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Abstract Emerging pervasive assistive environment

applications for remote home healthcare monitoring of the

elderly, disabled and also patients with various chronic

diseases generate massive amounts of sensor signal data,

which are transmitted from numerous homes to local health

centers or hospitals. While it is critical to process this data

efficiently (in a fast and accurate manner) and cost-effec-

tively, in a large-scale application of the above technolo-

gies, it is not possible to do so manually by specialized

human resources. This paper proposes a methodology for

automatic real-time screening of heart sound signals (one

of the most widely acquired signals from the human body

for diagnostic purposes) and identification of those that are

abnormal and require some action to be taken, which can

be applied to many other similar types of bio-signals

generated in assistive environments. It is based on a novel

Markov Chain Monte Carlo Bayesian Inference approach,

which estimates conditional probability distributions in

structures obtained from a Tree-Augmented Naı̈ve Bayes

algorithm. It has been applied and validated in a highly

‘difficult’ heterogeneous dataset of 198 heart sound signals,

which comes from both healthy medical cases and

unhealthy ones having aortic stenosis, mitral regurgitation,

aortic regurgitation or mitral stenosis. The proposed

methodology achieved high classification performance in

this difficult screening problem. It performs higher than

other widely used classifiers, showing great potential for

contributing to a cost-effective large-scale application of

ICT-based assistive environment technologies.

Keywords Bayesian inference � Markov Chain Monte

Carlo � Tree-Augmented Naı̈ve Bayes � Assistive

environments � Heart sounds diagnosis

1 Introduction

There is growing interest worldwide in the development of

ICT-based assistive environment technologies for home care

of elderly and disabled people, and for patients with various

chronic diseases, aiming to improve the quality of their life in

a cost-effective manner. The aging population in many

western countries, in combination with government austerity

programmes including severe spending cuts, which reduce

the available financial resources for elderly and disabled

care, creates big social problems. The large-scale application

of these ICT-based assistive environments can be an ideal

solution for this problem, as they allow for low-cost and

high-quality home care and close monitoring of vital health

parameters for many subjects, reducing needs for hospital-

ization. Reviews of research conducted in this area and also

descriptions of such environments are provided in [1] and

also available in the website of the ‘Ambient Assisted

Living’ (AAL) Program of the European Union (www.aal-

europe.eu). Most of this research work, however, faces sig-

nificant challenges when it comes to large-scale application

for supporting large numbers of people. One such challenge

involves the huge number of signals that can be generated at

the houses of the elderly, chronically ill and disabled people

who are monitored and supported, which are transmitted to

health centers or hospitals in order to be monitored by med-

ical personnel. In particular, these assistive environments
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include various types of sensors and devices, and each of

them generates many bio-signals or other types of signals;

these signals are transmitted through the Internet or other

networks (e.g., wireless) to the nearest local health centers or

hospitals in order to be examined and monitored by spe-

cialized medical personnel so that appropriate medical

action can be taken whenever necessary (i.e., to send a nurse

or doctor for home medical care, or to proceed to more

sophisticated examinations). This task is going to be of

critical importance for the success of the large-scale appli-

cation of these ICT-based assistive environments and the

quality of the services provided to the elderly, chronically ill

and disabled; at the same time, if it is manually performed

(without appropriate technological support and automation),

it is going to be quite demanding for specialized human

resources and therefore too costly, threatening the financial

sustainability for large-scale application of these technolo-

gies. In order to perform this critical task in a cost-efficient

way, it is important to develop tools and methods for auto-

mated screening of these signals in order to identify abnor-

mal ones that require some medical action as soon as possible

and produce notifications to authorized medical personnel.

Such technological support can significantly reduce the

needs for specialized human resources, and therefore the cost

and at the same time improve the quality of the home care

services offered to elderly, chronically ill and disabled

people. In this sense, it can be critical for the financial sus-

tainability and success of the large-scale application of these

assistive technologies. Advanced data mining technologies

can be quite useful in this direction. As mentioned in [1], the

development of successful assistive environments for this

purpose relies critically on three core technologies: sensor

technologies, network technologies and data mining.

This paper contributes in this direction by focusing on the

third of these technologies, proposing a methodology for

automatic real-time screening of heart sound signals pro-

duced by home healthcare–assistive environments and

identification of those that are abnormal and require some

action to be taken, which can, however, be applied to many

other similar types of bio-signals generated in assistive

environments. It is based on a novel Markov Chain Monte

Carlo (MCMC) Bayesian Inference approach, which esti-

mates conditional probability distributions in structures

obtained from a Tree-Augmented Naı̈ve Bayes (TAN)

algorithm. Heart signals are the most widely acquired signals

from the human body for diagnostic purposes in both the

‘traditional’ medicine and in the emerging ICT-based

assistive environments. The heart sound auscultation is an

operationally simple, low-cost and non-invasive examina-

tion, which can be easily performed at home. At the same

time, the heart sound is highly sensitive to many important

heart diseases. The development of digital electronic

stethoscopes allows for easy acquisition of heart sounds at

home as well as their digitization, storage and transmission to

remote health centers or hospitals. These signals can then be

visualized on a screen and processed in order to identify

abnormal components (e.g., murmurs or additional heart

sounds) indicating possible diseases. In such cases, appro-

priate medical action can then be taken, for example, visit of

a nurse or doctor at home or a more sophisticated examina-

tion, such as echocardiography or medical imaging (e.g.,

ultrasound imaging, US; computed tomography, CT; mag-

netic resonance imaging MRI, etc.). However, large-scale

application of this approach for supporting large numbers of

people will result in health centers or hospitals receiving

numerous heart sound signals, which their medical staff will

have to examine in order to diagnose any possible problems

and prescribe appropriate actions. This, in turn, will neces-

sitate more medical personnel and considerable financial

resources, which would make this approach financially and

operationally unsustainable. At the same time, the pool of

skilled medical personnel for this particular task is very

limited and the skills for heart auscultation are in shortage

[2, 3]. Therefore, for the cost-effective and large-scale

application of remote heart monitoring, it is important to

develop mechanisms for automated screening of the

incoming heart sound signals and identification of the ones

having abnormal elements.

The proposed methodology has been applied and vali-

dated in a highly ‘difficult’ heterogeneous high-dimen-

sional dataset of 198 heart sound instances with 100 input

features, derived from both healthy medical cases and

unhealthy ones having aortic stenosis, mitral regurgitation

(with both these diseases resulting in systolic murmurs),

aortic regurgitation or mitral stenosis (with both these

diseases resulting in diastolic murmurs). It has achieved

high classification performance, which exceeds the ones of

other widely used classifiers.

