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Abstract

A new efficient statistical test data compression method,
suitable for IP cores of unknown structure with multiple scan
chains is proposed. Huffman, which is a well known fixed-to-
variable code, is used in this paper as a variable-to-variable
code. The pre-computed test set of a core is partitioned into
variable-length blocks, which are then compressed by an effi-
cient Huffinan-based encoding procedure with a limited num-
ber of codewords. For increasing the compression ratio, the
same codeword can be reused for encoding compatible blocks
of different sizes. Further compression improvements can be
achieved by using two very simple test-set transformations. A
low-overhead decompression architecture is also proposed.

1. Introduction

The extensive use of pre-designed and pre-verified cores
in contemporary Systems-on-a-Chip (SoCs) makes their test-
ing an increasingly challenging task. The testing problem is
further exacerbated by the limited channel capacity, memory
and speed of Automatic Test Equipments (ATEs). Embedded
testing overcomes these difficulties by combining ATE capa-
bilities with on-chip integrated structures. Specifically, the
cores' test sets are stored compressed in the ATE and, during
testing, are downloaded and decompressed on chip.

The structure of /ntellectual Property (IP) cores is often
hidden from the system integrator. In such cases, cores are
only accompanied by a pre-computed test set, and neither
Automatic Test Pattern Generation nor fault simulation can
be performed for them. Several methods have been proposed
for testing IP cores of unknown structure. [2, 13, 20] embed
the pre-computed test vectors in long, on-chip generated,
pseudorandom sequences, reducing that way the test data
volume significantly, with the cost of long test application
times. To reduce both test-data volume and test-application
time, many methods encode directly the test set using various
compression codes like Golomb [3, 4, 26], alternating run-
length [5], FDR [6, 23], statistical codes [8, 11, 12, 14], nine-
coded-based [29], and combinations of codes [24]. Compres-
sion can be performed on the difference vectors instead of the
actual test vectors but expensive cyclical shift registers
should be incorporated in the system, or the scan chains of
other cores must be reused.

Test application time can be further reduced by exploiting
the multiple scan chains of cores. Several approaches have
been proposed towards this direction, which make use of
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combinational continuous flow decompressors [21], linear
decompressors [1, 17], combinations of linear and non-linear
decoders [16, 18, 30], the RESPIN architecture [7], the peri-
odic alterable MUXs architecture [10], adaptive encoding
[22], mutation encoding [25], and dictionaries [15, 19, 28,
31, 32]. [27], like [26, 5, 24] for single-scan-chain cores,
reduces both test data volume and scan power.

Due to their high efficiency, statistical codes have re-
ceived increased attention in the literature. Huffman is the
most effective statistical code since it provably provides the
shortest average codeword length. Its main problem is the
high hardware overhead of the required decompressors. To
alleviate this problem, selective Huffman coding was pro-
posed in [12], which significantly reduces the decoder size by
slightly sacrificing the compression ratio.

In this paper we propose a statistical compression method,
which is based on Huffman coding of variable-length test-set
blocks, and is suitable for IP cores of unknown structure with
multiple scan chains (the applicability to single-scan-chain
cores is straightforward). The encoding is performed in a
selective manner, i.e., some blocks of the test set are left un-
encoded. Also, the generated codewords are reusable, in the
sense that they can encode compatible blocks of different
sizes. Two simple transformations are furthermore presented
for improving the statistical properties of the test set before
compression. The proposed approach is properly designed so
as the hardware of its decompessors to be kept low.

2. Motivation

Let T be the test set of an IP core. T, which is of size
| 7| (in bits), is partitioned into | T|// blocks of length 1,
called hereafter test set parts or data parts. Each data part
contains 0, 1 and 'x' bits, and is compatible with one or more
fully specified blocks generated by substituting its 'x' bits
with all possible combinations of 0s and 1s. We call these
fully specified blocks, distinct blocks. According to Selective
Huffman coding [12], the m distinct blocks that are compati-
ble with most of the data parts, are Huffman encoded (m is
defined by the designer and is much smaller than the volume
of all possible distinct blocks). Each data part is either en-
coded by the codeword generated for a compatible distinct
block (if such a distinct block exists) or remains unencoded.
In case that a data part is compatible with more than one en-
coded distinct blocks, the codeword of the most frequently
occurring block is used for its encoding.

