

Preparing and Mining Data with
Microsoft® SQL Server™ 2000
and Analysis Services

Seth Paul
Nitin Guatam
Raymond Balint

Preparing and Mining Data with
Microsoft® SQL Server™ 2000
and Analysis Services

Seth Paul
Nitin Guatam
Raymond Balint

Copyright

Information in this document, including URL and other Internet Web site references, is subject to
change without notice. Unless otherwise noted, the example companies, organizations, products,
domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and
no association with any real company, organization, product, domain name, e-mail address, logo,
person, place or event is intended or should be inferred. Complying with all applicable copyright
laws is the responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any
form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any
purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. Except as expressly provided in any written
license agreement from Microsoft, the furnishing of this document does not give you any license to
these patents, trademarks, copyrights, or other intellectual property.

2002 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows NT, ActiveX, and Visual Basic are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Published: September 2002
Updated: September 2002
Applies To: Microsoft® SQL Server™ 2000

Editor: Margaret Sherman
Artist: Steven Fulgham
Production: Stephanie Schroeder

Table of Contents

Introduction .. 9
Introducing the Data Mining Scenario ..10
What Will You Learn from this Book? ...12
Who Should Read This Book? ...12
What Technologies Does This Book Cover? ...13
How Is This Book Structured? ...13
Security...14

Chapter 1
Setup .. 15

Reviewing the Setup Wizard Requirements ...15
Reviewing What the Setup Wizard Does ..17
Setting Up the SQL Server Database..18
Setting Up the Analysis Server ..19
Connecting to the SQL Server Database ..20
Selecting a Table in the Data Mining Tool ..21

Chapter 2
Data Mining Fundamentals... 23

What Is Data Mining? ..23
Defining Data Mining..24
How Data Mining Works ...25

The Raw Materials ...25
The Process..26
The Product..26

Translating the Data Mining Process into Steps..27
Step 1—Problem Definition ..27
Step 2—Data Preparation...29
Step 3—Model Building...30
Step 4—Model Validation ...31
Step 5—Deployment of the Model into Production ...31
Step 6—Meta Data Management...31

Implementing Data Mining with Microsoft Tools..31
Analysis Services ..32

Decision Trees ...33
Clustering ...34

vi Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Chapter 3
Defining the Problem.. 35

Defining the Business Problem...35
Defining the Data Mining Problem..36

Deciding What Type of Analysis to Use..36
Determining Our Data Needs...36

Defining the Metrics ..37
Creating the Formal Problem Definition ...37

Chapter 4
Cleaning the Data .. 39

Targeting Inconsistencies..40
What About Those Null Columns? ..41

Trying Out the Percent Null Tab ...42
Looking at the Remove Null Columns Code..43

Calculating Null Values..44
Getting the Null Values..46

What About Those Table Properties? ...48
Trying Out the Calculate Properties Tab ..49
Looking at the Calculate Properties Code...52

Naming the Properties Table ..52
Determining Whether the Properties Table Exists...................................53
Creating the Table and Calculating Properties ..54
Displaying the Properties Table ..58
Dropping a Column..58

What About Those Outliers?..59
Trying Out the Flag Outliers Tab...60
Looking at the Flag Outliers Code..63

Flagging the Outliers..63
Getting the Outliers ...68
Displaying the Outliers ..71
Replacing a Cell with Its Mean Value ...72
Removing a Row ..73

Chapter 5
Transforming the Data .. 75

Trying Out the DTS Import/Export Wizard...76
Looking at the Code Calling the Wizard..77
The Transformation Script...78

 Table of Contents vii

Chapter 6
Exploring the Data...81

Visualizing Data with Histograms and Scatter Plots ..82
Programming Challenges ...83
Visualizing varchar Columns ..83

Looking at the Code Behind Creating the varchar Histogram.................84
Visualizing Numeric Columns with a Histogram..86

Looking at the Code Behind the Numeric Histogram87
Visualizing Numeric Columns with a Scatter Plot ...91

Looking at the Code Behind a Scatter Plot ..92
Numerically Exploring Data with a Correlation Matrix ...94

Looking at the Code Behind the Correlation Matrix Tab.................................96
Setting Up for Two Loops ..96
Creating a Table for Correlation Values..97
Getting the Raw Data and Its Averages and Standard Deviations98
Calculating the Correlations..99

Chapter 7
Splitting the Data..107

Trying Out Table Splitting...109
Looking at the Code Used to Split the Table ..111

Guaranteeing Uniqueness..111
Removing Existing Training and Testing Tables..113

Walking Through the Check_Table_Exist Function................................113
Calculating Percentages in the Original Table ..114
Calling the Sampling Routine...115

Random Sampling ...116

Chapter 8
Building and Validating the Models ..119

Building the Models ...119
Column Parameters..120
Model Parameters ..121
Trying Out the Model Building Task ...121
Looking at the Model-Building Code..124

Create the Connection...125
Defining the Model ..126
Adding Columns to the Model...128

viii Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Browsing the Models ...130
Looking at the Browsing Code ...133

Validating the Models ..136
Trying Out the Validation Task ...137
Looking at the Validation Code ..140

Appendix
Managing Tables.. 145

Selecting Columns ..145
Dropping Tables..146
Sampling a Table ..146

Reducing Record Count...146
Looking at the Code for Sampling a Table ...147
Increasing the Ratio of Responses in the Predictable Column.............148
Looking at the Code for Over-Sampling a Table149

i
Introduction

Data is a fact of life. As time goes by, we collect more and more data, making our original
reason for collecting the data harder to accomplish. We don’t collect data just to waste time
or keep busy; we collect data so that we can gain knowledge, which can be used to improve
the efficiency of our organization, improve profit margins, and on and on. The problem is
that as we collect more data, it becomes harder for us to use the data to derive this
knowledge. We are being suffocated by this raw data, yet we need to find a way to use it.

Organizations around the world realize that analyzing large amounts of data with
traditional statistical methods is cumbersome and unmanageable, but what to do about it?
Enter data mining. As both technology and data mining techniques continue to improve,
the capability of data mining products to sort through the raw material, pulling out gems of
knowledge, should make CEOs around the world jump up and clap their hands.

Before we get too far ahead of ourselves, realize that the success of any data mining project
lies in the proper execution of specific steps. There is no magic box from which a data
mining solution appears. We must work with the raw data and get to know what it
contains. What we get out of a data mining solution is only as good as what we put into it.

The six steps for a data mining solution are as follows:
•
•
•
•
•
•

Defining the problem
Preparing the data
Building the models
Validating the models
Deploying the models
Managing the meta data associated with transforming and cleaning the data and
building and validating the models

10 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Each of these steps can further be subdivided into tasks. Only in working through each of
these steps can we create the best data mining solution to solve a given problem. The most
time-consuming task in the process is not creating the model, as you might think; instead,
it’s cleaning and exploring the data that takes up about 70 to 80 percent of the time spent
on any data mining project. Creating the model is as simple as setting some parameters and
clicking Process. Cleaning and exploring the data require data domain knowledge and a
good feel for what you are doing. In the solution described in this book, we’ll only go
through the steps of creating and validating the model. Managing the meta data is beyond
the scope of this book.

So what is it we’re really trying to get out of a data mining solution? Well, we’ve talked
about gaining knowledge, but that’s pretty abstract. What gives us the capability to find
this knowledge? The answer is to find the hidden patterns that exist in data, which can be
stored in the form of a data mining model. A data mining model uses a specific algorithm
to search through the data and find and store interesting patterns. We can then browse
through a graphical representation of these patterns. Depending on the model, we can also
create predictions based on the relationships that the model finds.

Microsoft supplies several great tools that allow us to create a complete data mining
solution. The purpose of this book is to demonstrate how to apply these tools to the data
mining process.

Throughout this book, we’ll use a scenario to illustrate the steps in the data mining process.
The following section describes this scenario.

Introducing the Data Mining Scenario
Your boss stops by your office and drops a dataset into your lap. He says that he’s heard
about data mining and wants to use it as part of a business objective to reduce costs.

Your company is well known throughout the industry for being very generous with
charities. One of its endeavors is to send out requests for donations to the customers in its
database. The idea is to bring everyone together in the donation process, letting the
customers feel as though they are a bigger part of the company as a whole. But with the
current economic situation, your boss wants to reduce the cost of the program while still
optimizing the results. It’s time to trim the fat!

As your boss explains, the dataset contains a large amount of demographic information and
donation history as well as a column that describes whether each customer donated the last
time the company sent out a mailing. He wants to use this information to try to predict
who will donate this time, and then only send out solicitations to those people. Reducing
the size of the mailing will, in turn, reduce costs and make everybody happy. You have at
your disposal Microsoft® SQL Server™ 2000, including SQL Server Analysis Services,

 Introduction 11

and Microsoft Visual Basic® 6.0. Accompanying this book is a sample application, the
Data Mining Tool, which you’ll use to work through the steps in the book.

Note The data mining process described in this book does not include writing Visual Basic code.
But because the Data Mining Tool is provided as non-compiled code, you’ll need Visual Basic to
view the code.

The following diagram shows the user interface of the Data Mining Tool. The steps shown
on the user interface closely match the data mining process that you will be learning about
in this book.

Figure i.1 The Data Mining Tool

This solution and the accompanying sample code were designed specifically for the targeted
mailing dataset that is included with the code and text. You can use the Data Mining Tool
with other datasets, but its functionality may be affected. However, the general concepts
discussed in this book are applicable to most data mining projects. This solution is designed
so that you can modify the code as necessary to fit within your individual project’s goals—
it’s a place for you to start in designing your own solution.

Important The Data Mining Tool and the procedures associated with it may not work as described
on non-English systems.

12 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

What Will You Learn from this Book?
Through the scenario, we’ll apply the data mining process to a real-world situation,
learning to:
•
•
•
•
•
•

•

•

•

Think logically about how to use the data mining process.
Create a succinct definition of the problem we are trying to solve.
Prepare a real-world dataset for data mining by massaging and cleaning the data.
Gain domain knowledge through data exploration and transformation.
Create data mining models using the prepared data.
Compare the data mining models and choose the one that best solves the given
problem.

This book first introduces the concepts behind data mining, giving you a basic
understanding of the process we are about to undertake. From there, the book dives right
into creating the solution, with each chapter showing how to accomplish a step in the data
mining process using Microsoft tools. In the final chapter, we’ll build the models and
choose one that performs the best. By the end, you will have learned about the data mining
process and how to apply it to a real-world dataset.

Who Should Read This Book?
Although anyone with a technical background can benefit from the information presented
in this book, the book is targeted toward enterprise developers, system architects, and
information technology (IT) professionals already working with SQL Server:

Enterprise developers—the people in an organization who are responsible for designing
and implementing enterprise-wide solutions in and between organizations.
System architects—the people in an organization who are responsible for planning and
crafting overall business strategies and solutions.
IT professionals—the people in an organization who are responsible for installing,
maintaining, and administering software in the enterprise. IT professionals include
managers, Webmasters, system engineers, and database administrators (DBAs).

Readers should also be familiar with Analysis Services, know the basics of how to navigate
through Analysis Manager, and be proficient with Visual Basic.

 Introduction 13

What Technologies Does This Book Cover?
As you work through this book, you will use the following technologies:

SQL Server 2000
We’ll use SQL Server 2000 to store the source data as well as create and maintain the
multiple tables that are generated by the cleaning and exploration tasks. For additional
information about SQL Server 2000, see SQL Server 2000 Books Online
(http://go.microsoft.com/fwlink/?LinkID=6976).

Analysis Services
We’ll use Analysis Services to create and store the data mining models and create
predictions for testing the performance of the models. For additional information about
Analysis Services, see SQL Server 2000 Books Online
(http://go.microsoft.com/fwlink/?LinkID=6976).

Visual Basic 6.0
We’ll use Visual Basic to view the code and compile the Data Mining Tool. This tool is
not shipped as an executable, so you must have Visual Basic 6.0 with Service Pack 5
(SP5) installed on your computer to run the tool.

How Is This Book Structured?
This book has eight chapters, which step you through the data mining process. Each
chapter describes how to use the Data Mining Tool to accomplish a specific step in the
process, and then gives you a behind-the-scenes look at the code in the tool that makes the
step work. Also included in this solution is source code for the Data Mining Tool and a
sample dataset, which we’ll use throughout the book.

Chapter 1, “Setup”
Lists the applications, system requirements, and database setup steps you need to
perform before installing and running the Data Mining Tool. These steps include
importing the text data file included with the project into a SQL Server database.

Important Before working through the rest of the book, make sure you follow the
procedures outlined in Chapter 1 If SQL Server or your Analysis server is not properly
configured, or if you do not install the third-party controls, the sample will not function
properly.

http://go.microsoft.com/fwlink/?LinkID=6976
http://go.microsoft.com/fwlink/?LinkID=6976

14 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Chapter 2, “Data Mining Fundamentals”
Introduces the field of data mining and explains the process and concepts behind
creating a data mining solution.

Chapter 3, “Defining the Problem”
Defines the data mining problem that we will solve .

Chapter 4, “Cleaning the Data”
Explains how to select and clean the data originating in the text file.

Chapter 5, “Transforming the Data”
Explains how to use the DTS Import/Export Wizard to create transformations on the
table being cleaned.

Chapter 6, “Exploring the Data”
Explains how to explore the base table using the Data Mining Tool.

Chapter 7, “Splitting the Data”
Explains how to split the original table into two additional tables, which will be used
separately to build and test the mining models.

Chapter 8, “Building and Validating the Models”
Explains how to build and test mining models based on the table that was cleaned and
split in the previous steps.

Appendix, “Managing Tables”
Discusses the various table management tasks that the Data Mining Tool performs.

Security
Throughout this project, we assume that you’re using Windows Authentication to access
the SQL Server and Analysis Services databases and that you have administrator privileges
on the computer. Additionally, to create and modify data mining models, you must be a
member of the OLAP Administrators group on the computer.

1
Setup

This chapter provides instructions on how to set up the Data Mining Tool. It also briefly
describes the components of the Data Mining Tool and provides instructions on installing
and configuring publicly available components.

Setup is a multistep process. First, you need to ensure that your computer is equipped with
the required set of tools and technologies. Then you run the Microsoft® SQL
Server™ 2000: Data Mining Setup Wizard (SQL2KDataMining.msi) to install the
database, the Data Mining Tool, and other components.

We recommend that you install the software and run the Data Mining Tool on a computer
that has at least 500 Megabytes (MB) of RAM and a 1.5 Gigahertz (GHz) processor. If you
do not have a computer that meets these recommendations, the procedures that require
processing will take a considerable period of time to complete. Optionally, you can use the
sampling and column-selection techniques described later in this book to reduce the size of
the original table, which will reduce processing time. If you choose to reduce the size of the
original table, make sure that you do not eliminate the columns CONTROLN,
TARGET_B, and TARGET_D. These columns are necessary for the data mining tasks we
will be performing.

Reviewing the Setup Wizard Requirements
The SQL Server 2000: Data Mining Setup Wizard requires that you have administrator
privileges on the computer on which you plan to run the wizard. Also, before running the
wizard, you must install the tools and technologies listed in the following sections. It is
strongly recommended that you install them in the order in which they’re listed.

After your computer meets these requirements, you are ready to run the SQL Server 2000:
Data Mining Setup Wizard.

16 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Important If you do not have the required software installed before you run the SQL Server 2000:
Data Mining Setup Wizard, the installation process will not succeed and the Data Mining Tool will
not work.

Microsoft® Windows® XP Professional or Windows 2000 Service Pack 2 (SP2) with
NTFS
To help ensure the security of your computer, install the latest Windows updates by going
to the Microsoft Windows Update site (http://go.microsoft.com/fwlink/?LinkId=9609) and
following the online installation instructions.

Microsoft SQL Server™ 2000 SP2 (Developer Edition recommended)
For more information about SQL Server 2000, go to the SQL Server Web site
(http://go.microsoft.com/fwlink/?LinkId=6791).

Note The Data Mining Tool assumes that you are using Windows Authentication as your security
protocol. If this is not the case, you must reconfigure your server to allow Windows Authentication.

SQL Server 2000 Analysis Services SP2 (Developer Edition recommended)
For more information about Analysis Services, go to the SQL Server Web site
(http://go.microsoft.com/fwlink/?LinkId=6791).

MDAC 2.7
To run this solution, you need to make sure that MDAC 2.7 is installed on your computer.
You can install MDAC 2.7 from the Microsoft Data Access Web site
(http://go.microsoft.com/fwlink/?LinkId=9642).

Microsoft Visual Basic® 6.0 SP5
To view or manually compile the code used in the Data Mining Tool, you need to have
Visual Basic installed on your computer.

Angoss Visualization Tools
To compile and run the sample code, you need to install the Angoss OLE DB for Data
Mining Consumer Controls, which are available from the Microsoft OLE DB Web site
(http://go.microsoft.com/fwlink/?LinkId=9610).

http://windowsupdate.microsoft.com/
http://go.microsoft.com/fwlink/?LinkId=6791
http://go.microsoft.com/fwlink/?LinkId=6791
http://go.microsoft.com/fwlink/?LinkId=9642
http://www.microsoft.com/data/oledb/dmreskit.htm

 Chapter 1: Setup 17

X To install the OLE DB for Data Mining Consumer Controls
1. From the Microsoft OLE DB Web site, click Download the OLE DB for Data

Mining Consumer Controls.
2. Read the License Agreement, and then click Download.
3. Either click Open to run the installation file immediately, or click Save to save the

installation file to your computer. You can then run the file locally.

After you run the installation file, the consumer controls will be installed on your
computer. In addition, Help files describing the controls and a sample application will
be added to your Start menu.

Microsoft Windows Installer 2.0
Although Windows Installer 2.0 comes with Windows XP, Windows 2000 does not
include this installer by default.

X To install Windows Installer 2.0
1. In Internet Explorer, go to the Windows Installer Version 2.0 page

(http://go.microsoft.com/fwlink/?LinkId=7032)
2. In the Run-time Requirements section, click the link shown to download the

redistributable file.

Reviewing What the Setup Wizard Does
After making sure that your computer meets the minimum software and hardware
requirements, run the SQL Server 2000: Data Mining Setup Wizard.

Running the SQL Server 2000: Data Mining Setup Wizard:
•
•

•

Installs the sample source code used in this book.
Installs the documentation for Preparing and Mining Data with Microsoft SQL
Server 2000 and Analysis Services.
Adds a new database to your server, DM_Prep_Tool, and creates an empty table with
the correct column information.

You can find the files associated with the source code in the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample folder and the files associated with
the database in the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data
Mining\Database folder.

http://go.microsoft.com/fwlink/?LinkId=7032

18 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Setting Up the SQL Server Database
Throughout this book, you will be using the Data Mining Tool to mine data in the
DM_Prep_Tool database. This database contains data taken from the UCI Knowledge
Discovery in Databases (KDD) Archive
(http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html). A data dictionary describing the
different columns included in the dataset can also be downloaded from the site. The data is
available as a text file, with the rows delimited by linefeeds (lf) and the columns delimited
by commas. The first row holds the column names. The dataset contains 481 columns and
over 90,000 rows of data. Because the data is in a plain-text file, no column data types are
included with the data; instead, they can be found in an accompanying document.

To make this solution easier to work with, we created the table structure in the database
during setup, including setting the types of the columns. To work with the solution, you
only have to import the data from the text file into the table using the DTS Import/Export
Wizard.

The following procedure describes how to use the DTS Import/Export Wizard to populate
the table with data.

X To populate the cup98lrn table with data
1. From the Start menu, point to Programs, point to Microsoft SQL Server, and then

click Import and Export Data.

The DTS Import/Export Wizard opens.
2. In the opening screen, click Next.
3. From the Data Source drop-down menu, select Text File.
4. Browse to C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample, select cup98lrn, and then click Next.
5. Select the Delimited check box; in the Row Delimiter drop-down box, select {LF};

select the First row has column names check box; and then click Next.
6. Because Comma is already selected, click Next.
7. Select your server (or leave it as local host), select the DM_Prep_Tool database, and

then click Next.
8. The correct table is already selected, so click Next.
9. Select Run immediately, and then click Next.

A DTS package is now built and run that imports the data from the text file into the
existing cup98lrn table. The column data types were set during installation, so the new data
is correctly typed.

http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

 Chapter 1: Setup 19

Setting Up the Analysis Server
In order to create the mining models and work with them, you will need to set up a new
database on your Analysis server.

X To create a new Analysis Services database
1. From the Start menu, open Analysis Manager.
2. In the tree view, navigate to your server.
3. Right-click your server, and then select New Database.
4. In the Database name text box, type DM_OLAP.

A new database has now been created on your Analysis server.

Within the new database, you also need to create a new data source from which the mining
models can be built.

X To create a new data source
1. From the Start menu, open Analysis Manager.
2. In the tree view, navigate to your server, and then expand the node for the DM_OLAP

database.
3. Right-click Data Sources, and then click New Data Source.
4. For the provider, select Microsoft OLE DB for SQL Server, and then click Next.
5. For the server, select LocalHost, select Use Windows NT Integrated security, and for

the database, select DM_Prep_Tool.
6. Click OK.

A new data source named Localhost DM_Prep_Tool has been created on your Analysis
server, which you can use as a source for building your models. The name that Analysis
Services gives the data source is long and inconvenient, so let’s rename it. The problem is
that we have to use a funny work-around because Analysis Services provides no direct way
to rename the data source through the user interface.

X To rename a data source in Analysis Manager
1. Right-click the Localhost Data_Prep_Tool data source, and then click Copy.
2. Right-click the Data Sources folder, and then click Paste.

The Duplicate Name form appears, allowing you to choose a new name.
3. In the Name text box, type cup98LRN.

You now have a duplicate data source with a new name.

20 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Connecting to the SQL Server Database
With the data properly stored in the database, we now need to set up a connection between
the Data Mining Tool and the database. This step is critical, because no matter what kind
of project you are working on, you need a connection to the database before you can start
to mine the data.

When you first open the Data Mining Tool, the only button you can click is the Connect
button. This button defines the server and database for a new connection string.

X To connect to the DM_Prep_Tool database
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
DMFinal.vbp.

2. In Visual Basic, on the Standard toolbar, click Start.

This opens the Data Mining Tool.
3. In the Data Mining Tool, type the following information, and then click Connect:

� In Server, type Localhost.

� In Database, type DM_Prep_Tool.

After you click Connect, the Data Mining Tool uses the server and database information
that you provided to create a connection between the tool and the database.

Figure 1.1 The Data Mining Tool after making a connection

 Chapter 1: Setup 21

Selecting a Table in the Data Mining Tool
We’ve just set a connection to the database. The next step is to decide which data we want
to use in the data mining process. Because we do not want to affect the original data, we’ll
make a copy of the source data and store it in a new table. We will then mine the new table
for information.

To select a table, click the Manage Tables button in the Data Mining Tool. This opens the
Manage Tables form (Figure 1.2), where, in addition to copying entire tables, you can:
•
•
•

•

Select specific columns to include in a new table.
Drop tables from the database that are no longer useful.
Create a copy of an existing table but include fewer rows (in other words, sample the
table).
Create a copy of an existing table but force the sampling algorithm to include a higher
percentage of positive predicted values than actually existed in the original table.

Figure 1.2 The Manage Tables form

22 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Depending on the data being mined, you might want to use any of the table management
techniques listed here. In the course of this book, we’ll focus on just a couple of these
techniques. But if you’re interested in the techniques we don’t cover, see Appendix,
“Managing Tables,” for complete instructions on using the other techniques.

X To copy the table in the DM_Prep_Tool database
1. In the Data Mining Tool, click Manage Tables.
2. In the Create a new table by copying an existing table section, enter the following

information:

� In Select a source table, select cup98LRN.

� In Enter a table name, type cup98LRN_clean.
3. Click Copy Table.

The Data Mining Tool begins to copy the table. Depending on the speed of your
computer, this process may take a little while. As you’ll soon see, mining a large dataset
not only requires an intimate familiarity with the data but a good deal of patience as
well.

4. When a message box appears indicating that the table was created, click OK.
5. In the Manage tables form, click Close.

At this point, we are all set up to start mining data. But before we get too hasty, let’s take
the next couple of chapters to define exactly what data mining is and exactly what data
mining problem we want to solve.

2
Data Mining Fundamentals

As mentioned in the Introduction, your boss wants you to use data mining to figure out
which customers are most likely to respond to a request for a charitable donation.

Your first question is, “What is data mining?”

What Is Data Mining?
Every day, corporations throughout the world add billions of rows of data to their
databases. As the amount of raw data increases exponentially, our ability to understand the
data and extract the wealth of information that lies inside it plummets. Using SQL, we can
generate queries that return lists of records, basically filtering the available data into smaller
subsets. We can also create multidimensional aggregations using complex SQL
statements—to answer questions like, how much did “so and so” sell in his district last year.
These are valuable tools that help present and summarize data, but we can’t develop a deep
understanding of the data using these technologies. For instance, we can’t use SQL and
online analytical processing (OLAP) to predict the value of a column in a table based on
the values of related columns in a database. Nor can we use these technologies to predict
whether someone will donate money based on what we know about him or her. But we can
use data mining to answer these complex questions, and in doing so, we can begin to make
sense of the world of data that has accumulated around us.

