to that zone. Thus, the various mobile bots will

neither contact the botmaster directly nor via a proxy, but instead they directly receive

their instructions through the DNS ANS. Similar to previous scenarios, as observed from

Fig. 5.14, the domain name of the RR is not a trivial name, but rather the output of

the HMAC-SHA256 hash function taking as input the current global date and a secret

Chapter 5. DNS-driven botnet C&C architectures 158

Figure 5.13: Architecture II: TCP Flooding Attack

alphanumeric sequence. Note that the use of a hash value ensures that the domain

name will be disparate every day, and thus evade suspicion. Once more, although in

our proposal only the leftmost label of the domain label is random, a potential attacker

will easily register domain names that will be produced by the generation algorithm. In

such a case, they are able to exploit various DNS ANS and leave minimum traces of the

botnet’s C&C activity. The two phases that complete this attack variation are given

below.

• Initialization phase - Originally, the zone file of the DNS ANS contains only the

RRs that are required for the operation of the zone, namely which nameserver

is responsible for that zone (NS record) and in which IP address it is located (A

record). For the coordination of the attack, the botmaster updates dynamically

the zone file with two RR of type A 1 . As explained in section 2.1.9, this type

Chapter 5. DNS-driven botnet C&C architectures 159

Figure 5.14: Architecture III: Initialization Phase

Figure 5.15: Architecture III: Amplification Attack

of RR maps a domain name with its corresponding IP address. The first A record

corresponds to the amplification attack, while the second to the TCP flooding one.

The purpose of these records is to signal the beginning of the attack and indicate

which the target is. The domain names of these records are generated by the

HMAC-SHA256 function, getting as input the current date and the alphanumeric

“zeus” and “artemis” respectively. With the usage of the current global date, the

name of the RR is different every day. In the beginning, the A RRs map to the

Chapter 5. DNS-driven botnet C&C architectures 160

Figure 5.16: Architecture III: TCP Flooding Attack

private IP address 192.168.1.1, indicating that the bots must not take any action

and stay silent. All the mobile bots periodically generate the random domain

names and resolve their IP addresses 2 & 3 . If the answer contains the IP

address 192.168.1.1, then the bots stay silent. Otherwise, they obey the attack

instructions as the case may be. It is not compulsory for the various bots to

directly issue the DNS queries toward the ANS controlled by the botmaster, but

rather they could consult the local recursive resolver. In such a case, RRs should

have a zero TTL value.

• Attack phase - Whenever the botmaster wishes to unleash a DDoS assault, they

dynamically modify the contents of the zone file with the parameters of the attack.

Depending on which kind of attack they desire to execute, i.e., DNS amplification

(Fig. 5.15) or TCP flooding (Fig. 5.16), or even both, they add to the corre-

sponding A RR the IP address of the victim 1 . As for the DNS amplification

attack, the bots require the list of the exploited DNS forwarders, so the bot-

master adds one or more TXT RRs that contain this list. Usually, the number

of the DNS forwarders employed in [18] is large enough, thus the added TXT

RRs are more than one. Hence, the TXT RR that matches to the domain name

HMAC-SHA256(“zeus”+date) indicates the number of the required TXT RR for

the publication of the complete list of the forwarders, while the RRs of the domain

Chapter 5. DNS-driven botnet C&C architectures 161

name HMAC-SHA256(“zeus”+date)1, HMAC-SHA256(“zeus”+date)2, etc., con-

tain a fragment of that list. Consequently, at the time the bots observe the change

of the A record, they know that they should commence the corresponding DDoS

attack(s) 2 . After that, they resolve the TXT record to get informed of the size

of the list 4 . Finally, the bot agents issue as many DNS queries as needed to ac-

quire the complete list of the DNS forwarders 5 . Then, they are ready to initiate

the attack(s). Any time the attacker desires to terminate the assault, they modify

the A RR to the private IP address 192.168.1.1 and removes the appropriate TXT

RRs. So, the bots are notified of the change and they cease their part of the attack

instantly. Similarly, for the TCP flooding attack case, the aggressor updates the

RR corresponding to the domain name HMAC-SHA256(“artermis”+date) with

the IP address of the victim. Thereupon, the bots become aware that they have

to start TCP connections to that IP address 3 . From that point onward, the

bots issue a surge of TCP queries to ports known to host popular network services

until the botherder modifies the IP address of the RR back to 192.168.1.1.

5.8.2.3 Other considerations

The decision of using a collateral PC-based botnet for dispatching proxy communications

depends on the size of the mobile botnet and other parameters as the case may be.

For example, it is natural to think that the greater the number of mobile bots the

greater the need for PC-based proxies in order to easily control all of them and increase

robustness.. However, if the botmaster already is in control of such a PC-based botnet it

can always take advantage of its services. Furthermore, depending on the attack impact

the botmaster wishes to accomplish, i.e., immediate collapse of the target or “low and

slow” attack, they will form accordingly the size of the botnet. Segmentation of the

whole space of the botnet is also possible. So overall, in the eyes of the botmaster it is

basically a matter of how rich, populous and scattered the bot arsenal is.

5.8.3 Comparison of architectures and Results

The aforementioned architectures present a novel mechanism to coordinate a mobile

botnet. The first two exploit one of the infected device to act as HTTP (proxy) server,

while the third one uses a DNS ANS as the means for disseminating the commands.

Chapter 5. DNS-driven botnet C&C architectures 162

The basic difference between the first two architectures resides on the fact that a mobile

device has limited resources to handle a large number of bot clients. On the other

hand, a PC-based proxy is more reliable and has fewer chances to crash or go offline.

Additionally, the PC-based bots do not participate in the final DDoS attack(s), they do

not reveal directly their location, and thus is more challenging to get detected. In any

case, our results described in the remaining of this section indicate that if the attacker

employs multiple proxies simultaneously, the impact of the attack will be the same in

both cases (i.e., either with mobile or PC-based proxies). The most notable advantage

of the third scenario is that the bots do not directly connect to the botmaster, but rather

they issue legitimate DNS queries for frequently changing the RRs that correspond to the

targeted machine. More importantly, since mobile devices are used for accessing websites

or other network resources by their owners, the portion of DNS traffic originating from

the botnet coordination is minimal compared to the whole traffic.

For creating the botnet and implementing the attacks, twelve Sony Xperia L Android

Jelly Bean mobile devices were utilized in total. Each device has a dual core 1GHz CPU

and 1GB RAM and was connected to a wireless hotspot. On the other side, the victim

was a desktop machine equipped with a Dual 2.8 GHz CPU and 4 GB RAM connected

to a 100 Mbps network interface. This machine acts as DNS ANS having the DNSSEC

extension enabled. For each scenario and for each type of attack a botnet consisting of 1,

6 and 12 members has been created. In this way, we were able to infer the accumulative

impact of the gradual activation of the mobile bots. Our tests demonstrate that every

mobile bot is capable of executing 3 instances of the client attack script simultaneously

without increasing the computational burden to a level that is perceptible by the owner

of the mobile device.

Naturally, the number of attack scripts a device can bear prior its user notices it de-

pends on the underlying hardware and OS. Therefore, given that each bot reports its

performance capacities to the C&C server, the latter may dynamically instruct the bot

about the number of attack instances it should initiate. The concurrent execution of

three instances of the attack script creates a stream of nearly 34 DNS queries per second

on average or 2.33 KBps. Also, this implies that in the ideal case each attacking bot is

capable of flooding the target with 34 DNS responses per second. However, this data

volume is multiplied by the amplification factor, which as it is discussed further down

varies from 32.7 to 34.1 and it is solely dependent on the behavior of the chosen DNS

Chapter 5. DNS-driven botnet C&C architectures 163

forwarders. Consequently, a single attacking bot unleashes on average a stream of 76.9

KBps towards the victim. For compiling the pool of DNS forwarders to be used in the

attack, we considered to examine the network IP blocks of Greece similar to [18] (details

on this procedure are given in section 4.2). From the located open forwarders, we kept

about a number of 1.1K because those return back large DNSSEC-related RRs.

Regarding architecture I, Fig. 5.17 depicts the level of bandwidth consumption at the

victim’s side for both attack variations and for 1, 6 and 12 bots respectively. The flow of

the inbound traffic remains similar for the rest of the architectures. Furthermore, table

5.1 details the average volume of the inbound network traffic for all three architectures.

The case of the single bot is implemented with the intent to accurately calculate the

amplification factor of the DNS amplification. During this experiment 6,000 DNS queries

or 0.4 MB was dispatched by this single bot, given that in average our DNS request had

a size of 70 bytes. On the other end, the victim received 13.64 MB of network traffic,

which is translated to an amplification factor of 34.1. We can conclude that in total the

DNS amplification attack creates larger volume of traffic towards the target because of

the amplification nature of the attack. Also, a smoothness in the incoming traffic of the

TCP flooding can be observed due to the direct connection amongst the bots and the

victim. While for DNS amplification a variation with both upward and downward peaks

is presented as the forwarders interpose in the communication.

As expected, the second architecture reveals pretty much the same results with the

previous one. Similarly to the first scenario, a single bot was able to send about 6,000

DNS queries or 0.4 MB and the target was flooded with 13.1 MB, which is reflected to an

amplification factor of 32.75. As the current configuration facilitates the recording of the

proxy’s network traffic, we analyze the required HTTP transactions for the coordination

of the botnet. As such a procedure imposes the usage of a sniffer app on the proxy side,

it is normal to affect its operation as a bot too. However, with high confidence, it is

asserted that the following analysis is identical for both architectures, because the proxy

operates exactly the same way.

As observed from Fig. 5.18(a), between the botmaster and the current proxy, two types

of transactions take place. The first one, depicted in red color, happens during the

attack phase, where the botmaster sends the attack parameters. The three red upward

pointing peaks observed in Fig. 5.18(a) occur during the time of the launch of the

Chapter 5. DNS-driven botnet C&C architectures 164

(a) Botnet size : 1 bot

(b) Botnet size : 6 bots

(c) Botnet size : 12 bots

Figure 5.17: Inbound traffic in MBps for both attack variations of Architecture I

attack, that is, when the botmaster transfers the list with the DNS forwarders. The

second type displayed in blue color refers to the phase of migration. This traffic is

mostly evident during the attack, as the botmaster sends again the list of the forwarders

to the new proxy. Moreover, between the HTTP proxy and a bot the only noticeable

traffic occurs during the attack phase (Fig. 5.18(b)). At that moment, the proxy informs

each connecting bot about the available list of DNS forwarders, thus creating a peak of

0.25 MBps. During the attack, there is a tiny amount of traffic as the proxy sends the

Chapter 5. DNS-driven botnet C&C architectures 165

list regardless if the bot has already receive it or not. This happens because the proxy

does not record if a bot is already in possession of the list required for the amplification

attack.

(a) Network traffic between Botmaster and PC Proxy

(b) Network traffic between Proxy and a single Bot

(c) DNS traffic for the botnet coordination

Figure 5.18: Architecture III: Network traffic generated due to botnet coordination

Similarly to the previous ones, the third scenario reveals nearly the same outcome on

the victim side. A single bot was capable of sending about 6,000 DNS queries or 0.4

MB and the target was flooded with 13.4 MB, which corresponds to an amplification

Chapter 5. DNS-driven botnet C&C architectures 166

factor of 33.5. For this scenario is interesting to examine the burden imposed on the

DNS ANS for the coordination of the botnet. Specifically, we capture the DNS network

traffic using a sniffer app. As it is observed from Fig. 5.18(c), there are three upward

pointing peaks in the network traffic which correspond to the launch of the amplification

attack. Specifically, the initial bursts originate from the dynamic update of the zone

with the attack parameters, while the subsequent spikes are due to the requests by the

various bots about the necessary DNS records during the attack phase.

Architecture I Architecture II Architecture III

Number of at-
tacking nodes

Amplif
TCP
Flooding

Amplif
TCP
Flooding

Amplif
TCP
Flooding

1 (3 scripts) 0.075 0.042 0.074 0.042 0.074 0.042

6 (18 scripts) 0.45 0.27 0.43 0.25 0.37 0.22

12 (36 scripts) 0.75 0.5 0.85 0.58 0.80 0.57

Table 5.1: Inbound traffic in MBps proportional to the number of attacking bots per
architecture

5.9 Countermeasures

One way to cease the operation of a botnet is to block or completely interrupt the C&C

channel. As already pointed out in section 5.4, when the bots are unable to contact with

their botherder they cannot receive their commands. Following, we explain the various

tactics followed by the defenders for tracking and shutting down the operation of a

botnet. Initially, section 5.9.1 describes DNS-based solutions exhibiting possible ways

to reveal the members of a botnet, either simple bots or C&C servers, while section 5.9.2

discusses DNS-based hijacking methods of C&C infrastructure.

5.9.1 DNS-based Botnet detection

In their majority, the measurements of this type are based on the analysis of DNS

network traffic, either by active probing or passive investigation, and aim to discern

between domain names that are part of a flux mechanism and benign ones. As soon as

the possible rendezvous points of the C&C server are perceived, then as explained in

section 5.9.2 further down stoppage attempts can be initiated.

Chapter 5. DNS-driven botnet C&C architectures 167

5.9.1.1 Detection of DNS fluxing

The first empirical study of DNS Fast-Flux was conducted by Holz et al. [228] (Feb

2008). The authors observed that fast-flux agents were located in disparate IP addresses

belonging to various ASNs. Therefore, the number of distinct DNS records of A type

might be large in a single lookup. Moreover, the number of NS type records might exhibit

similar behavior since in the case of double flux also the ANS are part of the fast-flux

mechanism. The authors designated a set of features which considered the number

of divergent IP addresses in a single and multiple lookups, the number of ASs that

these belong, and the number of DNS NS. They experimented with the aforementioned

metrics against manually verified fast-flux and legitimate domains in order to calculate

the significance weight for each metric. In overall, they recorded over 50,000 unique IP

addresses during the measurement period of four weeks for the case of Storm Worm.

According to the authors’ evaluation, the proposed metrics could contribute to the

automatic identification of fast-flux domains and to blacklist them. The novelty of the

work in [228] is that it is one to designate specific characteristics of fast-flux networks

that, combined together, could allow to accurately detect whether a suspicious IP address

hosts a fast-flux service or not.

Passerini et al. (July 2008) [229] presented a system to detect and monitor fast-flux

service networks, called FluXOR. This system applies a set of suitable features for dis-

tinguishing between malicious and legitimate domain names. The detection features

used by FluXOR depend on specific domain names’ characteristics, the degree of avail-

ability of the potential fast-flux network, and the heterogeneity of the corresponding flux

agents. In total, the authors determined 9 distinct features based on the aforementioned

3 categories. For the first category, they concluded that domain names related with fast-

flux services are registered at a rapid pace and hence are active for short time. In fact,

the average age of malicious domains is less than five weeks, while for benign is much

greater. Also, these domains are registered to specific (suspicious) registrants located

to countries with lax legislation. As concerns the degree of availability, the number of

involved IP addresses and the value of TTL are taken into consideration. Finally, for es-

timating the heterogeneity of flux agents, the system investigates the number of discrete

networks, ASs, host (reverse lookup) and network names, and organizations that the IPs

belong to. Following, by using the 9 features, they applied a naive Bayesian classifier

Chapter 5. DNS-driven botnet C&C architectures 168

to a dataset of domain names collected from spam emails. They planned to also utilize

web crawlers and honeypots as a source of suspicious domain names. The corresponding

classifier was able to identify correctly flux domains with zero false positive. For a month

deployment, FluXOR detected 387 fast-flux service networks, which totally composed

by 31,998 unique bots. It is believed that the detected bots were associated with 16

different botnets. The contribution of the work in [229] is that expands the number of

features to 9, considering other aspects of domain names not solely correlated with DNS

RRs. Namely, it utilized also WHOIS queries and registration information.

At about the same time, Nazario et al. [6] (Oct 2008) proposed a system for identifying

fast-flux domain names. Their system is designed to first collect suspicious names from

spam mails, blacklists or malware analysis, and then to investigate the relative DNS RR

for the collected domains. As in the previous works on this topic, their classification

were based on features typical for fast-flux domain names, for instance, low TTL value,

number of different IP addresses corresponding to the same domain name, network dis-

tance amongst these IP addresses, number of distinct AS that belong, and so forth. The

idea behind selecting these criteria is that a botherder will choose to set corresponding

DNS records (of A type) to have a short TTL value and be widely dispersed across the

world with the purpose of providing maximum availability of their C&C infrastructure.