In the following section (Sect. 2), previous relevant

research is briefly reviewed. Then in Sect. 3, an overview

of the proposed methodology is presented. In Sect. 4, the

theoretical aspects of MCMC and Gibbs sampling, which

are the main foundations of the proposed methodology are

described, followed by a detailed description of the meth-

odology in Sect. 5. The data used for the above-mentioned

first application and validation of the proposed methodol-

ogy and the preprocessing of them are described in Sect. 6,

while the results of this application are presented in Sect. 7.

Finally, the conclusions are summarized in Sect. 8.

2 Previous research

Considerable previous research has been conducted on the

automated detection of various heart pathological conditions

and diseases from heart sound signals. The wide availability
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of these signals and their high sensitivity to most heart dis-

eases has been a strong motivation for this research. It can be

broadly divided into two research streams. The first deals

with the development of methods for the preprocessing of

heart sound signals (e.g., removal of noise, segmentation of

heart cycles, partitioning of each heart cycle into S1, systolic

phase, S2 and diastolic phase, etc.); a good review of this

research stream is provided in [4]. The second research

stream addresses the development of methods for the

detection of heart pathological conditions and diseases from

appropriately preprocessed heart sound signals.

This paper contributes to the second research stream, so

the review of previous research will focus on it. Most of the

studies in this area deal with the discrimination between

normal and abnormal heart sound signals [5–9] or with the

discrimination between innocent and pathological murmurs

in children [10–15]. Some other studies are dealing with

the detection of particular heart diseases from heart sound

signals, such as coronary artery diseases [16–20] and heart

valve diseases or murmurs [2, 21–29]. However, in general,

they do not proceed to highly detailed diagnosis.

Most of the studies dealing with the diagnostic classifi-

cation of the heart sound signals are based on neural net-

works of various types [5, 6, 8, 12, 14–19, 23, 26, 27]. There

are only a few studies that examine the performance of other

classification algorithms, such as discriminant functions [11,

25], decision trees [28, 29], Bayesian networks [7], Support

Vector Machines [29] and Hidden Markov Models [2].

Therefore, the diagnostic potential of other classifiers

besides neural networks have not been sufficiently explored,

and further research is needed in this direction. It should also

be noted that the risk that heart valve diseases pose for human

life has motivated considerable research in computerized

methods of their diagnosis, based on signals acquired from

other more costly and sophisticated examinations, such as

Doppler Heart Sound (DHS), Computed Tomography (CT)

and Magnetic Resonance Imaging (MRI). A good review of

them is provided in [29]. It should also be noted that these

examinations require highly sophisticated and costly

equipment which cannot be available for home-based mon-

itoring. In this paper, the potential of Bayesian Networks for

detailed diagnosis of heart pathological conditions and dis-

eases from heart signals acquired through digital stetho-

scopes in the context of home healthcare ICT-based assistive

environments is exploited, by overcoming some inherent

limitations, as described in more detail in the following

section.

3 Methodology overview

This section provides an overview of the proposed meth-

odology, which includes the main challenges and

limitations posed in using BN for heart sounds diagnosis,

and in general for similar medical diagnosis problems, and

also how they are addressed. Bayesian Networks (BN)

[3, 30] are quite attractive for heart sounds screening and

diagnosis, because they are flexible models for representing

relationships among different interacting heart sound fea-

tures that can be interpreted and visualized. Such rela-

tionships could be exploited both for diagnosing heart

sounds and simultaneously for obtaining an insight into

which are the input features that the classification process

is based on. It is also important to note that the non-

deterministic nature of BN enables them to handle data

having high levels of noise generated due to biological or

technical reasons.

In the formulation proposed, BN is used to represent two

aspects of heart sound signals: a qualitative and a quantita-

tive one. The qualitative structure depicts direct relationships

between features and represents the relations’ network as a

Directed Acyclic Graph (DAG), where features are denoted

as nodes and arcs represent probabilistic relationships among

them. The quantitative structure describes such relationships

as conditional probability distributions.

However, BM suffer from significant limitations when

applied in the medical domain, particularly when prior

knowledge is not available or difficult to be defined, and the

available data are characterized as ‘highly-dimensional’

(i.e., having large numbers of features), with limited avail-

able training instances (as their collection is usually difficult

and costly) in comparison with the number of users. For

instance, in the application of the methodology proposed in

this paper (presented in detail in Sect. 5) the dataset consists

of 100 features and only 198 training instances.

Another important limitation of applying generic BN to

the task at hand is that the features proposed have continuous

ranges of values (which is quite usual in heart sound signals

and in many other bio-signals). Despite the fact that alter-

native solutions exist for dealing with continuous values in

BN, the majority of them focus on the use of discrete valued

features, since in the former case (continuous range of val-

ues) there are significant topology restrictions and only the

Gaussian distribution is supported. Nevertheless, discreti-

zation is not a preferred approach in such cases, due to loss of

information it causes to the original data.

Also, BN learning consists of two separate processes,

executed in a serial manner: the former is called ‘structure

learning’ and the latter is called ‘parameter estimation’.

Structure learning is considered to be NP-hard [3], since, as

the number of features grows, the number of candidate net-

work structures increases super-exponentially to huge

numbers. For example, a dataset of only 10 features would

result in the evaluation of more than 15,000 possible network

structures during the learning phase. Further, if the sample

size is small compared to the number of features (something
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quite usual in the medical domain, as mentioned above, for

example, as it happens in the dataset used in the paper), then

there is a plethora of sub-optimal models that can fit the data

with equal likelihood [30]. Also, upon evaluating the most

probable network structure, estimation of parameters [i.e.,

Conditional Probability Distributions (CPDs)] of each BN is

carried out. Estimating CPDs involves the calculation of

p(Xi|parents(Xi)) for each of the features Xi where par-

ents(Xi) refers to the set of parent nodes of Xi node in this

network. This will necessitate huge amounts of calculations.

Finally, a fourth obstacle in BN is the lack of orientation

toward the class feature (which should be the root node in

the estimated network, as heart sounds classification is the

main goal), which could pose significant problems to the

classification process. BN are by principle designed to

allow for reasoning under conditions of uncertainty. This

does not necessarily mean that they are suitable for clas-

sification. Since the class node is treated in the same way as

all other nodes, a BN does not have special knowledge on

the class feature and the topology is not oriented to allow

for reasoning over the class label, given evidence of the

values of the other features; therefore, the class node will

not be necessarily the root node in the estimated models.