Assuming that the number of encoded distinct blocks m
remains constant, the effectiveness of Selective Huffman
coding is affected by block size / in two contradictory ways.
As [/ increases, the test set is partitioned into fewer and larger
data parts, and thus fewer codewords are needed for its en-
coding. On the other hand, the number of data parts that
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Figure 1. Encoded data statistics for s15850

remain unencoded increases (due to the large block size,
fewer data parts are compatible with the m encoded distinct
blocks). The block size which balances these two contradic-
tory behaviors provides the best compression ratio.

For maximizing the volume of the encoded test set parts,
keeping at the same time the total number of codewords low,
variable length blocks can be utilized. For demonstrating this,
we performed 4 series of experiments using as input the test
set of s15850. In the first 3 series, we compressed the test set
utilizing single-length distinct blocks of sizes (/) 8, 16 and 32
(for each experiment series, the encoded-distinct-block vol-
ume m was set to 3, 4 and 5). In the last series of experi-
ments, variable-length distinct blocks were encoded. Specifi-
cally, the test set was initially partitioned into 32-bit data
parts and the most frequently occurring distinct block of size
32 was selected for encoding. Then, the remaining 32-bit
data parts (those that are not compatible with the selected
distinct block),were partitioned into 16-bit parts for selecting
the second distinct block (the most frequently occurring one
of size 16). Finally, the remaining 16-bit data parts were par-
titioned into 8-bit parts for selecting the rest distinct blocks
(i.e., for m=3, a 32-bit, a 16-bit and an 8-bit distinct block
were encoded, for m=4, a 32-bit, a 16-bit and two 8-bit dis-
tinct blocks were encoded, etc.). Figure 1 presents the per-
centage of test data bits that were encoded at each experi-
ment, as well as the number of codewords used (above each
bar). It is obvious that when single-length distinct blocks are
used, as / increases the total number of codewords drops rap-
idly, but so does the percentage of the encoded data bits.
When three separate block sizes are used, the percentage of
encoded data bits approaches that of the smallest single-
length-block case, with less than half the codewords.
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Figure 2. Parallel scan chains and slices

3. Proposed Encoding
3.1 Encoding Method

In the proposed approach, as test set part we consider a
whole slice or a slice portion (see Figure 2, where N, denotes
the number of scan chains, and W, the maximum scan-chain
length). Each Huffman codeword encodes a distinct block of
a specific size. In the following we present the way slices are
partitioned into smaller portions of various sizes, as well as
the way that distinct blocks are selected. For determining the
proper assignment of the test set's 'x'-bits, so as the occurrence
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frequencies of the encoded distinct blocks to be as skewed as
possible, we use the simple heuristic criteria proposed in [12].

Initially the test set is partitioned into slices according to

the scan-chain structure of the core. Each slice is also called a

2o-part of the test set. All Py-parts are considered for the se-
lection of the first distinct blocks that wjll be encoded (P-
blocks), with size equal to the number of scan chains N,
When a number of Py-blocks have been selected, each one of
the unencoded Py-parts is partitioned into two portions of
equal size, which are called P)-parts. The size of each P\-part
is equal to N,/2. In case that Py-parts cannot be partitioned
into two equal parts, then half of the P-parts are 1-bit shorter
than the rest. Again, a number of distinct P,-blocks are en-
coded, the unencoded P,-parts are partitioned into P,-parts
and some P>-blocks are encoded, the unencoded P,-parts are
partitioned into Ps-parts and so on. Finally, each of the P,,
Py, ..., Pya-blocks corresponds to some Py, Py, ..., P, -parts
respectively, where the max value is determined by the de-
signer. P,,-parts are also called primitive parts, since they
are the smallest test set parts (and P,,-blocks are the small-
est encoded distinct blocks). Note that each Pi-part has size
equal to either [N./27 or LN./2'] bits.