Nevertheless, for the case of Content Delivery Networks (CDN), a whitelist is used to

exclude legitimate domains, which may employ similar to fast-flux techniques for load

balancing. Once a domain name is determined as fluxed, then consecutive DNS queries

are issued to locate the members (in terms of IP addresses) of the botnet. In total, the

authors were able to identify 928 distinct fast-flux domains and track down 15,080,044

distinct IP addresses during a period of 4 months. The contribution of this proposal

lies on the consideration of the number and characteristics of the utilized features, for

example short TTL value etc.

Nearly a year after, Hu et al. [230] (February, 2009) introduced a system for detection

of fast-flux domains which combines analysis of network traces, derived from NetFlow,

spam mails and DNS logs, and active probing. The network traces provide data about

suspicious domains and their correlation with IPs. After that, further DNS probes for the

suspected domains reveal information about the corresponding IP, the ANS, the ANS’s

IP, reverse lookup, and so on. Finally, a SVM classifier is applied to deduce whether a

domain name is benign or fluxed. The authors evaluate their proposal for a period of two

Chapter 5. DNS-driven botnet C&C architectures 169

months using NetFlow records from their university’s edge router, spam emails, and DNS

logs from local resolvers. The results demonstrate the capability for rapid identification

with low false positive rate for the case of aggressive fast-flux domains. On the other

hand, for stealthy fast-flux domains, namely domains exhibiting valid DNS behavior

such as CDNs, a monitoring for longer period is necessary for accurate detection. The

contribution of the work in [230] is that assembles possible fluxed domains from various

sources not solely from spam emails. Although, the authors’ system utilizes passive

network traces, it highly depends on DNS active probing.

The first work coping with passive analysis of DNS traffic traces extracted from DNS

resolvers is is that of Perdisci et al. [231] (Dec 2009). They proposed a passive DNS traffic

analysis system for detecting and tracking malicious fast flux networks. More specifically,

their system examines DNS traffic originating from clients’ machines heading to their

local DNS resolvers. Thereby, domain names related to various malicious actions and

not solely collected from spam traps or blacklists are considered. For instance, the DNS

traffic may contain domain relevant to blog spam, social websites spam, search engine

spam, instant messaging spam, and so on. The system captures in front of the resolvers

the DNS network traffic and stores it in a central DB. Initially, a clearing of definitely

non-fluxing domains is requisite due to the excessive volume of DNS traffic. Then, a

clustering of domains is applied based on their relation, for instance because they resolve

to a common set of IPs. These clusters represent a candidate network, i.e., a probably

fast flux network. Finally, a statistical classifier is applied with the aim of detecting if

a group of domains is indeed relevant to a malicious flux or a non-flux network. The

classifier is based on a supervised statistical algorithm trained from flux and non-flux

samples. The examined features take into consideration the number of distinct IPs and

domains, TTL values, IP diversity, IP addresses growth (i.e., new discovered IPs), and

so forth. The latter characteristics illustrate the expansion of the cluster in time, namely

the rapid change of IP addresses corresponding to the same set of domain names.

The novelty of the above mentioned system compared with the previous ones is that

it does not consider single domains independently from each other, but rather it ac-

knowledges the fact that many fast flux networks involve more than one domain name

simultaneously. Besides, it utilizes DNS traces passively captured from live users’ traf-

fic. So, it collects data without interactions with the flux networks. On the other hand,

active probing of fast-flux domains may create noise on the DNS ANS which are usually

Chapter 5. DNS-driven botnet C&C architectures 170

controlled by the botherder, and thus possibly get detected [231]. In the case of an active

probing detection, the attacker may stop responding to DNS queries coming from the

probing system to prevent revealing further information. Moreover, the system raises

serious privacy concerns as it monitors DNS traffic directly from the end-users. The

authors evaluated their proposal for a period of 45 days collecting DNS traces from two

large ISP networks. Their experimental results showed that the passive analysis of DNS

traffic can contribute to the accurate detection of malicious flux service networks.

In a subsequent work by the same group of authors [232] (Sept 2012) a similar passive

DNS traffic analysis system, called FluxBuster. In fact, this proposal follows a similar

rationale to [231]. However, in this case, the proposed system captures DNS traffic traces

“above” DNS resolvers located on various networks around the world. By doing so the

privacy of the end-users is protected, as the DNS traces are aggregated for all the mass of

the clients served by a DNS resolver. The authors evaluated their proposal for a period

of five months. The results showed that FluxBuster was capable to correctly identify

malicious flux domains in the wild with a low false positive rate. The contribution of

this proposal compared to [231] is firstly the protection of client’s privacy and secondly

the execution of a large-scale analysis.

5.9.2 Botnet shutdown operation

5.9.2.1 Botnet Sinkholing

A prevailing method to shut down a botnet is by seizing the control of the C&C channel.

The work in [233] defines the specific steps followed by the defenders for taking over the

C&C channel and eventually to halt the operation of the bots. The described procedure

is similar to any other attempt of botnets’ hijacking by controlling the C&C channel.

However, the taking over of the C&C channel is applicable mostly to the case of a

centralized botnet, not to those employing P2P communication channels.

The work of Stone-Gross et al. [233] encountered with Torpig, a bot malware that uses

domain fluxing with DGA for locating the C&C server and HTTP protocol for C&C

covert channel. In the case of Torpig, the DGA takes as seed the current date and a

number. Furthermore, the botherders registered the generated domain name in .com

and .net zones. The latter domain zone was utilized for reasons of redundancy. However,

Chapter 5. DNS-driven botnet C&C architectures 171

the botherders failed to allocate in advance the generated domain for the subsequent

weeks. Hence, the defenders reversed-engineered the bot malware and unveiled the DGA

and its hardcoded parameters. So, they anticipated the domain name of DNS fluxing

mechanism for the forthcoming weeks and managed to register the domain names on

.com and .net registrant. The corresponding DNS records were resolving to an IP address

which hosted a device under the control of the defenders playing the role of C&C server.

This DNS redirection is also called botnet sinkholing [225]. Thereby, in the case the

defenders decode the dialect of C&C channel, they can simply instruct the bots to stay

dormant or uninstall the malware. Furthermore, the sinkholing facilitates the evaluation

of the botnet’s size, since the various bots connect directly to the fake C&C server, and

thus are directly observable.

Nevertheless, the success of a botnet’s sinkholing attempt relies mostly on economical

factors, since the registration of a single domain name is costly. Specifically, the bot-

masters could render countermeasures against domain fluxing economically infeasible by

forcing the DGA to produce an excessive number of domain names. In fact, Conficker

malware is capable of producing 50,000 domains per day in a non-deterministic manner

[204, 234]. In other words, the registration of all potential domain names in antici-

pation will cost no less than in current monetary values $100M [233]. Note that, for

the botherder is inexpensive to generate a disproportionate number of random domain

name, as it only requires a modification of the bot’s binary. After all, they have only to

register a negligible fraction of them. On the other hand, for the defenders it requires

significant time and money [203]. Therefore, the cooperation of DNS registrants in the

battle against botnets’ controllers is crucial.

5.9.2.2 Botnet Infiltration

A more active approach to investigate the behavior of a botnet, and thus to prevent their

actions, is via infiltration, through which the defenders join in the botnet’s C&C channel

[188]. To do so, they utilize an actual malware sample or a client simulating a bot on a

controlled environment. As a result, they are able to supervise a client that undertake

the role of an active bot and interact with the C&C server, by actively monitoring the

bot’s network activity [235], including DNS activity. In this way, information about

the DNS fluxing mechanism or the malicious instructions of the bothereder could be

Chapter 5. DNS-driven botnet C&C architectures 172

revealed. Alongside, the identities of other members of the botnet may be identified

with the purpose to enumerate the botnet’s population [193]. Actually, it is trivial to

acquire a malware sample through honeypots, honey clients, or spam traps. A real

example of infiltration strategy is given in works [236, 237], which cope with MegaD a

botnet with spamming activities.

Chapter 6

DNS as an attack vector in

Mobile Platforms

In the current chapter we demonstrate how DNS can be used with the aim of undermining

the privacy of mobile users. Specifically, in the context of this thesis, we implemented a

privacy-invasive mobile app capable of manipulating the DNS service provided by an iOS

device. Precisely, this spyware manages to interfere to the tethering service present in

Apple’s mobile devices with the aim to stealthily redirect all users connected via the the

targeted device to a malicious web page. That is, the malware hijacks the DNS service

running on the mobile platform and enables the attacker to phish user’s credentials while

they are trying to access legitimate websites.

6.1 Introduction

Perhaps the most important parameter for any mobile application or service is the way

it is delivered and experienced by the end-users, who usually, in due course, decide to

keep it on their software portfolio or not. Most would agree that security and privacy

have both a crucial role to play towards this decision.

Recall from section 5.7, that over the last years smart mobile devices have evolved to

small and ubiquitous computing platforms. This way, these devices are able to store

a rich set of personal information and at the same time provide powerful services, in-

cluding location services, Internet sharing via tethering, and intelligent voice assistants

173

Chapter 6. DNS as an attack vector in Mobile Platforms 174

to name just a few. As expected, this situation draws the attention of aggressors who

aim at stealing or misusing private information, or even disrupting the information flow.

Typical methods to achieve this goal are by gaining root permissions (known as Jail-

break [238] on iOS, or Root on Android platforms [239]), exposing new vulnerabilities

[240], and developing some ilk of malware. In fact, every new facility or service offered

for modern smartphones may be susceptible to attacks and/or privacy leaks. To this

direction, we came with the idea that the abuse of the DNS service offered by all mobile

OSs can subvert the owner’s privacy.

Under this prism, this chapter sheds light on the relationship amongst DNS service and

modern mobile paltforms focusing on iOS-based ones. Specifically, our primary aim is to

elaborate on privacy risks that may come with the introduction of new mobile services.

This means that services destined, say, to smartphones may expose private information

without the user consent. In this direction, we concentrate on two very popular services

(a) the Personal Hotspot (PH), which is a very common way of tethering an iPhone

Internet connection with other WiFi devices, and (b) Siri, the new intelligent personal

voice assistant available since iOS ver. 5.

To unveil user’s privacy risks that may stem from the aforementioned services, we imple-

ment as a first step a DNS hijacking malware. On the one hand, this malware is capable

of manipulate the iPhone tethering service, and hence redirecting all users connected

via it to fake websites aiming to phish their credentials while they trying to access some

Internet resource. On the other hand, by specifically targeting on the Siri facility, the

malware manipulates the DNS service of the device in an effort to expose sensitive user

information including its geographical location, account credentials, telephone numbers,

etc. As far as we are aware of, this is the first work in the literature to discuss and

analyze ways of exposing user privacy by leveraging on such popular mobile services.

6.2 Preliminaries

While it is expected a minimum level of familiarization with iOS programming and

mobile services by the reader, this section is necessary for reasons of completeness. That

is, we discuss mDNS as well as the basic components and functionality of both the

tethering and Siri services as an essential prelude to the following sections.

Chapter 6. DNS as an attack vector in Mobile Platforms 175

6.2.1 mDNS

The goal of the proposed malware is to compromise the DNS service running on a mobile

device, say, smartphone. In fact, this is a sine qua non for the attacks described further

down to be successful. Toward this direction, one of the main technologies used in iOS for

networking is Bonjour. Bonjour enables a device to allocate an IP address and advertise

a service to other computers or devices plugged into the same TCP/IP network. In

addition, Bonjour includes service discovery, address assignment, and name resolution.

On top of that, Bonjour, being a Zero Configuration Networking (ZCN) facility, needs to

be able to translate name-to-address even without the presence of a RDNS. To meet this

requirement the Multicast DNS (mDNS) [241] protocol is used. This protocol uses the

same packet format, domain name structure, and DNS RR types as unicast (standard)

DNS. However, two main differences apply. The first one is that mDNS queries are sent

to all local hosts using multicast routing opposed to DNS protocol, which queries are

sent to a specific, preconfigured RDNS. The second is that mDNS listens on UDP port

5353, opposite to DNS which listens on standard UDP port 53. Also note that mDNS

queries use the multicast address 224.0.0.251. In case a device triggers the Bonjour

service, it listens to the multicast requests and if it knows the answer, it replies to this

multicast address. mDNSResponder is the application which is responsible for handling

Bonjour on Mac OS X and iOS devices and for listening for services out of the box.

Furthermore, iOS supports a hosts file configuration so as to be able to correlate al-

ready visited hostnames with IP addresses prior to consulting DNS. This temporary

mapping per hostname is kept in the /etc/hosts, which is also manipulated by our mal-

ware as described further down in section 6.3.1. Last but not least, iOS holds in the

Network.identification.plist the settings of all the wireless networks with which the mo-

bile device has been associated sometime in the past. This happens as part of a new

feature that allows the iOS device to remember the network settings and automatically

connect to a network, using the same settings, without user intervention. Therefore,

our malware needs to replace the DNS IP address of all networks logged in the Net-

work.identification.plist with a forged one (where our RDNS resides) and to restart the

mDNS service in order the new settings to take effect. This situation is discussed in

detail in section 6.3.1.

Chapter 6. DNS as an attack vector in Mobile Platforms 176

6.2.2 The Tethering and Siri services

Recall from section 6.1 that the main purpose of the described attack is to compromise

the privacy of the end-user by exploiting DNS service and capitalizing on two popular

services; Tethering and Siri. Tethering is a network service which gives the device’s

owner the ability to share their mobile phone cellular data connection with other devices

(users). This sharing can be offered over a WiFi, Bluetooth, or by a physical connection

via a cable. Currently, Tethering incorporates a software functionality known as Personal

Hotspot (PH). The PH service is accounted for transforming the device into a wireless

Access Point (AP), so that iPhone users are able to share their 4G connection. Once

the PH starts up, the device selects the first empty 802.11 wireless channel to emit the

signal using the device name as the Extended Service Set ID (ESSID) name for the AP.

From this point on, PH can support and share the Internet connection simultaneously

with up to five devices. The PH service operates by default in the WPA2 Pre-shared

key (PSK) mode.

Siri, on the other hand, is one of the highlights of iOS ver. 5 only provided for the iPhone

4S. It is a personal intelligent software assistant that uses a natural language interface to

interact with the user and execute their requests expressed in voice commands (note that

the corresponding service for the android platform is called Google now). Siri is able to

carry out a variety of tasks (e.g. send SMS, e-mail, arrange meetings, make questions

about the weather, points of interest, etc.). To accomplish such tasks, Siri communicates

securely via https with a remote server residing at https://guzzoni.apple.com:443.

This server is responsible to translate user’s voice requests into text commands, and text

commands into actions. To fulfill a task, Siri can exchange a variety of data with the

Guzzoni server, such as raw audio data, plist files, confidence score of each word in a

sentence, timestamps, location information, and more importantly, information derived

directly from the device’s local databases (calendar, contacts, etc.).

French mobile development company Applidium [242] has recently reverse engineered

Siri protocol. They also provided the first evidence about its structure as well as the

open source tools they used. For using Siri, the device must firstly authenticate the

Siri server. This is done during the standard SSL handshake as the server certificate,

namely guzzoni.apple.com, is preinstalled on every iPhone 4S device. Note that the

authentication is unilateral, that is, the client (device) does not authenticate itself to

https://guzzoni.apple.com:443
guzzoni.apple.com

Chapter 6. DNS as an attack vector in Mobile Platforms 177

the service by means of a certificate. Upon successful authentication and under the

protection of the SSL tunnel, Siri sends four keys to the Guzzoni server, namely {x-

ace-host, assistantID, speechID, validationData}, where x-ace-host is a unique identifier

generated by Siri on the device and updated every two weeks; assistantID is a string

containing information about the user, which is generated by Siri on the device at every

use; speechID is a speech identifier, generated by Siri on the device on-the-fly at every

use; validationData is a string that gets generated every 24 hours on the device via

FairPlayed. By using this quadruple of keys, the Guzzoni server is able to authenticate

the device.

From the above discussion it becomes clear that attacking Siri service is not straight-

forward. Specifically, as already pointed out, Siri is a proprietary software designed

to securely communicate (https) with the legitimate Siri server(s) controlled by Apple.