To summarize the main challenges and limitations of

using BN for heart sounds classification are as follows:

(a) BN cannot deal efficiently with high-dimensional

datasets, especially when the available labeled dataset

(i.e., training set) is limited.

(b) BN do not operate optimally when dealing with

continuous variables.

(c) BN learning of structure and CPD is prone to errors

and ambiguity when dealing with high-dimensional

datasets and limited training samples and can neces-

sitate large amounts of calculations.

(d) BN are not oriented toward classification, so the

networks estimated do not necessarily have the class

node as root (which is essential for classification).

This paper proposes a significant contribution in this area

by presenting a BN analysis framework for identifying

causal as well as independent relationships among features

of heart sound signals, and in general, similar bio-signals

generated in ICT-based assistive environments, which

addresses the above challenges and limitations. In particular,

similar to other machine-learning approaches, but unlike

most BN methods, the framework proposed is handling

features as continuous rather than discrete, addressing the

above-mentioned challenge (b). Additionally, due to the

high-dimensionality nature of the dataset, exact computation

of the CPDs is infeasible and computationally costly. Hence,

the joint distribution is approximated by stochastic simula-

tion commonly referred to as ‘sampling.’ Using Markov

Chain Monte Carlo (MCMC), one can fit a distribution to the

data that converges to the posterior distribution (i.e., the

distribution of the class, treated as a random variable, con-

ditional on the evidence obtained from the dataset) and retain

the samples. MCMC can cope with domains where the state

space is huge (i.e., large number of features) with large

number of samples needed to approximate the probabilities

reasonably well, by selecting each sample using the previous

sample resulting in the well-known Monte Carlo Markov

Chain (MCMC) methods and its variants [31]. In this the

above-mentioned challenges, (a), (c) and (d) are addressed.

In particular, a new approach is proposed to approximate the

conditional probability distributions of complex BN using a

MCMC algorithm; it is demonstrated that this allows for the

creation of a robust system for a highly detailed diagnosis of

heart sound signals. The present work is principally based

upon a novel idea, in which the CPD computation is based on

the ordered ranking of a structure similar to traditional BNs,

which is oriented toward classification. This structure is

called Tree-Augmented Naı̈ve Bayes (TAN) and unlike

general, unrestricted BNs, in TAN, the class node is the root

node, that is, the parent of all other nodes, which can form a

BN among them, addressing in this way the above-men-

tioned challenge (d). This type of structure is proven to be

more efficient than BN for classification purposes [32], since

in traditional BN, the class node is not considered as a special

type of node, and it is treated as an ordinary one, so it may

even not appear in the network resulting in a lack of classi-

fication capabilities. Then, it is used in order to perform

highly detailed diagnosis of heart sound signals: (1) initially

as healthy or unhealthy, (2) then, for the unhealthy, distin-

guish among those having systolic and having diastolic

murmurs, and finally, (3) in both systolic and diastolic

murmurs cases discriminating between aortic or mitral

dysfunction. Also, some widely used alternative classifiers

have been applied to the same data for comparison purposes.

4 MCMC Bayesian inference

In this section, the theoretical principles of MCMC sampling

are outlined, with a focus on Gibbs sampling, a variation of

MCMC more suitable for DAG structures [33]. Bayesian

inference involves the mathematical integration of high-

dimensional probability distributions. This process is ana-

lytically intractable; therefore, it is common to deploy Monte

Carlo (MC) techniques. MC techniques are requiring sam-

pling from the probability distributions which are to be

integrated. However, in many cases, it is not possible to draw

such samples directly from the distributions. MCMC meth-

ods provide a unified framework for coping with such issues.

The way they operate is twofold: at first, a Markov Chain is

generated that converges to the target probability distribu-

tion. Subsequently, the target sample values are obtained

using Monte Carlo integration.
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4.1 MCMC methods

A probability distribution is specified through a DAG G (a

set of interconnected nodes, each of which corresponds to

one of the features) and a set of conditional probability

distributions (parameters), one for each feature Xi–node in

G. A BN is actually a DAG G where the topology refers to

its structure and the CPD is encoded as a table, named CPT

(Conditional Probability Table). By definition, in G, every

node is conditionally independent of all other nodes given

the set of its parents. The CPD of a BN is encompassing the

probabilities of observing all values of feature (node) Xi

given the values of its parent nodes. Large network models

will introduce more parameters, so exact computation will

be infeasible and thus approximation of the CPD is

achieved through sampling techniques. The structure of

G is essential for sampling and can be obtained by applying

a greedy search over the entire space of all possible

structures. However, the number of possible DAG struc-

tures increases super-exponentially as the number of fea-

tures grows, so greedy search on the space of all possible

structures is not efficient as it requires too much compu-

tation. Several methodologies for alleviating this problem

have been proposed, such as the K2 algorithm [30] or the

Bayesian Scoring Method [31]. The following Sect. 5

describes the suggested technique for obtaining graph

structures more straightforwardly and thus constructing

BNs that enable efficient classification process.

Regardless of the structure-learning algorithm, given a

structure G with nodes X = {X1, X2, …, Xn}, the process of

obtaining the CPD with sampling is described below. For

reasons of comprehension suppose that G is referring to the

example BN depicted in the following Fig. 1. Let us also

assume that each node Xi is a binary node with values T or

F. For each node Xi in G:

• Randomly select a state for all other nodes except for

Xi.

• For example, \?,T,T,F,F,T[

• Compute the probability distribution over the states of

Xi, that is, p(Xi|X1, …, Xi–1, Xi?1, …, Xn).

Note that since G is a Bayesian network, the above

probability is simplified to include only the Markov

Blanket of Xi [6], that is:

pðXijX1; . . .; Xi�1;Xiþ1; . . .; XnÞ

¼ pðXijparentsðXiÞ
Yk

j¼1

ðYjjparentsðYjÞÞ;

where Yj denotes the set of child nodes of Xi. For

example:

p X1 ¼ T jX2 ¼ T ; X3 ¼ T ; X4 ¼ F; X5 ¼ F; X6 ¼ Tð Þ
¼ p X1 ¼ Tð Þp X4 ¼ FjX2 ¼ Tð Þp X4 ¼ FjX1 ¼ Tð Þ

pðX2 ¼ T jX1 ¼ TÞpðX3 ¼ TjX1 ¼ TÞ

and

p X1 ¼ FjX2 ¼ T ; X3 ¼ T ; X4 ¼ F; X5 ¼ F; X6 ¼ Tð Þ
¼ p X1 ¼ Fð Þp X4 ¼ FjX2 ¼ Tð Þp X4 ¼ FjX1 ¼ Fð Þ

pðX2 ¼ TjX1 ¼ FÞpðX3 ¼ TjX1 ¼ FÞ

• From the probability distribution, randomly select a

state of Xi to complete the sample vector.

