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A NEURAL NETWORK-BASED METHOD
FOR GAS TURBINE BLADING
FAULT DIAGNOSIS
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Ahbstract

Ir-. is paper artificial neural networks are used with promising
results in a critical, and at the same time, very diffieult problem
concerning the diagnosis of gas turbine blading faults. Neural
unetwork-based fault diagnosis is treated as a pattern recognition
problem, based on measurements and feature selection. Emphasis is
given to the design of the appropriate neural network architecture
and the selection of the appropriate measuring instruments, which
are of critical importance for achieving good performance (high suc-
cess rates and generalization capabilities). Initially the performance
of the classical neural network architectures, namely MultiLayer
Perceptron (MLP), Learning Vector Quantization (LVQ), Modular
MultiLayer Perceptron and Radial Basis Function (RBF), are inves-
tigated for this problem. The implemented neural network struc-
tures are trained to classify faulty and healthy patterns coming from
tweive different measuring instruments. The performance of the
above neural network structures is investigated, and the diagnostic
capabilities of the measuring instruments are examined. Next, in
order to improve the generalization capabilities, which are critical
for " specific diagnostic problem, a new multinet architecture is
de. . -ped, based on the idea of ‘majority rule’ decision. Compared
wi‘;:n-:';:he classical architectures, this new multinet architecture is
characterized by higher generalization capabilities and robustness, A
first approach to the desizn of the appropriate multinet architecture
and the selection of the appropriate measuring instruments, in order
to provide the basis of a high-performance automated diagnostic
system, is propesed. The conclusions derived are of general interest
and applicability.
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1. Inmtroduction

Development of effective gas turbine condition monitor-
ing and fault diagnosis methods has been the target of
considerable research in recent years. This is due to ihe
high cost, sensitivity, and importance of these engines for
most industrial companies. Most of this research is di-
rected towards the diagnosis of gas turbine blading faults,
because of the catastrophic consequences that these faults
can have if they are not diagnosed in time. Even minute
blading faults can rapidly grow and result in huge destruc-
tion [1-3]. Blading faults diagnosis is regarded as very
difficult problem, because of the high levels of noise in all
relevant measurements and the high interaction between
the numerous gas turbine blading rows. Therefore, it is
important to take advantage of the processing power of
modern computers, in order to provide a fast and reliable
engine condition diagnosis from available measurements
and to develop the highest possible level of intelligence and
assistance to the operation and maintenance personmuel.
The gas turbine blading fault diagnosis problem was
originally addressed in [4, 5], based on classical pattern
recognition methods. In the present paper a (NN) ap-
proach is developed for this problem. A number of differ-
ent neural network architectures are implemented for the
classification of faulty and healthy patterns, considering
twelve different measuring instruments. The first goal of
this work is to evaluate the suitability of the various (NN)
network architectures for this important and difficult di-
agnostic problem. Among the evaluated architectures are
included both the classical ones (MLP, LVQ, RBF) and a
new multinet architecture based on the idea of the ‘ma-
jority rule’ decision [6]. The second goal is to evaluate
the diagnostic abilities of the investigated measuring in-
struments for NN-based diagnosis. The above evaluations
also include the generalizing ahilities of the implementad
NIN architectures, a very important issue that has not been
examined in the original approach. The third goal of this
work is to suggest a way of selecting the most appropri-
ate NN architectures and measuring instruments in order
to provide the basis of an effective automated diagnostic
system, :
The outline of this paper is as follows: in Section 2, the
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gas turbine blading fault diagnosis problem is described,
as well as the specific faults to be diagnosed and the type
of instrumentation and measurements used. In Section 3,
the preprocessing of the measurement data is described,
from which the corresponding pattern (feature vector)
is calculated. In Section 4, the implementation of the
NN approach to the blading fault diagnosis problem is
described. In Section 5, the application of the classical NN
architectures to the gas turbine fault diagnosis problem
5 presented and the obtained results are evaluated. In
Section 6, a new multinet architecture is developed and
wvaluated. Finally, the conclusions derived from this work
ire given in Section 7.