Therefore, to fool the protocol, one has to somehow hijack the device-to-Siri legitimate

server communication in an undetectable manner. In this direction, as analyzed in [243],

a solution is to create a fake SSL Certification Authority (CA) and inject it into the

device in order to replace the original one. This is necessary to create and sign a fake

certificate for guzzoni.apple.com. After that, by using a VPN connection, Applidium

managed to redirect all iPhone packets, through a custom DNS NS for further analysis.

A few weeks later, P. Lamonica [244] created an open-source server, namely SiriProxy,

having the ability to capture and manipulate Siri packets. Also, through the creation

of customized plugins he was able to execute certain actions (for instance control a

thermostat over Siri).

6.3 Implementation

In this section, we delve into the internal workings of the malware responsible for poi-

soning the DNS service running on the device. Keep in mind that, this is a first step

towards executing the two attack scenarios described further down in section 6.4.

6.3.1 The DNS poisoning malware

To manipulate the mDNS service provided by iOS we implement a malware (or more

precisely a spyware) which, as we show in what follows, acts as a rootkit. This malware

guzzoni.apple.com

Chapter 6. DNS as an attack vector in Mobile Platforms 178

is written in Objective-C and compiled for iPhone ARM CPU using Theos [245]. It is

tested to run on iOS ver. 5 and above. Also, it has been built using the unofficial ways for

backgrounding (daemons and dylibs), the public and private frameworks for developing

iOS applications, and the MobileSubstrate framework [246] with the substrate.h header

that overrides iOS internal functions. This is why certain modules of our malware can be

classified as rootkit and more specifically as a DNS poisoning one. The malware infects

the mDNS protocol, thus making possible the execution of a man-in-the-middle attack

at a later time depending on the attack scenario. Namely, to take over the control of

the Siri service upon its activation by the user, or if tethering is in use, redirect any

connected device to websites controlled by the attacker.

As depicted in Fig. 6.1, the core of the malware consists of a main daemon combined

with a proper launch plist (activated at device boot time) and six subroutines written

as Objective-C functions and dylibs. The daemon is responsible for managing all sub-

routines, namely SirInvervine, HUpdate, NIUpdate, mDNSReloader, NetDetector, and

PHDetector, which in turn carry out the malware tasks. In the following, we elaborate

on the functionality of each subroutine.

Figure 6.1: Malware module

Recall from section 6.2.2 that for utilizing Siri, the smartphone must first authenticate

the Siri server. This is done in a unilateral fashion, i.e., the client (device) does not

authenticate itself to the service. So, to act as man-in-the-middle and hijack the https

session, one needs to replace the original Siri certificate stored in the device with a

fake one. This is accomplished by SirIntervine. Upon execution, this routine installs a

custom SSL CA into iOS and at the same time adds into the com.apple.assistant.plist

file, which is a Siri setting file, the domain name of our man-in-the-middle server (in

this case spe.samos.icsd.gr). This is needed to create and sign a bogus certificate for

guzzoni.apple.com.

guzzoni.apple.com

Chapter 6. DNS as an attack vector in Mobile Platforms 179

The HUpdate routine is responsible for poisoning the device’s /etc/hosts file. Although

the pieces of data stored in this file are mostly used when a RDNS is not available in

the local network, as explained in section 6.2.1, this file is always queried upon Bonjour

activation. Once we gain root permissions, the /etc/hosts file becomes vulnerable as it is

stored in plaintext. Specifically, for our attack scenarios, HUpdate inserts two hostname

records into the /etc/hosts file, which correspond to the IP-address of our man-in-the-

middle server. The two hostnames that are poisoned are “guzzoni.apple.com” and

“facebook.com”. In this way, all packets corresponding to the aforementioned domain

names will eventually be sent to man-in-the-middle entity controlled by us. Nevertheless,

while the first hostname is essential for accomplishing the second attack involving Siri

application, we can poison whatever domain name we desire. For our case, we choose

the Facebook user login page as it is the most prevalent social network and in this way

an aggressor can extract profitable sensitive information about their victim. HUpdate

adds the poisoned hostnames in the /etc/hosts file using the public NSFileManager

class (only if not poisoned already). Figure 6.2 depicts a snapshot of the /etc/hosts file

after a successful poisoning attempt. Note that the two last entries correspond to our

man-in-the-middle server.

Figure 6.2: The /etc/hosts file after poisoning

NIUpdate is the subroutine responsible for poisoning the IP address of any RDNS found

in the Network Identification file, with a malicious one under the attacker’s control.

Every time an iPhone device connects to a WiFi or a 3G/4G network, an entry is created

in the Network.identification.plist file containing all settings specific to this network,

namely, router’s IP address, subnet mask, local RDNS IP address, MAC address, etc.

Hence, every time the device attempts to connect to a known network, it will load the

settings used during the previous session. Once NIUpdate is activated, it changes all the

predefined RDNSs’ IP addresses with the one of our man-in-the-middle server. Once

guzzoni.apple.com
facebook.com

Chapter 6. DNS as an attack vector in Mobile Platforms 180

again, the Network.identification.plist file is stored in plaintext (plist), thus it can be

easily falsified using the NSMutalbeDictionary class.

mDNSReloader is a dylib responsible for shutting down or restarting the mDNSRespon-

der service (deamon) running on the device aiming to activate new network settings.

Specifically, by disabling the mDNSResponder service one also terminates the unicast

DNS resolution. By doing so, the mDNS service is stopped, meaning that instantly

the device cannot resolve hostnames. Once the service gets restarted, the mDNSRe-

sponder will parse the /etc/hosts and Network.identification.plist files in an effort to

use the default settings before obtaining new ones. Note that mDNSReloader enables

or disables the service by simply modifying the “ProgramArguments” settings (in the

com.apple.mDNSResonder.plist file), which is responsible for the activation of the ser-

vice into “Yes” or “No”. Figure 6.3 depicts a snapshot of the source-code responsible

for this modification.

Figure 6.3: Source code snippet for disabling/enabling mDNSResponder

Both NetDetector and PHDetector are dylibs triggered directly from the iOS Notification

Center (more specifically the CFNotificationCenterGetDarwinNotifyCenter) every time

the device connects to any wireless or mobile network interface, e.g., WiFi, GPRS, 4G,

or after PH activation. As soon as one of these dylibs is executed, it will re-run all the

aforementioned subroutines to update the network settings for the device.

Lastly, our man-in-the-middle server incorporates three basic modules:

(a) A typical RDNS that provides fabricated answers for every domain name that is

queried for. Specifically, for the first scenario, this is the domain name corresponding

to the Siri legitimate server, while for the second, a bogus version of the Facebook user

login page.

(b) The open source SiriProxy Ruby script [244] which allows us to manipulate Siri

packets and create our own custom plugins to violate user’s privacy though the Siri

Chapter 6. DNS as an attack vector in Mobile Platforms 181

technology.

(c) An http server used during the first attack scenario.

The server runs on a typical laptop machine which incorporates a 2.53 GHz Intel Core

2 Duo T7200 CPU and 4 GB of RAM. The OS of this machine is OS X Leopard Snow.

The lightweight open source DNS Server named Dnsmasq has been used to provide DNS

service. We also tinkered with the pre-alpha version of the SiriProxy that runs on our

server to handle (decipher, encipher, modify) Siri packets.

Both Dnsmasq and SiriProxy server, which is the main software employed for realiz-

ing man-in-the-middle and handling Siri packets, are by design able to accommodate

multiple users.

6.4 Attack Scenarios

In the current section, it is demonstrated how the aggressor is capable of collecting

private information, while the users utilize Tethering or interact with Siri. We analyze

these two attacks scenarios in detail and show that any private information the user

provides for the benefit of both of these services (e.g., passwords, account numbers,

telephone numbers, emails, user’s location, etc.) is at stake. A high-level representation

of the attack architecture is given in Fig. 6.4. It is stressed that all experiments had 100%

accuracy in logging private and sensitive information without exposing any malicious

behavior to the user of the device.

Figure 6.4: Network architecture utilized for the attack scenarios

Chapter 6. DNS as an attack vector in Mobile Platforms 182

6.4.1 Scenario I: DNS Hijacking

According to the first scenario, we utilize an already infected with our spyware iPhone

4S for tethering its data connection, and therefore enable it to act as an IEEE 802.11

hotspot. This situation is illustrated in the lower part (cloud) of Fig. 6.4. From this

time forth, the device behaves as a Wi-Fi router meaning that any Wi-Fi capable device

(for instance the laptop in Fig. 6.4) will be able to connect via the iPhone PH service

to Internet. Once a device gets connected, it will allocate an IP address in the range

of 172.20.10.2 to 172.20.10.14 using the Dynamic Host Configuration Protocol (DHCP).

Afterwards, all network packets will be routed via the smartphone behaving as PH. One

of the main iPhone tasks when acting as a PH is to translate any hostname into a valid

IP address. To do so, firstly it lookups into the /etc/hosts file and if it does not find the

answer, it will query the corresponding RDNS. However, the device is infected with the

malware and both the /etc/hosts file and the local RDNS IP address have been falsified

to contain the IP address of our man-in-the-middle server. This means that all traffic

generated by the users connected via the PH will be redirected to a server under the

attacker’s control. To demonstrate the perilous effects of this attack, we have install on

our server a webpage that appears exactly the same as that of Facebook’s user login

page. We chose Facebook as it is the most popular social network and many people

check their profiles as soon as they connect to Internet. In fact, the only functionality

of our fake webpage is to log into a MySQL database the credentials of the user in

plaintext, once they try to login into the site. As soon as the credentials are stored,

the fake website returns a message that the page is temporally unavailable due to heavy

loads or other innocuous reason.

6.4.2 Scenario II: Privacy leak over Siri

The second attack scenario capitalizes on the Siri service. Once more, the malware

compromises the mDNS protocol with the purpose to redirect all (or selected) Internet

traffic to our man-in-the-middle server. In this way, we accomplish to place a malicious

entity between the device and the legitimate Siri server controlled by Apple. After that,

we are able to intercept user’s private information transferred over Siri. At present, this

is realized through the implementation of three custom plugins for SiriProxy [244]. To

further exemplify this situation, Fig. 6.5 exhibits the basic message flow taking place

Chapter 6. DNS as an attack vector in Mobile Platforms 183

among the Siri service running on the mobile device and the legitimate server, but with

our server placed in the middle.

Figure 6.5: Siri protocol flow

Upon Siri activation 1 , an SSL handshake between Siri and our man-in-the-middle

server is performed, and at the same time a second handshake is conducted between the

man-in-the-middle server and the Apple’s legitimate Siri server. Recall, that SiriProxy

runs on a server under attacker’s control with the aim of handling (decipher, encipher,

modify) Siri packets. Specifically, to initiate the handshake, Siri sends a “Hello” message

which is redirected to man-in-the-middle server and forwarded to the original one. The

Siri server replies and sends over its authentic server certificate containing its public

key. The man-in-the-middle entity transmits to the device its bogus server certificate

containing the corresponding (fake) public key. This certificate has been created from

the same CA authority with the one been injected to the device when infected by the

malware. Once Siri verifies the fake certificate and subsequently authenticates our fake

server, it sends a premaster secret (premaster secret 1) to our server encrypted with

Chapter 6. DNS as an attack vector in Mobile Platforms 184

the corresponding fake public key. At this moment, both sides (Siri and man-in-the-

middle) calculate a session key (session key 1) and establish an SSL session (tunnel 1).

After that, our server acting as Siri client sends a second premaster secret to Siri server

encrypted with the original server’s public key. As a result, the man-in-the-middle entity

and the Siri server calculate another session key (session key 2) and establish a second

SSL session (tunnel 2).

Under the protection of tunnel 1, as explained in section 6.2.2, Siri generates and sends

the quadruple of keys necessary to authenticate the device with the server 2 . Our

server receives the keys and forwards them to the legitimate Siri server but this time

through tunnel 2. Upon reception, Siri server will check if the received keys correspond to

a legitimate iPhone 4S and if true, it will answer with “YES” (else “NO”) 3 . Assuming

a positive answer, Siri is ready to listen to user commands 4 & 5 . Otherwise, it will

respond with a “Siri server unavailable” message. From this point on, the user is able

to make a request by talking to the service. Siri records the voice containing the user’s

command (or an answer to a question posed by Siri during a transaction), converts it

into raw audio files and sends them to legitimate Siri server. The server translates the

audio file to text and sends back the translated text which is eventually passed to the

user by synthetic speech. It is therefore obvious that every personal information being

transmitted by the user it becomes available to the man-in-the-middle entity as well.

To further analyze this situation, we implemented three custom SiriProxy plugins spe-

cially crafted to expose usual private information. This means, that once the man-in-

the-middle server receives a Siri message from the device it will try to match its context

with one of this plugins. Figure 6.6 depicts a characteristic example of such a plugin that

is activated once the translated string coming from the user side is “iPhone privacy”.

Upon activation, our server will respond with the string “Siri is having some privacy

leaks!” to the Siri service. Siri will complete the request by displaying the message on

device’s screen and at the same time by pronouncing it. The next three sections describe

in detail how we were able to intercept valuable user private information through the

employment of such plugins.

Chapter 6. DNS as an attack vector in Mobile Platforms 185

Figure 6.6: Basic source code example of a custom plugin

6.4.2.1 Exposing User’s Geographical Location

Deploying the first plugin, we are able to successfully retrieve user’s location in the form

of GPS coordinates. This happened after the user asked Siri about the weather, e.g.,

“How is the weather today?”. Note that with minor modifications, the same plugin

is able to acquire user’s location for any posed question such as “How can I get to

Ocean Park?”, “Where is the nearest metro station and bus stop?”, etc. It is stressed,

that Siri obtains the geographic coordinates without directly asking the user about their

location. This happens because Siri has access to the device’s location services by default

(assuming that the user has not changed the default settings; otherwise the user will be

alerted to enable GPS). Figure 6.7 depicts a snippet of the plugin source code responsible

to retrieve the geographical location of a user. Once the Siri server asks Siri about the

location of the device, the plugin is activated and waits for the standard value (header)

“SetRequestOrigin” to obtain the exact user’s location.

Figure 6.7: Snippet of the plugin responsible to retrieve user’s location

6.4.2.2 Obtaining sensitive information via SMS

The second plugin capitalizes on Short Message Service (SMS). According to this sce-

nario, the user sends an SMS by just speaking to Siri. The plugin intercepts the telephone

number of the message’s receiver, the SMS payload, and the final outcome, i.e., whether

the end-user finally gave their consent to send the SMS or not. By this use case scenario,

it is clear that a variety of private information sent to Apple’s servers can be exposed

to an intruder without the user be aware of it. Figure 6.8 illustrates the log file created

Chapter 6. DNS as an attack vector in Mobile Platforms 186

by the corresponding plugin on our man-in-the-middle entity under this scenario. In

the same figure, we can easily identify the user’s private information leaked out (a ,

b , c & d). Bear in mind that the entries starting with [Info-iPhone] correspond to

messages sent from Siri, while those starting with [Info-Guzzoni] to messages deriving

from the Siri legitimate server. Also, messages being transmitted from SiriProxy are

marked with [Info–Plugin Manager]. For emphasis, each privacy leak is placed within a

gray frame.

To exemplify this, once the user activates Siri and starts interacting with it, Siri sends

user voice towards the server in many fragmented packets. After the user stops speaking,

Siri transmits a flag message 1 . Then, Siri translates the voice into text and sends

it back to our server 2 . Upon reception, SiriProxy tries to match the translated text

with a custom plugin 3 . The plugin is in charge to log the translated text when a user

tries to send an SMS 4 . Once the text is logged, the message is sent to Siri. As a final

step, the Siri legitimate server sends a message to inform Siri to create a graphical view

for presenting the translated text 5 .

Figure 6.8: Log file created when sending an SMS

Chapter 6. DNS as an attack vector in Mobile Platforms 187

6.4.2.3 Acquiring user’s password

One of Siri highlights is that the user can be engaged in a form of conversational dialog

with the assistant using any of the available input and output mechanisms, e.g., speech,

graphical user interfaces, text entry, and so on. So, for the last use case, we developed a

smarter plugin able not only to eavesdrop on private information, but also interact with

the user and ask them custom questions. By doing so, it becomes very likely for our

man-in-the-middle entity to intercept confidential information such as the user’s e-mail

address or even the password of their e-mail account(s). Due to the fact, that Siri uses

artificial intelligent to interact with the user in order to accomplish a task, e.g., send

out an email, the question about the password would not bear any evidence of malicious

behavior.