According to the above procedure, when a test-set's P-part
(i€[0, max], i=0 implies a whole slice) can be encoded (i.e.,
it is compatible with a distinct P-block), then the codeword
corresponding to that P-block is appended to the compressed
test set. If no encoding is possible, the P-part is partitioned
into two P -parts, which are used for the selection of the
P;;y-blocks (and thus they may be encoded by P.;-block
codewords). Although the association of each P-block with
P-parts makes the decoding process easy to implement, it is
very limiting. For that reason a slight modification of the
encoding procedure is proposed, according to which a P-part
can be encoded by the codeword of a longer P-block (i <),
provided that the first [ N,/2] or L N,/2/] bits of the P-block
are compatible with the P-part (the rest are discarded during
the decoding process). As an example, consider that each
slice is eight bits long (N,. = 8), and that one of the selected
Py-blocks is b = 00111010. The codeword of block b can be
used for encoding Py-part p = 0x11, since p is compatible
with the first four bits of b. '

In order to keep the compressed-data volume low, no in-
formation is stored about the size of the actual Pj-part en-
coded by the P-block codeword. Therefore, for determining
the P-part univocally, the following condition must be satis-
fied during the encoding prdcess:

“a Pr-block codeword can be used for encoding a Prpart, with

J>i, if the Pi-part is not the first of a larger test-set part’

In other words, each codeword is assumed to encode the
largest possible test-set part. That is, if we receive the code-
word of block b at the beginning of a slice (N,. = 8), then all
of its bits will be used and a whole slice will be generated. If,
on the other hand, we receive the same codeword at the be-
ginning of a P\-part, which is not the first of a Py-part (i.e.,
after having decoded the first half of a slice), then the first
four bits of b will be generated. Similarly, the decoding of b's
codeword at the beginning of a P,-part, which is not the
first of a Py-part or a Pj-part, will produce the first two bits
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of b. Thus, the same codeword may lead to the generation of
different number of test bits by the decompression logic, de-
pending on the stage of the decoding process. Note that the
decoded data parts do not contain 'x' bits, since the encoded
distinct blocks are fully specified.

More formally, the size of the slice portion that has already
been decoded and the size of the distinct block corresponding
to the received codeword, determine univocally the size of the
next data part to be decoded. Note that each slice can be parti-
tioned into at most 2™ primitive parts (P,,-parts), and thus
the size of a Py-part (slice) or Py-block is equal to that of 2"
primitive parts, the size of a P;-block is equal to that of grar
primitive parts, etc. Let the size of the slice portion that has
been decoded be equal to that of s primitive parts (0 < 5 <
2™y and consider a received codeword corresponding to a P
block. If s is divided exactly by 2™ then the largest data part
that can be decoded has size equal to that of the P-block cor-
responding to the received codeword. Otherwise, if s is di-
vided exactly by 2", then the size of the largest part that
can be decoded is equal to the (upper) half of the P-block
corresponding to the received codeword. In other words, the
smallest positive integer j € [i, max] is found, such that 2"
divides s exactly (this is always possible, at least for j = max).
Note that s is divided exactly by 27, when the ¢ least signifi-
cant bits of s are equal to 0. Therefore the above decoding is

very simple to implement in hardware.
Primitive D | Py P, Fy=Pr
Parts 5 |5 pits| max-i=3 _max-i=2 _max-i=1_max-i=0

ooo| 3 |2%/0-7| 22703 2'701| 2970
2001 | 2071 | 2941 21
2723|2723 | 2123 | 202
2003 | 2043 | 203 | 2043
22)4-7 | 22147 | 21145 | 2914
2%5 | 20/5 | 20/5 | 20/5