2. The Gas Turbine Blading Fault Diagnosis
Problem

Che present work is based on data acquired from dynamic
nea  ments on an industrial gas turbine into which
fiff - at faults were artificially introduced [1]. During the
xperimental phase, four categories of measurements were
rerformed simultaneously:

1. unsteady internal wall pressure (using fast response
transducers P2 to P3)

2. casing vibration {using accelerometers Al to A6
mounted to the outside compressor casing)

3. shaft displacement at compressor bearings (using
transducer B)

4. sound pressure levels (using double-layer microphone
M)

A schematic of the gas turbine illustrating the arrange-
1ent of the measuring instruments is shown in Fig. 1.

lgure 1. Arrangement of the measuring instruments.

Five experiments were performed, testing the datum
salthy engine and a similar engine with the following four
pical small (but quite rapidly growing, as mentioned in
1e Introduction), not easily diagnosable faults:

ault-1: rotor fouling

ault-2: individual rotor blade fouling

wlt-3: individual rotor blade twisted (by approximately
ght degrees.)

ault-4: stator blade restaggering

Tests were performed at four different engine loads
ull load, half load, quarter load, and no load), both for
€ healthy engine as well as for the above four faults. At

each load, four series of time-domain data were acquired
for each instrument (two series in each of the two sampling
frequencies, | = 13 kHz and m = 32 kHz).

3. Preprocessing

Based on the conclusions of [1] and (2], the fault signatures
were initially calculated in the form of spectral difference
patterns, defined by the following expression:

P(f) = 20[log(sp(f)) — log(sph(f))] L

where P(f) is the spectral difference pattern, which is a
function of frequency f, sp(f) is the power spectrum of the
signal of the measuring instrument from a faulty engine.
and sph(f) is the signal spectrum from a healthy engine
at the same load, sampling frequency, and measurement
series. Also, according to the conclusions of [1] and 2,
the most useful diagnostic information is contained at the
harmonics of the shaft rotational frequency. This led :o
filtering out the values of P(f) at frequencies other than
the shaft rotational frequency harmonics. The resulting
pattern from this filtering, Pr(f), is referred to as the
reduced spectral difference pattern (and for simplicity.
‘pattern’, in the following), and is given by the following
equation:

Pr(f) = P(f)H(f) (2)

where H(f) = 1, if f is a rotational harmonic, and
H(f) = 0, for all other frequencies. Patterns were calcu-
lated for frequencies up to the 27th harmonic of the shaft
rotational frequency, that is to say, patterns belong to a
27-dimensional space. An example of the pattern calcula-
tion procedure described above is shown in Fig. 2 for power
spectra of unsteady pressure transducer P2.
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Figure 2. Pattern calculation procedure for power spectra
of unsteady pressure tranaducer P2.
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4. Implementation of the Neural Network
Approach

4.1 Characteristics of the Neural Network
Architectures

The NN architectures initially selected for the blading
fault diagnosis problem (MLP, LVQ, RBF) have different
structures and use different training algorithms. They all
belong to the family of [eedforward neural networks, and
also have the same input and output layer dimensions.
Input layer dimension k equals the ome of the pattern
space, that is k = 27. Output layer dimension n., equals
the number of pattern classes representing healthy and
faulty engine conditions, that is n. = 3. Each network
output neuron, when active, corresponds to a specific
engine condition. The mapping of pattern classes to output
~neurons is as shown in Table 1.

Table 1
Manpping of Pattern Classes to Output Neurons
Qutput
Neuron 1 2 3 4 5

Class | Healthy | Fault-1| Fault-2 | Fault-3 | Fault-4

Engine

In the implemented MLP structures, target values for
a pattern belonging to the ith class, ¢ = 1,2,3,4,35, are
set to 0.9 (active) for the ith output neuron and to 0.1
(inactive) for all other neurons. Use of upper and lower
threshold values was adopted in the interpretation of the
continuous MLP network outputs, in order to increase
the reliability of the classifications, but at the price of
Tower success rates. Namely, a pattern is classified to the
.th class, if the output of the ith neuron is greater than

T = 0.8 and all other neurons have activation values

below the threshold T2 = 0.2. If this is not happening
for any of the classes, the pattern is rejected, that is to
say, it cannot be reliably classified to any of the classes.
This scheme is similar to the T1&7?2 rule described in [6]
and will be referred to also as T1&7T2 in the present work.
The T1&72 scheme adopted for the classification of the
input patterns cannot deal with multiple-fault conditions.
The situation of simultaneous multiple faults has not been
considered in the work presented in this paper, since it is
highly unlikely in practice and also no training data were
available for such faults.