Figure 6.9 illustrates the message flow, when the user attempts to send an e-mail using

Siri. This results to the activation of the corresponding plugin residing on the man-in-

the-middle entity 1 . Once SiriProxy receives the translated text from the original Siri

server - in this case “Send an email”- it will match it against the plugin settings 2 .

As a consequence, the plugin will temporally block the original text message from being

transmitted towards the original Siri server, and instead, it will send back a custom

question to Siri asking the user which sender’s email address it should use. Since the

e-mail address is generally considered public information the user is highly probable to

reply providing its email address to Siri 3 . As a next step, the plugin shall force Siri

to pose a second question to the user. This time, Siri will ask for the password of the

e-mail address provided in the previous step 5 . Typically, a naive user will trust Siri

and think that the password is required for the e-mail to be sent. Hence, they will

respond with the password, thus enabling the plugin to log it in cleartext 6 .

6.5 Related Work

Smart mobile devices are used in everyday life to store a variety of users’ sensitive infor-

mation. So, it should come as no surprise that they attract the attention of resourceful

attackers. In this context, over the last few years, traditional malware also seem to evolve

in an effort to catch up with the so called mobile era. Mainly, such malware affect the

most popular OS, namely Android and iOS. It is also relevant to note that according

Chapter 6. DNS as an attack vector in Mobile Platforms 188

Figure 6.9: Message flow for acquiring user’s password

to the work in[226] the most common goal for propagating malicious applications on

smartphones is the collection of private information. Unfortunately, up to this moment

the literature in regards to the privacy level of advanced mobile services, including Siri

and Tethering, is scarce. Therefore, this section attempts to review the existing litera-

ture in chronological order and with respect to the impact of this particular threat. As

a result, it focuses solely on mobile malware that aim to jeopardize the privacy of the

device’s owner. Recall that a literature review relevant to mobile malware having C&C

capabilities and botnet involvement is given in section 5.7.

As discussed in section 5.7, the first appearance of mobile malware was that of Cabir

worm destined to Symbian OS in June 2004. However, Pbstealer a trojan spy based on

Chapter 6. DNS as an attack vector in Mobile Platforms 189

Cabir was the first malware that threaten the privacy of mobile device owners. Specifi-

cally, once Pbstealer infects a device searches for its address book and sends the contained

data to the first device discovered in range [217]. Following the introduction of Pbstealer,

another trojan that violates user privacy has been detected. StealWar presents similar

functionality to Pbstealer, but it has the ability to propagate itself via MMS as well

[217]. Flexispy is another trojan that takes over control of smartphones running Sym-

bian OS and sends call information and SMS data to the herder of the Trojan [217]. A

different malware is described in [247] with the functionality of taking pictures from the

phone’s camera without the user’s knowledge and send it to a predefined phone number

via MMS. The creators of the particular malware aimed to demonstrate that it is quite

easy to implement a privacy violation attack for mobile devices.

In 2008, two modern OS platforms for smartphones, Apple’s iOS and Google’s Android

have been introduced. Since then, the research community focused its attention on the

security level of these OS. For the case of Android, the beginning of privacy concerns

arises with the first Android commercial smartphone, namely G1 which was shipped

with the initial version of this OS. This version was accompanied with vulnerabilities in

the web browser application. By exploiting these vulnerabilities, a determined attacker

could gain access to any data that the browser stores, including cookies, text typed in

form fields or even saved user passwords [217]. In the same year, serious privacy concerns

appeared with several applications within the AppStore market administered by Apple

[248].

Regarding iOS, Privacy.A was the first appeared worm, which was running in stealth

mode and aimed to steal personal data from iPhone devices. In Nov. 2009, a highly

perilous version of Ikee, namely iKee.B appeared [214]. In addition to the C&C func-

tionality described in section 5.7, iKee.B had the ability to poison iPhone’s DNS cache

(/etc/hosts) in order to redirect specific domain name requests to a given (malicious)

RDNS.

On the Android camp, LeNa, a descendant of Legacy Native virus family, was hiding in

seemingly useful apps to gain the required root privilege and expose user private informa-

tion [217]. Moreover, two well-known applications, namely MobileSpy and MobileSteath

[249], exhibit a similar to previously approach with the aim of sending the captured

Chapter 6. DNS as an attack vector in Mobile Platforms 190

data (e.g., SMS, call history, GPS coordinates, contact details, video and pictures) to a

remote server.

In 2010, Seriot [248] presented some interesting attack scenarios on how a malicious appli-

cation can use official and public frameworks, provided by Apple, to extract private data,

including contacts, email account setting, keyboard cache entries, Mobile Safari searches,

and the most recent GPS location of the device. This can occur without the user’s

knowledge and without the malicious app being rejected by the AppStore review. Also,

five Android malware families, namely BaseBrigde, JiFake, DroidKungFu, Hongtoutou,

Geinimi, have been identified after trying to expose the victim’s geographic location,

International Mobile Subscriber Identity (IMSI), bookmarks, and/or place calls, send

SMS to premium phone numbers, and so forth [217].

Chapter 7

Conclusions and Future

Directions

Reaching to the end of this thesis, the reader should have perceived until now that

although DNS protocol constitutes the pillar of the modern Internet infrastructure, it

lacks a full-fledged protection mechanism, and thus it is frequently abused in several

and diverse ways. Throughout our research, we provide evidence that DNS service can

be exploited as a multipurpose instrument in order to violate the integrity, authenticity,

confidentiality and availability of the offered resources in Internet. While some facets

of the DNS attack surface are already well-known to the community, the thesis at hand

sheds light to novel ones that are not so obvious but are equally dangerous.

As discussed in chapters 3 and 6, DNS itself suffers from certain vulnerabilities which

threaten the integrity and authenticity of DNS data, and hence may be exploited with the

aim of jeopardizing the privacy of end-users. Moreover, DNS can facilitate the efficient

execution of DDoS attacks or can be abused for the coordination of botnets, as analyzed

in chapters 4 and 5 respectively. Both of these situations endanger the availability of

Internet services. Undoubtedly, the race between aggressors and defenders is continuous

and intensive, but it seems in many cases the aggressors manage to stay one step ahead.

So, we can safely argue that many more have to be done toward securing DNS service and

with that ensure the smooth operation of Internet as a whole. This chapter summarizes

the overall contribution of the current PhD thesis, while at the same time provides

research directions for future work.

191

Chapter 7. Conclusions and Future Directions 192

7.1 Thesis Contributions

In a nutshell, and in accordance to the objectives given in chapter 1, this PhD thesis

elaborates on the different ways the DNS service can be exploited as a multipurpose

vector for fulfilling the nefarious desires of malevolent entities in Internet. Table 7.1 offers

a global map of the PhD accomplishments with respect to contributions in literature for

quick reference.

Initially, we examined the various types of DNS cache poisoning attack as well as the

possible countermeasures. To this direction, we conduct a side-by-side comparison be-

tween DNSSEC and DNSCurve, the two prevailing cryptographic mechanisms, that aim

to protect, among others, the integrity and authenticity of DNS data. This way, the

defenders are in position to infer which defensive mechanism best suits to their needs.

Chapter 3 and [17] presents this side-by-side comparison.

Based on the outcomes of the aforementioned comparison, we further investigated the

role of DNSSEC, this time not concerning the cache poisoning attack but rather its

involvement in DNS amplification attacks. Specifically, by capitalizing on the fact that

DNSSEC-related RR are considerably sizeable, we underpinned that the facilitation of

advanced types of DNSSEC-powered amplification attacks is absolutely feasible. Pre-

cisely, we studied the ways a competent and smart attacker can orchestrate and launch

wide-scale DDoS attacks, which only utilize DNSSEC-related RR. As a side contribu-

tion, the performance of (open) DNS forwarders as reflectors was investigated. To do

so, we conducted a detailed evaluation of the impact of this type of attack by plan-

ning and executing a large-scale DDoS attack involving a great number of (open) DNS

forwarders located in three European countries. The main advantage of our research

compared with the standard type of the attack as described in the literature thus far, is

that we demonstrated that even a naive attacker is capable of accomplishing the attack

by exploiting publicly available resources existing in the Internet without the need to

acquire some of their own. To the best of our knowledge, our research on this particular

issue constitutes the first comprehensive study of DNS amplification attack involving

DNSSEC-related RRs. Further details of this work is provided in section 4.2 and [18].

Moreover, this thesis answers the question of what already available resources in terms

of Internet entities can be particular fruitful for a potential attacker to incorporate in

Chapter 7. Conclusions and Future Directions 193

their arsenal. Namely, we scrutinized the potential of taking advantage the ANSs of

TLD as both amplifiers and reflectors. Therefore, from a contribution point of view,

this is also the first work in the literature to assess the involvement of the upper DNS

hierarchy ANSs in DNS amplification incidents. More precisely, we measured for all

ANSs (including root NSs) the size of their response for DNSSEC-related RR, that

is, we evaluated the amplification factor these servers may produce. Furthermore, we

estimated the current degree of adoption of RRL mechanism by ANSs, which constitutes

the primary defensive barrier against their involvement in amplification attacks. The

outcomes of our research exhibit that a worryingly large number of ANSs out there can

be entangled involuntarily by DDoS attackers. This important contribution is given in

chapter 4 and [19].

Following, we dealt with botnet issue. Throughout our research, we witnessed concrete

evidences that DNS is constantly abused by botherders for the sake of concealing their

actions. In our effort to draw the attention of the research community on this topic,

we proposed and evaluated novel botnet architectures. More specifically, the proposed

architectures are either solely rely on mobile bots or a mixed infrastructure, namely

include both mobile and desktop agents. In any case however, all the proposed archi-

tectures exploit DNS as C&C channel for coordinating the botnet and disseminating

botmaster’s commands. Chapter 5 and [20] elaborate on these contributions.

Finally, in addition to legacy DNS attacks, we considered the potential of DNS as an

attack vector to invade user’s privacy, and specifically to harvest private sensitive infor-

mation from smartphone owners. Especially, we designed and implemented a privacy-

invasive mobile app able to manipulate the DNS service provided by an iOS device. This

app is capable of acting as a man-in-the-middle to the tethering service present in Ap-

ple’s mobile devices with the aim to redirect all users connected via the targeted device

to, say, malicious sites according to attacker’s goal. In this way, the implemented mal-

ware hijacks the DNS service and enables the attacker to phish user’s credentials while

they are trying to access legitimate websites. Additionally, by targeting on the popular

Siri personal assistant, the spyware exposes sensitive user information including their

geographical location, account credentials, telephone numbers, sent/received messages,

etc. Actually, by using this case study, we emphasize on the ways DNS forging attempts

can by especially beneficial to attackers targeting the continuously growing population

of mobile users. This way, we offered the first to our knowledge work in the literature

Chapter 7. Conclusions and Future Directions 194

aimed at examining DNS as an attack vector against popular mobile platforms. This

contribution is further analyzed in chapter 6 and [21, 22].

Objective Chapter Contribution Publication
Obj. 1 3 A side-by-side comparison between DNSSEC and DNSCurve [17]
Obj. 1 6 Mobile spyware that manipulates the DNS service in order to steal

private information
[22, 21]

Obj. 2 4 DNSSEC-powered amplification attack [18]
Obj. 2 4 Assessment of upper DNS hierarchy infrastructure as amplifier

and reflector
[19]

Obj. 3 5 Novel mobile botnet architectures that exploit DNS for the coor-
dination of the botnet

[20]

Table 7.1: Overall PhD Thesis Contribution

7.2 Future Directions

The PhD thesis at hand generally resides on the offensive side of cyber-security. It

particularly contributes to the topic of DNS security and its main goal is to demonstrate

that indeed DNS can be used as a multipurpose attack vector against offered resources

in Internet. This way, our intention is to offer concrete proofs that many more need

to be done toward to safeguarding this important Internet service. Since a number of

DNS’s aspects have still left unexplored, it becomes obvious that further research should

be conducted. In the following, we elaborate on these possible future research directions

and categorize them according to the security service they provide.

• Origin Authentication: Currently, even with the presence of DNSSEC, the end-user

is not directly benefited from its protection mechanism. At least, up to now, this

is due to clients’ inability of performing strong cryptographic operations, because

of computational constraints. This way, the clients are unable to validate the

authenticity of the signed DNS RRs. Consequently, a DNS stub-resolver library

that will be capable of evaluating the trustworthiness of DNS answers without

solely depending on a single RDNS will be highly appreciated.

• Integrity: Although DNSSEC is been introduced almost a decade ago, it is still in

its infancy as concern its adaptation level. In fact, albeit the majority of TLDs are

DNSSEC-signed, only a small fraction (nearly 3%) of 2-TLDs are signed. Further-

more, no more than 15% of the users around the world request DNSSEC-related

RR so as to benefit from the protection of DNSSEC mechanism [102]. As a result,

Chapter 7. Conclusions and Future Directions 195

further investigations pertaining to the operational status and the reasons that

hamper the wider adoption of DNSSEC are required.

• Confidentiality: Alongside with the preceding direction, a mechanism that will also

protect the confidentiality of the transmitted DNS messages, besides integrity and

authenticity, is deemed essential. Recently, concerns about this aspect of DNS

security have been expressed [250], however without proposing any mitigation

mechanism. Nonetheless, such a proposal should utilize ECC cryptography, which

is characterized by the high speed of the encryption and decryption process, and

hence could speed up the resolution process. Furthermore, such mechanism should

secure all the diverse aspects of a DNS transaction, including the communication

link between the RDNS and the end-user. This way, the end-users would obtain

secure, reliable and uninterrupted DNS services.

• Availability: As concerns the facilitation of DNS amplification attacks, a thorough

examination of the possible ways DNS can be exploited is highly appreciable. In

the current thesis, we unveil two, previously uninvestigated, aspects that a poten-

tial aggressor can take advantage of with the purpose of amplifying and reflecting

their attack traffic, namely DNSSEC-related RR and open forwarders respectively.

Furthermore, the extent of the amplification factor provided by the upper DNS

hierarchy was also examined. Nevertheless, it is expected that several more unex-

plored or semi-explored features of DNS can accommodate DDoS incidents. Such

a research will aid the defenders to diminish the attack surface of the DNS service

and infrastructure to the minimum possible, and hence reduce the implications of

such events.

Continuing from the previous point, the botnet issue is certain to be of high interest

to the research community. That is, considering that botnets are on the rise, the

need for providing a deeper understanding of their different facets and ways they

construct their C&C channels is without doubt an urgent need. In the context

of this PhD thesis, we focused on mobile and/or mixed bot agents. Apparently,

many more architectures can be exploited. For instance, future researches may

concentrate on additional covert channels for bot communication. It can be argued

that the tendency is toward well-established, text-based network protocols. As an

alternative, one may consider the coupling of Internet anonymization facilities and

DNS protocol for completely hiding the C&C infrastructure inside the Tor overlay.

Chapter 7. Conclusions and Future Directions 196

To do so, a Tor Fluxing approach for locating in a stealth and undetectable manner

the C&C server can be followed.

Bibliography

[1] Paul Mockapetris. RFC 1034: Domain names-concepts and facilities, 1987. URL

http://www.ietf.org/rfc/rfc1034.txt.

[2] Paul Mockapetris. RFC 1035: Domain Names - Implementation and Specification,

1987. URL https://www.ietf.org/rfc/rfc1035.txt.

[3] Steven M. Bellovin. Using the Domain Name System for System Break-ins. In

Proceedings of the Fifth USENIX UNIX Security Symposium, 1995.

[4] Dan Kaminsky. Its The End Of The Cache As We Know It. In Black Hat USA

2008, 2008.

[5] Robert Lemos. Largest-Ever DDoS Campaign Demonstrates Danger of

New Attack Method, March 2013. http://www.eweek.com/security/

largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/.

[6] Jose Nazario and T. Holz. As the net churns: Fast-flux botnet observations.

In Malicious and Unwanted Software, 2008. MALWARE 2008. 3rd International

Conference on, pages 24–31, Oct 2008.