• For example suppose that value T is selected for

node X1.

Monte Carlo sampling requires drawing of n samples

from the BN with each instance of feature states forming its

value as explained above. For the purpose of this research,

only continuous values are considered; therefore, the method

of [34] is adopted and the samples are projected as a histo-

gram. Afterward, the histogram is smoothed to obtain the

probability density function of the features of the dataset. In

most approaches, the selection of a state of the features is

performed using the distribution that best resembles the

available dataset. This approach is, however, not suitable for

large feature sets, such as the task at hand, because they tend

to be slow and cannot converge to the actual posterior dis-

tribution. Therefore, a Markov Chain Monte Carlo (MCMC)

approach is more preferable for approximating the chal-

lenging high-dimensional distributions. The Gibbs sampler

was chosen as an MCMC utilization method, because it is

more suitable to DAG structures [33]. Furthermore, a Gibbs

sampler can allow for convergence in reasonable computa-

tion time and its implementation code is widely available in

the academic community (e.g., WinBUGS [35]).

Fig. 1 An example BN consisting of 6 binary nodes with states True

or False each
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4.2 MCMC and Gibbs sampling

Before describing the Gibbs sampler, a few introductory

comments on Markov Chains are provided. Since Markov

Chains by principle contain the concept of time, they used

to be mostly associated with applications of data mining

and pattern recognition which directly encompass this

dimension, such as speech recognition and time series

analysis [36]. However, Markov Chains could also be

applied to BN search process, where each time step denotes

a candidate network structure that is evaluated. In the

approach presented, a Markov chain is designed where

each state is a full joint instantiation of the distribution (i.e.,

values are assigned to all features of the network). Hence, a

transition in time is a transfer from one joint instantiation

to another. The target sampling distribution is the posterior

joint distribution P(x|e) where x is the class feature and e is

the set of evidence features. It is typically the unknown that

is to evaluate. Let Xt
i denote the value of a random variable

Xi at time (or step) t, and let the state space refer to the

range of possible Xi values. This random variable is a

Markov process if the transition probabilities between

different values in the state space depend only on the

random variable’s current state, that is:

p Xi
tþ1 ¼ sjjXi

0 ¼ sl; . . .; Xi
t ¼ sk

� �
¼ p Xi

tþ1 ¼ sjjXi
t ¼ sk

� �

In other words, for a random variable to be considered a

Markov process, the only information about the past

needed in order to predict the future is the current state of

it. Any knowledge about the values of earlier states does

not affect the transition probability. A Markov chain refers

to a sequence of random variables generated by a Markov

process. A particular chain is defined most critically by its

transition matrix P(j ? k), which is the probability that a

process at state space sj moves to state sk in a single step,

that is:

Pðj! kÞ ¼ p Xi
tþ1 ¼ skjXi

t ¼ sj

� �

For reasons of readability, the notion of Xt
i into Xt shall

be simplified to denote that a random variable X takes a

specific value at time t. Let pjðtÞ ¼ pðXt ¼ sjÞ denote the

probability that the chain is in state j at time t, and let p(t)

denote the row vector of the state space probabilities at step

t. The chain starts by specifying a starting vector p(0).

Often, all the elements of p(0) are zero except for a single

element of 1, corresponding to the process starting in that

particular state. As the chain progresses, the probability

values get spread out over the possible state space. Using

matrix notation, one can define the probability transition

matrix P as the one whose element (i, j) denotes the

P(i ? j) transition kernel. The probability that the chain

has state value si at time (or step) t ? 1 is given by:

pðt þ 1Þ ¼ pðtÞP ¼ ðpðt � 1ÞPÞP ¼ . . . ¼ pð0ÞPtþ1

In other words, as the above equation implies, a Markov

chain can reach a stationary (final) distribution p*,

regardless of the selection for the initial distribution

parameters. In order to explain this more systematically,

consider a random process in which the state S0 is

initialized according to an initial distribution p0. On each

time step t, with probability c, the chain is ‘stopped’ and

outputted the current state St. Moreover, with probability

1–c, a state transition step is taken and sample St?1

according to the transition probabilities p(St?1|St). Since

the number of steps T is distributed according to a

geometric distribution with parameter (1 - c), the

random state that is generated by this process will also

be distributed according to p.

A straightforward method of approaching this distribu-

tion includes sampling. While there are numerous sampling

strategies, the Gibbs sampler [33] is well suited for DAGs,

as shall be described in the next paragraphs.

4.3 Gibbs sampler

The main notion of this methodology is that only univariate

conditional distributions are taken into account, that is,

distributions where all of the random variables except for

one are assigned fixed values. The reason for the above

consideration lies to the fact that such conditional distri-

butions are more straightforward to simulate than complex

joint distributions and usually have simpler forms. To

introduce the Gibbs sampler, consider a bivariate random

variable (x, y) and suppose the computation of one or both

probabilities, p(x) and p(y) is requested. The idea behind

the sampler is that it is far easier to consider a sequence of

conditional distributions, pðxjyÞ and pðyjxÞ, than it is to

obtain the probability by integration of the joint density

p(x, y), for exsample, pðxÞ ¼ pðx; yÞdy. The sampler starts

with some initial value y0 for y and obtains x0 by generating

a random variable from the conditional distribution

pðxjy ¼ y0Þ. Then, the sampler uses x0 to generate a new

value of y1, drawing from the conditional distribution based

on the value of x0, pðyjx ¼ x0) and so forth. It proceeds as

follows:

xi� pðxjy ¼ yi�1Þ
yi� pðyjx ¼ xiÞ

Repeating this process k times generates a Gibbs

sequence of length k, where a subset of points (xj, yj) for

i� j�m\k are taken as the simulated draws from the full

joint distribution.

To obtain the desired total of m sample points (here each

‘point’ on the sampler is a vector of the two parameters),
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one samples the chain (1) after a sufficient burn-in process

(i.e., a number of initial samples to be removed due to

removal of the bad effects of the initial sampling values)

and (2) at set time points (say every n samples) following

the burn-in. The Gibbs sequence converges to a stationary

distribution that is independent of the starting values, and

by the principle of MCMC, this stationary distribution is

the target distribution to simulate [34].

