
Designing secure RFID authentication protocols is
(still) a non-trivial task

Panagiotis Rizomiliotis, Evangelos Rekleitis, Stefanos Gritzalis
Dep. of Information and Communication Systems Engineering,

University of the Aegean,
Karlovassi, Samos, GR 83200, Greece.

Email: http://www.icsd.aegean.gr/info-sec-lab

Abstract—In the last few years, a plethora of RFID authentica-
tion protocols have been proposed and several security analyses
have been published creating the impression that designing such
a protocol must be, more or less, a straightforward task. In
this paper, we investigate the security of two recently proposed
schemes, showing that designing a secure RFID authentication
protocol is still a demanding process. One is a mature work; in
the sense that it has predecessors that have been extensively
analyzed, while the other is a fresh proposal. Our security
analysis demonstrates that both are weak, as they suffer from
a similar desychronization attack. In addition we prove the
existence of a fatal tag impersonation attack against the second
one.

I. INTRODUCTION

Radio Frequency Identification (RFID) is a sensor-based
technology, used, primarily, to identify and track products
or living organisms [1]. This is achieved by using reader
devices to query embedded integrated circuits, called tags.
RFID tags may either be self-powered (active) or passive,
requiring power from an external source (e.g. the reader) or a
hybrid; using both internal and external power sources. RFID
tags are expected to revolutionize our daily life, becoming the
most pervasive device ever. Especially since low cost, passive
tags are destined to replace and enhance the now ubiquitous
barcode, as well as, allow new tracking, access management
and security services. Supply-chain management, inventory
monitoring, payment systems, passports being only few of the
applications where RFID tags are currently employed.

However, the introduction of RFID-enabled systems is not
without security and privacy woes and worries [2], [3]. Hence
there is an active interest in deploying cryptographic mech-
anisms for tag authentication. Even though there exist many
studies on how to design authentication protocols based on
standard cryptographic primitives, the need to make RFID
systems economically viable and maintain the tag cost as low
as possible, enforces certain limitations on the tags in terms
of computational power, memory and circuit space. Taking
into consideration the implementation cost of a public key
algorithm, it becomes clear that the application of one of
the standard authentication schemes can be too expensive for
low cost Electronic Product Code (EPC) tags that cannot
devote several thousands of gates for security [4]–[7]. For
comparison, one of the ’lightest’ implementations, provided by
Oren and Feldhofer in [8], fits a 1024-bit public key scheme

into 4682 gate equivalents. A limitation clearly not present in
the reader/server side that should be able to handle increasing
amounts of work, as the tag population grows.

In this context, the need for efficient and secure authenti-
cation protocols is imperative and many proposals have been
made – an extended list can be found in [9].

In [10] we defined five important security requirements that
a security protocol should satisfy; namely:
• Resistance to Tag impersonation: an adversary should

not be able to impersonate a legitimate tag to the reader.
• Resistance to Reader impersonation: an adver-

sary should not be able to impersonate a legitimate
reader/server to the tag.

• Resistance to Denial of Service (DoS)/desychronization
attacks: manipulating or blocking communication during
a given number of sessions, between the tag and the
reader, should not prevent any future normal interaction
between the legitimate reader and tag.

• Indistinguishability (tag anonymity): tag output must
be indistinguishable from truly random values. Moreover,
they should be unlinkable to the static ID of the tag.
To achieve a stricter notion of tag anonymity, we further
define:

– Forward security/untraceability: even if an adver-
sary acquires all the internal states of a target tag
at time t, she should not be able to ascribe past
interactions, that occurred at time t′ < t, to the said
tag.

– Backward security/untraceability:1 similarly to
forward security, it requires that even if an adversary
gains knowledge of a tag’s internal state at time t,
she should not be able to ascribe future/subsequent
interactions, that occur at time t′ > t, to the said tag.

As well as, a set of desirable tag management operations that
a protocol should provide; namely:
• Tag authentication: the reader/back-end system should

be able to authenticate the tag.
• Revocable access delegation: (aka tag delegation), the

capability to allow a third party, tag authentication and
read access to an owned tag, while maintaining the

1Some research works interchange the two terms, i.e. backward security is
called forward security

73978-1-4577-0460-4/11/$26.00 ©2011 IEEE

right to revoke this privilege, under some predefined
conditions.

• Ownership transfer: the capability to pass ownership
of a tag to a third party, without compromising backward
untraceability for the said party, or forward untraceability
for the previous owner.