[7] Jon Oberheide, Manish Karir, and Z. Morley Mao. Characterizing Dark DNS

Behavior, pages 140–156. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[8] Hyunsang Choi, Hanwoo Lee, Heejo Lee, and Hyogon Kim. Botnet Detection by

Monitoring Group Activities in DNS Traffic. In 7th IEEE International Conference

on Computer and Information Technology CIT 2007), pages 715–720, 2007.

[9] Keisuke Ishibashi, Tsuyoshi Toyono, Katsuyasu Toyama, Masahiro Ishino,

Haruhiko Ohshima, and Ichiro Mizukoshi. Detecting Mass-mailing Worm Infected

Hosts by Mining DNS Traffic Data. In Proceedings of the 2005 ACM SIGCOMM

197

http://www.ietf.org/rfc/rfc1034.txt
https://www.ietf.org/rfc/rfc1035.txt
http://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/
http://www.eweek.com/security/largest-ever-ddos-campaign-demonstrates-danger-of-new-attack-method/

Bibliography 198

Workshop on Mining Network Data, MineNet ’05, pages 159–164, New York, NY,

USA, 2005. ACM.

[10] David Whyte, Evangelos Kranakis, and Paul C. van Oorschot. DNS-based Detec-

tion of Scanning Worms in an Enterprise Network. In Proceedings of the Network

and Distributed System Security Symposium (NDSS 2005), pages 181–195, 2005.

[11] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-

ster. Building a Dynamic Reputation System for DNS. In 19th Usenix Security

Symposium, 2010.

[12] Donald Eastlake and Charles Kaufman. RFC 2065: Domain Name System Security

Extensions, 1997. URL https://www.rfc-editor.org/rfc/rfc2065.txt.

[13] Donald Eastlake. RFC 2535: Domain Name System Security Extensions, 1999.

URL https://tools.ietf.org/html/rfc2535.

[14] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. RFC 4033:

DNS security introduction and requirements, 2005. URL http://www.ietf.org/

rfc/rfc4033.txt.

[15] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. RFC 4034:

Resource records for the DNS security extensions, 2005. URL http://www.ietf.

org/rfc/rfc4034.txt.

[16] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. RFC

4035: Protocol modifications for the DNS security extensions, 2005. URL http:

//www.ietf.org/rfc/rfc4035.txt.

[17] Marios Anagnostopoulos, Georgios Kambourakis, Elisavet Konstantinou, and Ste-

fanos Gritzalis. DNSSEC vs. DNSCurve: A Side-by-Side Comparison, page 201.

IGI Global, 2012.

[18] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos, Georgios

Louloudakis, and Stefanos Gritzalis. DNS Amplification Attack Revisited. Com-

puters & Security, 39, Part B:475 – 485, 2013.

[19] Marios Anagnostopoulos, Georgios Kambourakis, Manos Antonakakis, and Ste-

fanos Gritzalis. Never say never: Authoritative TLD nameserver-powered DNS

amplification. In Under Preparation, 2016.

https://www.rfc-editor.org/rfc/rfc2065.txt
https://tools.ietf.org/html/rfc2535
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4033.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc4035.txt
http://www.ietf.org/rfc/rfc4035.txt

Bibliography 199

[20] Marios Anagnostopoulos, Georgios Kambourakis, and Stefanos Gritzalis. New

facets of mobile botnet: architecture and evaluation. International Journal of

Information Security, pages 1–19, 2015.

[21] Dimitrios Damopoulos, Georgios Kambourakis, Marios Anagnostopoulos, Stefanos

Gritzalis, and J. H. Park. User-privacy and modern smartphones: A Siri(ous)

dilemma. In Proceedings of the FTRA AIM 2012 International Conference on

Advanced IT, Engineering and Management. FTRA, 2012.

[22] Dimitrios Damopoulos, Georgios Kambourakis, Marios Anagnostopoulos, Stefanos

Gritzalis, and JH Park. User privacy and modern mobile services: are they on the

same path? Personal and ubiquitous computing, 17(7):1437–1448, 2013.

[23] Apple, 2016. URL http://www.apple.com/ios/siri/.

[24] Mark Handley, Van Jacobson, and Colin Perkins. RFC 4566 : SDP session de-

scription protocol, 2006. URL https://tools.ietf.org/html/rfc4566.

[25] Jonathan Rosenberg, Henning Schulzrinne, Gonzalo Camarillo, Alan Johnston,

Jon Peterson, Robert Sparks, Mark Handley, and Eve Schooler. RFC261: SIP

Session Initiation Protocol, 2002. URL https://tools.ietf.org/html/rfc3261.

[26] Zisis Tsiatsikas, Marios Anagnostopoulos, Georgios Kambourakis, Sozon Lambrou,

and Dimitris Geneiatakis. Hidden in Plain Sight. SDP-Based Covert Channel for

Botnet Communication. In Simone Fischer-Hubner, Costas Lambrinoudakis, and

Javier Lopez, editors, Trust, Privacy and Security in Digital Business, volume

9264 of Lecture Notes in Computer Science, pages 48–59. Springer International

Publishing, 2015.

[27] Marc Blanchet and Lars-Johan Liman. RFC 7720: DNS Root Name Service

Protocol and Deployment Requirements, 2015. URL https://tools.ietf.org/

html/rfc7720.

[28] Jon Postel. RFC 1591: Domain Name System Structure and Delegation, 1994.

URL http://https://tools.ietf.org/html/rfc1591.

[29] ISO 3166-1-alpha-2 code elements, English country names and code elements, Oc-

tober 2005.

http://www.apple.com/ios/siri/
https://tools.ietf.org/html/rfc4566
https://tools.ietf.org/html/rfc3261
https://tools.ietf.org/html/rfc7720
https://tools.ietf.org/html/rfc7720
http://https://tools.ietf.org/html/rfc1591

Bibliography 200

[30] Joe Abley and Terry Manderson. RFC 5855: Nameservers for IPv4 and IPv6

Reverse Zones, 2010. URL https://tools.ietf.org/html/rfc5855.

[31] Liu Cricket and Paul Albitz. DNS and BIND (Fifth Edition). O’Reilly Media,

Inc., 2006.

[32] Rom Aitchison. Pro DNS and BIND. Apress, 2005.

[33] Paul Hoffman, Andrew Sullivan, and Kazunori Fujiwara. RFC 7719: DNS Termi-

nology, 2015. URL https://tools.ietf.org/html/rfc7719.

[34] Edward Lewis. RFC 5936: DNS Zone Transfer Protocol (AXFR), 2010. URL

https://tools.ietf.org/html/rfc5936.

[35] ICANN’s Root Server System Advisory Committee (RSSAC). RSSAC001: Service

Expectations of Root Servers, 2013. URL https://www.icann.org/en/system/

files/files/rssac-001-draft-02may13-en.pdf.

[36] David Dagon, Niels Provos, Christopher P Lee, and Wenke Lee. Corrupted DNS

resolution paths: The rise of a malicious resolution authority. In Proceedings of

Network and Distributed Security Symposium (NDSS08), 2008.

[37] Donald Eastlake. RFC 6895: Domain Name System (DNS) IANA Considerations,

2013. URL https://tools.ietf.org/html/rfc6895.

[38] Mark Andrews. RFC 2308: Negative Caching of DNS Queries (DNS NCACHE),

1998. URL https://tools.ietf.org/html/rfc2308.

[39] Internet Assigned Numbers Authority (IANA). Root files. URL https://www.

iana.org/domains/root/files.

[40] Scott Kitterman. RFC 7208: Sender Policy Framework (SPF) for Authorizing Use

of Domains in Email, 2014. URL https://tools.ietf.org/html/rfc7208.

[41] Wes Hardaker. RFC 7477: Child-to-Parent Synchronization in DNS, 2015. URL

https://tools.ietf.org/html/rfc7477.

[42] Masataka Ohta. RFC 1995: Incremental Zone Transfer in DNS, 1996. URL

https://tools.ietf.org/html/rfc1995.

[43] Paul Vixie. RFC 1996: A Mechanism for Prompt Notification of Zone Changes

(DNS NOTIFY), 1996. URL https://www.ietf.org/rfc/rfc1996.txt.

https://tools.ietf.org/html/rfc5855
https://tools.ietf.org/html/rfc7719
https://tools.ietf.org/html/rfc5936
https://www.icann.org/en/system/files/files/rssac-001-draft-02may13-en.pdf
https://www.icann.org/en/system/files/files/rssac-001-draft-02may13-en.pdf
https://tools.ietf.org/html/rfc6895
https://tools.ietf.org/html/rfc2308
https://www.iana.org/domains/root/files
https://www.iana.org/domains/root/files
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc7477
https://tools.ietf.org/html/rfc1995
https://www.ietf.org/rfc/rfc1996.txt

Bibliography 201

[44] Paul Vixie, Susan Thomson, Yakov Rekhter, and Jim Bound. RFC 2136: Dynamic

Updates in the Domain Name System (DNS UPDATE), 1997. URL http://www.

ietf.org/rfc/rfc2136.txt.

[45] Bill Manning. DNSSEC & Operations, 2003. URL www.nordunet2003.is/

smasidur/presentations/Manning.pps.

[46] Derek Atkins and Rob Austein. RFC 3833: Threat Analysis of the Domain Name

System (DNS), 2004. URL https://tools.ietf.org/html/rfc3833.

[47] David Dagon, Manos Antonakakis, Kevin Day, Xiapu Luo, Christopher P Lee,

and Wenke Lee. Recursive DNS architectures and vulnerability implications. In

Proceedings of 16th Network and Distributed System Security Symposium (NDSS),

2009.

[48] Paul Vixie, Olafur Gudmundsson, Donald E. Eastlake, and Brian Wellington.

RFC 2485: Secret Key Transaction Authentication for DNS (TSIG), 2000. URL

https://tools.ietf.org/html/rfc2845.

[49] David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke Lee.

Increased DNS forgery resistance through 0x20-bit encoding. In 15th ACM Con-

ference on Computer and Communications Security (CCS 2008), pages 211–222.

ACM, 2008.

[50] Bert Hubert and Remco van Mook. RFC 5452: Measures for Making DNS

More Resilient against Forged Answers, 2009. URL https://www.ietf.org/rfc/

rfc5452.txt.

[51] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A Survey of Man In The Middle

Attacks. IEEE Communications Surveys Tutorials, PP(99):1–1, 2016.

[52] Suranjith Ariyapperuma and Chris J Mitchell. Security vulnerabilities in DNS and

DNSSEC. In The Second International Conference on Availability, Reliability and

Security, 2007. ARES 2007., pages 335–342. IEEE, 2007.

[53] Robert Elz and Randy Bush. RFC 2181: Clarifications to the DNS Specification,

1997. URL https://tools.ietf.org/html/rfc2181.

[54] Sooel Son and Vitaly Shmatikov. The Hitchhiker’s Guide to DNS Cache Poisoning,

pages 466–483. Springer Berlin Heidelberg, 2010.

http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2136.txt
www.nordunet2003.is/smasidur/presentations/Manning.pps
www.nordunet2003.is/smasidur/presentations/Manning.pps
https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/rfc2845
https://www.ietf.org/rfc/rfc5452.txt
https://www.ietf.org/rfc/rfc5452.txt
https://tools.ietf.org/html/rfc2181

Bibliography 202

[55] Chad Dougherty. CERT Vulnerability Note VU 800113: Multiple DNS imple-

mentations vulnerable to cache poisoning, 2008. URL http://www.kb.cert.org/

vuls/id/800113.

[56] Nikolaos Alexiou, Stylianos Basagiannis, Panagiotis Katsaros, Tushar Dashpande,

and Scott A. Smolka. Formal Analysis of the Kaminsky DNS Cache-Poisoning At-

tack Using Probabilistic Model Checking. In IEEE 12th International Symposium

on High-Assurance Systems Engineering (HASE), 2010, pages 94–103, Nov 2010.

[57] Daniel J. Bernstein. djbdns. http://cr.yp.to/djbdns.html.

[58] Michael Vittrup Larsen and Fernando Gont. RFC 6056: Recommendations for

Transport-Protocol Port Randomization, 2011. URL https://tools.ietf.org/

html/rfc6056.

[59] Donald Eastlake. RFC 4343: Domain Name System (DNS) Case Insensitivity

Clarification, 2006. URL https://tools.ietf.org/html/rfc4343.

[60] Alexa. Alexa : The top 500 sites on the web. URL http://www.alexa.com/

topsites.

[61] Roberto Perdisci, Manos Antonakakis, Xiapu Luo, and Wenke Lee. WSEC DNS:

Protecting Recursive DNS Resolvers from Poisoning Attacks. In 2009 IEEE/I-

FIP International Conference on Dependable Systems Networks (DSN-DCCS’09),

2009.

[62] Roberto Perdisci, Manos Antonakakis, Xiapu Luo, and Wenke Lee. WSEC DNS:

Protecting Recursive DNS Resolvers from Poisoning Attacks (extended). Technical

report, 2009. URL http://roberto.perdisci.com/projects/wsecdns.

[63] Jonathan Trostle, Bill Van Besien, and Ashish Pujari. Protecting against DNS

cache poisoning attacks. In Secure Network Protocols (NPSec), 2010 6th IEEE

Workshop on, pages 25–30, 2010.

[64] Paul Mockapetris. RFC 882: Domain names - concepts and facilities, 1983. URL

https://tools.ietf.org/html/rfc882.

[65] Paul Mockapetris. RFC 883: Domain Names - Implementation and Specification,

1983. URL https://tools.ietf.org/html/rfc883.

http://www.kb.cert.org/vuls/id/800113
http://www.kb.cert.org/vuls/id/800113
https://tools.ietf.org/html/rfc6056
https://tools.ietf.org/html/rfc6056
https://tools.ietf.org/html/rfc4343
http://www.alexa.com/topsites
http://www.alexa.com/topsites
http://roberto.perdisci.com/projects/wsecdns
https://tools.ietf.org/html/rfc882
https://tools.ietf.org/html/rfc883

Bibliography 203

[66] Daniel J. Bernstein. DNSCurve, 2009. http://dnscurve.org.

[67] Daniel J. Bernstein. DNSCurve: Usable security for DNS, 2008. http://cr.yp.

to/talks/2008.08.22/slides.pdf.

[68] IANIX. DNSCurve Software. URL https://dnscurve.io/dnscurve/

dnscurve-software.html.

[69] Matthew Dempsky. DNSCurve: Link-Level Security for the Domain

Name System. Internet Draft, 2010. https://tools.ietf.org/html/

draft-dempsky-dnscurve-01.

[70] Ben Laurie, Geoffrey Sisson, Roy Arends, and David Blacka. RFC 5155: DNS

Security (DNSSEC) Hashed Authenticated Denial of Existence, 2008. URL https:

//tools.ietf.org/html/rfc5155.

[71] Paul Vixie. RFC 2671: Extension Mechanisms for DNS (EDNS0), 1999. URL

https://www.ietf.org/rfc/rfc2671.txt.

[72] Internet Systems Consortium. DNSSEC key generation tool, . http://ftp.isc.

org/isc/bind/cur/9.9/doc/arm/man.dnssec-keygen.html.

[73] Internet Systems Consortium. DNSSEC zone signing tool, . http://ftp.isc.

org/www/bind/arm95/man.dnssec-signzone.html.

[74] Olaf Kolkman, Jakob Schlyter, and Edward Lewis. RFC 3757: Domain Name

System KEY (DNSKEY) Resource Record (RR) Secure Entry Point (SEP) Flag,

2004. URL http://www.ietf.org/rfc/rfc3757.txt.

[75] Samuel Weiler and Johan Ihren. RFC 4470: Minimally Covering NSEC Records

and DNSSEC On-line Signing, 2006. URL https://tools.ietf.org/html/

rfc4470.

[76] Geoffrey Sisson and Ben Laurie. RFC 4471: Derivation of DNS Name Predecessor

and Successor, 2006. URL https://tools.ietf.org/html/rfc4471.

[77] Wes Hardaker. RFC 4509: Use of SHA-256 in DNSSEC Delegation Signer (DS)

Resource Records (RRs), 2006. URL https://www.ietf.org/rfc/rfc4509.txt.