24 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Defining Data Mining
A technical definition of data mining is often stated as “the process of extracting valid,
authentic, and actionable information from large databases.” Notice that within this
definition we are not extracting specific data, but instead we are deriving information that
the data as a whole can provide us.

Now what does this definition of data mining really mean? Let’s look a couple of examples.

Example of Data Mining Through Personal Experience
If you always walk down the same street on your way to work, you naturally observe and
store things in your brain that you may not consciously realize:

� The bakery is always crowded at 8 A.M. and is always out of coffee by then.

� The bartender from the bar next door drops last night’s bottles into the recycle bin
about the time you reach the corner.

� The overhead train drowns out conversations at the bus stop.
When faced with decisions involving unknown factors, you use this stored information
to make an educated guess. If you are in a hurry and need coffee, you most likely will
skip the bakery and try the quick stop next door. You don't know for sure that the
bakery will be out of coffee, but based on past experience you can make a good
prediction. If you want to have a conversation with a friend while waiting for the bus,
you will probably choose a stop that is not underneath the overhead train tracks. Again,
you don't know for sure that the train will be there—maybe it broke down—but you
have a good idea that it will. Though obvious, these examples help describe how data
can be transformed into actionable explanations. You collect data and then later use that
data to make a best guess as to what will happen in the future. The real power of data
mining is that it can go beyond the obvious, finding hidden patterns you would
otherwise not think to look for in large databases.

Example of Data Mining on a Corporate Level
For a more concrete example of data mining, consider this: you receive a credit card
application in the mail and decide to apply. In the application, you give both personal
and financial data. The bank issuing the credit card uses these few bits of personal and
financial information to predict your credit risk. Much like you, the bank has learned
from its experiences. There are many obvious reasons the bank might reject an
application; for example, if the applicant is unemployed with a poor credit history, and
has, more often than not, defaulted on his or her credit. Likewise, there are many
obvious reasons the bank might accept an application; for example, if the applicant is
married with two kids, and has a good job and a good credit history. You wouldn’t
necessarily need to use data mining to find these instances, but what about someone
with a relatively good job and little credit history—are there any signs that this person

 Chapter 2: Data Mining Fundamentals 25

might be a bad credit risk? Data mining can help to uncover the hidden patterns that
answer this question. Over the years that the bank has been issuing loans and credit
cards, it has amassed a large store of observations that it can use to create mining
models. The only difference between the bank and you is that the bank stores its
observations in a large database. In the same way that you predict which store will be
out of coffee, the bank predicts which person will pose a greater risk, but the bank’s
predictions will be based on models developed from large datasets.

Data mining is often compared to statistical analysis, yet it differs in a couple of ways. First,
typical data mining algorithms deal with large datasets, while in the field of statistics,
datasets consist of a sampled set of data taken from a larger population (though a data
mining dataset can also be sampled). Second, statistical algorithms are typically hypotheses
based. In creating a statistical solution, you are probably trying to answer a very specific
question or prove or reject a hypothesis. In creating a data mining solution, you try to find
general or hidden trends and relationships that exist in the data. Data mining draws from
several fields, including artificial intelligence and statistics. Think of statistical analysis as
approaching a problem in a top-down manner, while data mining approaches a problem
from the bottom up. In other words, you don’t know exactly what you’ll find when you are
data mining.

How Data Mining Works
Now let’s talk about the specifics of data mining—how does it work? Creating a mining
model can be compared to any manufacturing process. First you need the raw material—
the data. You then pump that data through a mechanical process—the algorithm. This, in
turn, produces a product—the mining model. The difference between the manufacturing
process and the data mining process is that instead of creating the product through
mechanical means, you are using mathematical means.

The Raw Materials
Where does the raw material—the data—come from? Basically, anywhere you can find it:
text files (flat files), Microsoft® Excel files, online transaction processing (OLTP)
databases, online analytical processing (OLAP) databases, and so on.

Typically, you also check this data for integrity. Data integrity is an important concept.
Because you often pull data from multiple sources, you cannot assume that the data is
always presented in the same manner. For example, dates from one dataset can be expressed
in a M/D/YR format, while those from another as D/M/YR. Measurements can be
expressed in different units from one dataset to another. To maintain consistency in the
final data warehouse, you must identify these problems and resolve them.

26 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

The Process
As you might have noticed in the overview of the data mining process, the data mining
algorithm is at the heart of this process. Technically speaking, data mining algorithms fall
into the following categories:
•
•
•
•
•

Classical statistical algorithms (that is, radial basis-functions and multivariate splines)
Pattern recognition algorithms
Genetic algorithms
Classification and regression trees (CART)
Other rule-based methods

Choosing the right algorithm can be complicated because each produces a different result,
and some can produce more than one type of result. You can also use different algorithms
to perform the same task. To further complicate matters, you don’t have to use these
algorithms independently; you can use multiple algorithms to solve a particular business
problem. You use some algorithms as a means of exploring data, while you use others to
predict a specific outcome based on the data. For example, you can use a regression tree
algorithm to provide financial forecasting and a rule-based algorithm (a CART algorithm)
in a market basket analysis. You can use the decision tree algorithm (a classification
algorithm) both for prediction and as a way of reducing the number of columns in a dataset
(by showing which columns do not affect the final model). You can use a clustering
algorithm (a pattern recognition algorithm) to break data into groups that are more or less
homogeneous, and then use the results to create a better decision tree model. Both a
sequence clustering algorithm and a rule-based algorithm can be used in a click-stream
analysis. However, remember that while choosing an appropriate algorithm is important,
your true goal is to create a robust and accurate model that can be understood by users and
deployed into production with minimal effort.

For this scenario, we will build decision tree models using the Microsoft Decision Trees
algorithm. This algorithm allows us to build a good overall model with strong predictive
capabilities. For more information about the Microsoft Decision Trees algorithm, see
“Implementing Data Mining with Microsoft Tools” later in this chapter.

The Product
As you begin to work through your data mining solution, realize that it is a dynamic and
iterative process—the solution evolves and grows over time. As you learn more about the
data domain or add more data to the data warehouse, your mining model also changes. If
you base your mining model on a dynamically changing data warehouse (which grows
through scheduled updates), you need to develop a strategy for updating your mining
model. Similarly, you may have originally built the mining models from a sparse data

 Chapter 2: Data Mining Fundamentals 27

source, but, as time has passed, your data source has become richer, allowing you now to
create a more accurate model. To take advantage of this, you need to rebuild the model.

A key point here is that the model that you build is only as good as the raw material used to
create it. However, it doesn’t matter how good your data is if you do not understand it.
You will be making tough decisions about which data should be included, how it should be
cleaned and transformed, and what you eventually want to predict.

After you create your models, but before you put them into production, you need some
metrics by which to calculate the effectiveness of your models. You do not want to put a
model into production until you know how good it is.

To summarize, there are four things you must have to create an accurate mining model:
•
•
•
•

•
•
•
•

A clear definition of the business problem
A rich dataset related to the business problem
A thorough understanding of the data domain
A set of metrics with which to measure the success of the mining model

The usefulness of your mining model can be directly traced to the initial planning and
thought dedicated to defining and clearly stating the problem you are trying to solve. How
can you find the answer if you can’t ask the right question?

Translating the Data Mining Process into Steps
As you've just learned, data mining is a process. Though the end step is clearly building a
mining model, the steps leading up to the creation of the model determine the success of
your solution. While there are a multitude of approaches to the data mining process, all of
them roughly translate into the distinct steps and tasks shown in Figure 2.1.

Step 1—Problem Definition
Before you build a mining model, you need to understand the data you will work with and
clearly define the business problem you are trying to solve. This includes analyzing the
business requirements, defining the scope of the problem, defining the metrics by which
the model will be evaluated, and defining the final objective for the data mining project.
These tasks translate into questions like:

What is your boss is looking for?
Which attribute of the dataset do you want to try to predict?
What types of relationships are you trying to find?
Do you want to make predictions from the data mining model or just look for
interesting patterns and associations?

28 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

•
•

How is the data distributed?
How are the columns related, or if there are multiple tables, how are the tables related?

These are the questions that you need to be able to answer before you can begin to work
with the data. To find the answers, you may need to conduct a data availability study,
investigating the needs of the business users with respect to the data available. If the data
won't support what the users need to find out, you may need to redefine the project.

Step 2—Data Preparation
You’ve defined the problem that you are going to try to solve—now what? Well, first you
need to find the raw data related to this business problem. Collecting the data can be a
cumbersome task. This data is usually scattered across a company and stored in different
formats. But do not narrow your focus! Find all data that is related to the business problem.

Often, the original data is collected through an OLTP system and contains inconsistencies.
Entries are missing or flawed; for example, the data might show that a customer bought a
product before she was born or shops regularly at a store 2,000 miles from her home.
Before you begin to build the models, you need to fix these problems. In other words, you
must “clean” the data. The problem is that cleaning the data is not a straightforward
process. Maybe the person shopping 2,000 miles from her home has two residences and
lives an equal amount of time at both. Usually, you are working with a very large dataset
and can’t look through every transaction personally. Therefore, you need to use some form
of automation to explore the data and find the inconsistencies. Exploration techniques can
include calculating the minimum and maximum values, calculating the mean and standard
deviations, and looking at the distribution of the data. In the end, you need to decide
which data seems flawed and devise a strategy for fixing the problem.

In preparing the data, you often have to transform columns of the dataset before building a
mining model. For example, to determine whether your company’s compensation strategy
is equitable, you may try to predict salaries based on age, experience, length of time with
the company, and other factors. The data you use to create your model contains a large
number of possible values for the salary of an employee—in essence, it is a continuous
attribute, a column with a large number of states. To make your final model more focused,
you need to discretize the data. This simply means creating a limited number of buckets
(salary ranges) such as low, medium, and high, and replacing the values in the column with
the appropriate bucket name. You may also want to define a new column based on existing
columns. For example, you may not have a column that details the total cost of retaining an
employee, including such things as health insurance and other perks, but you could easily
make one by adding up each cost and displaying it in a new column.

 Chapter 2: Data Mining Fundamentals 29

Figure 2.1 Steps in the data mining process

30 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Step 3—Model Building
The most important concept in data mining is knowing your data. If you don’t understand
the structure of your dataset, how can you know what to ask, or which columns to include
in your data mining model? Imagine that you are at an important business meeting but did
not prepare. If you ask questions during the meeting, they will probably not make sense,
reducing your effectiveness. The same holds true for data mining. If you build models
without knowing your data, you will ask the wrong questions, reducing the model’s
effectiveness.

Before building the model, you need to randomly separate the original dataset into separate
training (model-building) and testing (validation) datasets. You use the training data to
build the model. Then you test the accuracy of the model by creating prediction queries
against the testing dataset. Because you know the outcome of the predictions (the data
comes from the same set used to train the model), you can calculate the accuracy of the
model’s performance.

Sometimes the attribute that you are trying to predict has a very high distribution of one
state, and a very low distribution of another state. For example, in our dataset, the number
of positive responses in the predictable column is about 5 percent, while the number of
negative responses is about 95 percent. There is a chance that there are not enough
occurrences of the positive response to generate the strong relationships that will allow us to
create predictions. One way to solve this problem is to over-sample the data, which means
that we artificially boost the number of positive responses but randomly remove a number
of the records that correspond to negative responses. For more information about over-
sampling, see the SQL Server 2000 Resource Kit and Appendix, “Managing Tables.”

After you explore the data and select columns to include in the model, you can build your
models using the training dataset. This process happens exactly the way it sounds—you
pass the data through the algorithm to train the model. Each algorithm also contains
adjustable parameters that can affect the outcome of the model. The result of the training
process is a mathematical model you can either use to explore the data (as in the case of a
clustering algorithm) or to create predictions (as in the case of a decision tree algorithm).
How well you choose the columns to include in the model and how you alter parameters of
the model ultimately determine the performance of the models. With that said, here are the
steps for building the model:
•
•
•
•

Select columns.
Select a model.
Adjust parameters.
Train the model.

 Chapter 2: Data Mining Fundamentals 31

Step 4—Model Validation
After you build a model, you need to know how well it performs. You do not want to move
the model into a production environment until you know how well it predicts. Often, you
build several models and then compare how they perform against each other. This is where
you use the testing dataset that you previously set aside.

Step 5—Deployment of the Model into Production
This is where all of your hard work begins to show results. After you build the models and
measure their effectiveness, you can deploy them in a production environment, the place
where the models will be used in the business decision-making process. Updating the
model is part of the deployment strategy. As more data comes into the organization, you
need to develop a process for rebuilding the models, thus improving their effectiveness.

Step 6—Meta Data Management
The information that is associated with exploring the data and building the models is useful
for you to save. This includes columns that were removed, models that were previously
built, and the effectiveness of those models. Managing this data can become a project in
itself, but it is a very important step. Typically, you store this information in a database,
where it is available through queries, like any other data.

Implementing Data Mining with Microsoft Tools
So how do we go about performing all of the tasks that we’ve been talking about? Well,
luckily, Microsoft provides all of the tools, which, when used together, allow us to work all
the way through the data mining process. Throughout this book, we will use:
•
•
•

•
•
•

Microsoft® Visual Basic® 6.0 to view the code in the Data Mining Tool.
Microsoft SQL Server™ 2000 to manipulate, manage, and store the data.
SQL Server 2000 Analysis Services to build the mining models and make predictions.

In developing this solution, we found that the mechanisms to complete the tasks associated
with each data mining step were divided between Analysis Services and SQL Server.
Although each task can be performed individually in either SQL Server or Analysis Services,
we felt that it would be nice to have an environment that tied it all together—the Data
Mining Tool. There are a few advantages to this approach:

The data mining process is exemplified as we work through the steps.
All of the tasks can be accessed from a single program.
Techniques for programmatically accessing SQL Server and Analysis Services
functionality are demonstrated.

32 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

So how did we build this environment? Well, that’s where Visual Basic comes into play.
Visual Basic, along with the Microsoft ActiveX® Data Objects (ADO) and Decision
Support Objects (DSO) programming interfaces, gives us the means to tie all of these
technologies together. We take advantage of FlexGrid controls to look through data in the
tables, chart controls to explore the data, and third-party modeling controls to view and
compare data mining models.

In working through this solution, several tables are created, dropped, and modified, which
implies a need for a mechanism to manage all of this data. SQL Server is perfect, providing
all of the functionality we need to modify, store, and manage data. Additionally, several
tools are provided with SQL Server that are useful in completing several of the tasks
associated with the data mining process. Data Transformation Services (DTS) provides the
mechanism for importing and transforming the data through the DTS Import/Export
Wizard. We will use the wizard to import the raw data into the database and to transform
the columns in the table we are cleaning. In using the wizard, we are actually creating a
DTS package that can either be run immediately or saved and run later. DTS also includes
the Data Mining Prediction Query Task, which can be used to create a package that creates
a prediction based on a mining model and performs an action based on the results.

How do we actually build the models from the tables managed in SQL Server? This is
where Analysis Services comes into play. Using Analysis Services, we’ll build models based
on the relational data source created with SQL Server. You can also build models based on
multidimensional data sources, but that’s a subject for another book.

Probably what is newest to you in this book is working with the data mining functionality
in Analysis Services, so let’s take a closer look at what Microsoft has done in this area.

Analysis Services
Microsoft included data mining functionality with the release of SQL Server 2000,
coinciding with the release of the OLE DB for Data Mining 1.0 Specification version 1.0
(http://go.microsoft.com/fwlink/?LinkId=8631).

Historically, data mining has been restricted to users who can draw information from
complicated statistical techniques and software. The Microsoft vision for data mining is to
make it available not only to the power user, but also to the intermediate and naïve user.
Microsoft does this by using technologies that developers already use and understand, such
as ADO and schema rowsets.

Accordingly, Microsoft helped to define an industry standard API that allows you to create
and modify data mining models, train these models, and then predict against them. The
idea was to hide some of the more complicated details, letting you use a language similar to
the Transact-SQL that you already know. You can build models using a CREATE
statement, use an INSERT statement and train the models, use the SELECT statement to

http://go.microsoft.com/fwlink/?LinkId=8631

 Chapter 2: Data Mining Fundamentals 33

get statistical information from the models, and use a PREDICTION JOIN statement to
create predictions using the model and data when you don’t know the outcome of the
predictable column. Does this sound familiar—CREATE, INSERT, SELECT? The details
about this language, as well as examples, can be found in the OLE DB for Data Mining 1.0
Specification.

The basis for data mining in Analysis Services is an object called the Data Mining Model
(DMM). When you create a new model in Analysis Services using either the Mining Model
Wizard or the language, you are actually building a container with a structure similar to a
relational table. There is no information in this container except for a description of each
column included in the model, as well as the algorithm type. By training the model, you fill
the table with the information it needs to describe the model. The DMM stores the
relationships and rules, but not the actual data.

A concept unique to Microsoft is how sparse data is handled. Often, companies store data
in large flat files with each value in a row corresponding to a specific attribute (or column).
To express many-to-one relationships, you add more columns to the table, leaving many
cells with null values. For example, consider how your company stores information about
your customers and the products that they buy. Your company probably uses tables such as
Customer, Orders, and Order Details, where for each customer there are multiple orders,
and for each order there are multiple columns describing the details of the order. Now,
imagine flattening this into a single relational table. Imagine how many null values would
exist. Each customer would end up taking up several rows in which only their specific
columns would hold information. This table would contain one or more columns for each
product in the catalog, which would make the table huge. Your table would be full of null
values, making mining for data difficult and confusing. Microsoft has solved this problem
by allowing you to define a column type as being a table; thus, allowing you to create
many-to-one relationships within a single table.

The purpose of data mining is to create a model that expresses relationships. To accomplish
this, Analysis Services includes the capability to build two types of mining models, a
decision tree model and a clustering model. Let’s take a closer look at these algorithms.

Decision Trees
The Microsoft Decision Trees algorithm creates a model that works well for predictive
modeling. It looks at how each column in a dataset affects the result of the column whose
values you are trying to predict, and then uses the columns with the strongest relationship
to create a series of splits, which are called nodes. These splits can be visualized as a tree
structure.

This may sound complicated, but it is really very simple to visualize. The top node
describes the breakdown of the predicted attribute over the overall population. For
example, you might be trying to define the credit risk of potential applicants. Over the

34 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

population, 20 percent of the applicants are considered to be a good risk while the
remaining 80 percent are considered to be a bad risk. So we know that this is the worst case
in creating predictions. It is now the job of the algorithm to try to improve the accuracy of
the predictions. Suppose that the algorithm finds a strong relationship between marital
status and risk potential—there are more cases of good credit when individuals are married
than when they are not. The algorithm can then create a split based on this information,
creating one dataset filled with only those individuals who are married and another with
those who are not. After the split, you find that the percentages of positive and negative
responses in each new dataset are more drastic, meaning that your ability to predict risk has
been improved.

Now suppose that, for those who are married, job state is the next big factor. Of the people
who are married and have a good job, 90 percent are low risk, while the remaining 10
percent of married people are high risk. By creating another split, your predictive ability has
improved yet again. This process continues until the algorithm reaches a point in which an
additional split does not improve the accuracy of the prediction. For a more detailed
explanation of the Microsoft Decision Trees algorithm, see SQL Server 2000 Books
Online.

Clustering
The Microsoft Clustering algorithm segments the data into groups that give you a better
understanding of the relationships in the data. For this scenario, we have a dataset with a
large number of attributes, or columns. How do these columns relate to one another? Is
there an underlying pattern, something that relates the seemingly disparate columns? There
may be natural groupings in the data that are impossible for you to find through casual
observation. They would even be hard to spot if you are using basic graphing techniques.
What kind of groupings are we talking about? To clarify, think about each record in the
dataset relating back to a person. Consider the case where people who live in the same
neighborhood, drive the same kind of car, eat the same kind of food, and all respond to the
request for donations in a similar manner. This is a cluster of data. Another cluster may
include people who go to the same restaurants, have similar salaries, and vacation twice a
year outside the country. Seeing these clusters together, you can get a better handle on how
the people in the dataset interact, and how that affects the outcome of our predictable
attribute.

Now that we’ve talked about the tools we are going to use to create this solution, let’s get
into the process!

3
Defining the Problem

Now let's goto the beginning of the process—what are we trying to do? In this step, we
mold the inherent vagueness of the boss’s request into a data mining problem. First, we
should ask, “What does the boss really want?” Then we need to clearly define this business
problem and formulate an actionable goal that solves the problem defined in terms of data
mining. In defining the data mining problem, we:
•

•

Decide what type of analysis will solve the business problem. Are we simply exploring
the data, or are we also trying to create a model that can predict the future?
Determine our data needs. Does the data support the type of analysis that the problem
requires? Or do we need to find additional data either internally or externally?

After defining the data mining problem, we need to define the metrics by which the model
will be measured.

Defining the Business Problem
Right now, let’s define the business problem in our current scenario—our company has
partnered with a major charity to solicit donations from the community, and now the
company wants to reduce the overall cost of the project while maximizing the results.

Over the years, the money that the company spends on mailing has increased significantly
as the target audience for the mailing has grown. The problem is that the actual money
brought in has not increased in proportion to the increased expense. With the current
economic situation, the boss wants to reduce spending, but—and here’s the catch—
without adversely affecting the amount of money collected. He has come to us to find out
how to do this. To aid us in this task, he has brought along several year’s worth of historical
data that describes the demographics and response rates of previous mailings.

36 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Defining the Data Mining Problem
So it sounds like the boss is asking for a targeted mailing. By sending the mailing only to
those people who are most likely to respond, we can make the process more efficient
without reducing the amount of money coming in. Thus, our actionable goal becomes “to
predict whether someone is likely to donate money to the company’s volunteer effort based
on the historical data collected over the years.”

Now we need to decide what type of analysis will solve this problem and determine
whether we have the necessary data.

Deciding What Type of Analysis to Use
In Analysis Services, we have a choice of two algorithms: the Microsoft Clustering
algorithm and the Microsoft Decision Trees algorithm.

The Microsoft Clustering algorithm
We can use the Microsoft Clustering algorithm to describe how people in the dataset
can be grouped based on similar demographic and donation patterns. Basically, the
Microsoft Clustering algorithm is a diagnostic tool used for unsupervised learning.

The Microsoft Decision Trees algorithm
We can use the Microsoft Decision Trees algorithm to build a classification model to
predict an output attribute.

For this scenario, we'll use the Microsoft Decision Trees algorithm to create the data
mining models, but we could just as easily use the Microsoft Clustering algorithm to create
the models and draw similar conclusions.

Determining Our Data Needs
Does the infrastructure of the dataset support the analysis we are trying to perform? The
historical data that the boss provided contains two columns that are useful for predictions:
•
•

A Boolean column (TARGET_B) that states whether each person donated money.
A numeric column (TARGET_D) that stores the amount of money each donor gave.

Because the two columns are related, we need to be careful how we use them in our
analysis. We can predict whether someone will donate based on whether a money amount
exists in the TARGET_D column. Even though the predictive power of this model would
be very accurate, it really doesn’t tell us much about who will donate! Additionally, the
dataset contains a large amount of demographic data and response history, which can be
used by the model to predict which columns best describe people’s donation patterns.

 Chapter 3: Defining the Problem 37

Defining the Metrics
Now that we’ve defined the data mining problem, how will we know our models work? We
need to define what success is, which in this case, will be determined by whether the ratio
of money collected to money spent on the project increases. One common method to
determine the effectiveness of the model is to use a lift chart. To create a lift chart, we
create a prediction query on a testing dataset and then compare the results to the known
values in the dataset. This is possible because the testing dataset contains values for the
columns that we are predicting. The lift chart displays the improvement the model provides
in predicting the outcome of the predictable attribute as compared to a random guess. This
difference is called “lift.”

For example, suppose we have a database containing a record for each customer, and we
have scored and ranked the customers based on how likely they are to donate (based on the
models we developed). Now, if we take the top 10 percent and mail a request for donations
to them, and then randomly take another 10 percent of the customers (records) not
included in the first 10 percent, and mail requests to them, we can compare the response
rates, and thus, rate the effectiveness of the model.

So how much lift should we expect to see? The lift provided by the models is ultimately
limited by how good the data is. No matter how many models we build and what
parameters we change, the models can only be as accurate as the data allows them to be.

We will talk more about lift charts in Chapter 8, “Building and Validating the Models.”

Creating the Formal Problem Definition
The formal definition of the problem is as follows:

Predict which potential donors will respond to a mailing. To achieve this, we will build a
decision tree model that will predict the outcome of TARGET_B, the Boolean column
describing each person’s donation history based on columns describing historical response and
demographic data. This will allow the boss to create a targeted mailing, using the historical
data the company has collected, and thus improve the response rate. The success of the model
will be determined by the increased profitability of the ad campaign.

4
Cleaning the Data

This can really be considered the most important stage of the project. It is in working with
the data—exploring it, taking out unnecessary columns, and cleaning others—that we
prepare for the process of creating a data mining model. While the boss has come up with
the general idea for the project, we have to make it work, and by the end of the project,
nobody will know the data better than we do.