• Permanent and temporal tag invalidation: more com-
monly known as kill and sleep operations; where initially
proposed to offer a minimal degree of command over
the tag. A legitimate tag owner can issue a command to
disallow the tag from emitting any signals; in the case of
the sleep operation this ban of communication can easily
be revoked by the owner. Implementing them is trivial and
it is obvious that these operations can also be achieved
by physical means, e.g. breaking the tag or placing it in
a faraday cage.

Despite the significant attention that this research area has
gained the last decade and the huge amount of scientific
papers that have been published, it seems that designing an
authentication protocol, that achieves (at least) all the security
goals it was designed for, is not a trivial task.

In this paper, we advocate in favour of the previous claim by
presenting the security analysis of two characteristic protocols;
i.e. the analysis of a mature work and of a fresh proposal. More
specifically, we study the security of two recently published
RFID authentication protocols. The first protocol is a mature
work proposed by Song and Mitchell (SM-2) [11]. This proto-
col is the evolution of previous proposals by the same authors,
after correcting all identified flaws. The second protocol is
a fresh attempt by Cho, Yeo and Kim (CYK) [12]. As our
analysis demonstrates, both protocols have severe weaknesses.

The SM-2 protocol was (re)designed to resist desynchro-
nization attacks. However, we show that an adversary, who
is able to alter messages transmitted from the server to the
tag, can mount an attack that causes a permanent lose of
synchronization between the two communicating entities, as
the server and tag update their shared secret to different values.
As a result, they are not able to authenticate one another
afterwards. The CYK protocol is much weaker, as expected,
since it is a less mature work. Not only it is vulnerable to
a similar desynchronization attack, but we also present an
efficient tag impersonation attack, in which an adversary is
able to authenticate as a legitimate tag to the server, without
knowing the tag’s internal secrets. The attacker only needs
to eavesdrop the communication between the server and the
target tag. To the best of our knowledge this is the first
cryptanalysis attempt against the CYK protocol.

The paper is organised as follows. In Section II, we describe
shortly the SM-2 protocol, while in subsection II-B, we intro-
duce the desychronization attack. In Section III, we present the
CYK protocol, while in Section III-B, we introduce an efficient
tag impersonation attack and discuss how the desychronization
attack of subsection II-B can be applied. Section IV concludes
our paper. There we propose a small amendment to the SM-2
protocol that resists the attack presented in this paper. We do
not believe that this is possible for CYK, without considerable

Server/Reader Tag T
[k, r, x,M1] [k, x, c = 0,M1]
s′ ∈R {0, 1}l
m′ ∈R Z+

k′ = h(s′)
M3a = gk(r||M1)
M3b = (s||k′||m′)

M3 =M3a ⊕M3b

M3,r
−− → (s||k′||m′) =M3 ⊕ gk(r||M1)

? k == h(s)
update k = k′ and c = m′

TABLE I
THE SECRET UPDATING OPERATION OF SM-2.

redesigning from scratch.

II. THE SM-2 PROTOCOL SECURITY ANALYSIS

A. The SM-2 protocol

In [11], Song and Mitchell presented a new RFID authen-
tication protocol, SM-2. This protocol is based on a previous
proposal by the same authors, the SM protocol [13]. The SM
protocol was an RFID mutual authentication protocol designed
to satisfy important privacy and security requirements, in an
efficient manner. Unfortunately, the SM protocol was found
vulnerable against several attacks [3], [14]–[16]. The first
published attack appeared in the 2008 version of [3], where
van Deursen & Radomirovi identified a tag authentication
attack. They showed that, by misusing the associative and
communicative properties of the XOR operation, an attacker
could mount a replay attack against the verifying server and
authenticate as a valid tag. In [14] we showed the protocol
was also vulnerable to server impersonation attacks that could
further lead to permanent desynchronization of the tag and
proposed an efficient correction. An analysis of both attacks
appeared in [16]. Cai et. al. [15], also identified the above
mentioned flaws and proposed a revised protocol (SM-revised)
to correct them. In fact, the 2009 updated version of [3]
includes all three known attacks against the SM protocol.

The SM-2 protocol is based on the SM-revised design, in
order to avoid all the previously mentioned flaws, aiming to
constitute a secure and highly scalable solution that covers
both the security and functional requirements mentioned ear-
lier.