[78] Donald Eastlake. RFC 2537: RSA/MD5 KEYs and SIGs in the Domain Name

System (DNS), 1999. URL https://tools.ietf.org/html/rfc2537.

http://dnscurve.org
http://cr.yp.to/talks/2008.08.22/slides.pdf
http://cr.yp.to/talks/2008.08.22/slides.pdf
https://dnscurve.io/dnscurve/dnscurve-software.html
https://dnscurve.io/dnscurve/dnscurve-software.html
https://tools.ietf.org/html/draft-dempsky-dnscurve-01
https://tools.ietf.org/html/draft-dempsky-dnscurve-01
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc5155
https://www.ietf.org/rfc/rfc2671.txt
http://ftp.isc.org/isc/bind/cur/9.9/doc/arm/man.dnssec-keygen.html
http://ftp.isc.org/isc/bind/cur/9.9/doc/arm/man.dnssec-keygen.html
http://ftp.isc.org/www/bind/arm95/man.dnssec-signzone.html
http://ftp.isc.org/www/bind/arm95/man.dnssec-signzone.html
http://www.ietf.org/rfc/rfc3757.txt
https://tools.ietf.org/html/rfc4470
https://tools.ietf.org/html/rfc4470
https://tools.ietf.org/html/rfc4471
https://www.ietf.org/rfc/rfc4509.txt
https://tools.ietf.org/html/rfc2537

Bibliography 204

[79] Donald Eastlake. RFC 3110: RSA/SHA-1 SIGs and RSA KEYs in the Domain

Name System (DNS), 2001. URL https://tools.ietf.org/html/rfc3110.

[80] Scott Rose. RFC 6944: Applicability Statement: DNS Security (DNSSEC)

DNSKEY Algorithm Implementation Status, 2013. URL https://tools.ietf.

org/html/rfc6944.

[81] Donald Eastlake. RFC 2539: Storage of Diffie-Hellman Keys in the Domain Name

System (DNS), 1999. URL https://tools.ietf.org/html/rfc2539.

[82] Donald Eastlake. RFC 2536: DSA KEYs and SIGs in the Domain Name System

(DNS), 1999. URL https://tools.ietf.org/html/rfc2536.

[83] Scott Rose. RFC 6725: DNS Security (DNSSEC) DNSKEY Algorithm IANA

Registry Updates, 2012. URL http://tools.ietf.org/html/rfc6725.

[84] Jelte Jansen. RFC 5702: Use of SHA-2 Algorithms with RSA in DNSKEY and

RRSIG Resource Records for DNSSEC, 2009. URL http://tools.ietf.org/

html/rfc5702.

[85] Vasily Dolmatov, Artem Chuprina, and Igor Ustinov. RFC 5933: Use of GOST

Signature Algorithms in DNSKEY and RRSIG Resource Records for DNSSEC,

2010. URL http://tools.ietf.org/html/rfc5933.

[86] Paul Hoffman and Wouter C.A. Wijngaards. RFC 6605: Elliptic Curve Digital

Signature Algorithm (DSA) for DNSSEC, 2012. URL http://tools.ietf.org/

html/rfc6605.

[87] Paul Hoffman. RFC 6014: Cryptographic Algorithm Identifier Allocation for

DNSSEC, 2010. URL http://tools.ietf.org/html/rfc6014.

[88] Joao Damas and Paul Vixie. RFC 6891: Extension Mechanisms for DNS (EDNS0),

2013. URL https://tools.ietf.org/html/rfc6891.

[89] David Conrad. RFC 3225: Indicating Resolver Support of DNSSEC, 2001. URL

https://tools.ietf.org/html/rfc3225.

[90] Samuel Weiler and David Blacka. RFC 6840: Clarifications and Implementation

Notes for DNS Security (DNSSEC), 2013. URL https://tools.ietf.org/html/

rfc6840.

https://tools.ietf.org/html/rfc3110
https://tools.ietf.org/html/rfc6944
https://tools.ietf.org/html/rfc6944
https://tools.ietf.org/html/rfc2539
https://tools.ietf.org/html/rfc2536
http://tools.ietf.org/html/rfc6725
http://tools.ietf.org/html/rfc5702
http://tools.ietf.org/html/rfc5702
http://tools.ietf.org/html/rfc5933
http://tools.ietf.org/html/rfc6605
http://tools.ietf.org/html/rfc6605
http://tools.ietf.org/html/rfc6014
https://tools.ietf.org/html/rfc6891
https://tools.ietf.org/html/rfc3225
https://tools.ietf.org/html/rfc6840
https://tools.ietf.org/html/rfc6840

Bibliography 205

[91] Eric Osterweil, Dan Massey, Michael Ryan, and Lixia Zhang. Quantifying the

operational status of the DNSSEC deployment. In Proceedings of the 8th ACM

SIGCOMM conference on Internet measurement, ACM SIGCOMM, pages 231–

242, Greece, 2008. ACM.

[92] Eric Osterweil, Dan Massey, and Lixia Zhang. Deploying and Monitoring DNS

Security (DNSSEC). In In IEEE Computer Society: 25th Annual Computer Se-

curity Applications Conference (ACSAC ’09), pages 231–242, Honolulu, Hawaii,

USA, 2009. IEEE.

[93] Fredrik Ljunggren, Tomofumi Okubo, Richard Lamb, and Jakob Schlyter.

DNSSEC Practice Statement for the Root Zone KSK Operator, 2010. URL

https://www.iana.org/dnssec/icann-dps.txt.

[94] Michael StJohns. RFC 5011: Automated Updates of DNS Security (DNSSEC)

Trust Anchors, 2007. URL https://tools.ietf.org/html/rfc5011.

[95] Howard Eland, Russ Mundy, Steve Crocker, and Suresh Krishnaswamy. RFC 4986:

Requirements Related to DNS Security (DNSSEC) Trust Anchor Rollover, 2007.

URL https://tools.ietf.org/html/rfc4986.

[96] Paul Ebersman, Warren Kumari, Chris Griffiths, Jason Livingood, and Ralf We-

ber. RFC 7646: Definition and Use of DNSSEC Negative Trust Anchors, 2015.

URL https://tools.ietf.org/html/rfc7646.

[97] Mark Andrews and Samuel Weiler. RFC 4431: The DNSSEC Lookaside Valida-

tion (DLV) DNS Resource Record, 2006. URL https://tools.ietf.org/html/

rfc4431.

[98] Samuel Weiler. RFC 5074: DNSSEC Lookaside Validation (DLV), 2007. URL

https://tools.ietf.org/html/rfc5074.

[99] Hao Yang, Eric Osterweil, Dan Massey, Songwu Lu, and Lixia Zhang. Deploying

Cryptography in Internet-Scale Systems: A Case Study on DNSSEC. In Depend-

able and Secure Computing, IEEE Transactions on, volume 8, pages 656–669.

IEEE, 2010.

[100] Internet Systems Consortium (ISC). DNSSEC Look-aside Validation Registry, .

URL https://dlv.isc.org/.

https://www.iana.org/dnssec/icann-dps.txt
https://tools.ietf.org/html/rfc5011
https://tools.ietf.org/html/rfc4986
https://tools.ietf.org/html/rfc7646
https://tools.ietf.org/html/rfc4431
https://tools.ietf.org/html/rfc4431
https://tools.ietf.org/html/rfc5074
https://dlv.isc.org/

Bibliography 206

[101] ICANN Research. TLD DNSSEC Report. URL http://stats.research.icann.

org/dns/tld_report/.

[102] Internet Systems Consortium (ISC). DNSSEC Deployment Report, . URL https:

//rick.eng.br/dnssecstat/.

[103] Niels L. M. Adrichem, Norbert Blenn, Antonio Reyes Lúa, Xin Wang, Muhammad

Wasif, Ficky Fatturrahman, and Fernando A. Kuipers. A measurement study of

DNSSEC misconfigurations. Security Informatics, 4(1):1–14, 2015.

[104] Jason Livingood. Responsibility for Authoritative DNSSEC Mis-

takes. Internet Draft, 2015. URL https://tools.ietf.org/html/

draft-livingood-dnsop-auth-dnssec-mistakes-03.

[105] Matthaeus Wander and Torben Weis. Measuring Occurrence of DNSSEC Valida-

tion. In 14th International Conference Passive and Active Measurement (PAM),

In Proceedings of, pages 125–134. Springer Berlin Heidelberg, Aug 2013.

[106] Yingdi Yu, Duane Wessels, Matt Larson, and Matt Zhang. Check-Repeat: A new

method of measuring DNSSEC validating resolvers. In International Conference

on Computer Communications (INFOCOM) 2013, In Proceedings of IEEE, pages

3147–3152, Aug 2013.

[107] Wilson Lian, Eric Rescorla, Hovav Shacham, and Stefan Savage. Measuring the

Practical Impact of DNSSEC Deployment. In 22nd USENIX Security Symposium

(USENIX Security 13), pages 573–588, Washington, D.C., August 2013. USENIX.

[108] Daniel J. Bernstein. High-speed cryptography and DNSCurve, 2009. http://cr.

yp.to/talks/2009.06.27/slides.pdf.

[109] Daniel J. Bernstein. Cryptography in NaCl, 2009. http://cr.yp.to/highspeed/

naclcrypto-20090310.pdf.

[110] Daniel J. Bernstein. The Salsa20 family of stream ciphers, pages 84–97. Springer

Berlin Heidelberg, 2008.

[111] Daniel J. Bernstein. The poly1305-aes message-authentication code. In 12th

International Workshop on Fast Software Encryption (FSE 2005), pages 32–49.

Springer Berlin Heidelberg, 2005.

http://stats.research.icann.org/dns/tld_report/
http://stats.research.icann.org/dns/tld_report/
https://rick.eng.br/dnssecstat/
https://rick.eng.br/dnssecstat/
https://tools.ietf.org/html/draft-livingood-dnsop-auth-dnssec-mistakes-03
https://tools.ietf.org/html/draft-livingood-dnsop-auth-dnssec-mistakes-03
http://cr.yp.to/talks/2009.06.27/slides.pdf
http://cr.yp.to/talks/2009.06.27/slides.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf
http://cr.yp.to/highspeed/naclcrypto-20090310.pdf

Bibliography 207

[112] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In Public Key

Cryptography (PKC 2006), In Proceedings of the, pages 207–228. Springer Berlin

Heidelberg, 2006.

[113] IEEE P1363. Standard Specifications For Public-Key Cryptography, 2008. http:

//grouper.ieee.org/groups/1363/index.html.

[114] Olaf Kolkman, Matthijs Mekking, and Miek Gieben. RFC 6781: DNSSEC Opera-

tional Practices, Version 2, 2012. URL https://tools.ietf.org/html/rfc6781.

[115] ENISA. Algorithms, key size and parameters report 2014. Technical report, 2014.

[116] eSTREAM. The ECRYPT Stream cipher project, 2008. http://www.ecrypt.eu.

org/stream/salsa20pf.html.

[117] Jason Bau and John C Mitchell. A Security Evaluation of DNSSEC with NSEC3.

In IACR Eprint archive. IEEE, 2010. Revised and corrected version of conference

paper in Network and Distributed Systems Security (NDSS) 2010.

[118] Eric Osterweil, Dan Massey, and Lixia Zhang. Observations from the DNSSEC De-

ployment. In IEEE Workshop on Secure Network Protocols 2007 (NPSEC 2007),

pages 1–6, Beijing, China, 2007. IEEE.

[119] Yan He, Eric Osterweil, Jon Hajdu, Jonas Acres, and Dan Massey. Limiting replay

vulnerabilities in DNSSEC. In 4th Workshop on Secure Network Protocols 2008

(NPSec 2008), pages 3–8, 2008.

[120] Stephane Bortzmeyer. RFC 7626: DNS Privacy Considerations, 2015. URL

https://tools.ietf.org/html/rfc7626.

[121] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin

Vasant, and Asaf Ziv. Stretching NSEC3 to the Limit: Efficient Zone Enumeration

Attacks on NSEC3 Variants. Technical report, Boston University, 2015. URL

https://www.cs.bu.edu/~goldbe/papers/nsec3attacks.pdf.

[122] Matthaeus Wander, Lorenz Schwittmann, Christopher Boelmann, and Torben

Weis. GPU-Based NSEC3 Hash Breaking. In Network Computing and Appli-

cations (NCA), 2014 IEEE 13th International Symposium on, pages 137–144, Au-

gust 2014.

http://grouper.ieee.org/groups/1363/index.html
http://grouper.ieee.org/groups/1363/index.html
https://tools.ietf.org/html/rfc6781
http://www.ecrypt.eu.org/stream/salsa20pf.html
http://www.ecrypt.eu.org/stream/salsa20pf.html
https://tools.ietf.org/html/rfc7626
https://www.cs.bu.edu/~goldbe/papers/nsec3attacks.pdf

Bibliography 208

[123] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin

Vasant, and Asaf Ziv. NSEC5: Provably Preventing DNSSEC Zone Enumeration.

In 2015 Network and Distributed System Security Symposium (NDSS15), February

2015.

[124] Randal Vaughn and Gadi Evron. DNS amplification attacks (Preliminary Release),

2006. http://www.isotf.org/news/DNS-Amplification-Attacks.pdf.

[125] Joao Damas and Frederico Neves. RFC 5358: Preventing Use of Recursive Name-

servers in Reflector Attacks, 2008. URL http://tools.ietf.org/html/rfc5358.

[126] Yuri Schaeffer, Benno J. Overeinder, and Matthijs Mekking. Flexible and Ro-

bust Key Rollover in DNSSEC. In Proceedings of the Workshop on Securing and

Trusting Internet Names (SATIN 2012), 2012.

[127] Warren Kumari, Olafur Gudmundsson, and George Barwood. RFC 7344: Au-

tomating DNSSEC Delegation Trust Maintenance, 2014. URL https://tools.

ietf.org/html/rfc7344.

[128] Stephen Morris, Johan Ihren, John Dickinson, and Matthijs Mekking. RFC

7583: DNSSEC Key Rollover Timing Considerations, 2015. URL https://www.

rfc-editor.org/rfc/rfc7583.txt.

[129] Bernhard Ager, Holger Dreger, and Anja Feldmann. Exploring the Overhead of

DNSSEC, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.206.1442&rep=rep1&type=pdf.

[130] Olaf Kolkman and Miek Gieben. RFC 4641: DNSSEC Operational Practices,

2006. URL https://www.ietf.org/rfc/rfc4641.txt.

[131] Miek Gieben and Matthijs Mekking. RFC 7129: Authenticated Denial of Existence

in the DNS, 2014. URL https://tools.ietf.org/html/rfc7129.

[132] Crypto++ 5.6.0 Benchmarks. Speed comparison of popular crypto algorithms,

2009. https://www.cryptopp.com/benchmarks.html.

[133] Olaf Kolkman. Measuring the resource requirements of DNSSEC. Technical

report, 2005. URL http://search.belnet.be/pub/ftp.ripe.net/ripe/docs/

ripe-352.pdf.

http://www.isotf.org/news/DNS-Amplification-Attacks.pdf
http://tools.ietf.org/html/rfc5358
https://tools.ietf.org/html/rfc7344
https://tools.ietf.org/html/rfc7344
https://www.rfc-editor.org/rfc/rfc7583.txt
https://www.rfc-editor.org/rfc/rfc7583.txt
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.1442&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.1442&rep=rep1&type=pdf
https://www.ietf.org/rfc/rfc4641.txt
https://tools.ietf.org/html/rfc7129
https://www.cryptopp.com/benchmarks.html
http://search.belnet.be/pub/ftp.ripe.net/ripe/docs/ripe-352.pdf
http://search.belnet.be/pub/ftp.ripe.net/ripe/docs/ripe-352.pdf

Bibliography 209

[134] Tirumaleswar Reddy, Dan Wing, and Prashanth Patil. Specification for DNS

over Datagram Transport Layer Security (DTLS). Internet Draft, 2016. URL

https://tools.ietf.org/html/draft-ietf-dprive-dnsodtls-12.

[135] Eric Rescorla and Nagendra Modadugu. RFC 6347: Datagram Transport Layer

Security Version 1.2, 2012. URL https://tools.ietf.org/html/rfc6347.

[136] Marco Tiloca, Christian Gehrmann, and Ludwig Seitz. On improving resistance

to Denial of Service and key provisioning scalability of the DTLS handshake.