5 Methodology description

As mentioned above, one critical challenge is that in the

occurrence of high-dimensional input vectors, the set of

plausible network models is large; thus, a full compari-

son of all the posterior probabilities associated to the

candidate models becomes infeasible. A solution to this

can be grounded on the MCMC method and its variation,

namely the Gibbs sampler. Note, however, that a direct

application of the above algorithm for BN estimation

within the heart sounds domain faces limitations, due to

the high dimensionality of the data where the number of

features is analogous to the number of available obser-

vations. This implies that the variance in the values

taken by each variable is high and this phenomenon may

prohibit producing independent uniform samples. The

suggested novel MCMC sampling framework, shown in

Fig. 2, can overcome this limitation. Initially inspired by

the work of [34], which proposed the use of an initial set

of 10–20 dissimilar but high-scoring BN [as regards to

the probability of the network structure S given the input

data D, p(S|D)], could be used for calculating the

Bayesian posterior probability distribution of all features.

The present approach is different than the previous one

in two major points: the former deals with the fact that

considering the top-k-ranked networks would result in

obtaining very similar network structures and therefore,

would result in having a set of distributions with limited

variation. The reason is that when using traditional

scoring algorithms, such as K2 [30] or Bayesian Scoring

Method [31], each candidate network is produced from

the previous, most-likely one by performing simple

graph operation such as arc additions, removals or

reversals. One possible solution would be to consider

multiple and parallel search implementation, but this

could create an extra computational overhead. The latter

aspect that this framework differs is the orientation

toward classification, which is not present in traditional

BN approaches. The approach of [34] performs Bayesian

inference on the class feature given the set of input

variables having simulated generic network structures

that do not consider the class node as a special one. The

proposed suggestion focuses on creating simple and

straightforward BN structures which are suitable for the

classification process (since classifying a heart sound is

the final goal). Such classification-oriented network

structures are constructed using the Tree-Augmented

Naı̈ve Bayes (TAN) algorithm [32]. By definition, the

TAN algorithm creates networks where the class node is

a parent of all features nodes. The rest of the input

features form a traditional BN among them in which

each node has one parent at most, in order to retain the

structure and the CPD simple. Furthermore, compared to

the traditional BN-learning algorithms, the TAN meth-

odology can produce networks approximately 50–100

times faster than the BN approach, depending on the

number of input features and the number of states each

feature has. Finally, TANs are considered more appro-

priate for classification than both BNs and the Naı̈ve

Bayes approach. This conclusion is attributed to the

structural characteristics of the former, which considers

the class node as a parent of all other nodes (as Naı̈ve

Bayes does) but also considers features as not to be

conditional independent given the class node, a fact that

is non-realistic in a plethora of domains.

From the samples drawn from a set of different TAN

structures, the posteriors after convergence can be

obtained, to then determine the probability estimates of the

model in a straightforward manner. Despite the fact that the

inferred high-scoring TAN structures are disjoint (i.e.,

cannot be combined into one network structure), they can

all be combined independently to the underlying proba-

bility distribution. Hence, all of these network structures

are sampled to estimate the probability distribution accu-

rately. The important element of this methodology is the

use of fast-learned TAN structures and a rank ordering

among them.

The following Fig. 2 presents a flowchart of the pro-

posed methodology, showing its above-mentioned main

components: TAN learning phase, Gibbs sampling phase

and finally, convergence phase.

5.1 TAN phase

Based on the following process, a set of 10 TAN networks

structures were obtained:

1. Built a Naı̈ve Bayesian structure where the class node

C is a parent to all feature nodes Xi and all feature

nodes are not connected with each other.

For each pair of different features Xi and Xj, compute the

conditional mutual information given the class IðXi; XjjCÞ,
using the formula given below, i.e.:
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I Xi; XjjC
� �

¼
X

Xi;Xj;C

p Xi;Xj;C
� �

log p Xi;XjjC
� �� �

p XijCð Þp XjjC
� �

Build a complete, undirected graph to connect all

features and use IðXi; XjjCÞ to weight all arcs.

2. Build a maximum-weighted spanning tree.

3. Transform the resulting undirected tree to a directed

one by choosing a root feature and setting the direction

of all edges to be outward from it.

For maximizing the performance of TAN, a feature

selection algorithm was applied based on SVM [37] and

eliminated the features that scored below 0.1, thus

achieving a mean value of 40–60 % reduction in the

number of input features for the TAN learner. According to

the authors of the aforementioned article, feature selection

by SVM is more beneficial than other wrapper approaches

such as information gain and odds ratio [38] when being

applied in high-dimensional datasets. The different TAN

structures were obtained by choosing different features as

root, in the 5th step of the previously mentioned TAN

algorithm. As mentioned above, an ordinary Gibbs sampler

chooses features at random and then samples a new value

from the estimated posterior of the neighboring variables.

Friedman [4] argued that sampling from the space of total

orders on variables rather than directly sampling DAGs

was more efficient than application of ordinary MCMC

directly in random manner. Since the Gibbs sampler also

samples the new value of a feature based on the parent

variables, an ordering of the rank of the TANs based on

their scores was applied. The score of each network S is

calculated as the probability of S given dataset D, and

p(S|D) is given by the following formula [39]:

p SjDð Þ ¼
Yn

i¼1

Yqi

j¼1

ri � 1ð Þ!
Nij þ ri � 1
� �

!

Yri

k¼1

Nijk!

where n equals to the number of features; ri denotes the

number of values in the ith feature; qi denotes the number

of possible different value combinations the parent features

can take; Nij depicts the number of rows in data that have

jth value combinations for parents of ith feature; and Nijk

corresponds to the number of rows that have kth value for

the ith variable and which also have jth value combinations

for parents of ith variable

Note that other graph-scoring metrics could be used as

well, such as the BIC-TAN measure, proposed by [40]. The

applied scoring metric was chosen because it is imple-

mented in a variety of programming languages and is freely

available.

5.2 Gibbs sampling phase

For the Gibbs sampling phase, uniform prior distributions

for all the features in the domain need to be defined.

Instead of applying random initial state of the network, a

multivariate Dirichlet distribution was chosen, inspired by

[33]. The initial distribution of the states of nodes in the

network was assigned by using the density function. It was

estimated after smoothening of the histogram of normal-

ized feature data. Since all nodes have parent(s), sampling

was made from the conditional distribution of their TAN.

Similarly, n independent samples were drawn from the

target distribution P(x). The samples collected were plotted

using a histogram with n bins as depicted in Fig. 2 above.

The probability density function P(x) of a continuous fea-

ture was approximated by smoothening of the histogram.