2/6-7| 2'/67 | 2167 | 2°/86
7 k=111 2077 | 2017 | 2207 | 2047
max=3 # ol decoded P -parts [ aclual decoded P -parts
Figure 3. Example
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Example. Consider a circuit with N, =64 scan chains. Each
slice of the test set is 64 bits long and it is partitioned into
2°=8 primitive parts. Hence max = 3 and each primitive part
consists of 8 bits. The test set of the circuit is encoded using
Py-, Pi-, P>-, and P;-blocks, of size equal to that of 8, 4, 2
and 1 primitive parts, respectively. In Figure 3 we present a
slice partitioned into 8 P,,-parts (0-7), as well as the values
of s, which indicate the next primitive part of the slice that
will be decoded (note that when s=000, no P,,,-part has been
decoded yet). Suppose that during the decoding process, a
codeword encoding a P,-block is received (i=1). If s=0 (000)
or s=4 (100), then s is divided exactly by 2"*“=27, and there-
fore the whole P,-block is loaded in the positions of the next
22 primitive parts (0-3 when =000, or 4-7 when 5=100). If
5=2 (010) or 6 (110), then s is not divided exactly by e
but by 2™*"'=2', and therefore the first half of the P-block
is loaded in the positions of the next 2' primitive parts (2-3
when s=010, or 6-7 when s=110). Finally, whpn s=001, 011,
101 or 111, s is divided exactly only by 2m-2=20 and thus
the first quarter of the P,-block is loaded in the position of
the next 2° primitive part (1, 3, 5 or 7, when s=001, 011, 101
or 111 respectively). Note that the portion of the P,-block

that will be decoded can be determined by examining the
voluime of consecutive least significant bits of s that are 0 (if
2 LS bits are 0 then 2° P,.-parts will be decoded, if 1 LS bit
is 0 then 2' P,,-parts will be decoded, etc). In Figure 3, for
every possible combination of s-i, we show the number of
P,.-parts, as well as the actual P,,,-parts that are decoded. m

However, the encoding of, let say, a Py-part by a Py-block
codeword right from the beginning, may prevent the encod-
ing of a larger data part (a P- or Py-part) that includes the
aforementioned Pi-part, in a subsequent step. For avoiding
this, every P, -part (i € [0, max-1]) is allowed to be encoded
by the codeword of a Py-, Py-, ..., Pi-block, only at the begin-
ning of the selection process of P -blocks. The selection
process of Pr-blocks stops and that of P;, -blocks starts when
the number of bits of the P-parts (TestBits;) that are compati-
ble with next P-block to be chosen, are fewer by a factor F
than the bits of all P, -parts (TestBits;;,) that can be encoded
by the codeword of the first P, -block to be selected, as well
as by the codewords of the already chosen Py-, Py-, ..., P
blocks (i.e., when TestBits;., = F - TestBits;). The value of
factor F is determined by the designer.

When all Py, P, ..., Pyw-blocks have been selected (their
total number m is defined by the designer), some of the P~
parts remain unencoded. Such parts are labeled as failed and
a separate Huffman codeword is assigned to all of them. In
the compressed test set, these P,,,-parts are embedded unen-
coded, preceded by the aforementioned codeword. The
Huffman tree is constructed when all Pi-blocks have been
selected, so as all occurrence frequencies to be known. An
overview of the proposed algorithm is presented in Figure 4.

1. Seti=0.

2. Find the next best Pi-block (the one compatible with most Pr-parts) and

calculate TestBirs;.

3. If i=max encode all possible P-parts using the P-block and go to 5.

4. Find the best Pui-block and calculate TestBitsi). If TestBitsi=
F-TestBits;, select the Py, i-block, and encode all possible Pj: -parts using
the Pi+1-block and the already chosen Py-,P\-,...,Pi-blocks. Also, set i=i+1.
Else, select the P-block and encode all possible P-parts using the Pi-block.