So what is this “cleaning” stuff all about? At some point, data has to enter the computer.
Depending on the error-checking procedures that are in place at the point of entry, it is
likely that someone will make some mistakes—entering the wrong date, the wrong salary,
the wrong address, and so on. If we aren’t careful, these problems can potentially reduce the
effectiveness of our models. It is our job to find and rectify as many of these mistakes as we
can within an allowable period of time.

In the dataset, there are around 90,000 rows of data and 481 columns. That’s something
like 43,290,000 cells! Obviously, we can’t investigate each cell individually, so we are going
to have to devise some methods of automation that will find as many potentially inaccurate
records as possible.

But before cleaning the dataset, we have to know the data. We’ll be making decisions here
that have far-reaching consequences on the accuracy and validity of the data mining
models. We need to know what it is that we’re trying to predict, how the column values are
formatted, and what each column tells us.

After we know the dataset, we can target the inconsistencies that we want to eliminate
before building our models.

40 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Targeting Inconsistencies
Many types of inconsistencies can occur in a dataset, including those listed in the following
table.

Problem Example

Columns that contain a high
number of null values

Sensitive information that the user might not have
wanted to provide

Columns with too few or too many
distinct states

Telephone numbers or other columns that have a
one-to-one relationship with each case, or a column
that only has a single case

Records that fall far outside the
normal distribution of the column

A negative salary

Records that do not match a
specified format

Different date formats

Records that do not make sense
when compared to similar records
of a different attribute

A product with a purchase date that is earlier than the
purchaser's birth date

The way in which we resolve these problems depends on the situation, the requirements of
the model, and the way in which we choose to approach the problem. For example, cells
that are determined to be outliers can be replaced with a mean value, replaced with a value
according to a specific distribution type, or be excluded (along with the rest of the row).

In this chapter, we’ll use the following techniques to address the first three problems that
are listed in the table:
•

•

•

For columns with a high number of null values, we’ll compute the percentage of null
(missing) values for each attribute to determine if the attribute should be excluded
from the model-building process.
For columns with too few distinct states, we’ll compute a mean, a minimum value
(min), a maximum value (max), and a distinct count for each attribute. We will use
this information to exclude columns that do not seem to be useful.
For records that fall outside the normal distribution of the column, we’ll compute
outliers and flag the rows in which they reside. Then we’ll decide, on an individual
basis, how to handle them.

We can address these problems in the Data Mining Tool by using a tab control, where each
tab represents one of the three cleaning tasks that we’ve chosen. This tab control resides on
the Clean Data form (Figure 4.1).

 Chapter 4: Cleaning the Data 41

X To view the Clean Data form
• In the Data Mining Tool, click Clean.

Figure 4.1 The Clean Data form

What About Those Null Columns?
The tab control on the Clean Data form defaults to the Percent Null tab, which by
coincidence (or is it?) is our first step in cleaning the data. Calculating the number of null
values in a column is the least time-consuming task of the three that we’ve selected. So it’s
only natural that we tackle this process first.

But why do we need to calculate the number of null values in a column, anyway?
The first thing you might have noticed about this dataset is that it has a large number of
columns. Having so many columns can get extremely messy as we begin to work with the
data. The more unnecessary columns we can remove now, the less time we will waste on
computation in later tasks.

42 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Columns with a high number of null values can, at best, have no effect on the final
outcome of the model and, at worst, adversely affect the accuracy of the model. For this
solution, we’ll remove columns that have too many null values.

Trying Out the Percent Null Tab
The theory behind how the Data Mining Tool works with null columns is actually fairly
simple. Because we preserve the source data, we can remove whatever columns we need to
from the table being cleaned. To do this, we created a stored procedure, which is called
from the tool, that calculates the number of null values in each column of the dataset and
then divides that number by the total number of rows to get the percentage of null values.
If this percentage is greater than a predetermined amount, the stored procedure drops the
column from the table.

Let’s give it a try. Because we have already selected a table to clean, we only need to input
the percentage of null values that we want to allow to exist in each cleaned column.

Note The procedures in this chapter assume that the Solution_DB database is set up, a
connection exists between the Solution_DB database and the Data Mining Tool, and the source
data has been copied into a table to be used in the data mining process. If you have not yet
completed these steps, proceed to Chapter 1, “Setup,” and complete the installation procedures.

X To remove null columns from the cup98LRN_clean table
1. In the Data Mining Tool, click Clean.
2. On the Percent Null tab, for % null exclusion, type 60.

This means that if more than 60 percent of the values in a column are null, the Data
Mining Tool targets that column for removal.

3. Click Remove.

The Data Mining Tool now cycles through the columns in the table, removing those
containing more than 60 percent null values. After removing the columns from the
table, the tool displays them in a FlexGrid control on the Percent Null tab.

In looking at the form in Figure 4.2, we can see that the columns that were removed seem
reasonable—none of them contain information that justify the number of null values that
they contain.

Now that we’ve seen this functionality in action, let’s look at the code behind all this
cleaning business.

 Chapter 4: Cleaning the Data 43

Figure 4.2 Removed columns in the FlexGrid control

Looking at the Remove Null Columns Code
To complete this cleaning task, we use three values:
•
•
•

The percentage cutoff level
The number of rows in the table
The number of null values for each column in the table

The question is: how we should go about performing the calculations and removing the
values?

44 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

We could split the work between the client and the server, grabbing a column of data from
the server, moving it to the client, performing the test, and then going back to the server to
drop the column from the table if it meets the criteria. Now what stands out about this
solution? There is a lot of back and forth going on between the server and the client. When
we’re dealing with a table containing a small number of columns—say, 10—it’s not so bad,
only 10 trips back and forth are required. But look at our table. We start with 481
columns—that’s a lot of round trips to the server! Each one of these round trips is a
potential performance hit, which can cause a lot of waiting.

Alternatively, we could do all of the work on the server, creating a stored procedure that we
call from the code. We tried both of these methods and found that the stored procedure
processes the task about 20 percent faster! So let’s see how we implemented the stored
procedure that does all these heavy null value calculations.

Calculating Null Values
As with several of the tasks in this project, we have to cycle through each column in the
table, performing the same operation on each one. If we did this in Microsoft® Visual
Basic®, we would have had to create a recordset holding the column names and then cycle
through each column, shooting a query back to the server to get the data and make
necessary modifications to the table.

Let's look at how the usp_KillNulls stored procedure handles this challenge.

X To view the usp_KillNulls stored procedure
1. In Query Analyzer, expand the DM_Prep_Tool database, and then expand the Stored

Procedure folder.
2. Right-click dbo.usp_KillNulls, and then click Edit.

To calculate the null values, the stored procedure requires two parameters: the name of the
table being cleaned (@strBaseTable) and the percentage of allowable values
(@fltLimit).

Create procedure usp_KillNulls

 @strBaseTable nvarchar(255),

 @fltLimit float

AS

We then create a new table that holds a list of all of the column names that were removed.

SET @strSQL='CREATE TABLE [' + @strNewTable + '] (Column_Name
nvarchar(16))'

EXECUTE sp_executesql @strSQL

 Chapter 4: Cleaning the Data 45

In order to cycle through each column in the table, we declare a cursor that holds the
column names for the base table.

DECLARE columns_cursor CURSOR FOR

SELECT [name] FROM syscolumns WHERE id = OBJECT_ID(@strBaseTable)

The procedure then takes the number of rows from the table and stores this number in the
@iTotal variable. We will use this value to calculate the percentage of nulls in the selected
column.

SET @strSQL='SELECT @iTotalOut = COUNT(*) FROM ' + @strBaseTable

EXECUTE sp_executesql @strSQL,N'@iTotalOut int OUTPUT',@iTotalOut =
@iTotal OUTPUT

And now we start cycling through the columns! We first open the cursor, get the next
available column name, and hold it in the local variable, @strColName.

OPEN columns_cursor

FETCH NEXT FROM columns_cursor

INTO @strColName

WHILE @@FETCH_STATUS = 0

Then, for each column, the procedure finds the number of null values that are present,
divides that number by the total number of rows in the table (as held in the @iTotal
variable), and compares the result against the allowable percentage set by the user. If the
calculated percentage is greater than the user-defined cutoff percentage, the procedure
drops the column from the table, and adds the column name to the table holding the list of
columns that were removed.

BEGIN

 SET @strSQL='DECLARE @iNull int

 SET @iNull=(SELECT Count(*) FROM ' + @strBaseTable
+' WHERE ' + @strColName + ' IS NULL)

 IF cast(@iNull as float)/' + cast(@iTotal as
nvarchar(25)) + ' > ' + cast(@fltLimit as nvarchar(25)) +

 'BEGIN

 INSERT INTO [' + @strBaseTable + '_removed] VALUES
(''' + @strColName + ''')

 ALTER TABLE [' + @strBaseTable + '] DROP COLUMN ['
+ @strColName + ']

 END'

46 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 EXECUTE sp_executesql @strSQL

 FETCH NEXT FROM columns_cursor

 INTO @strColName

END

CLOSE columns_cursor

DEALLOCATE columns_cursor

Remember that the table being cleaned is a copy of the original table, cup98lrn. So we can
make as many changes as we want without affecting the source data.

Getting the Null Values
Okay, that’s how the stored procedure works. Now all we have to do is call this procedure
from the code used to display and control the Remove Nulls tab. This code is located in
the cmdRemoveNulls_Click subroutine. Open Visual Basic and follow along as we walk
through this code.

X To view the cmdRemoveNulls_Click subroutine
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
the DMFinal.vbp file.

2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

3. Right-click frmClean (frmClean.frm), and then click View Code.
4. Locate the cmdRemoveNulls_Click subroutine.

The cmdRemoveNulls_Click subroutine starts by declaring three new objects—a
command to run the stored procedure on the server, and the two parameters that the
procedure requires.

Dim objCommand As New ADODB.Command

Dim objParam_Table As New Parameter

Dim objParam_Limit As New Parameter

The routine then gathers the only user input (the cutoff percentage) that we need for the
usp_KillNulls stored procedure.

sngPercentRemove = CSng(txtPercentRemove.Text)/100

 Chapter 4: Cleaning the Data 47

The table that holds the names of the removed columns is then named and stored in the
strRemovedNullsTable variable.

strRemovedNullsTable = frmMain.strCleanedTable & "_removed"

Having obtained the cutoff percentage value, the routine starts defining the parameters that
the stored procedure requires.

...

With objParam_Table

 .Name = "@strBaseTable"

 .Direction = adParamInput

 .Type = adVarChar

 .Size = 255

 .Value = frmMain.strCleanedTable

End With

With objParam_Limit

 .Name = "@fltLimit"

 .Direction = adParamInput

 .Type = adDecimal

 .Precision = 2

 .Value = sngPercentRemove

End With

...

With the necessary parameters set, the routine prepares the Microsoft ActiveX® Data
Objects (ADO) Command object and then calls the object’s Execute method to run the
stored procedure on the server.

...

With objCommand

 .ActiveConnection = cnDataPrep

 .CommandTimeout = 0

 .CommandText = "usp_KillNulls"

 .CommandType = adCmdStoredProc

48 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 .Parameters.Append objParam_Table

 .Parameters.Append objParam_Limit

End With

...

objCommand.Execute

...

As we sit and wait (the time this task takes varies by computer), the stored procedure checks
columns and removes those columns that exceed the cutoff percentage. By the time the
procedure finishes, we have a table cleaned of those pesky null columns!

Now we just have to display those columns on the form. This allows the user to inspect the
results and decide if he or she agrees with them. We grab the column names from the
strRemovedNullsTable table that was created in the stored procedure.

...

Set rsData = mdlProperties.cnDataPrep.Execute("Select column_name
from " & strRemovedNullsTable & "")

Set hfgRemovedNulls.DataSource = rsData

Set hfgRemovedNulls.DataSource = rsData

...

If the procedure removes too many columns, the user can always go back, create a new copy
of the source data, and redo this task with a different cutoff level. If it doesn’t remove
enough columns, the user can just re-run the procedure on the same table with a higher
cutoff level.

And now, on to the next cleaning step!

What About Those Table Properties?
So far, we’ve removed the obvious columns—those that didn’t have enough records to tell
us anything—but we now have to look a little deeper. There are several properties of the
columns that are easy to calculate but also tell us something about the data. These include
the minimum value (min), the maximum value (max), the standard deviation (stdev), and
number of unique values in the column (distinct count), which can obviously only be
calculated for numeric columns.

 Chapter 4: Cleaning the Data 49

We calculate these values for two reasons:
•

•

To provide a better understanding of the distribution of records in each column of the
dataset.
To compute variables that will be used in exploring the data.

The more we know about the data, the more columns we can exclude, and the better
choices we can make when it comes to building the models. For example, by calculating the
distinct count, we can find and remove columns that only have one distinct value, and
therefore, add no value to the accuracy of the model.

Trying Out the Calculate Properties Tab
The second tab of the Clean Data form, Calculate Properties, does...guess what? That’s
right—it calculates specific properties about each column. There are only three tasks that
we can perform here: calculate properties, show a previously calculated properties table, or
remove a column based on something we learned about the table from its properties. No
user input is necessary. We just start clicking away!

To calculate properties, the Data Mining Tool calls a stored procedure that loops through
each numeric column in the table, calculates the column’s properties, and stores these
properties in a table. The tool then displays the results of all this hard work—the properties
table—on the Calculate Properties tab by using a hierarchical FlexGrid control.

X To calculate the properties table for cup98LRN_clean
1. In the Data Mining Tool, click Clean.
2. On the Calculate Properties tab, click Calculate.

Now, just relax and wait for the routine to finish—get a new cup of coffee and let the
dog out. By that time, the properties will be calculated and we can begin to investigate
the results shown in Figure 4.3.

Figure 4.3 shows how the FlexGrid control on the Calculate Properties tab displays
the properties table that we just created. Because we use these properties later when
working with the data, the Data Mining Tool stores them in a table whose name is the
name of the table being cleaned, appended with a _pr. In this way, anytime we need
the properties associated with a table that is being cleaned, the tool can quickly find the
appropriate properties table without having to set up a tracking mechanism that
manages the association between each properties table and its corresponding cleaned
table.

50 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Figure 4.3 The Calculate Properties tab

Let’s look at what we can learn from these properties. The main thing we are trying to do
in this task is to reduce the number of columns in the table. So how can this be done from
the properties table?

There are a couple things we should look for when we decide which columns to exclude.
Are there too many distinct states? If more than 90 percent of the values are distinct, maybe
the column is not worth keeping. Ninety percent is about 85,870 rows. How many
columns contain more than 85,870 distinct values? After some investigation we’ll see that
there is only one, CONTROLN, which also happens to be the key column. We obviously
can’t exclude the key column because it identifies each row.

Now let’s take the opposite approach. How many columns contain a low number of
distinct counts? Three columns have a distinct count of 2:
•
•
•

ADATE_2
TARGET_B
HPHONE_D

 Chapter 4: Cleaning the Data 51

If we hadn’t removed all of those columns that contained null values in the previous step,
we also would have found that the following columns contained very few distinct counts.
•
•
•
•
•
•
•
•

•

ADATE_2
ADATE_3
ADATE_6
ADATE_10
ADATE_14
ADATE_20
ADATE_21
ADATE_24

We can see that something is going on with the ADATE columns—what do these columns
signify? If we look in the table description (from the Web site listed in Chapter 1, “Setup”),
the number for each of the ADATE columns is the date (in YY/MM format) that a specific
promotion was mailed out. It makes sense that these should have very few distinct counts
because most likely the mailings were all mailed out at the same time of the year. The
question is, should we include the remaining columns in the model? For an answer to this
question, we need to explore the column and see how it looks. So let’s keep these columns
in mind and come back to them later in Chapter 6, “Exploring the Data.”

The HPHONE_D column signifies whether the respondent has a published telephone
number, so once again the fact that it only has two distinct states is normal. As for the last
column, TARGET_B, it should have only two distinct states because it answers a yes/no
question. Because this is our predictable column, we need to keep it.

Now look at DOB—it is an interesting column. Although it is listed as a numeric column
in the database, it’s not a numeric column that tracks a particular item, such as the cost of
something. Instead, it contains a code, which in this case is the year and month that each
customer was born (in YY/MM format). The mean is 2,724 and the standard deviation is
2,132—not exactly a normal distribution, which we need to keep in mind when we start to
explore the columns. Although the date can tell us a lot, we also have an age column for
which the calculated properties make much more sense.

After we explore the data, we will have a better idea of which columns we should drop.
Here is the procedure we’ll use eventually to drop columns from the table.

X To drop an unnecessary column
On the Calculate Properties tab, select a column, and then click Drop Column.

We will come back to this procedure after we explore the columns in Chapter 6, “Exploring
the Data.” For now, let’s look at how we constructed the code that calculates the properties.

52 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Looking at the Calculate Properties Code
The code that makes the Calculate Properties tab work actually spans three different
subroutines within the frmClean form:
•

•

•

The Form_Load subroutine names the properties table associated with the table
currently being cleaned.
The cmdCalculateProperties_Click subroutine first determines whether the
properties table exists, and if so, whether the user wants to re-create it. The subroutine
then creates the table, calculates the property values for each column, and displays the
resulting properties table on the tab.
The cmdDropColumn_Click drops a column from the table being cleaned.

Let’s look at the tasks each of these various subroutines accomplishes during this cleaning
step. Open Visual Basic and follow along as we walk through the code.

X To view the code used for the frmClean form
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Forms.
3. Right-click frmClean (frmClean.frm) and click View Code.

Naming the Properties Table
The point of the Calculate Properties tab is to produce a properties table by which the user
gains insight into the contents of the table being cleaned. In addition to providing insight
to the user, the properties stored in this table become essential later when we use the Data
Mining Tool to transform and explore the data.

Knowing that we need this properties table, our first step is to name the table.

In the first iteration of this tool, we gave the user the opportunity to name (select) a
properties table from a list of such tables wherever such a selection was important (for
example, when generating a correlation matrix or graphing data). But this both cluttered
the user interface and caused room for confusion (the user would have to remember which
table to select from the list of tables). Because no one should ever need to select a properties
table that is not associated with the table currently being cleaned, we removed that
functionality and opted to set the properties table automatically for the user upon loading
the Clean Data form.

 Chapter 4: Cleaning the Data 53

In the Form_Load subroutine, we derive the name of the properties table by taking the
name of the table being cleaned, appending _pr to the end of that name, and then storing
the new name in the strTableProperties string.

Private Sub Form_Load()

 'strPropertiesTable is set equal to the table name the user

 'enters in the txtTableProperties textbox.

 strPropertiesTable = frmMain.strCleanedTable & "_pr"

End Sub

Determining Whether the Properties Table Exists
We named the properties table. The next step is to actually determine whether this table
exists. Why do we do this? You see, the user may have already created such a table and just
wants to view that table from the Calculate Properties tab. If so, we don’t want to
overwrite the existing table. We just want to display it when the user clicks the Show
button on the tab. Alternatively, the user may want to start over with this table, causing us
to drop the existing table in preparation for creating a new one.

Thus, the first step in the cmdCalculateProperties_Click subroutine is to
determine whether a properties table with the given name already exists.

 'Check to see if the table already exists in the database

 strSQLSelect = "SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_NAME = '" & strPropertiesTable & "' "

 Set rsTable = mdlProperties.cnDataPrep.Execute(strSQLSelect)

 'If the table already exists, the user can either recreate it or
exit the routine

 If rsTable.RecordCount <> 0 Then

 If MsgBox("You have already created a properties table for "
& frmMain.strCleanedTable & "." & _

 "Do you want to recreate it?", vbYesNo) = vbYes Then

 Else

 GoTo Exit_cmdCalculateProperties_Click

 End If

As you can see from the code, the user has the choice of either re-creating the table or
exiting the routine.

54 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Creating the Table and Calculating Properties
Finally, we are ready to create the table and calculate the properties we’ve chosen for each of
the columns in the table. Creating the table is not too difficult, but calculating those
properties is a bit of a challenge. As with the Percent Nulls tab where we calculated null
values for every column, we face a similar repetitive process here. This time we need to
cycle through each column and calculate its properties. As before, we can either do this
using a recordset in Visual Basic or through a stored procedure in Microsoft® SQL
Server™.

In developing this solution, we tried both approaches. And it shouldn’t come as a surprise
that we determined the stored procedure approach (where the server does all the processing)
improved processing time by about 40 percent over the recordset approach (where there is a
lot of I/O between the client and server). Obviously, we opted to use the stored procedure.

To implement this stored procedure, we created a Calculate_Properties function
that both creates the table and calculates the column properties. Once again, such a
function lends itself to reuse. We are now able to quickly calculate table properties not only
during this cleaning task, but also in creating the correlation matrix (see Chapter 6,
“Exploring the Data”).

By packing all this data manipulation into a function and a stored procedure, we didn’t
have to write lot of code for the cmdCalculateProperties_Click subroutine. The
following line of code is all that’s required.

Call mdlProperties.Calculate_Properties(frmMain.strCleanedTable,
strPropertiesTable)

Walking Through the Calculate_Properties Function
Before going into detail about the stored procedure, let’s take a look what the
Calculate_Properties function in the mdlProperties module does to call that
procedure. As in the cmdRemoveNulls_Click subroutine for the Percent Nulls tab, the
Calculate_Properties function first declares both the Command object that runs the
stored procedure and the single input parameter (the table name) that is passed to the
procedure.

Public Function Calculate_Properties(ByVal strTable As String, ByVal
strPropertiesTable As String)

 Dim objCommand As New ADODB.Command

 Dim objBase_Table As New Parameter

 Chapter 4: Cleaning the Data 55

The function then defines the objBase_Table input parameter.

With objBase_Table

 .Name = "@strBaseTable"

 .Direction = adParamInput

 .Type = adVarChar

 .Size = 255

 .Value = strTable

End With

Next, the function prepares the Command object and runs it.

With objCommand

 .ActiveConnection = cnDataPrep

 .CommandTimeout = 0

 .CommandText = "usp_Properties"

 .CommandType = adCmdStoredProc

 .Parameters.Append objBase_Table

End With

objCommand.Execute

Here again, the code is pretty straightforward and not too complicated. Now let’s look at
the usp_Properties stored procedure that is called by the objCommand object.

Walking Through the usp_Properties Stored Procedure
Looking at the code so far, you’ve probably realized that the bulk of the computational load
must be in the usp_Properties stored procedure. In this procedure, we first create a
table to hold the calculated statistics, cycle through each numeric column, calculate the
mean, min, max, standard deviation, and distinct count, and then write the values to the
new properties table.

X To view the usp_Properties stored procedure
1. In Query Analyzer, expand the DM_Prep_Tool database and then expand the Stored

Procedure folder.
2. Right-click dbo.usp_Properties, and then click Edit.

56 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

As pointed out in the discussion of the Calculate Properties function, the
usp_Properties stored procedure takes only one input. This input is the name of the
table for which the user wants to calculate properties. The usp_Properties procedure
begins by establishing this parameter as a varchar.

CREATE Procedure usp_Properties

 @strBaseTable nvarchar(255)

Again, as previously mentioned, the procedure creates a name for the properties table by
appending the name of the table being cleaned with _pr and storing this result in the local
variable, @strBaseTable.

set @strNewTable = @strBaseTable + '_pr'

If you remember, in the beginning of the cmdCalculateProperties_Click
subroutine, we gave the user the option of re-creating the table if it already exists.
Accordingly, the stored procedure looks through the database to see if the table already
exists, and drops the table if it does.

IF EXISTS(SELECT [name] FROM Sysobjects WHERE [name] = @strNewTable)
BEGIN

 SET @strDropSQL = 'DROP TABLE ' + @strNewTable

 EXECUTE sp_executesql @strDropSQL

END

After any previous occurrence of the table has been dropped, the new table is created in the
database.

SET @strCreateSQL = 'CREATE TABLE [' + @strNewTable + ']
(Column_name varchar(20) NULL, Maximum NUMERIC NULL, Minimum NUMERIC
NULL, Mean NUMERIC NULL, Standard_Deviation NUMERIC NULL,
Distinct_Count NUMERIC NULL)'

EXECUTE sp_executesql @strCreateSQL

As with the usp_KillNulls stored procedure used on the Percent Nulls tab, we get the
system table ID for the newly-created properties table and then declare a cursor to hold the
column names from the table being cleaned. This cursor differs from the cursor used in the
usp_KillNulls procedure in that we are only interested in working with numeric
columns. (It doesn’t make much sense to calculate the mean of varchar columns!) To

 Chapter 4: Cleaning the Data 57

select only numeric columns, we select only columns of column type 108, which represents
a numeric column.

Set @iTableID = (SELECT [id] from SysObjects where [name] =
@strBaseTable)

DECLARE Columns_Cursor CURSOR FOR

Select [name] from SysColumns where [id] = @iTableID AND [Type] =
108

Now that everything is set up and ready to go, we can begin to calculate the properties and
write them to the new table. Using the cursor to iterate through the numeric columns, we
create a Transact-SQL statement that calculates the max, min, mean, standard deviation,
and distinct count, and then inserts them into the properties table.