For reasons of simplicity and uniform interpretation
of classification results, target output values for the RBF
structures are set to those of the MLP structures. The
same holds regarding the use of the T1&T?2 classification
scheme. LVQ networks have binary output neuron transfer
functions. Output values for a pattern classified in the ith
class, are equal to 1 (active) for the ith output neuron and
to 0 (inactive) for all other neurons. Therefore, a pattern
rejection scheme based on network output values cannot
be applied in the case of the LVQ network architecture.

4.2 Selection of Training and Test Pattern Sets

In practical situations, where the cost of measurements is
high, we are very much interested in the ability of a trained
NN to generalize successfully. In order to examine the
generalization abilities of the implemented network archi-
tectures, the complete pattern set of each instrument was
divided in two complementing subsets. The first subset,
formed by 63 patterns (7 healthy plus 14 for each fault) se-
lected randomly out of the 72 patterns of the complete set,
was used as the training set, while its complement formed
by the remaining 9 patterns (1 healthy plus 2 for each
fault) was used as the test set for the specific instrument.

5. Results of Gas Turbine Fault Diagnosis with
Neural Networks

5.1 Multilayer Perceptron (MLP) Architecture

For each of the twelve measuring instruments, a three-
layered feedforward NN structure was trained to classify
patterns by means of a fast backpropagation algorithm
with epoch training, momentum, and adaptive learning
rate [7-9]. The use of more hidden layers was investigated,
but it was found that one hidden layer with dimension
h = 10 was sufficient for the specific learning tasks. The
logistic sigmoid was used as the transfer function for the
hidden and output layer neurons, because it was found to
give the best results in terms of training speed, compared
to the alternatives of hyperbolic tangent for both layers,
or a combination of hyperbolic tangent and logistic sig-
moid transfer functions. Network weights and biases for
both hidden and output layers were initialized randomly
from a uniform distribution in the interval [-0.3,0.5]. The
training procedure was considered successfully completed
when the summed square error between actual and desired
network outputs over the training set reached a predefined
error goal value. An error goal value of 0.05 has been ex-
perimentally found to be satisfactory for the specific learn-
ing tasks. A schematic diagram of the MLP architecture is
shown in Fig. 3.

Figure 3. MLP neural network architecture.

The required training times for all implemented struec-
tures were in the order of a few minutes. The classification
success rates over the training set; the test set, and the
complete pattern set for all twelve instruments using the
MLP architecture are shown in Fig. 4. It can be seen that
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Figure 4. Total classification success rates for the MLP
architecture.
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Figure 5. Classification success rates per class for the MLP
architecture.

the rates of success over the training set are very high and
reach 100% for all instruments. This is not the case when
the test set is comsidered, where success rates are poor,
varying from 33.3% for instrument P35 to 88.9% for instru-
ments A2, A4, and A5. Therefore, the generalizing capabil-

;s of this architecture are poor. The overall classification
lccess rates (considering the complete pattern set) vary
from 91.7% for instrument P35 to 98.6% for instruments
A2, A4, and AS5. The classification success rates, obtained
over the complete pattern set for the twelve instruments
for each of the five different pattern classes, are presented
in Fig. 5. These class success rates are a quantitative mea-
sure of the diagnestic abilities of each instrument for each
fault, when the MLP architecture is used. It can be seen
that the healthy class is characterized by the lower success
rate In nearly all instruments (except P3), therefore, by
using the MLP architecture, there is a high prebability of

false alarms.