. If the number of selected distinct blocks does not exceed a predetermined

upper limit, go to Step 2.

Label all unencoded P,,,~parts as failed.

. Generate the Huffman code and produce the compressed test set.

i

-] o

Figure 4. Proposed encoding algorithm

3.2 Statistical Improvement of Test Data

In this section, we propose two test-set transformations,
which can be optionally applied before compressing the test
data, for improving their statistical properties (no structural
information of the core is required). This is achieved by in-
creasing the difference between Os and 1s in the test set. Spe-
cifically, all the bits of selected scan chains (transformation
T,) and/or the values of selected scan cells (transformation
T,) can be inverted. The transformed test set is then com-
pressed and during decompression the original test set is re-
stored by removing on the fly the transformations. For exam-
ple, suppose that for a test set, the 0-bit volume is higher than
the 1-bit volume. According to T, the scan chains with more
Is than Os (considering all test vectors) can be inverted, for
favoring the Os count. Similarly, T, can be used for inverting
a predefined number of scan cells with the highest difference
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Figure 5. Proposed decompression architecture

of 0-bits from 1-bits for all test vectors. Both transformations
improve, in most cases, the compression ratio, whereas they
impose very small hardware overhead.

4. Proposed Architecture

The proposed decompression architecture is presented in
Figure 5. Input Buffer receives the encoded data in parallel
from the ATE and shifis them serially into the Huffman FSM.
Upon recognition of a codeword, and assuming that the im-
plemented code consists of N codewords, the Huffman FSM
places on the bus Code/ndex a binary index (value) between
0 and N-1. This index indicates which codeword has been
received. Also, signal Valid Code is set to 1, and Input Buffer
is disabled until the received codeword is processed
(Stop=1). In the particular case that the codeword corre-
sponds to an unencoded data part, signal Failed is setto 1.

Distinct Block unit receives Codelndex and returns the
distinct block (or a portion of it) that corresponds to the re-
ceived codeword. Specifically, if the encoded distinct block
has size equal to that of 2 primitive parts (this size is pro-
vided by the Block Size/Enable unit), then at the outputs of
the Distinct Block unit, 2" identical copies of the first
29-Size(P,,,) bits of the encoded distinct block are generated.
The enable signals activated by the Block Size/Enable unit
ensure that only the proper positions of the Register will be
loaded with the generated data. Similarly, in case of a failed
P-part, its bits, which are received directly from the ATE
(through the Input Buffer unit), are repeated 2™ times at the
outputs of the Distinct Block unit, and are loaded in the
proper positions of the Register.

According to the proposed approach, even if a codeword
corresponds to a P-block, it may be utilized for encoding
Pisty Piszy ooy Pooc-parts (with sizes equal to that of 2",
272, 2" primitive parts). The proper decoded-part size
is determined in the Block Size/Enable unit, by a small com-
binational logic that examines the value (s) of a max-bit bi-
nary counter (s ranges from 0 to 2"*-1). s points to the next
primitive part of a slice that has not been decoded yet (see
Example in Section 11I). When the ¢ least significant bits of s
are equal to 0, then the largest part that can be decoded is a
Ppavg-part. If the received codeword encodes a P-block and
max-g < i, then the whole P-block is decoded. Otherwise, the
first bits of the Pi-block that form a P,,.,-part are decoded.
When s reaches value 2"“-1, a whole slice has been loaded
in the Register and is then transferred into the scan chains.

When transformations T, and/or T, are applied to the test
set, the Invert unit is placed between the Distinct Block unit
and the Register. It consists of at most N,. gates (one for each
scan chain), which can be either inverters (for inverting all
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test data entering a scan chain - Ty) or XOR/ XNOR gat
(for selectively inverting specific bits entering a scap Chai:s .
T,). If T, is applied, the Invert unit also incorporateg a de:'
coding logic.