OPEN Columns_Cursor

FETCH NEXT FROM Columns_Cursor

INTO @strColumn

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @strInsertSQL = 'INSERT INTO [' + @strNewTable + '] ' +

 'SELECT ''' + @strColumn + ''' As
Column_name, ' +

 'MAX([' + @strColumn + '])as Col_Max,' +

 'MIN([' + @strColumn + ']) as Col_Min,' +

 'AVG([' + @strColumn + ']) as Col_Avg,' +

 'STDEV([' + @strColumn + ']) as
Col_STDev,' +

 'COUNT(DISTINCT([' + @strColumn + ']))
as Col_Distinct ' +

 'FROM [' + @strBaseTable + '] ' +

 'WHERE [' + @strColumn + '] IS NOT NULL'

 EXECUTE sp_executesql @strInsertSQL

 FETCH NEXT FROM Columns_Cursor

 INTO @strColumn

END

58 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Displaying the Properties Table
With the column properties calculated and stored, the user will most likely want to see
these results in order to determine whether additional columns can be dropped from the
table. To display these results, we use a hierarchical FlexGrid control. This means that we
have to hook up the DataSource property of the FlexGrid control. Accordingly, we create
a Transact-SQL statement that returns the contents of the properties table, runs it through
a recordset, and sets the DataSource property to the recordset.

...

 ' Display properties data in the grid.

 strSQLSelect = "SELECT * FROM [" & strPropertiesTable & "]"

 Set rsData = cnDataPrep.Execute(strSQLSelect)

 hfgColumn.ColWidth(0) = 300

 Set hfgColumn.DataSource = rsData

...

Dropping a Column
After a user reviews the column properties in the FlexGrid control, it may become obvious
that he or she should drop some of the columns (for instance, columns that have a distinct
count of 1, indicating that these values are all the same).

To drop these types of columns, the user selects the column in the FlexGrid control and
then clicks Drop Column. Clicking this button calls a separate routine
(cmdDropColumn_Click) that displays a message box asking the user whether he or she
really wants to drop the column. When the user clicks Yes in response to this message, the
cmdDropColumn_Click subroutine uses a Transact-SQL statement to drop the
corresponding column from the table being cleaned. The FlexGrid control is then
refreshed.

Private Sub cmdDropColumn_Click()

...

 If MsgBox("Do you really want to drop " & hfgColumn.Text & "
from the table?" _

 , vbYesNo) = vbYes Then

 strSQLString = "ALTER TABLE " & frmMain.strCleanedTable & "
DROP COLUMN " & hfgColumn.Text & ""

 cnDataPrep.Execute (strSQLString)

 cmdShow_Click...

 Chapter 4: Cleaning the Data 59

And that wraps up the process of calculating table properties. Next up, the way in which we
handle outlier values in the table.

What About Those Outliers?
Until now, we have been cleaning data at the column level—removing groups of data one
column at a time. Here the focus shifts to looking at values at the individual cell level.
Because the dataset is so large and it would be impossible to physically investigate every cell,
the Data Mining Tool automates the process of flagging cells that stand out. Because it is
not a good idea to just blindly remove these cells or their associated rows without some sort
of validation, the Data Mining Tool has a built-in mechanism that allows us to review
flagged cells and decide whether to remove them completely (including the entire row) or
to replace them with the average value of the column. Figure 4.4 shows the Flag Outliers
tab. We’ll use this tab to specify which values we want the Data Mining Tool to flag as
outliers.

Figure 4.4 The Flag Outliers tab

60 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Before we can flag outlier values, we must set three variables:

of SDs
The number of standard deviations from the mean after which a value is considered to
be an outlier.

Max Ratio
A ratio signifying that the maximum value is really out there, too far from the outlier
cutoff to be considered a valid value.

% cutoff
The percentage of values past the outlier limit that we will allow before starting to
wonder if they are really outliers or not. (Because we cannot assume that the distribution
is normal, a large number of values a may be a significant distance from the mean. If this
is true, we do not want to flag these values because they may be valid.)

We set these variables because the algorithms used to flag cells take into account both the
distance away from a mean value and how often values of that distance occur.

Here is the first algorithm:

Outlier_Value= Mean + STDev*Number of STDev

To get this algorithm to work, we must first determine the number of standard deviations
after which we consider values to be outliers. According to a normal distribution, three
standard deviations should encompass 99.7 percent of the values. So the default is 3.

Having computed the Outlier_Value, the next algorithm looks at the ratio between the
maximum value in the dataset and the outlier value:

Outlier_Ratio = MaxValue /OutlierValue

If this ratio is high (that is, greater than the value for the maximum ratio), we know that
the maximum value is way beyond the outlier cutoff and is most likely an outlier. If it is
low (less than the maximum ratio), we know that it is just barely beyond the cutoff and we
won’t consider those values beyond the cutoff to be valid outlier values.

We then calculate the percentage of values that lie beyond the cutoff. If it is high (greater
than the cutoff percent value), we can assume that the values are not outliers (because so
many exist). But if it is extremely low, we can assume that they are outliers.

Trying Out the Flag Outliers Tab
Finally, we come to the third tab (and the last cleaning task)—finding outlier values in each
column. After identifying all of the outliers, the Flag Outliers tab displays the rows
containing the outliers, highlighting outlier values in red. We then either remove a column
containing an outlier from the table or replace it with the mean value of the column.

 Chapter 4: Cleaning the Data 61

Let’s give it a try. To find the outliers, we need to input three parameters, as explained
earlier: the number of standard deviations that most of the data should be contained
within, the maximum ratio that the maximum value should fall within before it is
considered to be an outlier, and the percentage of values that are allowed beyond the outlier
value before they are no longer considered to be outliers.

X To flag outliers in the cup98LRN_clean table
1. In the Data Mining Tool, click Clean.
2. On the Flag Outliers tab, type the following values:

� For # of SDs, type 5

� For Max Ratio, type 12

� For % Cutoff, type .1.
3. Click Flag.

Now the Data Mining Tool begins its work. After scouring the columns in the table
for outliers, the tool displays those rows containing outliers in a FlexGrid control on
the form. The cells containing outliers appear in red to make them easy to spot.

Figure 4.5 The outliers in the DM_Prep_Tool data

62 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

The first time we ran this routine, we set values of 3, 10, and 0.4, respectively, and found
that 20,000 rows contained outlier values. Does it seem right that almost 22 percent of the
rows in the table contain outliers? Well, it didn’t seem right to us either, so we revised the
input variables to those in the procedure in this section.

In looking through the flagged values we can see that some really stick out—specifically
those in the TCODE column. Most of the values fall within a very small range, say 1
through 10, but as shown in the Figure 4.5, some are as high as 28,028. Now before we go
crazy and start dropping rows, let's look at the column definition and see if the values make
sense. According to the column definition, TCODE stands for the respondent's title, with
the title MSS. being represented by the number 28,028. Looking through the flagged
values, we can see that each of the values flagged in the TCODE column actually
corresponds to a valid state in the column definition.

Now look at AFC3. Several rows are selected because of the values in this column, but are
they really outlier values? The AFC3 column describes the percentage of females who are
active in the military in the respondent's neighborhood. In looking at the values we can see
that they are all less than 100, which means that they are all potentially good values. But
they keep popping up as outliers because the majority of the values are very small, but
certain neighborhoods have a higher percentage, which causes the values to be flagged.

Of the values the routine marked as outliers, we could not find any that seemed to fit the
definition of an outlier value. But suppose we did find an outlier value—if we click an
outlier value in the table, we can use the Data Mining Tool to either remove the
corresponding row from the table or replace the cell’s value with the mean value of the
column.

X To remove or replace outliers in the DM_Prep_Tool data
1. In the grid, click a cell containing an outlier value.
2. Do one of the following:

� To remove the row containing the outlier, click Remove row.

� To replace the value of the cell with the mean value of the column, click Replace
value.

Now, lets look at the code that makes this all work.

 Chapter 4: Cleaning the Data 63

Looking at the Flag Outliers Code
Looking through the Visual Basic code contained in the cmdRemoveNulls_Click
subroutine, you will see that it consists of two main parts:
•

•

Code that prepares the stored procedure that flags the outlier values and then runs that
procedure
Code that displays the combination of the outlier table and source table data in a
hierarchical FlexGrid on the form.

In this section we’ll take a closer look at each of these parts: the stored procedure, the code
that runs the procedure, and the code that displays the outlier information.

Flagging the Outliers
When developing this tool, the way in which we flagged outliers became an interesting
problem. How could we store the information about which cells contained outlier values?

To store it in the same table meant either creating an additional column for each numeric
column in the table and checking off a flag, or somehow changing the original data to
signify that a value is suspect. Neither of these options seemed like a good choice.

We decided to make a copy of the original table, leaving out the actual values. Every time
we found an outlier value, we put an identifier in the corresponding cell of the new table.
We also added a new column to the table that signifies whether a row contains outlier
values. This made it possible to perform filtering on either table and to just look at the rows
containing outliers. With these two tables, we can both preserve the original data and store
outlier information. Anytime we want to see a combination of the two, we can use an inner
join.

That’s the theory behind flagging outliers. We then had to decide how to implement this
theory. As with the other cleaning tasks, we had a choice of either using Visual Basic to
loop through the table columns or running a stored procedure. As before, we chose the
stored procedure.

Let’s walk through the stored procedure and see how our theory translates into reality.

64 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

X To view the usp_Outliers stored procedure
1. In Query Analyzer, expand the DM_Prep_Tool database, and then expand the Stored

Procedures folder.
2. Right-click dbo.usp_Outliers, and then click Edit.

The stored procedure requires six parameters:
•
•
•
•
•
•

The source table (@strBaseTable)
The key column of the table (@strKeyID)
The properties table associated with the source table (@strLookupTable)
The number of standard deviations from the mean (@fltNumberSD)
A cutoff percentage (@fltPercentageCutoff)
An outlier ratio (@fltOutlierMax)

These parameters are defined first in the procedure.

CREATE Procedure usp_Outliers

 @strBaseTable nvarchar(255),

 @strKeyID nvarchar(255),

 @strLookupTable nvarchar(255),

 @fltNumberSD float,

 @fltOutlierMax float,

 @fltPercentageCutoff float

The procedure then has to name the table that will record the location of the outlier values.
It does this by appending the name of the source table with _ou.

SET @strNewTable = @strBaseTable + '_ou'

To calculate the percentage of values that lie outside of the cutoff value, we need to divide
the number of outlier values by the total number of records in the column. We currently
don’t have this total, so we have the procedure get this count and store it in the
@intRecCount variable.

SET @strLookupSQL = 'SELECT @return_Count = (SELECT
COUNT([controln]) FROM [' + @strBaseTable + '])'

EXECUTE sp_executesql @strLookupSQL, N'@return_Count INT OUTPUT',
@return_Count = @intRecCount output

 Chapter 4: Cleaning the Data 65

Next, the procedure queries the database to see if the table that will hold the outlier values
(let’s call it the outlier table) has already been created, and if so, drops it from the database.

IF EXISTS(SELECT [name] FROM Sysobjects WHERE [name] = @strNewTable)

BEGIN

 SET @strDropSQL = 'DROP TABLE ' + @strNewTable

 EXECUTE sp_executesql @strDropSQL

END

The next query uses a SELECT INTO statement to make the outlier table an identical
copy of the source table. Because we want the outlier table to be blank, we exclude the
actual data from this table by including a WHERE clause that can never happen—the key
being less than zero. Then the query copies the key column data from the source table into
the outlier table. This ensures that the outlier table has the same number of rows as the
source table and that they are in the same order, allowing us to later join the new table with
the old table for display on the Flag Outliers tab. Last, the query adds a column,
FLAGGED_ROWS. (Initially, the values in the FLAGGED_ROWS column are set to null. Later,
the stored procedure replaces the null value with a 1 if one of the row’s cells holds an
outlier value.)

SET @strCreateSQL = 'SELECT * INTO [' + @strNewTable + '] FROM [' +
@strBaseTable + '] WHERE [' + @strKeyID + '] < 0 ' +

 'ALTER TABLE [' + @strNewTable + '] ADD flagged_rows
INT NULL ' +

 'INSERT INTO [' + @strNewTable + '] ([' + @strKeyID
+ ']) ' +

 'SELECT [' + @strKeyID + '] FROM [' + @strBaseTable
+ ']'

EXECUTE sp_executesql @strCreateSQL

As with the previous two stored procedures, we need to get the ID of the source table in
order to get the names of the columns in the table.

Set @iTableID = (SELECT [id] from SysObjects where [name] =
@strNewTable)

66 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

The procedure then declares the Columns_Cursor cursor, which will hold the numeric
column names from the source table.

DECLARE Columns_Cursor CURSOR FOR

Select [name] from SysColumns where [id] = @iTableID AND [xType] =
108

The procedure can now begin to loop through the columns in the table to look for outlier
values.

OPEN Columns_Cursor

FETCH NEXT FROM Columns_Cursor

INTO @strColumn

WHILE @@FETCH_STATUS = 0

BEGIN

The first step in the loop is to gather the table properties used to calculate the outlier
values—the standard deviations, mean, and max values.

 SET @strLookupSQL =

 'Select @return_STDev = (SELECT Standard_Deviation from
' + @strLookupTable + ' WHERE Column_name = ''' + @strColumn + ''')
' +

 'Select @return_Mean = (SELECT mean from ' +
@strLookupTable + ' WHERE Column_name = ''' + @strColumn + ''') ' +

 'Select @return_Max = (SELECT Maximum from ' +
@strLookupTable + ' WHERE Column_name = ''' + @strColumn + ''') '

 EXECUTE sp_executesql @strLookupSQL, N'@return_STDev float
OUTPUT,@return_Mean float OUTPUT,@return_Max float OUTPUT',
@return_STDev = @fltCol_STDev OUTPUT,@return_Mean = @fltCol_Avg
OUTPUT,@return_Max = @fltCol_Max OUTPUT

Using the number of standard deviations from the mean (as set by the user), the loop then
calculates a cutoff value for outliers and uses the maximum value to determine a ratio for
which the maximum is beyond the outlier—the OutlierRatio. To avoid dividing by
zero, the loop calculates the maximum ratio only if the value for sngOutlier is greater
than zero.

 SET @fltOutlier = (@fltCol_Avg + @fltNumberSD * @fltCol_STDev)

 IF @fltOutlier = 0

 BEGIN

 Chapter 4: Cleaning the Data 67

 SET @fltOutlierRatio = 0

 END

 ELSE

 BEGIN

 SET @fltOutlierRatio = @fltCol_Max / @fltOutlier

 END

Now the loop looks to see if the outlier ratio is greater than the ratio determined by the
user. If it is, the procedure flags all of the values past the outlier value as outliers.

 IF @fltOutlierRatio > @fltOutlierMax

 BEGIN

 SET @strLookupSQL = 'Select @return_Count =
(SELECT Count([' + @strColumn + ']) from [' + @strBaseTable + ']
where [' + @strColumn + '] > ' + cast(@fltOutlier as nvarchar(25))
+ ')'

 EXECUTE sp_executesql @strLookupSQL,
N'@return_Count decimal OUTPUT', @return_Count = @intOutlierCount
OUTPUT

By dividing the number of calculated outliers by the variable @intRecCount (the number
of records in the table), the loop now finds the percentage of values in the column that are
outliers. If this percentage is less than the percentage set by the user, the loop flags the row
as containing an outlier for that column.

 SET @fltPercentageOut = @intOutlierCount /
@intRecCount

 IF @fltPercentageOut < @fltPercentageCutoff

 BEGIN

Finally, the procedure replaces the cells in the outlier table corresponding to outlier values
in the base table with a value of 2 to signify the presence of an outlier value. When a row
contains an outlier, the procedure also updates the corresponding cell in the
flagged_row column with a value of 1. This allows us to sort rows based on whether
they contain outlier values.

 SET @strLookupSQL = 'UPDATE [' +
@strNewTable + '] SET [' + @strColumn + '] = 2, [flagged_rows] = 1
FROM [' + @strNewTable + '] t,[' + @strBaseTable + '] s WHERE t.[' +

68 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

@strKeyID + '] = s.[' + @strKeyID + '] AND s.[' + @strColumn + '] >
' + cast(@fltOutlier as nvarchar)

 EXECUTE sp_executesql @strLookupSQL

 END

 END

 FETCH NEXT FROM Columns_Cursor

 INTO @strColumn

END

Getting the Outliers
Okay, we now have a way to flag outliers. We just need to implement this stored procedure
from the Flag Outliers tab. Here is how we do that within the
cmdCalculateOutliers_Click subroutine.

As with the usp_Outliers stored procedure, the subroutine names the table that holds
outlier information by appending _ou to the name of the source table.

 strOutlierTable = frmMain.strCleanedTable & "_ou"

As with the previous cleaning tasks, the subroutine must declare each parameter and the
ADO Command object.

Dim objCommand As New ADODB.Command

Dim objBase_Table As New Parameter

Dim objKeyID As New Parameter

Dim objLookupTable As New Parameter

Dim objNumberSD As New Parameter

Dim objOutlierMax As New Parameter

Dim objPercentageCutoff As New Parameter

The subroutine then prepares the various parameters to be used by the stored procedure.

 With objBase_Table

 .Name = "@strBaseTable"

 .Direction = adParamInput

 .Type = adVarChar

 .Size = 255

 Chapter 4: Cleaning the Data 69

 .Value = frmMain.strCleanedTable

 End With

 With objKeyID

 .Name = "@strKeyID"

 .Direction = adParamInput

 .Type = adVarChar

 .Size = 255

 .Value = KEYID

 End With

 With objLookupTable

 .Name = "@strLookupTable"

 .Direction = adParamInput

 .Type = adVarChar

 .Size = 255

 .Value = strPropertiesTable

 End With

 With objNumberSD

 .Name = "@fltNumberSD"

 .Direction = adParamInput

 .Type = adSingle

 .Precision = 10

 .Value = CSng(txtNumberSD.Text)

 End With

 With objOutlierMax

 .Name = "@fltOutlierMax"

 .Direction = adParamInput

 .Type = adSingle

 .Precision = 10

 .Value = CSng(txtMaxRatio.Text)

 End With

70 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 With objPercentageCutoff

 .Name = "@fltPercentageCutoff"

 .Direction = adParamInput

 .Type = adSingle

 .Precision = 10

 .Value = CSng(txtPercentCutoff.Text)

 End With

Next, the procedure passes all of this necessary information to the Command object.

 With objCommand

 .ActiveConnection = cnDataPrep

 .CommandTimeout = 0

 .CommandText = "usp_Outliers"

 .CommandType = adCmdStoredProc

 .Parameters.Append objBase_Table

 .Parameters.Append objKeyID

 .Parameters.Append objLookupTable

 .Parameters.Append objNumberSD

 .Parameters.Append objOutlierMax

 .Parameters.Append objPercentageCutoff

 End With

Finally, the procedure carries out the command and the stored procedure begins the process
of flagging outliers.

 objCommand.Execute

The usp_Outlier stored procedure takes the longest of the three to run—there are a lot
of values to check! You may even have time to make lunch while you’re waiting. But the
good news is that by using a stored procedure, we were able to cut processing time from
around 30 minutes to around 15 minutes on our computer.

 Chapter 4: Cleaning the Data 71

Displaying the Outliers
Now that the outlier values have been calculated, let’s look at how they are displayed to the
user.

In addition to the challenge of tracking outlier values, the other challenge we faced in
developing this solution was figuring out how to relay the information about outliers to the
user. At first, we tried to display the actual outlier table in a FlexGrid control, which, when
the user selected a row value, would display the corresponding row in an additional
FlexGrid control. This would have allowed the user to quickly find the outlier values and
view the row values to determine what action to take. We eventually scrapped this approach
in favor of displaying only a single grid that conveys both pieces of information—
displaying the real values in the grid but color-coding those values flagged as outliers.

To do this single-grid approach, the cmdCalculateOutliers_Click subroutine uses a
Transact-SQL statement that creates an inner join between the outlier table and the source
table, and then returns real values for each row containing an outlier value to the FlexGrid
control.

...

 strSQLSelect = "SELECT c.* FROM [" & frmMain.strCleanedTable &
"] AS c INNER JOIN [" & strOutlierTable & "] AS t ON c.controln =
t.controln AND t.flagged_rows = 1 ORDER BY c.controln" Set rsData =
mdlProperties.cnDataPrep.Execute(strSQLSelect)

...

The FlexGrid control then displays this information.

...

Set hfgOutlier.DataSource = rsData

...

The tricky part comes in highlighting the outlier values within the grid. We first have to get
a recordset filled with the outlier table data that marks the outlier values with a 2. We then
cycle through the table and whenever we find an outlier value, we set the FlexGrid control
to the corresponding value and highlight the cell in red.

...

 strSQLSelect = "SELECT * FROM [" & strOutlierTable & "] where
flagged_rows = 1 ORDER BY controln"

Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)

72 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

lngRow = 1

Do Until rsData.EOF

 For lngColumn = 0 To rsData.Fields.Count - 1

 If rsData(lngColumn) = 2 Then

 hfgOutlier.Col = lngColumn + 1

 hfgOutlier.Row = lngRow

 hfgOutlier.CellBackColor = vbRed

 End If

 Next lngColumn

 rsData.MoveNext

 lngRow = lngRow + 1

 Loop

 ...

The only two tasks left to do are to either replace a selected cell with its mean value or
remove a selected row.

Replacing a Cell with Its Mean Value
If the user clicks Replace value, the code first displays a message box asking whether the
user really wants to replace the value with the mean.

...

If MsgBox("Do you really want to replace the selected value in the
table?" _

 , vbYesNo) = vbYes Then

...

If the user clicks No, the routine exits. Otherwise, the routine begins to determine where
the cell is within the grid. The hardest part of this routine is figuring out how to find which
column in the FlexGrid control holds the key to the table. The code does this by setting a
variable, strColumnID, equal to the first column and first row in the FlexGrid control,
and then cycling through the column values in the first row until they match the key
column name for the dataset, “controln”.

...

strColumn = hfgOutlier.TextMatrix(0, hfgOutlier.Col)

 For lngColumnID = 0 To hfgOutlier.Cols

 Chapter 4: Cleaning the Data 73

 If hfgOutlier.TextMatrix(0, lngColumnID) = UCase("controln")
Then Exit For

 Next lngColumnID

...

Using the selected column name in the strColumn string, along with the key identifier for
the selected row, the routine then creates a SELECT statement that updates the table value
with the mean value for the column.

...

strSQLString = "UPDATE " & frmTables.strCleanedTable & " SET " &
strColumn & " = " & sngMean & " where " & hfgOutlier.TextMatrix(0,
lngColumnID) & " = '" & hfgOutlier.TextMatrix(hfgOutlier.Row,
lngColumnID) & "'"

...

Removing a Row
The routine for removing a row is much the same, except that instead of replacing a
column value, the routine creates a SELECT statement that removes the row containing
the outlier value.

...

strSQLString = "Delete from " & frmTables.strCleanedTable & " where
" & hfgOutlier.TextMatrix(0, lngColumnID) & " = '" &
hfgOutlier.TextMatrix(hfgOutlier.Row, lngColumnID) & "'"

...

Now that our data should be in a fairly clean state, let’s start looking at the types of
transformations we can perform to further prepare the data for use in models.

5
Transforming the Data

Now that we’ve cleaned the data—getting rid of all of the trouble-causing columns and
rows—it’s time to transform some of it into a more desirable form. To do this, we will use
the DTS Import/Export Wizard, which can run scripts that transform the data. This step is
yet another example of why we need to understand our data. If we do not know how a
column behaves, we can’t determine how to transform it into a more usable state.

There are several types of transformations that we can perform. For example, it can be hard
to find out how the states of the input columns affect the states of the output columns if
the input columns have too many states. (This is the case with one of our input columns,
POP901. This column defines the population of the neighborhood in which each
respondent lives, and thus, consists of several thousand different states.) A way to solve this
problem is to reduce the number of states in the input columns by creating buckets. Instead
of having an infinite number of possibilities, we define five states (labeled 1 through 5) and
replace the column’s values with whatever designation is appropriate. This transformation
makes it much easier to find relationships between the input and predictable columns.
There are two places in the process where we can perform this transformation: either now
using a script in the wizard or later during the model-building phase. We will demonstrate
the first technique in this solution.

Another transformation converts a date into the number of months since an event
occurred. In our table, the column ODATEW describes when each person first donated
money. Instead of working with a date, we could work with a concrete number, such as the
number of months, that we can then use to find things like the correlation and mean value.

In this chapter, we try both of these transformations on the POP901 and ODATEW
columns, using just a single script. Keep in mind, though, that the number of
transformations that you can perform is endless. You can easily modify the transformations
in this chapter to create your own transformation, and see how it changes your models.

76 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Note that we will not replace the existing column; instead, we add the transformed column
to the table. This preserves the state of the original column and also allows us to look at the
information contained within it in a different way.

Trying Out the DTS Import/Export Wizard
In the Data Mining Tool, clicking the Transform button opens the DTS Import/Export
Wizard, allowing you to run through the steps of creating a transformation and then return
to the Data Mining Tool.