5.2 LVQ Architecture

In order to improve the generalizing capabilities, a feed-
forward NN structure, trained with the Learning Vector
Quantization (ILVQ) algorithm [8-9], was implemented for
each of the twelve measuring instruments. Network ini-
tial weight (class reference) vectors were randomly selected
among training set patterns of the corresponding class.
The learning rate narameter was set to n(#) = ni0) = 001

Figure 6. LVQ neural network architecture.
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Figure 7. Total classification success rates for tre LVQ
architecture.

vt. Training was accomplished by random presentezion of
patterns up to a maximum number of 5000 preser:zations.
A schematic diagram of the LVQ architecture is stown in
Fig. 6.

Training times obtained for this value of the maximum
number of presentations were much smaller thar n the
MLP architecture for all implemented structures in the
order of 100 seconds). The classification success razes over
the training set, the test set, and the complete patern set
for the twelve instruments using the above LV Q architec-
ture are shown in Fig. 7. It can be seen that the rates of
success over the training set are lower than in the MLP
architecture and take values above 95% for all instruments,
except P5 and B (with success rate values of 79.4% and
69.8%, respectively). However, the rates of success cver the
test set are much higher than in the MLP architecture, tak-
ing values from 88.9% to 100% for all instruments, except
for P5 and B (whose success rates are 77.8% and 44.4%,
respectively). Therefore, the generalizing ability of suc-
cessfully trained LV() network architectures is much better
compared with the MLP architecture, a fact anticipated
due to the simplicity of the LVQ architecture. However,
the performance of the LVQ architecture in the Taining
set is lower than the performance of the MLP architecture.
"The overall success rates over the complete paltern set take
values above 95% for all instruments, except for P35 and B
(whose success rates are 79% and 66.7%, respectively.

The classification success rates obtained over the com-
plete pattern set for the twelve instruments for each of the
five different pattern classes are presented in Fig 8. It
can be observed that the success rate achieved for healthy
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Figure 8. Classification success rates per class for the LVQ
architecture.
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Figure 9. Modular neural network architecture.

cases high. We can see that instrument P5 has a very low
success rate in recognizing patterns of Fault-2 (which is
not a severe fault), which is responsible for the low overall

ccess rate achieved by this instrument. Also we can see
“ that instrument B has a very low success rate in recognizing
Fault-2 patterns, and also Fault-1 patterns (another fault
that is mot very severe), which is responsible for the low
overall success rate achieved by instrument B. The reason
for these failures lies in the unsupervised nature of the LVQ
training algorithm allowing for self-organization, which
may not be successful for the case of less severe faults, even
for training set patterns. Therefore, the LVQ architecture
is not suitable for diagnosing less severe faults.

5.2 Modular MLP Architecture

In order to overcome the problems of the architectures
examined in Sections 5.1 and 5.2, 2 modular NN structure
(10], econsisting of two individual MT.P networks, was imple-
mented for each of the twelve measuring instruments. The
first module is a single-output MLP network, trained to
distinguish between healthy and faulty patterns, while the
second module is trained to classify faulty patterns in the
- right class. The network structures of these modules (hid-
den layer dimensions - neuron transfer functions), as well

55

as the initial weights and biases, were selected as described
in Section 5.1 for the non-modular MLP architecture. It
was found that for both modules, a three-layered struc-
ture, with a dimension of h = 5 for the hidden layer, was
sufficient. Likewise, training was accomplished for each
module by means of the aforementioned fast backpropa-
gation algorithm. Error goal values of 0.02 and 0.05 for
the first and the second modules, respectively, were exper-
imentally found to be satisfactory. A schematic diagram of
the modular MLP architecture is shown in Fig. 9.
Training times were in the order of seconds for all first
module structures, as expected from the small netwark di-
mensions. For the second module structures, training times
were also small, similar to those of the corresponding non-
modular MLP structures. The classification success rates
over the training set, the test set, and the complete pattern
cet for the twelve instruments are presented in Fig. 10.
We can see that success rate values over the training set
are generally high, above 08% for all instruments. Also
the success rates over the test set are higher than those
of the simple MLP architecture, but lower than those of
the LVQ architecture, taking values in the range of 66.7%,
for instruments A3, A3, and B, to 100% for instrument
A2. Success rates over the complete pattern set are gen-
erally good, taking values above 94% for all instruments.
The classification success rates obtained over the complete
pattern set for the twelve instruments for cach of the five
different. pattern classes are presented in Fig. 11. We can
see that with this architecture, we do not encounter the
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Figure 10. Total classification success rates for the modular
architecture.