5. Evaluation & Comparisons

The proposed compression method was implementeqd inC
programming language. As input we used the dynamicaily
compacted test sets generated by Mintest [9] for stuck-at
faults. The same test sets were also used in [3-6, §, 12, 14
15, 19, 21, 23-26, 28, 29, 31, 32]. The run time of om:
method is a few seconds for each benchmark circuit.

Table 1. Results of the proposed encoding (# bits

16 Scan Chains 64 Scan Chains | 128 Scan Cha
- No T+ | Th+ No T+ | Th+ No -

CIretit vanst.| 50 T |100 T{Transf] 50 T: | 100 T [Transf] 50 T,

353;?5 9776 | 9183 | 8955 | 8736 | 8267 | 8384 | 9277 TGiI.'

$9234 | 15792 (1451414049 14565 13265[ 13164 | 14493

12765

s13207] 24039 |23053(21623| 17911 [16748] 16366 | 16193

14578

sI15850) 22113 |20685]|20016| 19570 | 18161 17595 ] 18611

17354] 16562

538417 58663 |61241[59748| 59411 |64262] 63165 | 59492

64963 | 63833

538584

60291 [60101]59809] 56890 | 57309 56854 | 55612 | 55965 | 55353

In Table 1 we present the test-data compression results (# :
bits) of the proposed method for 16, 64 and 128 scan chains
and 24 selected distinct variable-length blocks (the bit vol-

umes of the original Mintest test sets can be found in Table

2). The size of primitive parts (P,,,) was in all cases equal to
8 bits. Three different compression cases are presented for
each scan-chain volume: a) compression without any trans-

formations ("No Transf."), b) compression with transforma-

tions T, and T, with 50 selected cells ("T; + 50 T,"), and ¢)

compression with transformations T; and T, with 100 se-

lected cells ("T; + 100 T,"). In almost all cases the compres-
sion improves as the number of scan chains increases. Also,
compared to the "no transformations" case, we get better
compression when T, + 50 T, are applied, whereas further
increase in the number of cells inverted by T, does not pro-
vide significant improvements. Since the hardware overhead
imposed by T, is negligible, and that of T, depends on the
number of selected cells, the total hardware overhead of the
Invert unit is limited (50-100 inverted cells are relatively few).
At first we compare the proposed approach against meth-
ods that also exploit the multiple scan chains of a core in or-
der to reduce test application time. In Table 2, comparisons
against Mintest, selective Huffman [12] (re-implemented here
for 64 scan chains), [21] and [25] are presented. We do not
compare the proposed method against [7], since several con-
ditions have to be satisfied by a core nearby the CUT, so as
the former to be used as decompressor. Also, no comparisons
are provided against approaches that use different test sets
from those used in our experiments [1, 10, 16-18, 22, 27, 30].
In column 2, the sizes of the original Mintest test sets are
provided. For the selective Huffman approach, the number of
selected distinct blocks was set to 24 and the block size to 8,
16 and 32. The best result for each core is reported in column
3 of Table 2. In columns 4-5 the best results of [21] and [25]
are presented. We note that in case of [25], apart from the
test data reported in column 4, an additional significant
amount of control data is required to be stored in the ATE
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Table 2. Comparisons against compression methods for cores with multiple scan chains

} Select. : Proposed (# bits) | Reduction % (No Transf.) over: | Reduction % (Ty+ 100 T,) over:

Circuit “;';f”' Hor, | 21| 1251 Ti+ | Min- | Select. Min- | Select.
(# bts) | g bitgy| ¥ PItS) (DI | vt | 10075 | test | mum | PU | P9 | et | mum | 21| 2SI
55378 23754 |11433 | 14220 - 8736 7611 63.2 23.6 8.6 - 68.0 334 46.5 -
59234 39273 | 19168 | 30144 - 14493 12765 63.1 24.4 51.9 - 67.5 334 57.7 -
s13207 | 165200 [28328 | 20988 | 74423 16193 14578 90.2 42 8 22.8 78.2 91.2 48.5 30.5 R0.4
s15850 | 76986 |26873 | 25140 | 26021 18611 16562 75.8 30.7 26.0 28.5 78.5 38.4 34.1 364
s38417 | 164736 [ 70954 | 85225 | 45003 | 58663 59748 64.4 17.3 31.2 -30.4 63.7 15.8 29.9 -32.8
s3B584 | 199104 | 71315 | 57120 | 73464 | 55612 55353 72.1 22.0 2.6 24.3 72.2 224 3.1 24.7
*Reduction % = [1 - (# bits of proposed / # bits of: Mintest, Select. HufT, [21].[25]) ] - 100

and then transferred to the core. Although these additional
data increase the volume of stored bits, they cannot be taken
into account in Table 2, since they have not been reported by
the authors of [25]. In columns 6-7 the best results of the
proposed method are provided when transformations T, and
T,: a) are not applied and b) are both applied (T, for 100
selected cells). In columns 8-11 (12-15) the reduction per-
centages of the proposed method without (with) test-set trans-
formations over the rest methods are reported. As we can see,
in all but one case (s38417 of [25], for which no control data
have been reported) the proposed technique performs better
than the others, with or without transformations.

Table 3. Compr. ratios of the prop. and dictionary-based methods
Circuit | Prop.| (151 | (191 [ 1281 | 291 [ 31] | 1321
s5378 63.2 - 733 | 900 | 63.2 | 61.0 | 51.2
59234 63.1 | 703 | 70.7 | 88.8 | 61.0 | 55.0 | 51.9
s13207 | 90.2 | B1.7 | 948 | 954 | 89.2 | 81.5 | 80.8
s15850 | 758 | 763 | B2.0 | 926 | 759 | 79.0 | 64.0
s38417 | 644 | 706 | 618 | 705 | 714 | 61.6 | 485
s3B584 | 72.1 | 75.1 | 73.2 | 879 | 738 | 60.0 | 67.2

In Table 3 we provide the compression ratios of the pro-
posed and dictionary-based methods that are applicable to
multiple-scan-chain cores (Compression ratio (%) = [1 - (Com-
pressed bits / Mintest bits) ] - 100). In some cases, our method
performs better than the rest, whereas in other cases it does
not. However, as we will show later, the hardware overhead
of these methods is prohibitively large.

Table 4. Prop. vs. methods for single-scan-chain cores (reduct. %)
Circuit | [3] | [4] | [S] | [6] | [8] |[12] |[[14]][23] |[24] |[26]]([29]
s5378 | - | - [34.9]38.4]33.5(28.6|18.7(33.3]|30.7]|47.9]27.6
$9234 |42.6 40.9]42.438.4(29.0[17.7[39.9 [38.0 [46.7|28.1
513207 [ 65.0 55.3[52.846.5[61.6[20.7]51.4|49.5|61.6]40.4
515850 {59.3 37.0[36.3]32.9[36.7[12.5[32.8|34.1 |47.1]25.1
538417 [36.3 9.7 137.2123.6113.11 0.2 9.7 | 0.6 {20.1] 4.0
538584 |46.8 28.5[28.9]26.3[22.6]-0.3 [25.0[26.1|35.9]12.0

43.3
58.5
45.8
35.6
384

In Table 4 we present the compressed-data reduction per-
centages of the proposed method against techniques applica-
ble to cores with a single scan chain. The compression
achieved by the proposed approach is higher than that of the
rest methods, except for the s38584 case of [14]. Note that all
these methods require long test application times due to their
inability to exploit the parallelism of the scan chains.