Fig. 2 The flowchart of the

proposed methodology,

showing its main components:

TAN learning phase, Gibbs

sampling phase and finally,

convergence phase
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5.3 Convergence phase

Convergence is the process of reaching a stationary prob-

ability distribution. The initial phase of the convergence is

called the ‘burn-in’ phase. For the proposed approach,

multiple TAN structures were fed to a parallelized series of

Markov Chains, in order to obtain a large number of

samples from the entire input space of the domain. Recall

that each Markov Chain connects states of the network

instantiation and sampling process. In other words, if S0

represents the first instantiation of features (X1 = x1,

X2 = x2, …, Xn = xn), then a new value x1 for feature X1

can be sampled using p(X1 = x1, |X2 = x2, …, Xn = xn). In

similar manner, one can sample the remaining new values

for features X2, X3 … Xn until a new state S1, instantiated

as: X1 ¼ x01;X2 ¼ x2; . . .; Xn ¼ xn0
� �

. In the following

Fig. 3, a sample Markov Chain is depicted for a mockup

TAN structure, with two features, each being binary. The

chain represents four states for each instantiation of fea-

tures X1 and X2.

Throughout the process of multiple chain runs, samples

are exchanged between the chains and the overall samples

of a number of variables in the top of the specified order

are monitored. When the sample values do not exceed a

variation threshold (manually defined to 0.01) after a large

number of iterations, convergence is assumed. Upon con-

vergence on the stationary distribution, the process of

classification of a previously unseen example is straight-

forward. Only the probability of the class c given evidence

e (expressed as an input vector of the considered feature

values) is computed, calculated as p(c|e) and classify it to

the most probable class.

6 Data and preprocessing

The dataset used for a first application and validation of the

proposed methodology consisted of 198 heart sound signals,

which have been acquired from both healthy medical cases

and pathological ones having one of the following four fre-

quent and severe heart valve diseases: aortic stenosis (AS),

mitral regurgitation (MR), aortic regurgitation (AR) or

mitral stenosis (MS). A heart sound signal from a healthy

medical case has the form shown in the upper part of Fig. 4. It

consists of four main components: (a) the first heart sound

(S1), which is generated by the nearly simultaneous closure

of the mitral and the tricuspid valve after the return of blood

from the body and the lungs; (b) it is followed by the systolic

phase; and then (c) the second heart sound (S2), which is

generated by the nearly simultaneous closure of the aortic

and the pulmonic valve as the blood is pushed to the body and

the lungs; and finally, (d) the diastolic phase [4, 41]. Most

heart diseases generate additional components in the heart

sound, from which they can be diagnosed. The valve diseases

correspond to pathological functioning of one of the four

valves of the heart (aortic, mitral, tricuspid, pulmonic), due

to either stenosis (resulting in blood flow reduction) or

regurgitation (problematic closure leading to back flow of

blood). Valve diseases generate additional noise compo-

nents, referred to as murmurs, in the systolic phase (systolic

murmurs) or/and the diastolic phase (diastolic murmurs),

having the form shown in the lower part of Fig. 4. With

respect to the above-mentioned four valve diseases dealt

with in this paper, AS and MR generate systolic murmurs,

while AR and MS generate diastolic murmurs [4, 22, 41].

In particular, 38 of the heart sound signals of the dataset

were healthy, while the remaining 160 were pathological:

41 from patients with AS, 43 from patients with MR, 38

from patients with AR and 38 from patients with MS.

It should be pointed out that the heart sounds acquired

using a stethoscope are influenced considerably by

numerous factors related to the acquisition process, such as

the type of stethoscope used, the type of sensor that the

stethoscope has (e.g., microphone, piezoelectric film, etc.),

the stethoscope use mode (e.g., bell, diaphragm, extended),

the filtering applied to the heart sound signals (e.g., anti-

tremor filter, respiratory sound reduction filter, etc.), the

way the stethoscope is pressed on patient’s skin (firmly or

loosely), the patient’s position (e.g., supine position,

standing, squatting), the auscultation areas (i.e., apex,

lower left sternal border, pulmonic area, aortic area), the

medicines that the patient is taking, etc. A big problem is

that these factors cannot be controlled in the everyday

medical practice, adding high levels of noise to the

acquired heart noise signals (i.e., these factors are gener-

ating additional components), making the detection of

various heart diseases and pathological conditions from

Fig. 3 An example Markov Chain for a mockup TAN structure—

Each feature is instantiated to either true (highlighted circle) or false

(non-highlighted circle) at each state
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these heart sound signals even more difficult. Therefore, an

effective system for the diagnosis of heart diseases from

heart sounds should cope with the high level of noise that

this problem generates. So in order to make this research

more realistic, it was decided to create a ‘global’ and

representative dataset (and not use one of the publicly

available datasets), including ‘heterogeneous’ heart sounds

recorded with various different acquisition methods and

values of the above factors. Such a dataset is much more

‘difficult’ to cope with than a ‘homogeneous’ one (in which

all heart sound have been recorded using the same acqui-

sition method and values of the above factors), however, it

enables a more realistic investigation of the performance of

the proposed methodology. For creating this dataset, heart

sounds from several different heterogeneous sources were

combined: educational audio cassettes, audio CDs, CD

ROMs, files of existing heart sound databases, etc., which

had been recorded with various different acquisition

methods and values of the above factors, and then had been

diagnosed by experienced cardiologists and classified to

one of the above five heart health conditions.

Initially, a preprocessing of these heart sounds was per-

formed, in order to remove noise and extract features from

them. The preprocessing method is described in detail in

[4, 28]. It consisted of three phases. In the first phase, the

segmentation of the heart sound signal was performed; in each

signal, the cardiac cycles were detected by locating the S1 and

S2 peaks. In the second phase, for each of the segmented heart

sounds produced in the first phase were calculated the standard

deviation of the duration of all the heart cycles it includes, the

standard deviation of the S1 peak values of all heart cycles, the

standard deviation of the S2 peak values of all heart cycles and

the average heart rate; these values were the first four features

(F1–F4) of the feature vector of each heart sound signal. In the

third phase, the rest of the features used for classification were

extracted. For this purpose, for each heart sound signal, two

mean signals were calculated for each of the four structural

components of the heart cycle, namely two signals for the S1,

two for the systolic phase, two for the S2 and two for the

diastolic phase. In particular, the first of these signals focused

on the frequency characteristics and was calculated as the

mean value of each component, after segmenting and

extracting the heart cycle components, time warping them and

aligning them. The second signal focused on the morpho-

logical time characteristics and was calculated as the mean

value of the normalized average Shannon Energy Envelope of

each component, after segmenting and extracting the heart

cycles components, time warping them and aligning them.