Figure 11. (lassification success rates Per class for the
Modular architecture.




problem of low success rates for instruments P5 and B
for the less severe Fault-2. which we had with the LVQ
architecture. Therefore, tnis architecture is much better
than LVQ in diagnosing less severe faults.

From the results presented above it can be concluded
that the modular MLP approach shows an overall satisfac-
tory performance, offering improved generalization abili-
ties in comparison to the MLP approach (see Figs. 1 and
5). Therefore, the specialization of structures results in a
significant improvement of the overall performance.

5.4 Radial Basis Function Architecture

A Radial Basis Function (RBF) network architecture [9-
11], designed with the Orchogonal Least Squares (OLS)
algorithm {12], was also implemented for each measuring
instrument. The objective was to examine if, with this ar-
chitecture, a better performance can be achieved than with
" “ather architectures previously examined in Sections 3.1
¢ ...3. Gaussian functions of the form:

() = exp (—E";—j’”—) 3

2

were added sequentially to the network’s hidden layer
until an acceptable representation error over the training
set was achieved. Their centers p; were selected among
the training set patterns. A summed-square error goal
value of 0.05 for all implemented structures was adopted
experimentally as an acceptable representation index. The
values of variance o; suitable for the specific problem had
to be found experimentally by the designer. A value
of variance ; was selected so that the spread (distance
between (.5 cross-avers) of the basis functions was set to
60. The need for such widely spread basis functions can
be explained by the need to span the 27-dimensional input
spage with a relatively small number of available training
1 erns. A schematic diagram of the RBF architecture is
own in Fig. 12.

The number of basis functions needed to design a
netwark of satisfactory performance ranged from h = 40
(for instrument P2) to A = 38 (for instruments P4 and P5),

outputs

basis
functions

Figure 12, RBT neural network architecture.
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Figure 13. Total classification success rates for the RBF
architecture.
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Figure 14. Classification success rates per class for the
RBF architecture.

corresponding to training times of 40 and 73 seconds,
respectively. The classification success rates obtained over
the training, the test, and the complete pattern set for the
twelve instruments with the implemented RBY network
architectures are shown in Fig. 13. We can see that
the rate of success for the training set patterns reaches
100% for all instruments. However, the success rates
over the test set are much lower and only exceed 66%
for 3 out of the 12 instruments, showing an overall pooer
generalization performance. A possible reason for this
is the inadequacy of the training set population related
to the high-dimensional pattern space. RBF networks
construct local approximations to nonlinear input-output
mapping, and therefore, may not be able to generalize well
in regions of the pattern space where no training data
are available. The overall classification success rates for
the complete pattern set vary from 88.9% (for Instrument
P5) to 97.2% (for instrument A6G). The classification
success rates obtained over the complete pattern set for
the twelve instruments for the five different pattern classes
are presented in Fig. 14.

8. Development of o Multinet Architecture for Au-
tomated Diagnosis

The basic requirement for an efficient diagnostic system 1s
to provide detailed diagnostic information with the highest
possible reliability, wilh the least possible Lraining (betause
the measurements required for this training are usually
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costly) and the highest possible generalization capabilities.
In the case of an NN-based diagnostic system, the level of
gatisfaction of the above requirement for a specific prob-
lem depends critically on the selection of the measuring
instruments and NN architectures most suitable for this
problem.

For the gas turhine blading fault diagnosis problem,
which is studied in the present paper, a first step towards
the development of an efficient NN-based diagnostic sys-
tem could be the selection of this particular “measuring in-
strument /NN architecture” scheme, achieving the highest
overall classification success rate over the complete pattern
set. From the results obtained in the previous sections, it
was observed that the use of an LVQ architecture for in-
strument P3 or the use of a modular MLP architecture for
instrument A2 lead to an overall success rate of 100% (see
Figs. 3 and 3, respectively). Between these two schemes,

he “A2/modular” scheme should be finally selected, be-
“‘zause the external measurement A2 of the casing vibra-
tion is much easier and less costly to implement than the
internal measurement P3 of the unsteady pressure.