Selective Huffman Proposed

B Select, Huff. BS=8
B Select. Huff. BS=18
B Select. Huff. BS=32
| |8 Prop. No Transf.
B Prop. T,+50T,
O Prop. T,+ 100 T,

§

800
T00
600
500 -
400
300
200
100

0

Figure 6. Hardware overhead for 24 selected distinct blocks

For assessing the hardware overhead of the proposed
method, we synthesized three different decompressors for the
test set of s9234, by applying: a) no transformations, b) T,
and T, for 50 selected cells and c¢) T, and T, for 100 selected
cells. We also synthesized the decoder of the implemented
parallel selective Huffman approach, with (single) block size
(BS) equal to 8, 16 and 32. In all experiments, the number of
scan chains was set to 64, and the number of selected distinct
blocks to 24 (note that the decompressor size does not de-
pend on the compressed test set but on architectural parame-
ters like the number of scan chains, the number of selected
distinct blocks etc). The results are shown in Figure 6 in gate
equivalents (a gate equivalent corresponds to a 2-input
NAND gate). Observe that the transformations marginally
increase the hardware overhead of the proposed method.
Compared to the selective Huffman approach, the proposed
one imposes slightly higher hardware overhead. As far as the
approaches of [21] and [25] are concerned, their hardware
overhead is low, but, as shown earlier, their compression
ratios are much smaller than those of the proposed method.

Compared to the dictionary-based methods the hardware
overhead of the proposed approach is very small. The size of
the required dictionary in [29] is in the range of 1,187 to
9,152 bits, which is comparable to that of [19] and smaller
than those of [15] and [31]. The size of the dictionary in [32]
is in the range of 6,264 to 43,712 bits, while that of [28] is
equal to 25,600 bits. Apart from the dictionaries, extra area
will be also occupied by the decompressors of the above
techniques. Therefore, we conclude that dictionary-based
methods impose prohibitively large hardware overhead.

The hardware overhead of the single-scan-chain methods,
in gate equivalents, is: 125-307 for [3] (as reported in [8]),
320 for [5], 136-296 for [8], 203-432 for [14], 551-769 for
the main part of the decompressor in [24] and 416 for [29].
The hardware overhead of [12] is greater than that of [8].
Although cheaper in hardware, these techniques require much
longer test application times and much more data to be stored
in the ATE, compared to the proposed approach.

Table 5. Average reduction percentages of test application time

no Transf. — avg. red. % over:| T;+100 T; — avg. rgil."k over:

| Single Scan | Mintest with | Single Scan | Mintest with

r | Chain __| Multiple Scan --_'_"C:Itili Multiple Scan

~ |Prop. | 112] | Chains Prop. | [12] | Chains
2| 724 | 70.8 38.2 739 | 72.8 424
10| 548 | 57.6 62.4 56.7 | 60.6 65.1

*: Single-Scan-Chain version of the proposed method

As far as the test application time (TAT) is concerned, the
average reduction-percentages (per circuit) of the proposed
method, assuming 5 ATE channels, are shown in Table 5 (we
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considered the best cases of Table 1). We present results for r
=2 and r = 10, where r = fsy5 / fy7e. In order to illustrate the
advantage of exploiting the multiple scan chains of a core we
compare against: a) the single-scan-chain version of the pro-
posed method ("Prop.”™ columns) and b) the approach of
[12], which is applicable to cores with a single scan chain
("[12]" columns). In both cases the TAT gain is significant.
Note that the TAT gain depends on many parameters, like the
number of utilized ATE channels, the P,,-parts' size, r, etc.
The TAT benefits from the application of the proposed com-
pression method are illustrated in columns "Mintest with
Multiple Scan Chains", where we compare the proposed
technique against the parallel-loading case of the original,
uncompressed test sets (with 5 ATE channels).

6. Conclusions

In this paper we proposed an efficient compression method,
suitable for multiple-scan-chain 1P cores of unknown struc-
ture. Huffman is used as a variable-to-variable code for com-
pressing variable length blocks. For increasing the compres-
sion ratio, codeword reusability as well as two transformations
that improve the statistical properties of the original test set,
were also introduced. A simple and low-overhead architecture
was finally proposed for performing the decompression.
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