X To transform data using the DTS Import/Export Wizard
1. In the Data Mining Tool, click Transform.
2. On the Data Transformation Services Import/Export Wizard page, click Next.
3. On the Choose a Data Source page, select the following options, and then click Next:

� For Data Source, select Microsoft OLE DB Provider for SQL Server.

� For Server, type (local).

� Select Use Windows NT Integrated Security.

� For Database, select DM_Prep_Tool.
4. On the Choose a destination page, select the following options and then click Next:

� For Destination, select Microsoft OLE DB Provider for SQL Server.

� For Server, type (local).

� Select Use Windows Authentication.

� For Database, select DM_Prep_Tool.

Note These settings map the source database to itself. If you want to, you can also
map the source database to a new database.

5. On the Specify Table Copy or Query page, select Use a query to specify the data to
transfer, and then click Next.

6. On the Type SQL Statement page, type the following statement into the Query
statement box:

select [cup98LRN_Clean].[ODATEDW], [cup98LRN_Clean].[POP901],
[cup98LRN_Clean].[CONTROLN]

from [cup98LRN_Clean]

7. Click Next.
8. On the Select Source Tables and Views page, under Transform, click the browse (...)

button.

 Chapter 5: Transforming the Data 77

9. On the Transformations tab, select Transform information as it is copied to the
destination, and then click Browse.

10. In the Open dialog box, select the C:\Program Files\Microsoft
NESBooks\SQLServer2000\Data Mining\DM Sample\transform_script.txt
file, and then click Open.

Although you can type any script that you like in the text box, we have prepared one
ahead of time, which is discussed later in this chapter in “The Transformation Script.”
All of the transformations are performed using just one script.

11. Click OK, and then click Next.
12. On the Save, schedule, and replicate package page, select Run immediately, and then

click Next.

The POP901 and ODATEDW columns are now transformed and added to a new table
named Results, along with the key column, CONTROLN. We now just have to run the
following Transact-SQL scrip to copy the new columns into the cup98LRN_clean table.

Note If you use a non-English computer, the DTS Import/Export Wizard puts the transformed data
into a table with a name other than Results. For example, on a German computer the DTS
Import/Export Wizard puts the transformed data into a table named Ergebnisse. Check your
database to find the proper name and replace the name Results with the correct name in the
following script:

ALTER TABLE dbo.cup98LRN_Clean ADD ODATEDW2 NUMERIC(18,0) NULL,
POP901_2 NUMERIC(18,0) NULL

Go

UPDATE dbo.cup98LRN_Clean

 SET ODATEDW2 = Results.ODATEDW, POP901_2 = Results.POP901

 FROM Results

 WHERE cup98LRN_Clean.controln = Results.controln

Go

Looking at the Code Calling the Wizard
The design of this step has changed over time. During the initial discussions about creating
this project, we designed a form that allowed users to create a custom Transact-SQL script
to transform data and then apply this script to the data. As time passed, we realized that
SQL Server had already created a perfectly good mechanism for doing this—the DTS
Import/Export Wizard. So, instead of reinventing the wheel, we decided to take advantage
of the wizard in showing you how to perform custom transformations on columns on a

78 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

table. Using the wizard, we are basically going to copy the specified columns, transform
them, and put them back into the table.

Hooking up the DTS Import/Export Wizard to the Data Mining Tool is a simple task,
requiring only the following code.

Shell Environ("ProgramFiles") & "\Microsoft SQL
Server\80\Tools\Binn\dtswiz.exe", vbNormalFocus

The Transformation Script
Using a Microsoft ®Visual Basic® Scripting Edition (VBScript) script, we can easily
transform the data for the specified columns in the table. When the script runs, the
database goes through each row in the source table and runs it through the script,
performing the necessary transformation. The row is then copied into the new table, which
in our case is the original table. In essence, we are pulling a row of data out of the table,
transforming it, and putting it right back in.

To create the script, we copied the template that was already in the code editor (which just
grabs each row and moves it without transforming it) and modified it. Let’s look at the
code we modified.

We first need to define local variables for the columns we are going to transform.

 Dim lvPOP901

 Dim lvODATEDW

Dim Month

Dim Year

We can now start to perform the transformations. In the first, we will change the variable,
lvODATEDW, which tells us the date of the donor’s first donations, from a date to the
number of months since their first donations.

The data is formatted as YY/MM in the database. We first pull out the individual year and
month for each row, and then recalculate them to be equal to the number of months
(assuming the present year is 1998).

 Month = cdbl(right(DTSSource("ODATEDW"),2))

 Year = cdbl(left(DTSSource("ODATEDW"),2))

 lvODATEDW = (98-year)* 12 + month

 Chapter 5: Transforming the Data 79

In the next transformation, we convert the variable lvPOP901 from a continuous variable
to a discrete variable.

We first check to see if the value is null, and then convert it to a double, which allows us to
use mathematical comparisons on the value. If the value is null, we set it equal to zero.

 If IsNull(DTSSource("POP901")) Then

 ' If null, then 0

 lvPOP901 = 0

 Else

 lvPOP901 = CDbl(DTSSource("POP901"))

 End If

We then start the discretization process.

 If lvPOP901 >= 0 And lvPOP901 <= 19740.2 Then

 lvPOP901 = 1

 ElseIf lvPOP901 > 19740.2 And lvPOP901 <= 39480.4 Then

 lvPOP901 = 2

 ElseIf lvPOP901 > 39480.4 And lvPOP901 <= 59220.6 Then

 lvPOP901 = 3

 ElseIf lvPOP901 > 59220.6 And lvPOP901 <= 78960.8 Then

 lvPOP901 = 4

 ElseIf lvPOP901 > 78960.8 Then

 lvPOP901 = 5

 End If

The column values are then added to the destination table.

 DTSDestination("CONTROLN") = DTSSource("CONTROLN")
 DTSDestination("ODATEDW") = lvODATEDW

 DTSDestination("POP901") = lvPOP901

...

 Main = DTSTransformStat_OK

End Function

6
Exploring the Data

Data mining is more of an art than a science. No one can tell you exactly how to choose
columns to include in your data mining models. There are no hard and fast rules you can
follow in deciding which columns either help or hinder the final model. For this reason, it
is important that you understand how the data behaves before beginning to mine it. The
best way to achieve this level of understanding is to see how the data is distributed across
columns and how the different columns relate to one another. This is the process of
exploring the data.

When it comes to exploring data, both visual and numeric techniques offer unique
perspectives:
•

•

Visual techniques allow you to quickly look through a large number of columns and
get a general feel for how they interact. To visualize non-numeric (varchar) data, you
build histograms. To visualize numeric data, you can build both histograms and scatter
plots. To see an example of a histogram, see Figure 6.1. To see an example of a scatter
plot, see Figure 6.3.
Numeric techniques, on the other hand, give you a more concrete understanding of
how the data interacts. As the term “numeric” implies, you can use numeric techniques
only with numeric columns. But by focusing only on the numeric columns, you can
build a correlation matrix that shows the relationship between the numeric columns
and the predictable column.

Because both visual and numeric techniques provide you with a deeper understanding of
the data, the Data Mining Tool presented in this book includes both techniques.

In this chapter, we’ll build histograms, scatter plots, and a correlation matrix, which we’ll
use to explore the data in our sample dataset. After completing each step, we’ll look at the
code in the Data Mining Tool that makes each step work.

82 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Visualizing Data with Histograms and Scatter Plots
A histogram describes the distribution of the different states of a column with respect to the
predictable column. For example, suppose there are two possible states for a column that
describes the color of shirts that people wear in a particular situation: crimson and gray.
When that column is compared to a column containing answers to a yes/no question, we
find that those who wear crimson shirts answer “yes” to a question 25 percent of the time,
while people who wear gray shirts may answer “yes” only 5 percent of the time.

We’ll build two kinds of histograms, one based on varchar columns (like color) and one
based on numeric columns (like salary). The main difference between the two is in the
number of states that each column can contain. A varchar column typically has a finite
number of states, such as crimson or gray, while a numeric column can have an infinite
number of states, such as the time an event occurred, or a salary. To build a histogram, we
need to compare a small number of states to a predictable column. This means that for
numeric columns we have to create artificial buckets in which to group the data. Although
a salary column can contain 10,000 states, we can transform that data into three new states:
high, medium, and low, which we can then chart in a histogram. For a varchar column,
we do not have to worry about creating buckets; instead, we can just work with the data in
the column.

A scatter plot uses two axes to describe groupings of data in the predictable column with
respect to the different states of the selected column. The x-axis holds the input column,
which we are exploring, while the y-axis holds the column that we want to predict. By
plotting these against each other, we can determine where the majority of the data lies. Do
positive responses in the predictable column occur only for certain states of the input
column? Or do the same number of positive responses tend to occur throughout the states,
making no state unique?

So that’s the insight that histograms and scatter plots can provide. Now it’s time to get back
to work and implement these visual techniques using the Data Mining Tool. Regardless of
whether we’re creating a histogram or a scatter plot, the basic methodology behind the
Charts tab is simple—create a SELECT statement based on the selected column data, fill
the recordset, and set the data source of the Microsoft Chart control so that it is equal to
the recordset. The only thing that changes between chart types is the formatting of the
chart, and the only thing that changes between column types is the formulation of the
SELECT statement.

 Chapter 6: Exploring the Data 83

Programming Challenges
When trying to visually explore the data using charts, we encountered two challenges. The
first was in working with the Microsoft Chart control—there is little documentation
describing how to manipulate the control. Formatting the histogram control was not so
difficult, because it is basically a two-dimensional bar chart. But in formatting the scatter
plot, we had a lot of problems trying to get the individual points to appear without a line.

The second was in constructing the correct Transact-SQL statement to feed the chart
control. For the histogram charts, we had to find a way to return a query that aggregates the
states of the data with respect to the states of the predictable attribute.

Visualizing varchar Columns
When working with non-numeric or varchar columns, we have only one charting option
open to us—a histogram. Because we only have to deal with a single type of chart when
working with varchar data, and also because the varchar histogram is the simplest
histogram to create (the data buckets are already defined), we’ll start our visual exploration
of the data here.

Selecting a varchar column on the Charts tab creates a SELECT statement to cull the
varchar columns and group them by bucket. The Data Mining Tool then displays these
results as a histogram on the screen.

We are looking for information that will help us decide whether to use specific columns in
our data mining model. So let’s grab one of the varchar columns and see how it looks
plotted in a histogram.

X To create a varchar histogram of the cup98LRN_cleantable
1. In the Data Mining Tool, click Explore.
2. On the Chart tab, select the following options:

� Select Histogram.

� For Predicted, type target_b.

� For VarChar Column, select MAILCODE.

Figure 6.1 (on the next page) shows the histogram we just created.

84 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Figure 6.1 A varchar histogram

As we can see from the chart, the values for the column MAILCODE make up only a small
percentage of the values in the table, and those that are present closely match the
distributions found over the whole table. For this reason, we can exclude the column from
the dataset. Let’s drop this column now, using the procedure outlined in Chapter 4,
“Cleaning the Data.”

Now let’s look at the code in the Data Mining Tool that creates the histogram.

Looking at the Code Behind Creating the varchar Histogram
A varchar histogram is generated through a single subroutine—
cbVarCharPlot_Click. To put this subroutine in context with the other code on the
Charts tab, open Microsoft® Visual Basic ® and look at this subroutine while we walk
through the code.

 Chapter 6: Exploring the Data 85

X To view the cbVarCharPlot_Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the

cbVarCharPlot_Click subroutine.

Selecting Varchar Data
When a user clicks an item in the varchar Column list, the cbVarCharPlot_Click
subroutine is invoked. For the varchar data, we don’t need to worry about separating
values into buckets because a distinct number of buckets already exist. We do, however,
need to differentiate between the states of the predictable column for each bucket. In our
case, the predictable column contains two states, “Yes” if the person contributed last time
(signified by a 1 in the column) and “No” if the person did not contribute (signified by a 0
in the column). For each bucket, we need to figure out how many positive (“Yes”) and
negative (“No”) results are in the predictable column.

To do this, we sum the cases that are positive and those that are negative. After determining
these counts, we can make a count for each bucket using a GROUP BY statement and
order the information using an ORDER BY statement.

Here is the rather complicated Transact-SQL SELECT statement that results from all these
calculations.

...

'The SQL statement that selects data from the table that is
appropriate for a histogram.

 strSQLSelect = "SELECT " & strHistInputVar & ", " & _

 "SUM(CASE WHEN " & strPredicted & " =1 THEN 1
ELSE 0 END)AS Match, " & _

 "SUM(CASE WHEN " & strPredicted & " =0 THEN 1
ELSE 0 END) AS NoMatch FROM " & _

 "[" & frmMain.strCleanedTable & "] GROUP BY " &
strHistInputVar & ""

Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)

...

86 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Displaying the varchar Histogram
Now it is just a matter of formatting the chart control to display a two-dimensional bar
chart (that is, a histogram) and setting its datasource property equal to the recordset
holding the results of the SELECT statement.

...

'Initialize the chart control to display the data properly.

With mscExplore

 .Visible = True

 .chartType = VtChChartType2dBar

 .Plot.UniformAxis = False

End With

'Set the datasource property of the chart control to the recordset
returned by the Transact-SQL statement,

'and then refresh the chart.

Set mscExplore.DataSource = rsData

Me.Refresh

...

As you can see, creating and displaying a varchar histogram is relatively easy. Having
done all the charting that we can with varchar columns, let’s go back to the Data Mining
Tool and create and display a numeric histogram.

Visualizing Numeric Columns with a Histogram
Now let’s use a histogram to investigate the distribution of data in some of the numeric
columns. If you remember from Chapter 4, we looked at the properties of several columns
whose names begin with ADATE. From the properties we found that these columns
contain only one or two distinct states. Will these states help us create a better mining
model? Let’s find out.

X To create a numeric histogram of the Cup98LRN_clean data
1. In the Data Mining Tool, click Explore.
2. On the Charts tab, select the following options:

� Select Histogram.

� For Predicted, type target_b.

� For Numeric Column, select ADATE_2.

Figure 6.2 shows the numeric histogram we just created.

 Chapter 6: Exploring the Data 87

Figure 6.2 Numeric histogram

From the properties table, we found that the column ADATE_2 contains only two distinct
states. We can see in Figure 6.2 that the ratio of positive to negative responses in the
predictable column is the same for the column as for the entire population. If the
proportions do not differ from the entire population, they do not add anything to the
effectiveness of the model. Accordingly, we can remove ADATE_2 from the
cup98LRN_clean table by using the procedure outlined in Chapter 4, “Cleaning the Data.”

Looking at the Code Behind the Numeric Histogram
Working with numeric columns introduces a couple of issues that we didn’t have to deal
with when working only with varchar columns. The first issue is that that we can create
two charts—histograms and scatter plots—from numeric columns. When a user just selects
a numeric column on the Charts tab, it does not give us enough information to know
which chart the user wants to generate. To deal with this issue, all we have to do is declare a
Boolean variable that is set to True when the user selects a histogram and False otherwise.
That takes care of the first issue.

88 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

The second issue has to do with the states represented by the numeric column. Numeric
data does not exist in discrete states. Numeric data spans a nebulous range, and we need to
define states for this data. Thus, when creating a numeric histogram, we need to determine
the entire range of the data (subtract the minimum value from the maximum value) and
divide that range into a user-defined number of states or buckets.

With those two issues out of the way, the code used to create a numeric histogram is
remarkably similar to the code used to create a varchar histogram. Let’s take this
opportunity to see exactly how this code works.

As with charting varchar columns, a numeric histogram is generated through a single
subroutine—cbNumericPlot_Click. Open Visual Basic and follow along as we walk
through the code.

X To view the cbNumericPlot_Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the

cbNumericPlot_Click subroutine.

Defining States for the Numeric Data
As with a varchar histogram, when a user clicks an item in the Numeric Column list, a
subroutine is invoked. In this case, that subroutine is cbNumericPlot_Click. But
unlike the subroutine used to create a varchar histogram, the cbNumericPlot_Click
subroutine must first create a Boolean variable (blnChartTypeHist) that is set to True if
the user selects a histogram and False if the user selects a scatter plot. Remember that we
need to do this because numeric data can be plotted in more than one way.

The subroutine then uses the blnChartTypeHist variable in an If-Then-Else statement
to determine which type of chart to create using the numeric data. When the value of this
variable is True, the routine enters the Else section, which creates a numeric histogram.

In this section, the routine must first retrieve the maximum and minimum values for the
column. (We’ll use these values to define the various states for the data.) To get these
values, the routine uses the Select_Properties function of the mdlProperties
module and then places the values into the sngCol_Max and sngCol_Min variables.

...

Else

'If blnChartTypeHist is True, create a histogram.

 Chapter 6: Exploring the Data 89

'Get the min and max values to be used to define the states for

'grouping the numerical data.

 sngCol_Max = mdlProperties.Select_Properties(strPropertiesTable,
strNumericInput, Max)

 sngCol_Min = mdlProperties.Select_Properties(strPropertiesTable,
strNumericInput, Min)

...

With the maximum and minimum values retrieved, we can now define the size for each
state. The routine determines the entire range of values (which is stored in sngDivision)
by subtracting the minimum value from the maximum value and then dividing this range
by the value (the user-defined number of buckets) stored in the NOD variable.

...

'Define the size of each state.

 sngDivision = (sngCol_Max - sngCol_Min) / NOD

 sngAdd = 0

...

So far, so good. Now comes the task of using these states to define a SELECT statement
that gathers the information for each state.

Building a SELECT Statement
Using the range stored in sngDivision, the routine calculates an upper and lower bound
for each bucket, and stores these values in two arrays. Because the number of divisions is a
variable that the user sets, the routine never knows how many divisions to expect when
constructing the Transact-SQL statement. So, to make the program as versatile as possible,
the routine also constructs the case statement of the Transact-SQL SELECT
(strSQLSubSelect) within a loop. The strSQLSubSelect statement created within
this loop basically divides the data based on where it fits within a range.

...

'For each division create an upper and lower bound and store them in
the

'upper(i) and lower(i) arrays. Also, build the case portion of the
SQL statement.

 For i = 1 To NOD

90 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 Lower(i) = sngCol_Min + sngAdd

 Upper(i) = Lower(i) + sngDivision

 sngAdd = sngDivision * i

 strSQLSubSelect = strSQLSubSelect & "when " &
strNumericInput & " between " & Lower(i) & " and " & Upper(i) & "
then '" & Lower(i) & "'"

 Next i

...

The routine then finishes the strSQLSubSelect statement with the following code.

...

'Finish the sub select of the SQL statement.

 strSQLSubSelect = strSQLSubSelect & " end As
AggregatedName,target_b from " & frmMain.strCleanedTable & ""

...

Having created the strSQLSubSelect statement, we can now add this statement to the
final SELECT statement (strSQLSelect). As you might recall from the SELECT
statement used to create the varchar histogram, this final SELECT statement makes a
count for each bucket using a GROUP BY statement and then orders this information
using an ORDER BY statement.

...

'Construct the final Transact-SQL statement using the sub select.

 strSQLSelect = "select AggregatedName, sum(case when target_b=1
then 1 else 0 end)" & _

 "as Match, sum(case when target_b=0 then 1 else
0 end) as NoMatch " & _

 "from (" & strSQLSubSelect & ") as a group by
AggregatedName order by AggregatedName"

...

All that’s left to do now is to run this statement and display the results on the screen.

 Chapter 6: Exploring the Data 91

Displaying the Numeric Histogram
Not too surprisingly, we display the numeric histogram the same way we display a
varchar histogram. Here is the code to do so.

 'Initialize the chart control to display the histogram.

 With mscExplore

 .Visible = True

 .chartType = VtChChartType2dBar

 .Plot.UniformAxis = False

 End With

End If

'Set the chart datasource of the chart control equal to the data
extracted from the table.

Set mscExplore.DataSource = rsData

mscExplore.Refresh

Visualizing Numeric Columns with a Scatter Plot
A scatter plot tells us how the states of the predictable column are distributed across the
selected column. By looking at this distribution, we can get a better idea of which columns
to include when we build the data mining models. If the states of the predictable column
are evenly scattered across the selected column, we know that the selected column does not
tell us anything significant about the predictable column. But if the states of the predictable
column are grouped together, the selected column probably can be useful in determining
the outcome of the predictable column.

X To create a scatter plot of the Cup98LRN_clean data
1. In the Data Mining Tool, click Explore.
2. On the Charts tab, do the following:

� Select Scatterplot.

� For Predicted, type target_d.

� For Numeric Column, select HC19.

Figure 6.3 shows the scatter plot we just created.

92 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Figure 6.3 Scatter plot

In this procedure we selected TARGET_D, which describes how much money was
donated, as the predictable attribute. If we used TARGET_B, which indicates whether
customers donated, the chart would contain only two straight lines, while TARGET_D
shows more of the grouping pattern. We can see from Figure 6.3 that the data is distributed
across the states of the selected column fairly evenly, reducing the column’s effectiveness in
a data mining model. Accordingly, we’ll drop the column HC19 by using the procedure
outlined in Chapter 4, “Cleaning the Data.”

Looking at the Code Behind a Scatter Plot
Luckily, when it comes to scatter plots of numeric data, we don’t have to worry about
dividing the data into discrete buckets. Therefore, scatter plots are much easier to code.

We only have to retrieve the values for the selected numeric column and the predictable
column, and then chart the results on a scatter plot. Of course, formatting this chart takes a
bit more work than the two-dimensional charts we've been using until now.

 Chapter 6: Exploring the Data 93

The code used to create a scatter plot is located in the If-Then portion of the If-Then-Else
statement used in the cbNumericPlot_Click subroutine. For information about how to
view this code, see “Looking at the Code Behind a Numeric Histogram” earlier in this
chapter.

Compared to the SELECT statements used to create histograms, the SELECT statement
for a scatter plot is much easier to construct. The cbNumericPlot_Click subroutine
just creates a SELECT statement that returns both the selected numeric column and the
predictable column.

...

'If the user chooses to create a scatter plot from numeric data,

'the Boolean variable, blnChartHist, is False.

If blnChartTypeHist = False Then

'Get the data from the table to create the scatter plot.

 Set rsData = mdlProperties.cnDataPrep.Execute("select " &
strNumericInput & " as input, " & strPredicted & " as predicted FROM
[" & frmMain.strCleanedTable & "] ")

...

It’s more of a problem to format the chart control. To display the data points without a
line, the Showline property must be set to False and the Style, Size, and Visible
properties of the Marker must be set as shown in the following code.

...

'Initialize the chart control to display the data in a scatter plot.

 With mscExplore

 .Visible = True

 .chartType = VtChChartType2dXY

 .Plot.UniformAxis = False

 .Plot.SeriesCollection(1).ShowLine = False

 .Plot.SeriesCollection(1).SeriesMarker.Auto = False

 .Plot.SeriesCollection(1).DataPoints(-1).Marker.Style =
VtMarkerStyleFilledCircle

 .Plot.SeriesCollection(1).DataPoints(-1).Marker.Size = 80

 .Plot.SeriesCollection(1).DataPoints(-1).Marker.Visible =
True

...

94 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Like the histogram code we’ve already seen, all we have to do after selecting the data and
formatting the chart is to display it using the following familiar code.

...

Set mscExplore.DataSource = rsData

mscExplore.Refresh

...

Numerically Exploring Data with a Correlation Matrix
While graphical explorations give us a good feel for the different columns in the table, it is
also nice to have a more concrete way of seeing how the columns interact. Using a
correlation matrix, we can investigate the relationships between the columns, and, more
important, the relationship between each column and the predictable column.

A correlation describes how one column changes in comparison to another column. For
example, an increase in a gas tax correlates with an increase in the overall cost of gasoline.
The value of a calculated correlation lies between –1 and 1, depending on the direction of
the correlation. If an increase in the values in one column corresponds to an increase in the
values in the second column, the correlation is positive. If the increase in the values in the
first column corresponds to a decrease in the values in the second column, the correlation is
negative. As the calculated value of correlation approaches –1 or 1, the correlation between
the attributes becomes stronger. A perfect correlation returns a value of 1 or –1.

To build a correlation matrix, we’ll construct a table that has a row and column for each
column in the source table. We’ll then fill in the calculated values for the correlations so
that we have a value for each column against each other column. A pattern should appear
where a line of ones down the middle corresponds to each column being compared to itself.
The values on either side are mirror images of each other because the same columns are
being compared, just in a different order.

To calculate correlation, we use the following formula:










 −









 −
−

= ∑
y

i

i x

i yyxx
n

r
σσ1

1

The problem with creating a correlation matrix is that it can be extremely resource-
intensive, especially with a dataset as large as ours. If we work with all 317 numeric
columns, we’ll have to work through that equation 90,000 times! This can be done, but it
takes a long time. As an alternative, the Data Mining Tool gives us the choice of either

 Chapter 6: Exploring the Data 95

calculating the entire matrix, or just one row: each column versus the predictable column.
Because we already know which column the predictable column is, we are really most
interested in how each other column relates to it, because this will help us choose which
columns to include in the final data mining model. Because there is value in looking at how
all columns relate to one another, the Data Mining Tool also provides this option.

Now that we understand what a correlation is and how to calculate it, let’s see what kind of
correlations we find using the Data Mining Tool.