In order to study in more detail the generalization
capabilities of the above selected diagnostic scheme, an al-
ternative training procedure was carried out with a smaller
training set. In this procedure, the training set was formed
by 54 patterns (6 healthy plus 12 for each fault) selected
randomly from the complete pattern set, while the remain-
ing 18 patterns (2 healthy plus 4 for each fault) composed

A2Modular
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(Nr. of training paterns: 54)
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M overall

. [ training set

Heulthy Fault 1 Fauit 2 Fault 3 Fault 4

Figure 13. Performance of the “A2/Modular” scheme for
a smaller training set.

Gas Tu;bLne

Figure 16. The Multinet architecture.
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the test set. Because of this reduction in the training
set (54 patterns instead of the initial 63 patterns), the
diagnostic task now becomes more difficult.

The classification success rates obtained over the train-
ing set and the complete pattern set for the five different
pattern classes using the above “A2/modular” scheme are
shown in Fig. 13. It can be observed that the classification
success rates for healthy and Fault-1 patterns over the com-
plete pattern set decrease significantly and reach 75% and
81%, respectively. This result shows that the reliability of
the “A2/modular NN”-based diagnostic system decreases
significantly if the training set becomes smaller.

In order to achieve high performance and generaliza-
tion capabilities with small training sets (which is usually
the case in industrial reality), a more flexible approach
to the development of an NN-based system for the gas
turbine blading fault diagnosis problem (and generally for
all highly complex and difficult diagnostic problems) can
be adopted, based on the synthetic use of a small number
of “measuring instrument/NN architecture” schemes with
complementing diagnostic abilities.

The main criteria for the selection of measuring in-
struments should be the maximization of diagnostic per-
formance and the minimization of the total instrumenta-
tion cost (both initial and maintenance cost). This means,
practically, that a small number of easy measurements,
which are sensitive to the fault we want to diagnose, should
be selected. In our specific problem, casing vibration,
emitted sound, and shaft displacement at the compressor
bearings are measurements easy to implement (the latter
being one of the most usual diagnostic measurements in gas
turbines), and also, as concluded in the previous sections,
sensitive to blading faults. Therefore, accelerometers, mi-
crophones, and bearing instruments were selected in order
to develop the NN-based diagnostic system.

Concerning the selection of NN architectures, as it was
concluded in Section 5, NN architectures trained with su-
pervised learning algorithms (MLP, Modular MLP, RBF)
achieve successful classification of training set patterns at
rates reaching 100%, while successfully trained LVQ archi-
tectures possess very good generalization properties. Also,
RBF networks trained with the OLS method are charac-
terized by the easiest and most straightforward design and
training procedure among all the examined supervised NN

Voter | | classi
LVQ NN 4

e Final
Yoter 2 | classi a )

Y N » T l—— Decision
biu = class i
Voter 3 | classj -g
RBF NN =




architectures. Therefore, snitable combinations of LVQ
and RBF NN architectures, synthesized in a multinet ar-
chitecture, are expected to achieve high diagnostic per-
formance and generalization capabilities, offering also the
advantage of simpler design and trainirg compared to the
clagsical MLP NN approaches.

There exist a number of pessible schemes for the above
synthesis of different NN architectures and the design of
a multinet architecture. A voting scheme, based on the
idea of the ‘majority rule’ proposed in 6], was developed
in order to make the final decision regarding the gas tur-
bine condition, when a number of different architectures-
classifiers (voters) are used m parallel. The structure of
this multinet architecture is shown in Fig. 16, where three
independent NN classifiers, each trained to classify pat-
terns from a specific instrument, are synthesized in a vot-
ing scheme. As can also be seen from Fig. 16, according
~ to majority rule, the gas turbine condition is assigned to

class 7 if the majority (at least twa) of the classifiers ‘vote’
for this class, that is to say, classify their input pattern to
class i.