International Journal of Information Security, pages 1–21, 2016.

[137] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and Paul

Hoffman. RFC 7858: Specification for DNS over Transport Layer Security (TLS),

2016. URL https://tools.ietf.org/html/rfc7858.

[138] Tim Dierks and Eric Rescorla. RFC 5246: The Transport Layer Security (TLS)

Protocol Version 1.2, 2008. URL https://tools.ietf.org/html/rfc5246.

[139] P. Morrissey, N. P. Smart, and B. Warinschi. A Modular Security Analysis of

the TLS Handshake Protocol, pages 55–73. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2008.

[140] Fabrice J. Ryba, Matthew Orlinski, Matthias Waehlisch, Christian Rossow, and

Thomas C. Schmidt. Amplification and DRDoS Attack Defense–A Survey and

New Perspectives. arXiv preprint arXiv:1505.07892, 2015. URL http://arxiv.

org/abs/1505.07892.

[141] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. DNSSEC and Its Po-

tential for DDoS Attacks: A Comprehensive Measurement Study. In Proceedings

of the 2014 Conference on Internet Measurement Conference, IMC ’14, pages 449–

460, New York, NY, USA, 2014. ACM.

[142] Vern Paxson. An Analysis of Using Reflectors for Distributed Denial-of-service

Attacks. ACM SIGCOMM Computer Communication Review, 31(3):38–47, July

2001.

[143] US-CERT. The Continuing Denial of Service Threat Posed by DNS Recursion

(v2.0). Technical report, US-CERT, 2013. https://www.us-cert.gov/sites/

default/files/publications/DNS-recursion033006.pdf.

https://tools.ietf.org/html/draft-ietf-dprive-dnsodtls-12
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc7858
https://tools.ietf.org/html/rfc5246
http://arxiv.org/abs/1505.07892
http://arxiv.org/abs/1505.07892
https://www.us-cert.gov/sites/default/files/publications/DNS-recursion033006.pdf
https://www.us-cert.gov/sites/default/files/publications/DNS-recursion033006.pdf

Bibliography 210

[144] Don Jackson. DNS Amplification Variation Used in Recent DDoS Attacks,

February 2009. http://www.secureworks.com/cyber-threat-intelligence/

threats/dns-amplification.

[145] US-CERT. DNS Amplification Attacks. Technical report, US-CERT, 2013. https:

//www.us-cert.gov/ncas/alerts/TA13-088A.

[146] Bernhard Ager, Holger Dreger, and Anja Feldmann. Predicting the DNSSEC

overhead using DNS traces. In 40th Annual Conference on Information Sciences

and Systems (2006), pages 1484–1489, March 2006.

[147] Alex Cowperthwaite and Anil Somayaji. The futility of DNSSec. In Proceedings

of the 5th Annual Symposium on Information Assurance (ASIA), June 2010.

[148] Christian Rossow. Amplification Hell: Revisiting Network Protocols for DDoS

Abuse. In Proceedings of the 2014 Network and Distributed System Security Sym-

posium (NDSS), 2014.

[149] Yuuki Takano, Ruo Ando, Takeshi Takahashi, Satoshi Uda, and Tomoya Inoue.

A Measurement Study of Open Resolvers and DNS Server Version. In Internet

Conference (IEICE), 2013.

[150] Open Resolver Project. http://openresolverproject.org/.

[151] DNS - The Measurement Factory. http://dns.measurement-factory.com.

[152] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten

Holz. Going Wild: Large-Scale Classification of Open DNS Resolvers. In Proceed-

ings of the Internet Measurement Conference (IMC) October 2015, ACM, pages

355–368, 2015.

[153] Andrew J. Kaizer and Minaxi Gupta. Open Resolvers: Understanding the Ori-

gins of Anomalous Open DNS Resolvers. In Proceedings of the 16th International

Conference Passive and Active Measurement (PAM 2015), pages 3–14. Springer

International Publishing.

[154] Douglas C. MacFarland, Craig A. Shue, and Andrew J. Kalafut. Characterizing

Optimal DNS Amplification Attacks and Effective Mitigation. In Passive and

Active Measurement Conference. Springer, 2015.

http://www.secureworks.com/cyber-threat-intelligence/threats/dns-amplification
http://www.secureworks.com/cyber-threat-intelligence/threats/dns-amplification
https://www.us-cert.gov/ncas/alerts/TA13-088A
https://www.us-cert.gov/ncas/alerts/TA13-088A

Bibliography 211

[155] Vernon Schryver Paul Vixie. DNS Response Rate Limiting (DNS RRL), June

2012. http://ss.vix.com/~vixie/isc-tn-2012-1.txt.

[156] Root Server Operators. Events of 2015-11-30, December 2015. http://www.

root-servers.org/news/events-of-20151130.txt.

[157] Symantec. Internet Security Threat Report (ISTR20). 20, 2015.

[158] Anonymous. Operation global blackout, February 2012. http://pastebin.com/

NKbnh8q8.

[159] Robert D. Graham. No, #Anonymous can’t DDoS the root DNS

servers, February 2012. http://erratasec.blogspot.gr/2012/02/

no-anonymous-cant-ddos-root-dns-servers.html.

[160] Gadi Evron. Battling botnets and online mobs. Georgetown Journal of Interna-

tional Affairs, 9:121–126, 2008.

[161] Anthony Eden. Incident Report: DNS Outage due to DDoS Attack, June 2013.

https://blog.dnsimple.com/2013/06/incident-report-20130603/.

[162] Scapy Project. http://www.secdev.org/projects/scapy/.

[163] NIST. Vulnerability Summary for CVE-2012-3411, March 2013. http://web.

nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3411.

[164] Marc Kührer, Thomas Hupperich, Christian Rossow, and Thorsten Holz. Exit

from Hell? Reducing the Impact of Amplification DDoS Attacks. In 23rd USENIX

Security Symposium (USENIX Security 14), pages 111–125, San Diego, CA, Au-

gust 2014. USENIX Association.

[165] Ray Bellis. RFC 5966: DNS Transport over TCP - Implementation Requirements,

2010. URL https://tools.ietf.org/html/rfc5966.

[166] Gijs Van Den Broek, Roland Van Rijswijk-Deij, Anna Sperotto, and Aiko Pras.

DNSSEC meets real world: dealing with unreachability caused by fragmentation.

IEEE Communications Magazine, 52(4):154–160, April 2014.

[167] Internet System Consortium. BIND 9 Administrator Reference Manual, 2014.

http://ss.vix.com/~vixie/isc-tn-2012-1.txt
http://www.root-servers.org/news/events-of-20151130.txt
http://www.root-servers.org/news/events-of-20151130.txt
http://pastebin.com/NKbnh8q8
http://pastebin.com/NKbnh8q8
http://erratasec.blogspot.gr/2012/02/no-anonymous-cant-ddos-root-dns-servers.html
http://erratasec.blogspot.gr/2012/02/no-anonymous-cant-ddos-root-dns-servers.html
https://blog.dnsimple.com/2013/06/incident-report-20130603/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3411
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3411
https://tools.ietf.org/html/rfc5966

Bibliography 212

[168] Manos Antonakakis, David Dagon, Xiapu Luo, Roberto Perdisci, Wenke Lee, and

Justin Bellmor. A centralized monitoring infrastructure for improving dns security.

In 13th International Conference on Recent Advances in Intrusion Detection, pages

18–37. Springer, 2010.

[169] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. Inferring distributed

reflection denial of service attacks from darknet. Computer Communications, 62:

59 – 71, 2015.

[170] Olafur Gudmundsson and Marek Majkowski. Deprecating the DNS ANY

meta-query type, March 2015. URL https://blog.cloudflare.com/

deprecating-dns-any-meta-query-type/.

[171] John Dickinson, Sara Dickinson, Ray Bellis, Allison Mankin, and Duane Wessels.

RFC 7766: DNS Transport over TCP - Implementation Requirements, 2016. URL

https://tools.ietf.org/html/rfc7766.

[172] Paul Ferguson and Daniel Senie. RFC 2827: Network Ingress Filtering: Defeating

Denial of Service Attacks which employ IP Source Address Spoofing, 2000. URL

http://www.ietf.org/rfc/rfc2827.txt.

[173] Robert Beverly, Ryan Koga, and Kc Claffy. Initial Longi-

tudinal Analysis of IP Source Spoofing Capability on the In-

ternet, 2013. URL http://www.internetsociety.org/doc/

initial-longitudinal-analysis-ip-source-spoofing-capability-internet.

[174] Spoofer Project: State of IP Spoofing. http://www.secdev.org/projects/scapy/.

[175] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos

Gritzalis. Detecting DNS amplification attacks. In Critical Information Infras-

tructures Security, pages 185–196. Springer, 2008.

[176] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos

Gritzalis. A Fair Solution to DNS Amplification Attacks. In Digital Forensics

and Incident Analysis, 2007. WDFIA 2007. Second International Workshop on,

pages 38–47, 2007.

https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/
https://blog.cloudflare.com/deprecating-dns-any-meta-query-type/
https://tools.ietf.org/html/rfc7766
http://www.ietf.org/rfc/rfc2827.txt
http://www.internetsociety.org/doc/initial-longitudinal-analysis-ip-source-spoofing-capability-internet
http://www.internetsociety.org/doc/initial-longitudinal-analysis-ip-source-spoofing-capability-internet

Bibliography 213

[177] Sebastiano Di Paola and Dario Lombardo. Protecting against DNS reflection at-

tacks with Bloom filters. In Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 1–16. Springer, 2011.

[178] Changhua Sun, Bin Liu, and Lei Shi. Efficient and low-cost hardware defense

against DNS amplification attacks. In Global Telecommunications Conference,

2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

[179] Samaneh Rastegari, M. Iqbal Saripan, and Mohd Fadlee A. Rasid. Detection of

Denial of Service Attacks against Domain Name System Using Neural Networks.

International Journal of Computer Science Issues, 6:23–27, 2009.

[180] Samaneh Rastegari, M Iqbal Saripan, and Mohd Fadlee A Rasid. Detection of

Denial of Service Attacks against Domain Name System Using Machine Learning

Classifiers. Lecture Notes in Engineering and Computer Science: Proceedings of

The World Congress on Engineering 2010, pages 444–447, 2010.

[181] Tong Guang Ni, Xiao Qing Gu, and Hong Yuan Wang. Detecting DDoS Attacks

Against DNS Servers Using Time Series Analysis. TELKOMNIKA Indonesian

Journal of Electrical Engineering, 12(1):753–761, 2014.

[182] Tushar Deshpande, Panagiotis Katsaros, Stylianos Basagiannis, and Scott A

Smolka. Formal analysis of the DNS Bandwidth Amplification Attack and its

countermeasures using probabilistic model checking. In High-Assurance Systems

Engineering (HASE), 2011 IEEE 13th International Symposium on, pages 360–

367. IEEE, 2011.

[183] Allison Mankin. Random drop congestion control. In Proceedings of the ACM

symposium on Communications architectures & protocols, volume 20, pages 1–7.

ACM, 1990.

[184] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott

Shenker. DDoS defense by offense. In Proceedings of the 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communi-

cations, pages 303–314, 2006.

[185] Claude Fachkha, Elias Bou-Harb, and Mourad Debbabi. Fingerprinting Internet

DNS Amplification DDoS Activities. In 2014 6th International Conference on New

Technologies, Mobility and Security (NTMS), pages 1–5, March 2014.

Bibliography 214

[186] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and Ste-

fan Savage. Inferring Internet Denial-of-service Activity. ACM Transactions on

Computer Systems, 24(2):115–139, May 2006.

[187] Sergio S.C. Silva, Rodrigo M.P. Silva, Raquel C.G. Pinto, and Ronaldo M. Salles.

Botnets: A survey. Computer Networks, 57(2):378 – 403, 2013.

[188] Felix C. Freiling, Thorsten Holz, and Georg Wicherski. Botnet Tracking: Explor-

ing a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks.

In Proceedings of 10th European Symposium on Research in Computer Security

(ESORICS), pages 319–335. Springer, 2005.

[189] Anirudh Ramachandran and Nick Feamster. Understanding the Network-level

Behavior of Spammers. In Proceedings of the 2006 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, SIG-

COMM ’06, pages 291–302, New York, NY, USA, 2006. ACM.

[190] Thorsten Holz, Markus Engelberth, and Felix Freiling. Learning More About the

Underground Economy: A Case-Study of Keyloggers and Dropzones. In Pro-

ceedings of European Symposium on Research in Computer Security (ESORICS).

Springer, 2009.

[191] N. Ianelli and A. Hackworth. Botnets as a vehicle for online crime. In CERT

Coordination Center, 2005.

[192] Cormac Herley and Dinei Florêncio. Nobody Sells Gold for the Price of Silver:

Dishonesty, Uncertainty and the Underground Economy, pages 33–53. Springer

US, Boston, MA, 2010.

[193] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A Mul-

tifaceted Approach to Understanding the Botnet Phenomenon. In Proceedings of

the 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06, pages

41–52, New York, NY, USA, 2006. ACM.

[194] Gunter Ollmann. Botnet Communication Topologies, 2009. URL https://www.

damballa.com/downloads/r_pubs/WP_Botnet_Communications_Primer.pdf.

https://www.damballa.com/downloads/r_pubs/WP_Botnet_Communications_Primer.pdf
https://www.damballa.com/downloads/r_pubs/WP_Botnet_Communications_Primer.pdf

Bibliography 215

[195] David Dagon, Guofei Gu, Christopher P. Lee, and Wenke Lee. A Taxonomy of

Botnet Structures. In Computer Security Applications Conference, 2007 (ACSAC

2007). Twenty-Third Annual, pages 325–339, Dec 2007.

[196] Ping Wang, Lei Wu, Baber Aslam, and Cliff Changchun Zou. A systematic

study on peer-to-peer botnets. In Computer Communications and Networks

(ICCN2009), Proceedings of 18th Internatonal Conference on, pages 1–8. IEEE,

2009.

[197] Ping Wang, Sherri Sparks, and Cliff Changchun Zou. An advanced hybrid peer-

to-peer botnet. Dependable and Secure Computing, IEEE Transactions on, 7(2):

113–127, 2010.

[198] Evan Cooke, Farnam Jahanian, and Danny McPherson. The zombie roundup:

Understanding, detecting, and disrupting botnets. In Proceedings of the USENIX

Steps to Reducing Unwanted Traffic on the Internet (SRUTI05) Workshop, vol-

ume 39, page 44, 2005.

[199] Craig Schiller and James R. Binkley. Botnets: The killer web applications. Syn-

gress, 2011.

[200] Nicole M Hands, Baijian Yang, and Raymond A. Hansen. A Study on Botnets

Utilizing DNS. In Proceedings of the 4th Annual ACM Conference on Research in

Information Technology (RIIT ’15), pages 23–28, 2015.

[201] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Measuring

and detecting fast-flux service networks, 2008.

[202] Manos Antonakakis, Roberto Perdisci, Yacin Nadji, Nikolaos Vasiloglou, Saeed

Abu-Nimeh, Wenke Lee, and David Dagon. From Throw-Away Traffic to Bots:

Detecting the Rise of DGA-Based Malware. In Proceedings of the 21st USENIX

Security Symposium (USENIX Security 12), pages 491–506, Bellevue, WA, 2012.

USENIX.

[203] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Martin Szyd-

lowski, Richard Kemmerer, Christopher Kruegel, and Giovanni Vigna. Your Bot-

net is My Botnet: Analysis of a Botnet Takeover. In Proceedings of the 16th ACM

Conference on Computer and Communications Security, CCS ’09, pages 635–647,

New York, NY, USA, 2009.

Bibliography 216

[204] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. A Foray into Conficker’s

Logic and Rendezvous Points. In USENIX Workshop on Large-Scale Exploits and

Emergent Threats, 2009.

[205] Kui Xu, Patrick Butler, Sudip Saha, and Danfeng Yao. DNS for Massive-Scale

Command and Control. IEEE Transactions on Dependable and Secure Computing,

10(3):143–153, May 2013.

[206] Guofei Gu, Roberto Perdisci, Junjie Zhang, Wenke Lee, et al. Botminer: Cluster-

ing analysis of network traffic for protocol-and structure-independent botnet de-

tection. In Proceedings of the 17th Conference on Security Symposium, USENIX

Association, pages 139–154, 2008.