X To create an abbreviated correlation matrix of the Cup98LRN_clean data
1. In the Data Mining Tool, click Explore.
2. On the Correlation Matrix tab, type Small_Matrix to name the matrix.

Note Make sure that the Calculate the entire matrix check box is cleared.

3. Click Calculate.

The abbreviated matrix is calculated and displayed on the Correlation Matrix tab, as
shown in Figure 6.4.

Figure 6.4 Correlation matrix

96 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

In the correlation matrix, we can see which columns correlate most closely to the
predictable column, and which do not seem to be affected by the change in values of the
predictable column. You may notice that some of the values do not fall within the expected
range of –1 to 1, or a column compared to itself does not return a value of 1. This is most
likely explained by the fact that not all columns contain data that is distributed normally,
which is an assumption of the correlation calculation.

Looking through the matrix in Figure 6.4, we can disregard columns such as:
•
•
•

 LFC5 (-0.0006)
OEDC1 (-0.0036)
EC7 (0.001)

In fact, all of the ADATE columns have a very low correlation, which is related to the low
number of states that they contain. This matrix should be a good guide in choosing which
numeric columns to include in the model-building process. Note that each time we run this
routine, slightly different values are returned. This is expected because the routine is using a
sampled version of the original table to calculate the correlations.

If you want to look at the entire matrix, you can go ahead and calculate it now, but be
prepared to wait a while! By calculating the entire matrix, you will be able to see how
columns are not only related to the predictable column, but also how they are related to the
other columns in the table.

Looking at the Code Behind the Correlation Matrix Tab
The code for the correlation matrix is in the cmdCalculateCorrelation_Click
subroutine. Open Visual Basic and follow along as we walk through the code.

X To view the cmdCalculateCorrelation_Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Forms.
3. Right-click frmExplore (frmExplore.frm), click View Code, and then locate the

cmdCalculateCorrelation_Click subroutine.

Setting Up for Two Loops
Our goal is to translate the correlation equation into workable code. That means we must
identify the various parts of the equation and determine how we can either obtain that
information or generate it.

 Chapter 6: Exploring the Data 97

Looking at the equation, we see that we need a record count for the original table. That’s
pretty easy to calculate. We also see that we’ll need the mean and standard deviation for
each column. That too is easy to calculate. We also see that we need some way to sum the
product of the values of every column against every other column. That is a bit more
complicated and requires embedding a loop within a loop. The outer loop selects a column
from the data, while the inner loop calculates the correlation value for that column against
all other columns.

The code used in the cmdCalculateCorrelation_Click subroutine tackles all these
tasks, but not exactly in the order listed. The subroutine first creates two recordsets,
rsColumns1 and rsColumns2, with identical schema information about each column in
the table. We do this by first creating a recordset, as usual, and then using the Clone
function to copy all of the information from the first recordset into the second. Because we
are working only with numeric columns, we set a filter on the recordset so that only
numeric columns are visible.

...

 Set rsColumns1 =
mdlProperties.cnDataPrep.OpenSchema(adSchemaColumns, Array(Empty,
Empty, "[" & frmMain.strCleanedTable & "]"))

 rsColumns1.Filter = "[data_type] = 131"

 Set rsColumns2 = rsColumns1.Clone

 rsColumns2.Filter = "[data_type] = 131"

...

As we’ll see later in the code, these twin recordsets are the key to making the embedded-
loop approach work. They enable us to select a column from the rsColumns1 recordset in
the outer loop, and then, within the inner loop, use the columns in the rsColumn2
recordset to calculate the associated correlation values.

Creating a Table for Correlation Values
Although we now have the recordsets we need to compare every column against every other
column, we don’t have a place to store the correlation results. Thus, we need to create a
table to hold this matrix of calculated correlations. This table requires identical numeric
column names in both the first row and the first column.

To create the table, we need a string holding all of the column names, which can be
incorporated into a Transact-SQL SELECT statement. Because we are already filtering the
recordset by data type, we simply have to loop through the recordset, adding the column

98 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

names to the strColNames string. At the end of the routine, the column names form a
comma-separated list, with a trailing comma at the end.

...

Do Until rsColumns1.EOF

 strColNames = strColNames & rsColumns1!COLUMN_NAME & ", "

 lngColumnCount = lngColumnCount + 1

 rsColumns1.MoveNext

Loop

...

Then, to clean up the strColNames string for use in a Transact-SQL statement, we need
to remove the final comma in the string. Also, because the loop to create the
strColNames string cycles through to the end of the recordset, we’ll need to return to the
beginning of the recordset before starting another loop.

...

If Right(strColNames, 2) = ", " Then strColNames = Left(strColNames,
Len(strColNames) - 2)

rsColumns.MoveFirst

...

With the final set of columns selected, the next step is to create the correlation matrix table,
setting aside the first column to hold the column names and then using the strColNames
string to populate the rest of the table.

strCreateTable = "CREATE TABLE [" & strCorrelationTable & "]" & _

 "(Column_name varchar(20), " & Replace(strColNames,
", ", " numeric(5,4), ") & _

 " numeric(5,4)" & ")"

mdlProperties.cnDataPrep.Execute (strCreateTable)

Getting the Raw Data and Its Averages and Standard Deviations
As mentioned earlier, there are more than 300 numeric columns in the table.
Counterbalance this with the fact that there are more than 90,000 rows, and you can see
that we are working with a huge amount of data. Because calculating the correlations is
heavily resource intensive, this could take a very long time! One way to solve this problem
is to sample the original table down to 1,000 rows, and then use this new table as the
source for the correlation matrix. Although we are working with less data, the results will

 Chapter 6: Exploring the Data 99

still be accurate enough to be able to compare columns based on their correlations. Because
we have sampled the original table, we also need to create new values for the mean and
standard deviations, which will be used in the correlation matrix calculations.

In order to sample the table, we call the same sampling routine that is used to split the table
and create an over-sampled table. For a description of this subroutine, see Chapter 7,
“Splitting the Data.”

mdlSample.Create_Table "Correlation_Sample",
frmMain.strCleanedTable, strSQLWhere, N...

Okay, we have the sampled table of raw data, the recordsets that make the embedded loops
possible, and someplace to store the correlation values. We’re almost ready to start the
number crunching. But note the “almost.” We are still missing the averages and standard
deviations required by our correlation equation for the new table we just created. We know
the last necessary value, the record count, because it is just the size of the new table.

We have to recalculate the mean and standard deviations because these values have changed
from the original table. If we do not update these values, our correlation calculations will be
inaccurate. Because we only use these values locally in this subroutine, we can hold them in
a local array. To calculate the values, we call the same Calculate_Properties routine
we used to calculate the properties in Chapter 4. The properties are then stored in a local
array, so that they can be easily accessed later in the routine.

mdlProperties.Calculate_Properties "Correlation_Sample",
"strPropertiesTable"

Set rsProperties = cnDataPrep.Execute("SELECT * FROM
correlation_sample_pr")

'Insert the values from the properties table into a local array

arrPropertiesTable = rsProperties.GetRows()

Calculating the Correlations
Before we calculate the correlations, we need a place to store them. Because we previously
created a table in the SQL Server database, we now only have to open it in a recordset and
disconnect the recordset. Remember that at this point the table does not hold any data, so
the table will hold only the column names with no rows. Accordingly, we will add a new
row to the recordset each time the code iterates through the outer loop, populating the
recordset with values.

100 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

The following code opens the new recordset, and then disconnect it.

With rsTable

 .ActiveConnection = cnDataPrep

 .CursorLocation = adUseClient

 .LockType = adLockBatchOptimistic

 .CursorType = adOpenStatic

 .Source = "SELECT * FROM " & strCorrelationTable & ""

 .Open

 Set .ActiveConnection = Nothing

End With

Originally we updated the table in the database each time the code iterated through the
loop, but with all of the calculations we are doing, this requires a lot of I/O. Performance-
wise, it is much better to perform all of the calculations, filling the disconnected recordset
with values, and then update the table all at one time.

Now, because we have the option of creating either the a full matrix or just an abbreviated
version, the calculation section of the routine is split between the two options using the
Boolean variable blnTotalMatrix, and an If-Then-Else statement. The Boolean variable
is set in the click event of the chkTotalMatrix check box.

If the check box is selected, blnTotalMatrix is set to True, and a full matrix is
calculated.

Calculating a Full Matrix
Now it’s time to start crunching some numbers!

First we have to get the data from which we will calculate the correlations and store it in the
rsData recordset.

strSQLSelect = "SELECT " & strColNames & " FROM Correlation_Sample"

Set rsData = cnDataPrep.Execute(strSQLSelect)

The routine begins to cycle through the numeric columns in the table, using the
rsColumns recordset. Each time the code iterates through the outer loop, a new row is
added to the rsTable recordset and the first column, COLUMN_NAME, is populated
with the name of the selected column.

Do Until rsColumns1.EOF

 rsTable.AddNew

 rsTable("Column_name") = rsColumns1!COLUMN_NAME

 Chapter 6: Exploring the Data 101

To calculate the correlation, we need the mean and standard deviation for the selected
column, which we get from the arrPropertiesTable array and store in local variables.
We first have to check to make sure the calculated values for the mean and standard
deviation are not null; otherwise, an error will be thrown later in the routine. The numbers
3 and 4 signify the location in the properties table for the mean and standard deviation.

 sngXAvg = IIf(IsNull(arrPropertiesTable(3, lngColumn1)),
sngXAvg, arrPropertiesTable(3, lngColumn1))

 sngXDev = IIf(IsNull(arrPropertiesTable(4, lngColumn1)), 0,
arrPropertiesTable(4, lngColumn1))

Notice the lngColumn1 variable. This defines the position of both the mean and standard
deviation values, and the column ID in the rsData recordset, which holds the raw data
that will be used for the calculations. It is incremented each time the code cycles through
the rsColumns1 recordset, for each column. There is an equivalent variable,
lngColumn2, for the rsColumns2 recordset.

After getting the properties for the column in the rsColumns1, the code begins to cycle
through the columns in the second recordset, rsColumns2. In this way, the code
calculates the correlation between the selected column in rsColumns1 and every column
in rsColumns2. The code also gets the mean and standard deviation from the
arrPropertiesTable array for the selected column in rsColumns2, and stores them
in a local variable.

 Do Until rsColumns2.EOF

 sngYAvg = IIf(IsNull(arrPropertiesTable(3,
lngColumn2)), sngYAvg, arrPropertiesTable(3, lngColumn2))

 sngYDev = IIf(IsNull(arrPropertiesTable(4,
lngColumn2)), 0, arrPropertiesTable(4, lngColumn2))

Now we have everything we need to calculate the correlations. But before we do so, we
need to make sure that the standard deviation for both columns is not equal to zero. If it is,
we will be dividing by zero in the calculations, which causes an error. If both deviations are
not zero, the code begins the loop to calculate the correlations. Because calculating the
correlations involves a summation, we create a loop that cycles through each row in the
recordset, rsData, grabbing the necessary values and adding them to the values already
calculated in the sngCorrelation variable.

 If sngXDev = 0 Or sngYDev = 0 Then

 sngCorrelation = 0

 Else

 Do Until rsData.EOF

102 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 sngXValue = IIf(IsNull(rsData(lngColumn1)),
sngXAvg, rsData(lngColumn1))

 sngYValue = IIf(IsNull(rsData(lngColumn2)),
sngYAvg, rsData(lngColumn2))

 sngCorrelation = sngCorrelation + ((sngXValue
- sngXAvg) / sngXDev) * ((sngYValue - sngYAvg) / sngYDev)

 rsData.MoveNext

 Loop

 End If

Within the loop we check to see if the selected value is null. If the value is null, it is
replaced with the average value, effectively negating its contribution to the correlation
calculation. If we didn’t do this, an error would be raised, because a mathematical
calculation cannot be performed on a null value.

Outside the loop we then insert the correlation value into the disconnected rsTable
recordset. Notice that we increment the variable lngColumns2 by 1, because this column
already holds the column name for the row of the matrix. We also move to the next row in
the rsColumns recordset, return to the first row in the rsData recordset, and increment
the lngColumn2 variable, which specifies the column that we are working with in both
the arrPropertiesTable array and the rsData recordset.

 rsData.MoveFirst

 sngCorrelation = sngCorrelation / (N - 1)

 rsTable((lngColumn2 + 1)) = round(sngCorrelation,4)

 lngColumn2 = lngColumn2 + 1

 sngCorrelation = 0

 rsColumns2.MoveNext

 rsData.MoveFirst

 Loop

Outside of the inner loop, we move to the first row in the rsColumns2 recordset, set the
lngColumn2 variable to zero, increment the lngColumn1 variable by 1, move to the next
row in the rsColumns1 recordset, and move to the next row in the rsTable recordset to
be filled with correlation calculations.

 Chapter 6: Exploring the Data 103

 lngColumn2 = 0

 lngColumn1 = lngColumn1 + 1

 rsColumns2.MoveFirst

 rsColumns1.MoveNext

 rsTable.MoveNext

The code also displays the number of rows inserted into the correlation matrix on the form
to keep the user updated.

 txtRowCount = CVar(lngCount)

 txtRowCount.Refresh

Loop

This continues until the matrix is filled with all of the correlation values.

Now let’s look at how we create an abbreviated matrix. If the chkTotalMatrix check
box is cleared, the value of the blnTotalMatrix variable is False, and an abbreviated
matrix is calculated.

Calculating an Abbreviated Matrix
If a user is working with a very large table and doesn’t want to wait for the complete matrix
to be filled, we create an abbreviated matrix displaying the correlation of each column
against only the predictable column, TARGET_B.

There is not much difference between these two versions of the matrix. Instead of using two
embedded loops, we only need to re-create the inner loop from the previous section, which
compares each column to the predictable column. In order to know where the predictable
column lies in the arrPropertiesTable array and rsData recordset, we create a new
variable, lngPredict, that is set in the loop that creates a string of columns that will be in
the table. Within the loop, we look for the column with the same name as the predictable
column, and then store the corresponding ID.

If rsColumns1!COLUMN_NAME = PREDICT Then lngPredict = lngCount

Using the column position, we can then get the mean and standard deviation for the
predictable column and store them in local variables.

sngYAvg = arrPropertiesTable(3, lngPredict)

sngYDev = arrPropertiesTable(4, lngPredict)

104 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

We then add the only new row to the rsTable recordset, because we are only calculating
the correlation values against the single column.

rsTable.AddNew

rsTable("Column_name") = PREDICT

The way in which we calculate and store the correlation values is exactly the same as the
inner loop in the previous method; we just do it once instead of cycling through all of the
columns a second time.

Do Until rsColumns1.EOF

 sngXAvg = IIf(IsNull(arrPropertiesTable(3, lngColumn1)),
sngXAvg, arrPropertiesTable(3, lngColumn1))

 sngXDev = IIf(IsNull(arrPropertiesTable(4, lngColumn1)), 0,
arrPropertiesTable(4, lngColumn1))

 If sngXDev = 0 Or sngYDev = 0 Then

 sngCorrelation = 0

 Else

 Do Until rsData.EOF

 sngXValue = IIf(IsNull(rsData(lngColumn1)), sngXAvg,
rsData(lngColumn1))

 sngYValue = IIf(IsNull(rsData(lngPredict)), sngYAvg,
rsData(lngPredict)) sngCorrelation = sngCorrelation +
((sngXValue - sngXAvg) / sngXDev) * ((sngYValue - sngYAvg) /
sngYDev)

 rsData.MoveNext

 Loop

 sngCorrelation = sngCorrelation / (N - 1)

 rsTable((lngColumn1 + 1)) = Round(sngCorrelation, 4)
rsTable((lngColumn1 + 1)) = sngCorrelation

 rsData.MoveFirst

 End If

 sngCorrelation = 0

 lngColumn1 = lngColumn1 + 1

 rsColumns1.MoveNext

Loop

 Chapter 6: Exploring the Data 105

We now have the correlations for each column against the predictable column. Using this
will help us to choose which columns to include in the final mining model, because we only
want those columns that correlate most closely with the predictable column.

After completing the calculations, using a FlexGrid control, we display the data stored in
the correlation table on the form.

strSQLSelect = "SELECT * FROM [" & strCorrelationMatrix & "]"

Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)

Set hfgCorrelation.DataSource = rsData

7
Splitting the Data

Okay. We’ve cleaned, transformed, and explored the data. Now what? Build data mining
models? Not quite yet—there are still a couple of things we need to do with the original
table.

First, we need to create a new table to hold the columns that we will use to create the
models. In the previous two chapters we cleaned and explored the data. We now have to
take what we learned and use it in deciding which columns to use in the model. To save
time, the following 20 columns have been preselected:

AVGGIFT GENDER NUMPROM

POP901_2 HOMEOWNR PETS

CARDGIFT LASTGIFT ODATEDW2

CARDPM12 MAJOR RAMNTALL

CARDPROM MAXRAMNT TARGET_B

CONTROLN MINRAMNT VETERANS

DOB NGIFTALL

Through your explorations, you may decide on different columns, or you may choose a
subset of these columns. Feel free to experiment and see how your models differ from the
ones we build in this solution. To create a new table, we will use the functionality in the
Manage Tables form that allows us to select specific columns and copy them into a new
table. To create the new table, select the columns listed here from the cup98LRN_clean
table, and insert them into a new table called cup98LRN_Select.

108 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Second, if you remember from Chapter 2, modeling and predicting depend on having both
a training (model-building) and testing (validation) dataset. With the training table we
apply a data mining algorithm to learn the hidden patterns in the data to accomplish a
given objective. Using the testing table, we find out how well the trained model performs in
its ability to predict whether someone will donate money. Because you often have only a
single table or dataset with which to work (as in our scenario), at some point you have to
artificially create the training and testing tables from the original dataset. We have now
reached this point.

The goal when splitting a table is to separate that table into two unique tables that each
accurately represents the original table. To achieve this objective, we need to make sure
that:
•

•

•

•

Both tables have the same structure—the same columns must exist in both datasets and
the columns must have the same names.
The rows in the training table do not also exist in the testing table—rows are unique to
each table.
A sufficient number of rows exist in each table to allow us to build a good model, yet
still have enough data left to perform a good validation. For this solution, we’ll split 60
percent of the data into the training table and the remaining 40 percent into the testing
table.
The distribution of data in the input and predictable columns is approximately the
same for both tables.

So how will we split the tables without introducing a bias? If we just choose the top 60
percent of the rows for one table and the bottom 40 percent of the rows for the other, we
can never be sure that each table holds a true representation of the original data. Do we
know that the data was randomly distributed throughout the sample? What if the first
1,000 rows only contain information about people from Washington (WA), while the last
rows contain information about people from Alaska (AK)? What if the rows were inserted
alphabetically or by the date of their creation? In any of these cases, just siphoning off the
first chunk of data into a training table excludes vital information that exists in later rows,
and, therefore, can create an inaccurate model. If we then tried to use the remaining data as
the testing table to test the model, the information excluded from the training table could
throw off the testing results.

The third task we will need to perform in this chapter is to create an over-sampled version
of the training table. An over-sampled table artificially increases the state of the column that
we want to predict. The positive result of the predictable column is fairly underrepresented
in all of our tables, so we might be able to make a better model by creating an over-sampled
version of the training table. The best way to determine how much of a difference this
makes is to create a model based on both versions of the table, and investigate the predictive
differences between the two, which is what we will do in the model-building section.

 Chapter 7: Splitting the Data 109

In this chapter, we use the Data Mining Tool to split the table. Then we’ll look behind the
scenes at the code in the Data Mining Tool that makes this work.

Note For an explanation of the Manage Tables form and for more information about over-
sampling, see Appendix, “Managing Tables.”

Trying Out Table Splitting
To split the original table correctly, there are two critical tasks that we need to do—track
the rows, so that we can ensure the uniqueness of each table, and select rows randomly for
each table. As you’ll soon see in detail, we’ll find some pretty good ways for Microsoft®
SQL Server™ to accomplish each of these tasks. We first have SQL Server create a new
table that we’ll use to track which rows we use in the training and testing tables. We then
start to populate those tables using a cool little Transact-SQL statement that randomly
selects rows from the original table.

Saving the more detailed discussion of these tasks for later, let’s try the code out and split
the original table in two.

X To split a cleaned table into two separate tables
1. In the Data Mining Tool, click Split.
2. For Original Table, type cup98LRN_select.
3. In the Table used to create the models section, type the following options:

� For Table name, type cup98LRN_Model.

� For # Rows, type 57,000. This is the number of records to be included in the
training table.

4. In the Table used to validate the models section, enter the following options:

� For Table name, type cup98LRN_Test.

� For # Rows, type 38,000. This is the number of records to be included in the
testing table.

5. Click Sample.

At this point, the Data Mining Tool creates the two new tables based on the information
we just entered. Then the tool calculates the percentage of positive and negative responses
in the predictable column and displays these results on the form.

The percentages shown allow us to see how well the new tables represent the data in the
original table. As Figure 7.1 shows, the percentages in the new tables are very close to those
in the original table and should work fine.

110 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Figure 7.1 The calculated percentages from splitting the table

After you have created the training table, create an over-sampled version of the training
table, forcing the table to contain 80 percent negative values and 20 percent positive values
in the predictable attribute. We use this in the model-building stage.

X To create an over-sampled table
1. In the Data Mining Tool, click Manage Tables.
2. Click Sample.
3. On the Small Table form, do the following:

� Select Create an over-sample of a table.

� For % Positive, type 20.

� For Original table, type cup98LRN_Model.

� For New table, type cup98LRN_ModelOS.
4. Click Sample.

Let’s now look at the code that splits the table.

 Chapter 7: Splitting the Data 111

Looking at the Code Used to Split the Table
So we know that we can’t just take a chunk of data from the original table and move it to
the new table, but what are we going to do? We can use the idea of random sampling to
randomly select rows from the source table and insert them into the training table. Between
Microsoft Visual Basic® and SQL Server, we have all the tools we need to do this. Visual
Basic provides a way to define how we want to create the tables. SQL Server provides a way
to create a query that randomly compiles rows from a destination table and inserts them
into a new table.

In this section, we’ll first look at the code used to create, maintain, and calculate
percentages for the various tables used within the splitting process. All of this code resides
within the cmdSample_Click subroutine. The way in which we populate these tables
with data is discussed later in this chapter. To see this code in context, open Visual Basic
and walk through the code as we talk about it.

X To view the cmdSample_Click subroutine
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Forms.
3. Right-click frmSplit (frmSplit.frm), click View Code, and then locate the

cmdSample_Click subroutine.

Guaranteeing Uniqueness
To create two tables, each originating from the same source table, we need to ensure that
we don’t insert the same record into both tables. That is, we need to guarantee the
uniqueness of records between the tables. If we don’t do this, some of the data used to
create the model could also be used to test it, and that is not very scientific.

To perform this random sampling, we need:
•
•
•
•

A unique identifier for each row in the source table.
A pool of data from the source table from which to draw the rows.
A way to keep track of which columns have already been used in each table.
A way to randomly select columns from the source table.

To guarantee this uniqueness, we need to store information, such as the row ID
(controln), for each table that is created by splitting the original table. For example,
when randomly selecting a row for the validation table, we need to ensure that the pool of
data being sampled does not include rows already inserted into the training table.

112 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

To keep track of the data used by the training and testing tables, we create another table,
Userids. This new table contains two columns:
•

•

The USER_ID column contains the controln value for each row randomly selected
from the original table.
The USED column contains a value of 1 if we use the corresponding controln value
to creating either the training or testing table.

The second column is necessary when we are trying to create multiple tables from the same
source data.

To explain how we use the Userids table, let’s look at what happens to the table as we
progress through the splitting routine. Upon entering the routine, the table is created, and
is therefore empty. As we sample rows for the training table, the Userids table is slowly
populated with the controln values corresponding to the selected rows. When it comes
time to actually create the training table, a join is created between the Userids table and the
source table, populating the training table with data. When we create the testing table, we
do not want to use columns that already have been used by the training table, so we need to
save the previously used controln values. But at the same time, when we perform the join
we want to include only the new IDs that have been added to the Userids table for the
testing table. For this reason we populate the USED column of the table with a value for
each controln used in the training table. When the Userids table is populated with
controln values for the testing table, we can still join the two tables to create the testing
table by ignoring those IDs that have a corresponding value of 1 in the USED column. In
this way, the USED column guarantees uniqueness between the two tables.

Here is the Transact-SQL statement used to create the Userids table.

strSQLCreate = "IF EXISTS(SELECT TABLE_NAME FROM
INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = 'UserIds') DROP TABLE
UserIds CREATE TABLE UserIds (User_ID Numeric NULL," & _

 "Used VARCHAR NULL)"

mdlProperties.cnDataPrep.Execute (strSQLCreate)

As you can see, the statement first checks to see if the table exists, and if so, drops and re-
creates it. We are able to drop an existing Userids table because we only have to worry
about uniqueness when creating the training and testing tables. If the Userids table already
exists, a set of training and testing tables exist and already contain unique rows. The user
can either use these existing training and testing tables or create new ones, in which case we
will be populating a fresh Userids table anyway.