By examination of the results of the previous sec-
tions, it was found that the synthesized use of the schemes
SM/LVQ?, “A3/LVQ” and “B/RBF", in a multinet archi-
tecture based on majority rule, results in 100% success for
all classes, when the initial training set of 63 patterns is
used. This is shown in Fig. 17, where we can see the clas-
sification success rates obtained over the complete pattern
set for the five different pattern classes with each of the

Success rates (%a) per class

L0 -
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80 ¢ BALVQ
@B/RBF

OO Multinet

Figure 17. Performance of the three voters and the Multi-
net classifier.
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Figure 13. Performance of the three voters and the Multic
net classifier for a smaller training set.

three classifiers-voters and also with this multinet archi-
tecture. Next, the smaller training set of 34 patterns that
was previously described for the “A2/Modular® scheme.
is used for the training of each of the voters “M/LV(Q".
“A3/LVQ”, and “B/RBF”. The classification success rates.
obtained over the complete pattern set for the five differ-
ent pattern classes with each of the three voters and with
the multinet architecture, are shown in Fig. 18. There-

fore, by decreasing the training set, the performance of

the multinet architecture does not decrease (as in the case
of the “A2/Modular” scheme), but is maintained at high
levels, achieving a success rate of 100% for all classes.
Conclusively, the multinet architecture achieves superior
performance by successfully synthesizing the independent
classifiers-voters, resulting in more reliable classifications.

From the above it can be concluded that the oroposed
multinet architecture provides a useful basis for the de-
velopment of an automated diagnostic system with high
performance, reliability, robustness, and generalization ca-
pabilities with small training sets. It shonld also be men-
tioned that these features are achieved with a small num-
ber of easy to implement measurements, a matter of grear
practical importance in the industrial reality.

7. Conclusions

Initially a number of classical neural network arcnitectures
have been evaluated for the gas turbine blading fault
diagnosis problem, which is regarded to be one of the mos:
critical, and at the same time, difficult diagnostic problems.
for 12 measuring instruments and 4 typical blading faults.
As criteria for this evaluation, a number of issues, such
as structural simplicity, training algorithm effectiveness.
and overall performance (success rates and generalization
capabilities) were considered.

The MLP architecture relies critically on the experi-
mental selection of a number of design parameters. The
success rates of the MLP architecture are found to be sat-
isfactory in the training set, but the zeneralizing abilities
of this architecture are inadequate. The LVQ architecture
offers the advantage of a very simple topology. Also be-
cause of the absence of a hidden layer and the uniquely
defined competitive output layer, there is no need for an
experimental network design. The generalizing ability of
successfully trained LV(Q) network structures is found to be
very good. On the other hand LVQ, being an algorithm al-
lowing for self-organization, is not successful for less severe
faults even for the training set patterns, as it was observed
in some cases. The modular MLP architecture shows im-
proved generalization abilities compared to the original
MLP architecture. Finally the RBF architecture. trained
by the OLS algorithm, offers the advantage of a short de-
sien procedure. The success rates of the RBF architecture
are salisfaclory over the training set, but show an overall
poor generalization performance in the high-dimensional
pattern space of the present diagnosis problem.

In order to improve the generalization abilities shown
by the above classical architectures, a new multinet ar-
chitecture was developed. As criteria for the design of
this multinet architecture, the maximization of diagnostic
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performance and the minimization of the total instrumen-
tation cost were used. A multinet classifier based on the
idea of the ‘majority rule’ decision was developed, as a
combination of two LVQ and one RBF network architec-
tures based on instruments A3, M, and B. respectively.
The results obtained using this multinet architecture are
very promising, showing that it can provide a useful ba-
sis for an automated diagnostic system of high ACCUTACY,
reliability, generalization capabilities, and robustness to
variations of training data. Further research is needed for
the development of a systematic multinet classifiers design
methodology, for the selection of the appropriate neural
network architectures and measuring instruments to be
used as the basis of an automated diagnostic system with
desirable characteristics.
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