[207] Goebel Jan and Thorsten Holz. Rishi: Identify Bot Contaminated Hosts by IRC

Nickname Evaluation. In Proceedings of USENIX HotBots’07, 2007.

[208] Lucas Nussbaum, Pierre Neyron, and Olivier Richard. On Robust Covert Channels

Inside DNS, pages 51–62. Springer Berlin Heidelberg, 2009.

[209] Christian J. Dietrich, Christian Rossow, Felix C. Freiling, Herbert Bos,

Maarten van van Steen, and Norbert Pohlmann. On Botnets That Use DNS for

Command and Control. In Computer Network Defense (EC2ND) 2011, Seventh

European Conference on, pages 9–16, September 2011.

[210] Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert, Koen De Boss-

chere, Pieter Danhieux, and Erik Van Buggenhout. DNS Tunneling for Network

Penetration, pages 65–77. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[211] Hamad Binsalleeh, A. Mert Kara, Amr Youssef, and Mourad Debbabi. Character-

ization of Covert Channels in DNS. In New Technologies, Mobility and Security

(NTMS), 2014 6th International Conference on, pages 1–5, March 2014.

[212] Cathal Mullaney. Morto worm sets a (dns) record. Technical re-

port, Aug 2011. URL http://www.symantec.com/connect/blogs/

morto-worm-sets-dns-record.

[213] Axelle Apvrille. Symbian worm Yxes: Towards mobile botnets? Journal in

Computer Virology, 8(4):117–131, 2012.

http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record
http://www.symantec.com/connect/blogs/morto-worm-sets-dns-record

Bibliography 217

[214] Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. An analysis of the iKee.B

iPhone botnet. In Security and Privacy in Mobile Information and Communication

Systems, pages 141–152. Springer, 2010.

[215] H. Pieterse and M.S. Olivier. Android botnets on the rise: Trends and charac-

teristics. In Information Security for South Africa (ISSA), 2012, pages 1–5, Aug

2012.

[216] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization

and Evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages

95–109, May 2012.

[217] Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A survey on

security for mobile devices. Communications Surveys & Tutorials, IEEE, 15(1):

446–471, 2013.

[218] Kapil Singh, Samrit Sangal, Nehil Jain, Patrick Traynor, and Wenke Lee. Eval-

uating bluetooth as a medium for botnet command and control. In Detection

of Intrusions and Malware, and Vulnerability Assessment, pages 61–80. Springer,

2010.

[219] Jingyu Hua and Kouichi Sakurai. A sms-based mobile botnet using flooding al-

gorithm. In Information Security Theory and Practice, International Workshop

on Security and Privacy of Mobile Devices in Wireless Communication, pages

264–279. Springer, 2011.

[220] Collin Mulliner and Jean-Pierre Seifert. Rise of the iBots: Owning a telco network.

In 5th International Conference on Malicious and Unwanted Software (MAL-

WARE) 2010, pages 71–80. IEEE, 2010.

[221] Cui Xiang, Fang Binxing, Yin Lihua, Liu Xiaoyi, and Zang Tianning. Andbot:

towards advanced mobile botnets. In Proceedings of the 4th USENIX conference

on Large-scale exploits and emergent threats, pages 11–11. USENIX Association,

Berkeley, CA, USA, 2011.

[222] Mohammad Reza Faghani and Mohammad Reza Nguyen. Socellbot: A new botnet

design to infect smartphones via online social networking. In 25th IEEE Canadian

Conference on Electrical Computer Engineering (CCECE) 2012, pages 1–5, April

2012.

Bibliography 218

[223] Shuang Zhao, Patrick P. C. Lee, John C. S. Lui, Xiaohong Guan, Xiaobo Ma, and

Jing Tao. Cloud-based Push-styled Mobile Botnets: A Case Study of Exploiting

the Cloud to Device Messaging Service. In Proceedings of the 28th Annual Com-

puter Security Applications Conference, ACSAC ’12, pages 119–128, New York,

NY, USA, 2012. ACM.

[224] Ragib Hasan, Nitesh Saxena, Tzipora Haleviz, Shams Zawoad, and Dustin Rine-

hart. Sensing-enabled Channels for Hard-to-detect Command and Control of Mo-

bile Devices. In Proceedings of the 8th ACM SIGSAC Symposium on Information,

Computer and Communications Security, ASIA CCS ’13, pages 469–480, New

York, NY, USA, 2013. ACM.

[225] David Dagon, Cliff Changchun Zou, and Wenke Lee. Modeling Botnet Propagation

Using Time Zones. In Proceedings of the 13th Annual Network and Distributed

System Security Symposium (NDSS’06), volume 6, pages 2–13, 2006.

[226] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David

Wagner. A survey of mobile malware in the wild. In Proceedings of the 1st ACM

Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM

’11, pages 3–14, New York, NY, USA, 2011. ACM.

[227] Matthew Knysz, Xin Hu, Yuanyuan Zeng, and Kang G. Shin. Open WiFi networks:

Lethal weapons for botnets? In IEEE International Conference on Computer

Communications (INFOCOM) 2012, pages 2631–2635, March 2012.

[228] Thorsten Holz, Christian Gorecki, Konrad Rieck, and Felix C. Freiling. Measuring

and detecting fast-flux service networks. In Symposium on Network and Distributed

System Security (NDSS08), 2008.

[229] Emanuele Passerini, Roberto Paleari, Lorenzo Martignoni, and Danilo Bruschi.

FluXOR: Detecting and Monitoring Fast-Flux Service Networks, pages 186–206.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[230] Xin Hu, Matthew Knysz, and Kang G. Shin. RB-Seeker: Auto-detection of Redi-

rection Botnets. In Proceedings of 16th Network and Distributed System Security

Symposium (NDSS), 2009.

[231] Roberto Perdisci, Igino Corona, David Dagon, and Wenke Lee. Detecting Mali-

cious Flux Service Networks through Passive Analysis of Recursive DNS Traces. In

Bibliography 219

Annual Computer Security Applications Conference (ACSAC ’09), pages 311–320,

2009.

[232] Roberto Perdisci, Igino Corona, and Giorgio Giacinto. Early Detection of Malicious

Flux Networks via Large-Scale Passive DNS Traffic Analysis. IEEE Transactions

on Dependable and Secure Computing, 9(5):714–726, 2012.

[233] Brett Stone-Gross, Marco Cova, Bob Gilbert, Richard Kemmerer, Christopher

Kruegel, and Giovanni Vigna. Analysis of a Botnet Takeover. IEEE Security

Privacy, 9(1):64–72, January 2011.

[234] Kelly Burton. The Conficker Worm, 2012. URL https://www2.sans.org/

security-resources/malwarefaq/conficker-worm.php.

[235] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. My bot-

net is bigger than yours (maybe, better than yours): why size estimates remain

challenging. In USENIX Workshop on Hot Topics in Understanding Botnet, 2007.

[236] Juan Caballero, Pongsin Poosankam, Christian Kreibich, and Dawn Song. Dis-

patcher: Enabling Active Botnet Infiltration Using Automatic Protocol Reverse-

engineering. In Proceedings of the 16th ACM Conference on Computer and Com-

munications Security (CCS ’09), pages 621–634, 2009.

[237] Chia Yuan Cho, Juan Caballero, Chris Grier, Vern Paxson, and Dawn Song. In-

sights from the Inside: A View of Botnet Management from Infiltration. In Pro-

ceedings of the USENIX Workshop on Large-Scale Exploits and Emergent Threat,

2010.

[238] Cedric Halbronn and Jean Sigwald. iphone security model & vulnerabilities. In

Proceedings of Hack in the box sec-conference, Kuala Lumpur, Malaysia, 2010.

[239] Jesse Burns. Exploratory android surgery. In Black Hat Technical Security Con-

ference USA, 2009.

[240] Charlie Miller. Inside iOS Code Signing. In Symposium on Security for Asia

Network (SyScan), 2011.

[241] Stuart Cheshire and Marc Krochmal. RFC 6762: Multicast DNS, 2013. URL

https://tools.ietf.org/html/rfc6762.

https://www2.sans.org/security-resources/malwarefaq/conficker-worm.php
https://www2.sans.org/security-resources/malwarefaq/conficker-worm.php
https://tools.ietf.org/html/rfc6762

Bibliography 220

[242] Ryan Paul. How Applidium reverse engineered Siri’s pro-

tocol, 2011. URL http://arstechnica.com/apple/2011/11/

a-look-at-how-applidium-reverse-engineered-siris-protocol/.

[243] Collin Mulliner and Charlie Miller. Fuzzing the Phone in your Phone. In Black

Hat USA, 2009.

[244] Pete Lamonica. Siriproxy, 2012. https://github.com/plamoni/.

[245] The iPhone Wiki. Theos, . URL http://iphonedevwiki.net/index.php/Theos.

[246] The iPhone Wiki. MobileSubstrate, . URL http://iphonedevwiki.net/index.

php/Cydia_Substrate.

[247] Aubrey Derrick Schmidt and Sahin Albayrak. Malicious software for smartphones.

Technical report, Technische Universitat Berlin - DAI-Labor, 2008.

[248] Nicolas Seriot. iPhone Privacy. In Black Hat, 2010.

[249] Francesco Di Cerbo, Andrea Girardello, Florian Michahelles, and Svetlana

Voronkova. Detection of malicious applications on android OS. In 4th Inter-

national Workshop on Computational Forensics, 2010.

[250] Peter Koch. Confidentiality Aspects of DNS Data, Publica-

tion, and Resolution, 2013. URL https://tools.ietf.org/html/

draft-koch-perpass-dns-confidentiality-00.

http://arstechnica.com/apple/2011/11/a-look-at-how-applidium-reverse-engineered-siris-protocol/
http://arstechnica.com/apple/2011/11/a-look-at-how-applidium-reverse-engineered-siris-protocol/
https://github.com/ plamoni/
http://iphonedevwiki.net/index.php/Theos
http://iphonedevwiki.net/index.php/Cydia_Substrate
http://iphonedevwiki.net/index.php/Cydia_Substrate
https://tools.ietf.org/html/draft-koch-perpass-dns-confidentiality-00
https://tools.ietf.org/html/draft-koch-perpass-dns-confidentiality-00

	Declaration of Authorship
	Advising Committee of this Doctoral Thesis
	Approved by the Examining Committee
	Abstract
	Greek Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Contributions
	1.3 Thesis Structure

	2 Background
	2.1 DNS Service
	2.1.1 Introduction
	2.1.2 DNS Domains
	2.1.3 DNS zones
	2.1.4 DNS Reverse Mapping
	2.1.5 DNS Operation
	2.1.6 DNS Queries
	2.1.7 Entities in a DNS transaction
	2.1.7.1 Resolver
	2.1.7.2 Name Server
	Primary Authoritative Name Server
	Secondary Authoritative Name Server
	Authoritative-only Name Server
	Recursive Name Server
	Forwarding Name Server

	2.1.8 Format of Zone File
	2.1.9 Resource Record Types
	2.1.9.1 SOA Record
	2.1.9.2 NS Record
	2.1.9.3 A and AAAA Record
	2.1.9.4 CNAME Record
	2.1.9.5 TXT Record
	2.1.9.6 MX Record
	2.1.9.7 PTR Record
	2.1.9.8 CSYNC Record

	2.1.10 DNS Message Format
	2.1.11 Zone Update
	2.1.11.1 Full Zone Transfer
	2.1.11.2 Incremental Zone Transfer
	2.1.11.3 Notify
	2.1.11.4 Dynamic Update
	2.1.11.5 Wildcards

	2.1.12 Resolution of a domain name

	2.2 Legacy DNS Attacks
	2.2.1 Attack Surface specific to Integrity of DNS transactions
	2.2.2 Exploiting DNS infrastructure for DDoS

	3 DNS Cache Poisoning
	3.1 Introduction
	3.1.1 Target of Cache Poisoning
	3.1.2 Steps for a Cache Poisoning Attack
	3.1.3 Kaminsky-Style Poisoning Attack

	3.2 Poisoning Antidotes
	3.2.1 Interim Solutions
	3.2.1.1 Transaction ID Randomization
	3.2.1.2 Source Port Randomization
	3.2.1.3 0x20-Bit Encoding
	3.2.1.4 WSEC DNS
	3.2.1.5 Multiple Queries

	3.2.2 Cryptographic Solutions
	3.2.3 DNSSEC
	3.2.3.1 Security Operations
	3.2.3.2 DNSSEC-related RR types
	DNSKEY Record
	RRSIG Record
	NSEC/NSEC3 Record
	DS Record
	Cryptographic Algorithms for DNSSEC

	3.2.3.3 DNSSEC-related header flags
	3.2.3.4 DNSSEC in action
	3.2.3.5 Trust Anchor
	3.2.3.6 DNSSEC Lookaside Validation
	3.2.3.7 Challenges of DNSSEC Deployment

	3.2.4 DNSCurve
	3.2.4.1 Security Operations
	3.2.4.2 Publication of Public Key
	3.2.4.3 DNSCurve message format
	3.2.4.4 DNSCurve operation
	3.2.4.5 Trust anchor
	3.2.4.6 Elliptic Curve Cryptography

	3.2.5 DNSSEC vs. DNSCurve: A side-by-side Comparison
	3.2.5.1 Cryptography
	3.2.5.2 Integrity and Origin Authentication
	3.2.5.3 Confidentiality
	3.2.5.4 Authenticated Denial of Existence
	3.2.5.5 Amplification Attacks
	3.2.5.6 Modification of DNS Infrastructure
	3.2.5.7 Zone Administration
	3.2.5.8 Key Management
	3.2.5.9 Performance
	3.2.5.10 Conclusion

	3.2.6 DNS over DTLS
	3.2.7 DNS over TLS

	4 Novel DNS amplification attack vectors
	4.1 DNS Amplification
	4.1.1 Amplifiers and Reflectors
	4.1.2 Victims of DNS amplification attack

	4.2 Going one step further: Obfuscating DNS amplification
	4.2.1 Attack Scenario
	4.2.2 Results
	4.2.3 Discussion

	4.3 Authoritative TLD nameserver-powered DNS amplification
	4.3.1 Methodology and Results
	4.3.1.1 Types of Queries
	4.3.1.2 Examining the response size for a single query
	4.3.1.3 Examing RRL mechanism for positive responses
	4.3.1.4 Examing RRL mechanism for negative responses

	4.3.2 Discussion

	4.4 Countermeasures
	4.4.1 Proactive Measures
	4.4.1.1 Lowering the Amplification Factor
	4.4.1.2 Eliminate Reflection Capabilities

	4.4.2 Reactive methods

	5 DNS-driven botnet C&C architectures
	5.1 Introduction
	5.2 Botnet Architectures
	5.3 Life Cycle of a Bot
	5.4 DNS Fluxing
	5.5 C&C channels
	5.6 DNS as C&C Channel
	5.7 Mobile botnets
	5.7.1 Benefits and Limitations of Mobile Botnet

	5.8 New facets of mobile botnets
	5.8.1 Preliminaries and attack planning
	5.8.2 Architecture I: A purely mobile botnet
	5.8.2.1 Architecture II: Mobile Botnet with PC-based proxies
	5.8.2.2 Architecture III: Exploiting DNS as covert C&C channel
	5.8.2.3 Other considerations

	5.8.3 Comparison of architectures and Results

	5.9 Countermeasures
	5.9.1 DNS-based Botnet detection
	5.9.1.1 Detection of DNS fluxing

	5.9.2 Botnet shutdown operation
	5.9.2.1 Botnet Sinkholing
	5.9.2.2 Botnet Infiltration

	6 DNS as an attack vector in Mobile Platforms
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 mDNS
	6.2.2 The Tethering and Siri services

	6.3 Implementation
	6.3.1 The DNS poisoning malware

	6.4 Attack Scenarios
	6.4.1 Scenario I: DNS Hijacking
	6.4.2 Scenario II: Privacy leak over Siri
	6.4.2.1 Exposing User's Geographical Location
	6.4.2.2 Obtaining sensitive information via SMS
	6.4.2.3 Acquiring user's password

	6.5 Related Work

	7 Conclusions and Future Directions
	7.1 Thesis Contributions
	7.2 Future Directions

	Bibliography