 Chapter 7: Splitting the Data 113

Removing Existing Training and Testing Tables
With the Userids table all set to manage uniqueness between tables, we now check to see
whether either the training or testing table exists in the database. If so, we give the user the
option of either replacing the contents of the existing tables or returning to the form to
enter new table names and create new tables. We will check to see if tables exist throughout
this project, so we made this into a separate function that does all of the work.

Because we check for the existence of more than one table, we cycle through control array
txtSampleTable(j)using the index, j.

For j = 0 To (lngTableCount - 1)

 If Not mdlProperties.Check_Table_Exist(txtSampleTable(j).Text)
Then

 GoTo Exit_cmdSample_Click

 End If

Next j

Let's look at how that Check_Table_Exist function works.

Walking Through the Check_Table_Exist Function
This function, returns either a value of False (meaning that the table exists and we should
exit the routine) or a value of True (meaning that the table does not exist or has been
dropped and we can continue). The first step is to initialize the function to False.

Check_Table_Exist = False

The function then calls another function, Check_Table_Created, which searches the
database for the table name. If it returns a value of True, the Check_Table_Exist
function displays a message box asking if the user would like to drop the table or exit the
routine.

 If Check_Table_Created(strTable) = True Then

 If MsgBox("" & strTable & " table already exists in the
database. Would you like to drop the table and recreate it?." _

 , vbYesNo) = vbYes Then

 strSQLDrop = "Drop Table [" & strTable & "]"

 cnDataPrep.Execute (strSQLDrop)

 Check_Table_Exist = True

 End If

114 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 Else

 Check_Table_Exist = True

 End If

If the table does not exist or if the user opts to drop the table, the function is set to True;
otherwise, it remains False. The calling routine then uses the state of the function to
determine whether to exit the routine or not.

Calculating Percentages in the Original Table
Because we need to measure how well the new tables represent the original table, we
calculate the percentage of “yes” (1) and “no” (0) values in the TARGET_B column (the
predictable column) of the original table, and display these values on the form. (Later on,
we’ll calculate these same values for each of the new tables.)

To get the percentage, we first find the number of records in the original table as well as a
count of the records in the PREDICTED column (set to TARGET_B) that have a positive
response of 1. We do this by using a recordset and a SELECT statement.

 'Get the original percentages of yes and no responses in the
table.

 strSQLSelect = "SELECT COUNT(controln) AS count1," & _

 "(SELECT COUNT(" & PREDICTED & ") FROM [" &
strTable & "] " & _

 "WHERE " & PREDICTED & " = 1) AS count2 FROM ["
& strTable & "] "

 Set rsRecordCount =
mdlProperties.cnDataPrep.Execute(strSQLSelect)

 lngRecordCount = rsRecordCount!Count1

At this point, we have both the total number of rows in the original table and the number
of rows with a positive response in the PREDICTED column. All we have to do is divide the
number of rows with a positive response by the total number of rows, multiply by 100, and
get the percentage of “yes” responses in the original database. For the percentage of “no”
responses, we just subtract the percentage of “yes” responses from 100. Here’s the code that
does all of that.

 Chapter 7: Splitting the Data 115

 sngPercentYes = (rsRecordCount!Count2 / lngRecordCount) * 100

 sngPercentNo = 100 - sngPercentYes txtTableYes.Text =
CVar(sngPercentYes)

 txtTableNo.Text = CVar(sngPercentNo)

Pretty simple, really. It starts to get a bit more complicated (but not too much) when we
have to calculate these percentages for both the training and testing tables.

Calling the Sampling Routine
Because we use the sampling routine in several places, it is more efficient to create a
function that randomly samples a selected table, which can then be called as necessary. For
this reason, the code is split into two sections, one that manages the tables and calls the
sampling function and one that describes the sampling function being called.

All right, it’s time to actually start creating the sampled tables!

To do this, we set up a loop that calls the Create_Table function (found in the
mdlSamples module) for both the training table and testing table. The Create_Table
function allows us to randomly select a row for insertion into the table currently being
created. We’ll discuss this function in detail in a bit. For now, all we need to be aware of is
the need to pass the following variables to the Create_Table function:
•
•
•

•

txtSampleTable(j).text—the name of the table we are creating
strTable—the name of the original table
strSQLWhere—the WHERE clause of the Transact-SQL statement that returns the
pool of available data
txtSampleNumber(j).text—The number of rows to include in the new table

The reason for all of these should be obvious, except for the WHERE clause. As you will
soon see when we describe the sampling function, a Transact-SQL SELECT statement is
built that returns the pool of available data. The needs of the pooled data change for each
sampled table that is created—in one case we may want to create a sampled table based on
the entire original table, while in other cases we may want to exclude rows based on the
outcome of a specific column. Regardless, we need a mechanism for choosing which data to
include, and this is provided by the WHERE clause. Using the WHERE clause, we specify
constraints that we want to impose on how data is chosen from the original table. If it is left
empty, the routine assumes that no constraints exist and uses the entire source table as the
pool of data.

116 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

In this case, the WHERE clause is empty because no additional constraints are required.

 strSQLWhere = ""

So let’s start the loop that creates a sampled table for both the training and testing tables.
The first step in the loop calls the Create_Table function, passing in the appropriate
values.

For j = 0 To (lngTableCount - 1)

 mdlSample.Create_Table txtSampleTable(j).Text, strTable,
strSQLWhere, CLng(txtSampleNumber(j).Text)

Just as in the original table, we now need to calculate and display the percentage of positive
and negative values in the PREDICTED column to check how each new table compares to
the original table.

 strSQLSelect = "SELECT COUNT(" & PREDICTED & ") FROM [" &
txtSampleTable(j).Text & "] WHERE " & PREDICTED & " = 1"

 Set rsData = mdlProperties.cnDataPrep.Execute(strSQLSelect)

 txtYes(j) = (rsData(0) / CVar(txtSampleNumber(j).Text)) * 100

 txtNo(j) = 100 – CSNG(txtYes(j).text)

Next j

And that’s it for the cmdSample_Click subroutine. Now let’s look at how the
Create_Table sampling function called by this subroutine works.

Random Sampling
The sampling function is called for three different purposes throughout this solution:
•
•
•

To create a smaller version of a table—one with fewer rows
To create an over-sampled table
To split a table into two smaller tables

If you remember from Chapter 1, we had the opportunity to create a sampled version of
table—one with fewer rows. We will also use the over-sampling functionality later on in the
model-building phase. As far as we are concerned now, the routine is being used to split the
source table in two.

Recall that the function takes four parameters—the new table name, the source table name,
the Transact-SQL WHERE statement that defines the pool of available data, and the
number of sampled rows to insert into the new table. So how do we create the new table?

 Chapter 7: Splitting the Data 117

X To view the Create_Table public function
1. Browse to the C:\Program Files\Microsoft NESBooks\SQLServer2000\Data

Mining\DM Sample folder, and then double-click the DMFinal.vbp file.
2. In Visual Basic, in the Project Explorer window, expand the project, and then expand

Modules.
3. Right-click mdlSample (mdlSample.bas), and then click View Code.

There are actually a couple of ways to sample the table, one more typical and the other new
and exciting. First let’s talk about the more common way.

The concept is simple—we need to randomly select a row from a source table and insert it
into a new table. The typical way to do this, either using a stored procedure or in Visual
Basic, is to use a random-number generator to generate a column key identifier, grab the
associated row, insert the row into a new table, and then store the key column identifier to
ensure that the row is not selected again. Going row by row, you can see that this would
turn into a very time-consuming process. We first created a procedure to do this in Visual
Basic using a disconnected recordset. As the project progressed, we wanted to move more of
the resource-intensive calculations to the server, and we decided to change this into a stored
procedure. In researching the stored procedure, we found a new way to create a random
table using just a few lines of Transact-SQL. Now be careful when you use this, because it
only works with SQL Server 2000.

SELECT TOP 1000 controln user_id

INTO test1

FROM dbo.cup98LRN

ORDER BY NEWID()

With just four lines of code we have created a new, randomly sampled table. The way this
works is pretty cool. The NEWID() function creates a unique, random identifier for each
row in the table. By using an ORDER BY clause, those random numbers become ordered,
which effectively randomizes the order of the rows in the table. By taking the top n number
of rows and inserting them into a new table, we have effectively created a new, random
table with n number of rows. This little bit of Transact-SQL code effectively takes a pretty
complicated routine and simplifies it down to creating a Transact-SQL statement to send
to the server.

So the first thing we do is create the following statement.

strSQLUserID = "INSERT INTO Userids SELECT TOP " & lngSampleNumber &
" controln " & _

 "FROM [" & strTable & "] WHERE " & strSQLWhere & "
not exists " & _

118 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 "(SELECT * FROM Userids WHERE user_id = [" &
strTable & "].controln) " & _

 "ORDER BY NEWID() "

Notice that we are only grabbing the random controln values for the rows and inserting
them into the Userids table. Later we will create a join between the Userids table and the
source table to create the final sampled table. Notice that the USED column in the Userids
table remains null. This signifies that controln has not yet been used to create a new
table in this routine.

So now we have a statement that creates a table holding two columns, a column holding
the randomly selected controln values and a column holding an identifier signifying
whether the row has already been used somewhere within the calling routine. And we have
the source data from the original table. We now only have to create a Transact-SQL
statement that joins the two tables together on the row ID where the USED column in the
Userids table is null. This returns all of the rows from the source table that were randomly
selected in the statement we used earlier. Here is the Transact-SQL statement that joins the
two tables.

strSQLSelect = "SELECT * INTO [" & strNewTable & "] " & _

 "FROM [" & strTable & "] AS OT JOIN UserIds AS " & _

 "UI ON OT.controln = UI.User_Id " & _

 "WHERE ui.used IS NULL ALTER TABLE [" & strNewTable
& "] " & _

 "DROP COLUMN user_id, used " & _

 "UPDATE userids SET used = 1 WHERE used IS NULL"

Notice that the last line of the statement updates the Userid table so that all of the rows we
just inserted into the new table are marked as used. It does this by updating to 1 the values
in the USED column that were previously null.

We then combine the two statements into one statement to reduce trips to the server, and
execute the statement.

strSQLFull = strSQLUserID & strSQLSelect

cnDataPrep.Execute (strSQLFull)

A sampled table has now been created from the source data containing as many rows as
specified by the user.

8
Building and Validating the Models

We’ve finally made it! After all the work we’ve done cleaning and organizing—making
sense out of that mountainous collection of data, it’s time to build some data mining
models. For all of its importance, this is probably the easiest task in the project to complete.
We only need to select the columns we want to include in the model, give them
appropriate parameters, and process the new model.

We will build two models, each using different attributes and different algorithm
parameters, which means that we will also need to compare how effective the models are in
predicting which customers will donate money. It would not be good to put a model into
production without testing its predictive ability. We will do this using a lift chart, which
was briefly explained in Chapter 3, “Defining the Problem.”

Now let’s build some models!

Building the Models
Splitting the data was an important step because it allows us to create the models and test
them using data derived from the same source. We will now take advantage of this, using
the training table we created in Chapter 5, to build the models.

Our goal for the project is to build a mining model that will allow us to fulfill the objective
outlined in Chapter 3, “Defining the Problem.” It is important to keep in mind that we
want to build a model that predicts the values in the TARGET_B column—whether
someone will donate money in response to a mailing. This in turn will reduce mailing costs
and save the boss money. Accordingly, in this step we will build two models: one from a
regular dataset and one from an over-sampled dataset.

120 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Through all of the cleaning and exploring tasks, we have been able to eliminate many of the
original columns in the base table. Of the remaining columns, we need to choose those that
will most likely aid us in getting the information that we want to predict. While building a
model using all 317 remaining columns is possible, it would be resource intensive to
process and difficult to understand. It is better to choose columns that we can justify as
being interesting to include in the model. For example, a mailing code and full address is
redundant information; for our purposes, just the mailing code is sufficient.

Each column that we include in the model can be parameterized in several ways, which can
have a profound impact on how the model is created. Let’s look a little closer at how we
can parameterize a column.

Column Parameters
When we add a column to the model, we need to decide what type of a column it is. Will it
be used to identify records (a key column) or as the final column we want to predict? Are
its values continuous or discrete? How is the data distributed within the column?

Here are the properties we can use to define a column:
•
•
•
•
•
•

Data type

Usage

Related to

Distribution

Content type

Modeling flags

For this solution, we will only work with the Data type, Usage, and Content type
column properties. The Data type property describes the kind of data that is in the
column, either numeric (single), or for this solution, varchar. The Usage property
signifies whether the column is an input column, a predictable column, or both. The
Content type property describes data in the columns, which in this solution means
they are either continuous (numeric columns) or discrete (varchar columns). Also,
remember that the predictable column must be discrete in order for us to be able to build
the model—if its type is anything other than discrete, an error is raised. For more
information about these properties and the ones that we did not use, see SQL Server Books
Online.

Now let’s see how the algorithm can be parameterized.

 Chapter 8: Building and Validating the Models 121

Model Parameters
We will build the models using the Microsoft Decision Trees algorithm, which has two
adjustable parameters: COMPLEXITY_PENALTY and MINIMUM_LEAF_CASES.

The COMPLEXITY_PENALTY parameter inhibits the growth of the decision tree. A low
value decreases the likelihood of a split, while a high value increases the likelihood. The
default value is based on the number of columns for a given model:
•
•
•

For 1 to 9 columns, the value is 0.5.
For 10 to 99 columns, the value is 0.9.
For 100 or more columns, the value is 0.99.

Increasing the complexity penalty moves the model from being more general to more
detailed. A higher complexity penalty slows the growth of the tree, making it harder for the
algorithm to generate more branches. The complexity penalty raises the bar on whether a
split should occur at a certain point.

The MINIMUM_LEAF_CASES parameter determines the minimum number of leaf cases
required to generate a split in the decision tree. The default number of cases is 10. This
means that a split cannot be generated based on a single value—if only one person in the
dataset is from Alaska, the algorithm cannot use this as a reason to create a split.

For more information about the algorithms and their parameters, see the SQL Server 2000
Resource Kit, SQL Server Books Online, and Preparing and Mining Data with Microsoft
SQL Server 2000 and Analysis Services. There are also several good third-party books about
data mining that give a more in-depth look into using decision trees.

Trying Out the Model Building Task
As we look at the Create Mining Model form, we can see that it is divided into three
sections. In the first section, we’ll select an Analysis server, a data source, and a model
name. Here we are defining the type of model we’re building and where the data is coming
from to build it. We don’t actually populate the model with data until we add columns to
the model and process it. The following steps describe how to build the models.

122 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

X To select an Analysis Server and create an empty model
1. In the Data Mining Tool, click Model.
2. In the OLAP server text box, type Localhost.
3. In the Database text box, type DM_ OLAP.
4. For Data source name, type cup98LRN.
5. For Model name, type DM_Tree.
6. Select Decision tree, and then click Create.

An empty decision tree shell named DM_Tree has been created on the Analysis server
and added to the tree control on the form. We can now begin to populate it with
columns and process it.

Notice that for these models we did not change any model parameters using the Model
parameters text box. When you build your own models, use this text box to change model
parameters and see how they affect the models. Enter the parameter and its new value as
you would in Analysis Manager. For example, you can change the complexity penalty by
typing COMPLEXITY_PENALTY = 0.6 in the text box.

For more information about changing these parameters, see SQL Server Books Online.

In the second section of the Create Mining Model form, we’ll select the table that holds
the columns we’re adding to the model, and then we’ll select a column. When we set the
data source in the first section, we were only directing the model to the appropriate
database; now we have to choose a table from that database—the cup98LRN_Model table.
We’ll then define how the column is used by the mining model, and we’ll add it to the
model.

X To select a table and column from the data source and parameterize the column
1. In Select an origin table, select cup98LRN_Model.
2. In Select a column, select AVGGIFT.
3. Parameterize the column:

� For Data type, select single.

� For Usage, select input.

� For Content type, select continuous.
4. Click ->.

The column is now added to the tree control, under the model name DM_Tree.
Repeat this procedure, adding each column in the following table, and parameterize the
columns as described.

Note When parameterizing the CONTROLN column, you must also select the is case key
checkbox because this column is the key column.

 Chapter 8: Building and Validating the Models 123

Column name Data type Usage Content type

AVGGIFT Single Input Continuous

POP901_2 Single Input Continuous

CARDGIFT Single Input Continuous

CARDPM12 Single Input Continuous

CARDPROM Single Input Continuous

CONTROLN Single

DOB Single Input Continuous

GENDER Char Input Discrete

HOMEOWNR Char Input Discrete

LASTGIFT Single Input Continuous

MAJOR Char Input Discrete

MAXRAMNT Single Input Continuous

MINRAMNT Single Input Continuous

NGIFTALL Single Input Continuous

NUMPROM Single Input Continuous

PETS Char Input Discrete

ODATEDW2 Single Input Continuous

RAMNTALL Single Input Continuous

TARGET_B Single Input and
predictable

Discrete

VETERANS Char Input Discrete

124 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

In the first step we created the shell for the model, but by clicking Process we are actually
passing the data through the shell and creating the relationships that define the model.

X To process the model
•

•
•
•
•

Click Process to train the mining model.

Now that the model is processed, we have a working model that we can browse through
and base predictions on. After we have browsed through this first model, we will repeat the
process, using the over-sampled table as the data source. We can then test the effectiveness
of the models using the validation dataset we created in Chapter 7, “Splitting the Data,”
and the lift chart.

Now we’ll use the same procedures to make another model, which is based on the over-
sampled table we created in the Chapter 7, “Splitting the Data.” To make the model, we
will use the same Analysis server, the same data source, but a different source table
(cup98LRN_Model_OS) and model name (DM_Tree_OS). Select and parameterize the
same columns that are displayed in the table earlier in this section.

Later on, we’ll use graphical representations to compare these models. But before we do
that, let’s take a look behind the scenes at the code that makes all of this work.

Looking at the Model-Building Code
Let’s look at the tasks that various subroutines accomplish during the model-building step.
Open Visual Basic and follow along as we walk through the code.

X To view the form frmCreateModel.frm
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
the DMFinal.vbp file.

2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

3. Right-click frmCreateModel (frmCreateModel.frm), and then click View Code.

The code is broken up into four main areas:
Creating a connection
Building the model shell
Adding columns to the model shell
Browsing the model

Let’s first look at what we have to declare before we get heavily into the code.

 Chapter 8: Building and Validating the Models 125

The mapTree2Column collection stores the columns that are added to the model. This
allows us to see a visual representation of the columns that we have added to the model.

Private mapTree2Column As Collection

Because we are now working against an Analysis server instead of SQL Server, we open a
new connection to the Analysis server using the DSO.Server object. The DSO.Server
object is the only Decision Support Objects (DSO) object that can be instantiated as new.

Private srv As New DSO.Server

The next variables deal with defining the new mining model.

The database and other objects cannot be accessed directly, but instead are referenced
through the MDStore object. For example, a new database must be created through the
MDStore object.

Private mds As DSO.MDStore

We also need to define a new mining model and mining model data source. If you
remember, we set up a new Analysis server database and data source in Chapter 1, “Setup.”
This new dsmm object references that data source.

Private mm As DSO.MiningModel

Private root As Node, parentNode As Node

Private dsmm As DSO.DataSource

The last two variables are used in creating the DSO connection strings. Because different
providers can user different characters to distinguish the open and closed quote delimiters,
we need to get them from the dsmm data source and store them for later use.

Private LQuote As String, RQuote As String

Create the Connection
The first thing we have to do is create a connection to the server. Remember that we are
working with two different servers: the SQL Sever that is holding and organizing our raw
data, and the Analysis server, where the models are built and administered. So, before we
create the models, we need to connect to the previously created Analysis Services database.

126 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

We first connect to the server. Because Analysis Services uses Windows Authentication for
security, we only need to provide the server name.

 srv.Connect txtServer.Text

Next we set the mds variable equal to the data source. Remember that we cannot reference
the database directly. Instead, we have to reference it through the MDStores object.

 Set mds = srv.MDStores(txtDatabase.Text)

After setting the proper connections, we give the user access to the controls that he or she
can use to create the model.

 txtDataSource.Enabled = True

 txtModelName.Enabled = True

 optC.Enabled = True

 optDT.Enabled = True

 btnCreateModel.Enabled = True

The user can now begin defining and adding columns to the model and create the model.

Defining the Model
We will now define the type of model to build (clustering or decision tree) and add it to the
Analysis Services database. Remember that we are actually just creating the shell for the
model. We still need to define the content by adding columns to the model. Even then the
model will not be ready to use until it has been processed.

The first step in creating the model is to check to see whether it already exists in the
database. If the model already exists, we remove it; otherwise, we create it.

 If Not (mds.MiningModels(txtModelName) Is Nothing) Then

 mds.MiningModels.Remove txtModelName

 End If

 Set mm = mds.MiningModels.AddNew(txtModelName, sbclsRelational)

Next, we create a data source for the new model that is equal to the one that was created
when the Analysis server was set up.

 mm.DataSources.AddNew txtDataSource

 Set dsmm = mm.DataSources(txtDataSource)

 Chapter 8: Building and Validating the Models 127

 LQuote = dsmm.OpenQuoteChar

 RQuote = dsmm.CloseQuoteChar

The last step in modifying the new mining model is to set the model type. Analysis Services
includes algorithms for both a decision tree model and a clustering model.

 If (optDT.Value = True) Then

 mm.MiningAlgorithm = "Microsoft_Decision_Trees"

 End If

 If (optC.Value = True) Then

 mm.MiningAlgorithm = "Microsoft_Clustering"

 mm.Parameters = "CLUSTER_COUNT=" + txtNoClusters

 End If

After all of the updates are implemented, we commit the transactions to the database.

 mds.CommitTrans

We are going to reuse the cnDataPrep connection that we used earlier in this application,
but we need to make sure that it is set to the same data source that the mining model is
using. Accordingly, we first need to check to see whether cnDataPrep is an open
connection, and if it is, close it.

 Dim ds As DSO.DataSource

 If (cnDataPrep.State = adStateOpen) Then

 cnDataPrep.Close

 Else

 Set cnDataPrep = New ADODB.Connection

 End If

We set the cnDataPrep connection equal to the connection string used by the mining
model for its data source.

 cnDataPrep.ConnectionString =
mds.DataSources(txtDataSource).ConnectionString

 cnDataPrep.Open

128 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

We can then populate the cbTable drop-down box on the form with available tables from
that data source. This table will be the source of columns that the user will add to the
mining model.

 Fill_Combobox cbTable

The last step is to clear the tree viewer control, which displays a graphical representation of
any previous model. We want to make sure that the user is viewing the current model.

 tvModel.Nodes.Clear

 Set root = tvModel.Nodes.Add(, , "root_node", mm.Name)

Adding Columns to the Model
Now that we have created the empty shell of a mining model, we need to start populating it
with columns. Associated with each column are several properties, which must be set before
the column is created.

We first declare an object for the new column.

 Dim mc As DSO.Column

To be safe, we then make sure that the data source for the mining model is set correctly.

 Set dsmm = mm.DataSources(txtDataSource)

 LQuote = dsmm.OpenQuoteChar

 RQuote = dsmm.CloseQuoteChar

Mining models themselves do not allow transactions, so we actually have to reference the
parent—or database—to begin the transaction.

 mm.Parent.BeginTrans

We can now add a new column to the mining model, using the same name as the column
in the table from the data source.

 Set mc = mm.Columns.AddNew(txtColumnName)

Now we set properties of the column. The column case parameter is very important
because it identifies the different rows, or cases, in the table. Each mining model must have
a case column.

 With mc

 .IsKey = chkCase.Value

 Chapter 8: Building and Validating the Models 129

Next, we set the data type.

 Select Case cbDataType.Text

 Case "Char"

 .DataType = adChar

 Case "Integer"

 .DataType = adInteger

 Case "Single"

 .DataType = adSingle

 End Select

The column type is determined. If the column is not a case column, it can be either input,
predictable, or both input and predictable.

 If (.IsKey) Then

 Else

 Select Case cbUsage.Text

 Case "Input"

 .IsInput = True

 .IsPredictable = False

 Case "Input and Predictable"

 .IsInput = True

 .IsPredictable = True

 Case "Predictable"

 .IsInput = False

 .IsPredictable = True

 End Select

 .Distribution = cbDistribution.Text

 .ModelingFlags = cbModelingFlags.Text

 .RelatedColumn = cbRelatedTo.Text

 .IsDisabled = False

If the column is a predictable column, it must have a column type of discrete. If the
selected column is a continuous variable, we use the following code to make it discrete.

 If cbContentType = "DISCRETIZED" Then

 .ContentType = cbContentType & "(" &
cbDiscretizationMethod & ", " & txtBuckets & ")"

130 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

 Else

 .ContentType = cbContentType

 End If

 End If

Finally, we create the column statement. Here is a good example of using the LQuote and
Rquote variables.

 .SourceColumn = .FromClause & "." & LQuote & cbColumns.Text
& RQuote

 End With

The mining model is updated, and the transaction is committed to the database.

 mm.Update

 mm.Parent.CommitTrans

 Dim currentNode As Node

The Angoss viewer control and the tree view control are updated with the new column. For
more information about the Angoss tree viewer control, see “Browsing the Models” later in
this chapter.