The second S1 mean signal was then divided into 8 equal parts,

for each part, the mean square value was calculated and the

resulting 8 values were used as features (F5–F12). Similarly,

24 features for the systolic period (F13–F36), 8 features for S2

(F37–F44) and 48 features for the diastolic period (F45–F92)

were calculated (the number of features per component was

decided taking into account the time duration of each: for

longer components more features were calculated). Finally,

the systolic and diastolic phase components of the first mean

signal were passed from four band-pass filters: (a) a

50–250 Hz filter providing its low-frequency content, (b) a

100–300 Hz filter providing its medium-frequency content,

(c) a 150–350 Hz filter providing its medium–high-frequency

content and (d) a 200–400 Hz filter providing its high-fre-

quency content. For each of these 8 outputs, the total energy

was calculated and was used as a feature in the heart sound

vector (F93–F100). The above preprocessing produced for

each heart sound signal a feature vector consisting of 100

components. These 198 feature vectors were used for the

validation of the proposed methodology presented in the fol-

lowing section.

7 Experimental results

The experimental part of the study is organized as follows:

A. Initially, a broad classification of heart sounds as

normal–healthy (NRM) or sick–unhealthy (SCK) was

performed.

Fig. 4 Heart sound signals from a healthy heart (upper part); Heart

sound signals from a pathologic heart generating systolic and diastolic

murmurs (lower part)
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B. The inferred instances that were predicted as SCK

were further classified as having systolic (STL) or

diastolic (DTL) murmur.

C. Finally, for each of the aforementioned two classes

formed in B, there was further classification into two

sub-classes corresponding to aortic or mitral origin of

murmurs: the heart sound signals classified as having

systolic murmur (STL) were further classified as aortic

stenosis (AS) or mitral regurgitation (MR) cases;

similarly, the ones classified as having diastolic

murmur were further classified as aortic regurgitation

(AR) or mitral stenosis (MS) cases.

Results were also compared against other well-known

alternative classification algorithms that have previously

been referred to as having provided ‘state-of-the-art’

results in the heart sounds diagnosis domain. In particular,

the performance-proposed methodology was evaluated

against Naı̈ve Bayes, Decision Trees, Neural Networks

(with Radial Basis Functions) and k-Nearest Neighbor

(k = 3) for the same ‘difficult’ dataset, using for all a

10-fold cross-validation approach. This approach is regar-

ded by the relevant literature as the most appropriate for

the evaluation of classification performance. For instance,

Kohavi [42] compared numerous approaches for evaluating

classification performance, both cross-validation and

bootstrap (sample with replacement) ones, and concluded

that 10-fold cross-validation is the best approach, as it

tends to provide less biased accuracy estimations. The

RapidMiner� data mining suite [43] was used for imple-

menting both the proposed methodology and the alternative

classification algorithms.

7.1 Discrimination between healthy and unhealthy

signals

From a medical expert’s perspective, the accuracy of dis-

crimination between healthy–normal and unhealthy–sick is

of major importance. Due to the significance of this deci-

sion, the following cases have to be distinguished:

(a) The classification result is sick and the patient was

actually sick. In such a case, classification is correct

and these cases are labeled as True Positives (TP).

(b) The classification result is normal and the patient is

actually healthy. Similarly, such a classification is

correct and these cases are labeled as True Negatives

(TN).

(c) The classification result is sick and the patient is

actually healthy. In such an erroneous case, the

classification is incorrect, and these cases are labeled

as False Positives (FP).

(d) The classification result is normal and the patient is

actually sick. Similarly, in such a case, the

classification is incorrect, and these cases are labeled

as False Negatives (FN).

The following table (known as confusion matrix) sum-

marizes the above descriptions:

Predicted class Actual class

Sick Normal

Sick TP FP

Normal FN TN

Since identification only of the percentage of the cor-

rectly identified instances (TP ? TN) is not indicative, and

two additional metrics of the success of the classification

process are required:

(a) True Positive Rate (TPR): the percentage of sick

instances correctly classified as sick:

TPR ¼ TP

TPþ FN

(b) False Negative Rate (FNR): the percentage of sick

instances incorrectly classified as healthy:

FNR ¼ FN

TP + FN

The anticipated classification outcome is the one that

does not erroneously classifies as healthy a patient with a

heart disease. Therefore, focus is particularly placed on the

performance of the proposed methodology in situations

where sick patients were identified as healthy (FPR), and

this can be plotted against TPR in order to produce the

widely used ROC (Receiver Operating Characteristic)

curve, which is shown in Fig. 5. This curve is a very

good visualization of classification performance. Robust

classifiers are expressed by ROC curves which retain high

values of TPR for most of the horizontal axis area (FPR).

The ROC curve is calculated according to the following

process:

I. The test instances are sorted according to the proba-

bility of belonging to the healthy class, in increasing

order.

II. Select each instance, respectively, starting from the

instance with the lowest rank:

A. Assign a label to it and to all other instances that are

ranked above it to the healthy class.

B. Calculate the TP, FP, TN, FN and FNR, TRP metrics

as mentioned above.

C. Plot the FNR, TPR values

III. Repeat 2 until the top-ranked instance is selected.
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The above ROC curve shows that the method presented

is capable of classifying more that 87 % of the instances

correctly. Moreover, the results of the proposed method-

ology are presented, as well as the above-mentioned

alternative classifiers utilizing the F-measure, that is, the

harmonic mean of precision P and recall R:

P ¼ TP

TPþ FP
R ¼ TP

TPþ FN
F ¼ 2PR

Pþ R

Additionally, two metrics that originate from the domain

of statistical analysis of classification models were

incorporated, in order to further evaluate classification

performances:

7.1.1 Root mean squared error (RMSE)

The RMSE E of an algorithm is calculated using the

equation:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

j¼1

ðPj � TjÞ2
vuut ;

where Pj is the value that algorithm forecasted for the sample

j (from a set of examples) and Tj is the value of the ‘actual

class’ for the j-th example. For an ideal classification,

Pj = Tj and E = 0. So, the RMSE indicator varies from 0 to

infinity, with 0 to correspond to the ideal classification.

7.1.2 Root relative squared error (RRSE)

The RRSE E of an algorithm is calculated by the equation:

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1

ðPj � TjÞ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1

Tj � 1
n

Pn

j¼1

Tj

 ! !2
vuut

;

where again Pj is the value that algorithm forecasted for the

sample j and Tj is the value of the ‘actual class’ for the j-th

example. For an ideal classification, Pj = Tj and E = 0.