SM-2 is designed as a five-part protocol, including tag
initialization. The first part deals with tag authentication,
the second provides secret updating, the third allows a
soft resynchronization to recover from irregular runs of
the protocol – not to be confused with our permanent
desynchronization attack – and the fourth is an optional,
slightly more efficient secret updating process, for use when
one is certain of the tag’s identity. The protocol makes use of
simple operations such as XOR and concatenation, as well
as, a pseudorandom number generator, a hash function (h)
and 3 keyed hash functions (e, f, g); all of which are assumed
to be one-way and collision-resistant. Each tag stores an l-bit
secret key k, an l-bit pseudonym x and a lm-bit counter c.
For each managed tag the server has knowledge of all stored

74

values.

Part 0: Initialization
For each tag T managed by the server S, S builds a look-up
table, as follows:
• S chooses a random l-bit string s, and computes the l-bit

key k = h(s). The random string s is used for server
authentication and k is T ’s secret key used in the keyed
hash functions.

• S chooses a random l-bit string x0, and computes the
hash-chain values xi = ek(xi−1) for 1 ≤ i ≤ m. Thus
the length of the hash-chain is m.

• For each managed tag T , S stores, in its look-up table,
the corresponding s, k and the identifiers x0, x1, . . . , xm.
In subsequent runs of the protocol the set of stored data
for T will also contain the most recent previous values
for s and k.

• Each tag T initially sets k = h(s), x = x0 and the counter
c = m

Part 1: Authentication
When a tag approaches the vicinity of the server (actually the
server’s RFID reader device)
• S generates a suitably long (≤ l) random binary string r

and sends it to T .
• When T receives r, it checks its counter c. If c 6= 0

it computes M1 = fk(r ‖ x), updates x to ek(x) and
subtracts 1 from c (c--). The values r,M1 and M2 = x
are sent to S. If the counter reaches 0, the tag waits for
a server response to perform a secret update, keeping
r,M1,M2 in short term memory.

• When S receives r,M1,M2, it performs a search in its
look-up table for a value xi equal to the received M2. If
such a value is found, T has been successfully identified.
Otherwise, the server assumes T is an alien tag. To
authenticate T , the server computes fk(r ‖ xi−1) and
compares it to the received M1. If the values differ, T is
not authenticated. Next the server checks if x == xm,
if true it needs to perform a secret update, otherwise the
session is terminated successfully.

Part 2: Secret updating
If a secret update is in place; i.e. x == xm (see Table I):
• S generates a random l-bit binary string s′ and an integer
m′. It then computes the new tag key k′ = h(s′) and the
m′-long sequence of corresponding identifiers (x′i) as in
Part 0.

• Next S computes M3 =M3a ⊕M3b; where
M3a = gk(r ‖M1) and M3b = (s ‖ k′ ‖ m′).
M3 it sent to T , along with r. The final action of
S is to update the set of stored values for T , to
s, k, s′, k′, x, x′1, . . . x

′
m

• When T receives r and M3, it computes
(s ‖ k′ ‖ m′) =M3 ⊕ gk(r ‖M1).
If h(s) is equal to k, S is authenticated and T updates
its key and counter to k′ and m′, respectively.

Part 3: Resynchronization

Server/Reader Attacker Tag T
[k, r,M1] [k, x, c = 0,M1]
s′ ∈R {0, 1}l
m′ ∈R Z+

k′ = h(s′)
M3a = gk(r||M1)
M3b = (s||k′||m′)

M3 =M3a ⊕M3b

M̂3=M3⊕(0||k′′||m′′),r
−− → (s||k′ ⊕ k′′||m′ ⊕m′′) =M3

⊕(0|k′′|m′′)⊕ gk(r||M1)
? k == h(s)
update k = k′ ⊕ k′′
and c = m′ ⊕m′′

TABLE II
THE DESYCHRONIZATION ATTACK AGAINST THE SM-2 PROTOCOL.

The authors of SM-2 provide an alternative secret updating
process, in case any irregularities happen, e.g. a malicious
attacker continuously queries the tag to zero its counter, or
if the last secret update was unsuccessful. The logic is similar
to Part 1 and 2, so we will only briefly describe the exchanged
messages.
• T generates a random number rT to use as a secret

session key. It then computes M1 = fk(r ‖ rT) and
M2 = rT ⊕ x and sends both to S, with a request for an
update of the shared secrets

• When S receives M1 and M2, it begins a search in its
look-up table for a matching value x == x0 or x == xm.
If such an x is found T is identified and authenticated

• If x == xm then Part 2 is performed, only this time S
needs to extract rT =M2 ⊕ x and compute
M3 =M3a ⊕M3b, where M3a = gk(r ‖ rT) and
M3b = (s ‖ k′ ‖ m′).