 Set currentNode = tvModel.Nodes.Add("root_node", tvwChild, ,
mc.Name)

 mapTree2Column.Add currentNode, CStr(currentNode.Index)

 tvModel.Refresh

Browsing the Models
A good way to evaluate a model is to look at a visual representation of it. After all, what is
easier to understand—a table full of mathematical relationships or a graphic displaying a
decision tree with all of its splits and branches?

Although Analysis Services provides a viewer for both the Decision Trees and Clustering
algorithms, we will use a different method. Because all of the tasks are pretty much
contained within the sample application, we don’t want to go back and forth between the
sample application and Analysis Manager building models, then viewing models, then
building models, and so on. So what to do—is there a way to display a tree viewer on a

 Chapter 8: Building and Validating the Models 131

form within the Data Mining Tool? The answer is a resounding yes—which brings us to
another point—it is very easy to view and compare the models using third-party viewers.
We’ll view the models with the Angoss Consumer Controls, which were installed during
setup.

X To browse a model
•

•
•
•

On the Create Mining Model form, click Browse.

The appropriate viewer opens, displaying the newly-created model.

Figure 8.1 shows the decision tree for the model that we created—this is what all of that
work was for! Of course, this is just the first model of many that we could make from this
dataset. We can see that out of the columns we selected, the following had the most effect
on the outcome of the predictable column (in order of importance).

LASTGIFT
CARDPROM
ODATEDW2

Figure 8.1 Graphical representation of the DM_Tree model

Over the entire population, LASTGFT was the greatest factor in determining where the
first split in the data occurs—a place where one state was preferred over the other state as
compared to the percentage of states in the entire population.

132 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Remember all of that work we did to transform the data? Well, it actually paid off with
ODATEDW2! In testing this application, we built several models that included the
ODATEDW column (and not the transformed ODATEDW2 column) and the
ODATEDW column had no impact on the model. But as you can see in Figure 8.1, the
transformations we performed on ODATEDW caused a split that had not appeared
previously. This shows how transforming a single column can have a profound impact on
the final model.

Of course, for all of the columns we choose to include in the model, only a few played an
important role, which is how it goes in data mining. For all of the assumptions we make
about which columns should be the most important, we really never know what we are
going to find. The reason for this is that even though empirically, we may come to
conclusions about how the data is related, the decision tree finds mathematical
relationships, which it uses to create the model. And this is really the reason that we use
data mining, to find the relationships that are less obvious. If we only found relationships
that we could have deduced simply by perusing the data, what use would we have for data
mining?

In looking at the improved percentages in the final splits, we can see that there is not a huge
change from the original percentages in the dataset, but remember it doesn’t take a huge
change to save the company money. For every percentage point of improvement, fewer
envelopes have to be mailed out to receive a good response.

Now let's look at the model we created from the over-sampled table (Figure 8.2).

As you can see, by over-sampling the table, we created a model that is only slightly different
from the DM_Tree model. The main difference is that ODATEDW2 and CARDPROM
switched positions on the tree. Looking at the outcomes, we can also see that the
breakdown of "yes" and "no" percentages is a little more drastic as compared to the original
80 percent and 20 percent from the original table. Will this translate into better
predictions? We’ll find out later when we build some lift charts.

First, let’s look at the code behind the browsing functionality.

 Chapter 8: Building and Validating the Models 133

Figure 8.2 Graphical representation of the DM_TREE_OS model

Looking at the Browsing Code
Let’s look at the tasks that various subroutines accomplish during the model-browsing step.
Open Visual Basic and follow along as we walk through the code.

X To view the form frmBrowseModelClustering.frm
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
the DMFinal.vbp file.

2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

3. Right-click frmBrowseModelClustering (frmBrowseModelClustering.frm), and then
click View Code.

134 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

X To view the form frmBrowseModelClassification.frm
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
the DMFinal.vbp file.

2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

3. Right-click frmBrowseModelClassification (frmBrowseModelClassification.frm), and
then click View Code.

A company called Angoss has created three useful Visual Basic controls that work well with
Analysis Services and that are available for download in their SDK. The first two controls, a
tree view and a cluster viewer, are immediately useful at this stage, while the third, a lift
chart viewer, will show up later in this chapter when we compare the different models. The
controls are simple to use; viewing a model is as easy as pointing the control to the model
and setting a few parameters. Before you can use the controls, you must add the following
references to your project:
•
•
•

ANGOSS Decision Tree Viewer (OLEDB DM)
ANGOSS Segment Viewer (OLEDB DM)
ANGOSS LiftChart Control (OLEDB DM)

Remember that these controls only work with existing mining models—the controls give
you the capability to browse through models that already exist, not to create new models.
For more information about using the controls, see the Help file that is installed with the
consumer controls.

To display either type of model, we create two forms—one for decision tree models and
one for clustering models.

Let’s look at the decision tree form. We first define a new tree control and connection,
which is set to the Analysis Services database.

 Dim tree As New DecisionTreeViewerLibCtl.DTVTree

 Dim cn As New ADODB.Connection

We then set up the tree viewer to display the model.

 With Me.DTViewer.NodeDetail

 .NodeDisplayFlags = .NodeDisplayFlags Or
dtvNodeDisplayColorGradient _

 Or
dtvNodeDisplayPlusMinus

 Chapter 8: Building and Validating the Models 135

 .InputAttributeDisplayFlags = .InputAttributeDisplayFlags Or
dtvIADisplayProbability

 .PredictAttributeColorGradient.FromColor = &HFFC0C0

 .PredictAttributeColorGradient.ToColor = &H8080FF

 End With

Next, we pass the viewer the information it needs to display the control.

 cn.Open "Provider=MSOLAP.2;Data Source=" & Server & ";Initial
Catalog=" & Database

 tree.Connection = cn

 tree.ModelName = Model_name

Then, to display the viewer, we set the tree control to the model object and refresh it.

 DTViewer.tree = tree

 DTViewer.tree.Refresh

The control is resized in a separate routine so that it fits nicely within the form.

Private Sub Form_Resize()

 DTViewer.Width = Me.Width - (DTViewer.Left + 150)

 DTViewer.Height = Me.Height - (DTViewer.Top + 450)End Sub

The clustering form is much easier to write. We only have to create the correct connection
string, and pass that information into the viewer, along with the model name.

 cn.Open "Provider=MSOLAP;Data Source=" & Server & ";Initial
Catalog=" & Model_name

 SegViewer.InitFromOLEDBDM cn, Model_name

And then plot the data.

 SegViewer.PlotData

And that’s it. As with the tree viewer, we used resizing code to allow the user to resize the
form without losing information. Now let’s look at how we validate the models.

136 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Validating the Models
Now that we’ve built the models, how do we know if they are any good? Well, in our case,
by using a lift chart viewer, which is supplied in the Angoss SDK.

A lift chart calculates the accuracy of the predictions created by a specific mining model. It
does this by predicting a column in a set of testing data, and then comparing it to the actual
value. Then the predicted value and the actual value are displayed graphically.

A lift chart measures the effectiveness of the model by comparing the results that are
achieved with and without the predictive model. For example, if we randomly select 20,000
people to whom we will send requests for donations, we should expect to receive a positive
response from about 5 percent of the people (in keeping with the distribution in our
current database). But if we use our models to choose which people to send the requests to,
we would hopefully see an increase in the response rate—say, to 20 percent. The difference
between the two response rates is called lift. By charting the response rate for the different
mailings, both the random mailing and the targeted mailing, we can create a lift chart.

Figure 8.3 Lift chart

Note the characteristic curve. This happens because the total number of donations in the
population is always the same. Out of our 90,000 records, we will always have a return rate
of around 5 percent, or around 5,000 responses. Our goal is to reduce the number of
mailings we send out, but still keep the number of responses returned at 5,000, thus
increasing the percentage of mailings returned. Another way of saying this is that we should
expect to get 50 percent of the possible positive responses by contacting 50 percent of the
possible people randomly. But by using the model, we would hope to increase this to, say,

 Chapter 8: Building and Validating the Models 137

85 percent of the possible positive responses by contacting 50 percent of the possible
people.

To implement the lift chart, we need:
•
•
•

A trained model
A testing dataset from which the model can create predictions
A mapping between the input data and the structure of the mining model

Now let’s look at how we use the lift chart.

Trying Out the Validation Task
To use the Validation tab, we have to specify a model and the Analysis server on which it’s
located, a source for the testing data, the predictable column, and the state of the
predictable column that we are trying to find. We then construct the prediction query,
which creates predictions for the testing data based on the model, and feeds the results into
the lift chart.

X To create a lift chart
1. In the Server text box, type Localhost.
2. In the Database text box, type DM_ OLAP.
3. From the Models drop-down menu, select DM_Tree.
4. In Predicted column, select target_b.
5. In Predicted state, select 1.
6. In the Prediction query text box, type the prediction query corresponding to the model

you want to look at.

We have included a prediction query for each of the models stored as a text file located
in C:\Program Files\Microsoft NESBooks\SQLServer2000\Data Mining\DM
Sample folder. The file names are Query_Dmtree.txt and Query_Dmtreeos.txt. To
speed up the process, you can just copy and paste each query into the text box.

7. Click Plot liftchart.

A new lift chart appears in the lift chart control.

Figure 8.4 shows the lift chart we just created.

138 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Figure 8.4 Lift chart with the DM_Tree mining model

This lift chart is not very exciting; it’s hard to tell if the model’s predictions are an
improvement over random selection. Let’s create another lift chart based on the model we
created based on the over-sampled data. To do this, use the same server and the same
predictable column and predicted state—just change the model to DM_Tree_OS, and
copy and paste the query named Query_dmtreeos.

Figure 8.5 shows the lift chart that we just created.

Once again, we do not see much difference. What is this telling us? Are our models not
good enough, or is this about what we should expect? Looking at the models in Figure 8.1
and Figure 8.2, we can see that even when the tree splits, the improvement in the number
of positive to negative responses in the data is not that great—the probability that someone
will not donate is still greater than the probability that someone will donate. This means
that the model does not predict whether someone will donate, and therefore, we do not see
any improvement in the lift charts.

 Chapter 8: Building and Validating the Models 139

Figure 8.5 Lift chart with the DM_Tree_OS mining model

The key point here is that data mining is not an exact science, and it’s not an easy process.
Even with all the work we did to create these models, we did not get the results we
expected. Maybe better transformations would improve our results. Maybe better column
selection, achieved through more in-depth exploration, would create better models. Or
maybe creating an over-sampled table with an even higher ratio of positive to negative
responses would generate better models.

So now it’s your turn…we’ve started you off with the process and the tools. What can you
achieve? Work through the process a few more times and see if you can improve the results.
If you find something interesting, send us your results.

Good luck, and have fun!

Now, before you go running off on your own, let’s see the code that makes this validation
task possible.

140 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Looking at the Validation Code
Let’s look at the tasks that various subroutines accomplish during the model-validation
step. Open Visual Basic and follow along as we walk through the code.

X To view the form frmLiftChart.frm
1. In Windows Explorer, browse to the C:\Program Files\Microsoft

NESBooks\SQLServer2000\Data Mining\DM Sample folder, and then double-click
the DMFinal.vbp file.

2. In Visual Basic, in the Project Explorer window, expand the project, and then expand
Forms.

3. Right-click frmLiftChart (frmLiftChart.frm), and then click View Code.

Once again, we will be using an Angoss control to create the lift chart. For more
information about using the control, see the Angoss documentation that was installed with
the controls.

The first steps are to create a new connection to the Analysis server and create a recordset
that will hold the models that exist in the Analysis database that we are connecting to.

 Set cn = New ADODB.Connection

 Dim rsModels As ADODB.Recordset

 cn.Open "Provider=MSOLAP;Data Source=" & txtServer & ";Initial
Catalog=" & txtDatabase

 Set rsModels = cn.OpenSchema(adSchemaProviderSpecific, ,
schemaModels)

We now populate the cbModels combo box with the model names held in the rsModels
recordset. We first clear the combo box and then cycle through the recordset, adding model
names to the combo box.

 cbModels.Clear

 While Not rsModels.EOF

 cbModels.AddItem CStr(rsModels.Fields("MODEL_NAME").Value)

 rsModels.MoveNext

 Wend

 Chapter 8: Building and Validating the Models 141

Next, the cbColumns combo box is populated with the attributes labeled as predictable
for the model selected in the cbModels combo box. This routine is called on the cbModels
click event.

We first open a recordset that will be used to hold the schema information for the columns.
We will use this information to find the predictable columns and display them in the
cbColumns combo box.

 Set rs = cn.OpenSchema(adSchemaProviderSpecific,
Array(txtDatabase.Text, Empty, cbModels.Text), schemaColumns)

The last step in this subroutine is to cycle through the rs recordset, search for the
predictable columns, and add them to the combo box.

 cbColumns.Clear

 While Not rs.EOF

 If rs.Fields("IS_PREDICTABLE").Value Then

 cbColumns.AddItem CStr(rs.Fields("COLUMN_NAME").Value)

 End If

 rs.MoveNext

 Wend

We only have one more subroutine to get through before setting up and displaying the lift
chart—we need to populate the cbPredictedState combo box with all of the possible
predicted states of the predictable column.

We do this much the same as before, filling a recordset with each distinct state of the
column select in the cbColumns combo box. This routine is called on the cbColumns
click event.

 Set rs = cn.Execute("SELECT DISTINCT [" & cbColumns.Text & "]
FROM [" & cbModels.Text & "]")

The states of the selected predictable column are then added to the cbPredictedState
combo box.

 cbPredictedState.Clear

 While Not rs.EOF

 cbPredictedState.AddItem CStr(rs.Fields(0).Value)

 rs.MoveNext

 Wend

142 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Everything is now ready to begin the code for creating the lift chart, which is called on the
btnDoLiftChar click event.

We first open a recordset, using the query we copied into the txtQuery text box and the
connection we crated in the first subroutine.

 rs.Open txtQuery.Text, cn

We then set the LiftchartModel object to the lift chart control, and point it to the
model selected in the cbModels combo box and the recordset we just created.

The query in the recordset defines the prediction query that will be used to compare the
states predicted by the model to the actual states in the testing table.

 Set LiftchartModel = LiftChart1.Models.Add(cbModels.Text, rs,
"")

 If LiftchartModel Is Nothing Then

 MsgBox "Model has not been created." & vbCrLf & "Current
limit for number of models is 2.", vbCritical

 Else

Next, we parameterize the lift chart using values inserted into the rs recordset by the MDX
query.

 LiftchartModel.ActualColumn = "Actual"

 LiftchartModel.PredictColumn = "Predicted"

 LiftchartModel.ChartedValue = cbPredictedState.Text

 LiftchartModel.ProbabilityColumn = "Certainty"

We then compute the values that will be displayed in the lift chart and refresh the control
to display the results to the screen.

 LiftchartModel.Compute

 LiftchartModel.Visible = True

Appendix

Appendix

Managing Tables
In addition to copying an existing table, you can also perform the following tasks using the
Manage Tables form:
•
•
•
•

Select specific columns to be included in a new table.
Drop tables from the database that are no longer useful.
Create a copy of an existing table but with fewer rows (or sample the table).
Create a copy of an existing table, but force the sampling algorithm to include a higher
percentage of positive predictable values than actually existed in the original table.

Selecting Columns
You may want to investigate specific columns in a table without having to work with the
entire table—especially with a table as large as the one we use in this book. Also, you may
find some columns that you want to exclude from your analysis. For example, if your data
includes both a postal code and street address, you may decide that the street address is
unnecessary because you already have the postal code.

X To create a table with selected columns
1. In the Data Mining Tool, click Manage Tables.
2. In the Create a new table by selecting columns from an existing table section, enter

the following information:

� For Select a source table, select the table that holds the columns you want to
include in the new table.

� For Enter a table name, type a name for the new table.
3. To include specific columns in the new table, select a column from the list associated

with the source table, and then click the > button. Repeat this step for each column to
be included. (To include all columns in the new table, click the >>button.)

4. To remove a column from the new table, select the column from the list associated
with the new table, and then click the < button. (To remove all columns from the new
table, click the << button.)

5. Once you have selected the columns that you want to include in the new table, click
Create Table. This adds a new table containing the selected columns to the database.

146 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Dropping Tables
Eventually, with your own data, you will create several tables. If you later decide that a table
has lost its usefulness or if you want to redo a step, you can drop the table from the
database.

X To drop a table from the database
1. In the Data Mining Tool, click Manage Tables.
2. In Select a table to drop, select the table that you want to drop.
3. Click Drop Table.

Sampling a Table
Often a dataset contains too many rows, making it difficult and time consuming to
perform an analysis. Accordingly, the Data Mining Tool includes an option to reduce the
size of the table by reducing the number of rows that are in it. To do this, the Data Mining
Tool randomly selects the number of rows you specify and creates a new table.

Additionally, there are times when the predictable attribute is so skewed toward one state
that it is hard to create a model that accurately predicts it. In this case, you can use the Data
Mining Tool to create an over-sampled table, meaning that you can artificially increase the
ratio of positive to negative responses in the predictable attribute.

In this section, we’ll first use the Data Mining Tool to create a table with a reduced record
count, and then we’ll look at the code in the Data Mining Tool that makes this work.
Next, we’ll create an over-sampled table and then look at the code behind it.

Reducing Record Count
If the table you are working with is very large, you may want to reduce the number of
records in your table so that the cleaning tasks are less time consuming. This process is
called creating a sampled table.

X To create a sampled table
1. In the Data Mining Tool, click Manage Tables, and then click Sample.
2. In the Small Table form, make the following selections and then click Sample:

� Select Create a sample of a table.

� For Number of records, type the number of records to be included in your new
table.

� For Original table, select the table that you want to sample.

� For New table, type a name for your new table.

 Appendix 147

Figure A.1 Creating a sampled table

Looking at the Code for Sampling a Table
Within the routine, the user has the option of either creating a sampled table or an over-
sampled table. If the user selects a sampled table, the variable blnSampleBasic is set to
True, and the code in this section is used.

This procedure is similar to the one used in splitting the original table into the training and
testing tables. As with that routine, we first check to see whether the table already exists,
and if it does, we give the user the option of either dropping and re-creating it or choosing
a new name for the table. Next, we get the percentage of positive and negative responses in
the predictable column so that they can be displayed on the form.

Because we are creating a single random table from the original table, there is no restriction
on the rows that can be used from the original table. This means that the strSQLWhere
statement is left blank.

strSQLWhere = ""

We then only have to call the Create Table function and the table is created. For
more information about using the Create Table function, see Chapter 7, “Splitting
the Data.”

mdlSample.Create_Table txtSampledTable.Text, strTable, strSQLWhere,
lngRecordCount

148 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Retrieving the final percentages of states in the predictable column and writing them to the
form finishes off this section of the routine.

strSQLSelect = "SELECT COUNT(" & PREDICTED & ") as count FROM [" &
txtSampledTable.Text & "] WHERE " & PREDICTED & " = 1"

Set rsRecordCount = mdlProperties.cnDataPrep.Execute(strSQLSelect)

sngPercentYes = (rsRecordCount!Count / lngRecordCount) * 100

sngPercentNo = 100 - sngPercentYes

txtSampledYes.Text = CVar(sngPercentYes)

txtSampledNo.Text = CVar(sngPercentNo)

Now let’s look at how to over-sample a table.

Increasing the Ratio of Responses in the Predictable Column
As explained in the introduction, it may be useful to highlight a state of the predictable
column, especially if it is underrepresented. In the data used in this book, a positive
occurrence of the predictable attribute only occurs about 5 percent of the time. By
artificially forcing the ratio of positive to negative values to be higher, such as 80 percent
positive to 20 percent negative, we can often find stronger relationships and create better
models. Although this seems like we’re manipulating the data in a bad way, it actually can
improve the effectiveness of the final model. The final goal is to build a good model, and
how we change the data to achieve that does not matter.

X To create an over-sampled table
1. In the Data Mining Tool, click Manage Tables.
2. Click Sample.
3. On the Small Table form, make the following selections and then click Sample:

� Select Create an over-sampling of a table.

� For % Positive, type the percentage of positive predictable values that you want to
exist in the new table.

� For Original table, select the table that you want to sample.

� For New table, type a name for your new table.

 Appendix 149

Figure A.2 Creating an over-sampled table

Looking at the Code for Over-Sampling a Table
If the user opts to create an over-sampled table, the code in this section is used.

This is only slightly more complicated than a simple sampling of the table. In order to
make this work, we made the assumption that if the user wants to over-sample the table, he
or she will want to keep all of the positive responses and just add to them enough of the
negative responses to create the specified percentages.

The first step is to find out how many values we need to sample. Unlike the previous case,
the user is not selecting the number of rows to include in the table, but instead the
percentage ratio of “yes” to “no” values in the predictable column. For this reason, the first
step is to get the number of positive responses in the table.

Set rsTrueData = cnDataPrep.Execute("SELECT COUNT(" & PREDICTED & ")
as count FROM " & strTable & " WHERE " & PREDICTED & " = 1
")lngSampleTrue = rsTrueData!Count

We then calculate the number of negative results that we need to add to the positive results
to achieve the percentages the user specified.

lngSampleFalse = lngSampleTrue / (CLng(txtPercentYes) / 100) -
lngSampleTrue

150 Preparing and Mining Data with Microsoft SQL Server 2000 and Analysis Services

Because we are keeping all of the positive responses, we will include only the negative
responses in the pool of data that we’re extracting using the WHERE clause.

strSQLWhere = " WHERE " & PREDICTED & " = 0 "

The contents of strSQLWhere are then passed into the Create Table function.

mdlSample.Create_Table txtSampledTable.Text, strTable, strSQLWhere,
lngSampleFalse

We now have a table filled with randomly selected negative responses. To finish, we use the
following SQL statement to populate the table with the positive responses from the original
table.

strSQLSelect = "INSERT INTO " & txtSampledTable.Text & " SELECT *
FROM " & strTable & " WHERE " & PREDICTED & " = 1"

cnDataPrep.Execute (strSQLSelect)

To get the record count we combine the number of positive responses and the number of
rows we sampled in the original table.

lngRecordCount = lngSampleTrue + lngSampleFalse

As the last step, we calculate the percentages of yes and no values in the new table and
display them to the form.

And now we are finished—an over-sampled table now exists in the database.

	Preparing and Mining Data with Microsoft® SQL Server™ 2000 and Analysis Services
	Table of Contents

	Introduction
	Introducing the Data Mining Scenario
	What Will You Learn from this Book?
	Who Should Read This Book?
	What Technologies Does This Book Cover?
	How Is This Book Structured?
	Security

	Chapter 1: Setup
	Reviewing the Setup Wizard Requirements
	Reviewing What the Setup Wizard Does
	Setting Up the SQL Server Database
	Setting Up the Analysis Server
	Connecting to the SQL Server Database
	Selecting a Table in the Data Mining Tool

	Chapter 2: Data Mining Fundamentals
	What Is Data Mining?
	Defining Data Mining
	How Data Mining Works

	Translating the Data Mining Process into Steps
	Step 1—Problem Definition
	Step 2—Data Preparation
	Step 3—Model Building
	Step 4—Model Validation
	Step 5—Deployment of the Model into Production
	Step 6—Meta Data Management

	Implementing Data Mining with Microsoft Tools
	Analysis Services

	Chapter 3: Defining the Problem
	Defining the Business Problem
	Defining the Data Mining Problem
	Deciding What Type of Analysis to Use
	Determining Our Data Needs

	Defining the Metrics
	Creating the Formal Problem Definition

	Chapter 4: Cleaning the Data
	Targeting Inconsistencies
	What About Those Null Columns?
	Trying Out the Percent Null Tab
	Looking at the Remove Null Columns Code

	What About Those Table Properties?
	Trying Out the Calculate Properties Tab
	Looking at the Calculate Properties Code

	What About Those Outliers?
	Trying Out the Flag Outliers Tab
	Looking at the Flag Outliers Code

	Chapter 5: Transforming the Data
	Trying Out the DTS Import/Export Wizard
	Looking at the Code Calling the Wizard
	The Transformation Script

	Chapter 6: Exploring the Data
	Visualizing Data with Histograms and Scatter Plots
	Programming Challenges
	Visualizing varchar Columns
	Visualizing Numeric Columns with a Histogram
	Visualizing Numeric Columns with a Scatter Plot

	Numerically Exploring Data with a Correlation Matrix
	Looking at the Code Behind the Correlation Matrix Tab

	Chapter 7: Splitting the Data
	Trying Out Table Splitting
	Looking at the Code Used to Split the Table
	Guaranteeing Uniqueness
	Removing Existing Training and Testing Tables
	Calculating Percentages in the Original Table
	Calling the Sampling Routine

	Chapter 8: Building and Validating the Models
	Building the Models
	Column Parameters
	Model Parameters
	Trying Out the Model Building Task
	Looking at the Model-Building Code

	Browsing the Models
	Looking at the Browsing Code

	Validating the Models
	Trying Out the Validation Task
	Looking at the Validation Code

	Appendix
	Managing Tables
	Selecting Columns
	Dropping Tables
	Sampling a Table