So, the RRSE indicator varies from 0 to infinity, with 0 to

correspond to the ideal classification.

The results of the first experimental phase (i.e., classi-

fication of heart signals as healthy–normal or unhealthy–

sick) measured in F-measure ratio are shown in Fig. 6.

The results illustrate that the proposed MCMC meth-

odology shows a good classification performance (85,

65 %) for this heterogeneous and ‘difficult’ dataset in this

first phase of diagnosis, and performs better than all other

alternative methodologies, providing a gain between 3 and

15 % in certain cases. Moreover, Fig. 7 presents the RMSE

and RRSE metrics for each classification algorithm. Again,

MCMC Bayesian inference projects a substantially lower

error rate for both RRSE and RMSE metrics, which indi-

cates more robust classification.

7.2 Discriminating between systolic and diastolic

murmurs

Proceeding to a more detailed classification, the healthy heart

sounds were next classified as having systolic or diastolic

murmurs, and the results (F-measure) are presented in Fig. 8,

while the statistical error metrics are presented in Fig. 9.

It should be remarked that the MCMC in this more

detailed classification as well exhibits a better performance

than all the other alternative methodologies. This could be

attributed to the elimination of non-informative features

from the TAN step of the proposed methodology and due

to the convergence attribute of the MCMC process. Addi-

tionally, in the ‘Appendix,’ the best scoring TAN structure

for this more detailed classification is available as obtained

from the MCMC approach. From the plethora of initial

features, the weighting of features using a SVM classifier

has resulted in producing only a small subset of them (20)

on which the classification is based. This reduction on one

hand caused significant improvement of the MCMC step in

terms of computational complexity. On the other hand, it

shows to the medical experts in a visualized and easy-to-

understand manner on which characteristics of the heart

signals the classification has been based on, which is highly

beneficial and enhances the acceptability of these tools.

Fig. 5 ROC curve for the Healthy/Unhealthy experiment
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Fig. 6 Performance of the proposed MCMC methodology and the

alternatives for the discrimination between Healthy and Sick heart

signals
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7.3 Distinguishing between AR-MS and AS-MR

diseases

The final round of experimental evaluations proceeds to

even higher diagnostic detail and focuses on identifying the

exact heart disease (problem of aortic or mitral valve).

Note that as mentioned, when the heart murmur is diastolic,

the patient could suffer from either aortic regurgitation

(AR) or mitral stenosis (MS); when the heart pulse is

systolic, the disease can be either aortic stenosis (AS) or

mitral regurgitation (MR). For the former case, results are

tabulated in Figs. 10 and 11. MCMC is again the most

efficient approach and outperforms all other alternative

approaches. As regard to the latter case, the results are

shown in Figs. 12 and 13, respectively. It is observed that

MCMC still exhibits the highest classification perfor-

mance, which outperforms the other alternative approaches

by a varying percentage of 0.5–15 %.

8 Conclusions

The research presented in this paper focuses on a highly

important part of an ICT-based assistive environment for the

remote home healthcare monitoring of the elderly, the dis-

abled and also patients with various chronic diseases: a

component for on-line screening of the numerous signals
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Fig. 8 Performance of the proposed MCMC methodology and the
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murmurs

0.00 0.20 0.40 0.60 0.80 1.00

MCMC Bayesian Inference

C4.5 Decision Trees (C45)

Naïve Bayesian Classifier (NB)

Radial Basis Functions (RBF)

K-Nearest Neighbor (KNN)

MCMC 
Bayesian
Inference

C4.5 Decision 
Trees (C45)

Naïve

Classifier (NB)

Radial Basis 
Functions 

(RBF)

K-Nearest 
Neighbor 

(KNN)

RRSE 0.574 0.653 0.875 0.768 0.693

RMSE 0.115 0.176 0.212 0.198 0.165

Systolic vs. Diastolic (RMSE,RRSE)

Bayesian 

Fig. 9 Error rates for the

proposed MCMC methodology

and the alternatives measured in

RMSE and RRSE for the

Systolic–Diastolic murmurs

discrimination

Univ Access Inf Soc (2014) 13:73–88 85

123



generated in the houses of the supported people in order to

identify abnormal ones that require some medical action and

produce notifications to authorized medical personnel. In

order to enable cost-effective and sustainable large-scale

remote health monitoring for the elderly, chronically ill and

disabled at home, it is critical to develop capabilities of

automating the screening of the numerous signals generated

and identify abnormal ones, reducing the required human

effort and associated costs. This paper addresses this need. It

proposes a methodology for the automatic screening of heart

sound signals acquired in home care context, which can,

however, be applied to many other similar types of bio-sig-

nals generated in assistive environments. It is based on a

novel Markov Chain Monte Carlo (MCMC) Bayesian

Inference approach, which estimates conditional probability

distributions in structures obtained from a Tree-Augmented

Naı̈ve Bayes (TAN) algorithm. The proposed methodology

can handle datasets characterized by numerous continuous

input features and limited training data; it addresses the

inherent limitations and challenges of using BN for such

medical diagnosis problems. It enabled a highly detailed

diagnosis of heart sound signals including (1) classification

as healthy or unhealthy, (2) classification of unhealthy ones

as having systolic or diastolic murmurs, and then, (3) clas-

sification of both groups as being of aortic or mitral origin.

The findings of this first application showed a good perfor-

mance in a highly heterogeneous and difficult dataset, which

is higher than the most widely used alternative classifiers.

The proposed methodology can be very well incorporated in

ICT-based home-assistive environments: the electronic

stethoscope can be a small wearable device, which is wire-

lessly linked to a home station that can transmit the acquired

heart sound signals to the nearest health center or hospital

through fixed line or mobile phone, in order to be processed

there. It is argued that if in the context of home-assistive

environments some of the heart sound acquisition factors are

controlled (e.g., type of stethoscope/sensor, stethoscope use

mode and filtering, patient’s position and auscultation area)

and more training data is available, higher performance

levels can then be achieved. The proposed approach can be

used for other similar types of signals generated in home-

assistive environment contexts, in order to identify patho-

logical situations that need medical action. Further research

is required in this direction.
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Fig. 10 Performance of the proposed MCMC methodology and

alternatives for discrimination between AR–MS for Diastolic
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Fig. 11 Error rates for the proposed MCMC methodology and

alternatives measured in RMSE and RRSE, for the AR–MS Diastolic

experiment
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Appendix

See Fig. 14.
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