The authors of SM-2 describe two more secret updating
processes. One is applicable when the reader’s owner has prior
knowledge of the tag’s identity; in which case she may use an
optional secret updating process that requires fewer operations.
The second one is the same as Part 3, but instead of using a
new key, it restores a previous key. Both are unrelated to the
proposed attack and for that we omit their description.

B. A desynchronization attack against the SM-2 protocol

This attack can render a tag completely unmanageable by
permanently desynchronizing it. It is an active attack, since
the adversary must have the ability to manipulate messages
exchanged between the tag and the server (reader actually) and
it is mounted during the key update; i.e. Part 2. The attacker
needs only to intervene on the last message sent to the tag;
viz. the secret update message M3.

From the protocol, we know that M3 is calculated, at the
server, as the XOR of M3a and M3b. While the actual con-
struction of M3a depends on the protocol phase in execution,
M3b is always derived from the concatenation of the shared
secret s, the new key k′ and the new length of the pseudonym
hash-chain m′; i.e. M3b = (s ‖ k′ ‖ m′). The tag extracts
(s ‖ k′ ‖ m′) by simply computing M3 ⊕ M3a. The tag
authenticates the reader using only the value s, and then it
updates the secret key with k′ and the counter’s value with
c = m′. However, it does not protect the integrity of the whole
(M3) message, which can be fatal.

75

Server/Reader Tag T
[IDT , sj , sj−1] [IDT , sj]
Rr ∈R {0, 1}96

Rr
−−− →

Rt ∈R {0, 1}96
M1 = Rt ⊕ β
α = h(IDT ⊕Rt ⊕Rr ⊕RIDi)

β = sj(0 : 47) ‖ IDT (48 : 95)
α,M1
← −−−

Rt =M1 ⊕ β
RIDi = (Rt −Rtmodsj + 1)(0 : 47) ‖ (Rt + sj −Rtmodsj)(48 : 95))
α′ = h(IDT ⊕Rt ⊕Rr ⊕RIDi)
if α′

?
= α, then M2 = h(β ⊕RIDi)

sj+1 ∈R {0, 1}96, M3 = sj+1 ⊕Rt
M2,M3
−−− → if M2

?
= h(β ⊕RIDi), then

store [IDT , sj+1, sj] sj+1 =M3 ⊕Rt
store [IDT , sj+1]

TABLE III
THE CYK PROTOCOL.

The attacker needs to modify message M3 by
d = (0 ‖ k′′ ‖ m′′); so that the tag receives the message
M ′3 = M3 ⊕ d. The length of (k′′ ‖ m′′) is l′ = dlog2(m′)e;
i.e. the length of m′.

The tag then computes:
(s ‖ k′ ⊕ k′′ ‖ m′ ⊕m′′) =M ′3 ⊕M3a =M3 ⊕ d⊕M3a.
The reader is authenticated successfully, as the value of s is
computed correctly. However, both the new key and counter
values are different than the ones stored by the reader. More
precisely, the tag stores the values k = k′ ⊕ k′′ and
c = m′ ⊕ m′′, while the reader has stored k′ and m′, for
the key and the counter respectively. Thus, the tag has stored
different values than those of the server/reader, rendering
the authentication, key update and resychronization functions
inoperative.

Note that there is no need to eavesdrop a full or more rounds
of the protocol or to tamper with the tag, nor any assumptions
are made on the security of the cryptographic primitives in use
(hash functions, pseudorandom number generators). It is the
linearity of the XOR and concatenation functions that allows
arbitrary data to be authenticated as valid.

III. THE CYK PROTOCOL SECURITY ANALYSIS

A. The CYK protocol

In [12], Cho, Yeo & Kim (CYK) presented a hash-based
RFID mutual authentication protocol aiming to solve the
privacy and forgery problems with RFID system (sic). The
authors define three security requirements; namely confiden-
tialityof transmitted data, indistinguishability & forward se-
curity and mutual authentication, that need to be considered
when designing an authentication protocol and should be used
as evaluation criteria. Mutual authentication corresponds to the
notion of preventing tag and/or server impersonation and our
definition of ‘indistinguishability’ covers both confidentiality,
indistinguishability and forward security. Regarding tag man-
agement operations, the protocol provides only authentication
and doesn’t inherently support tag delegation. Secure owner-
ship transfer could be realized by updating the tag to a random

temporary secret, which is revealed to the new owner and
altered by him as soon as possible.

CYK is a 9-phases protocol, using Phase 0 for the tag
initialisation. The next five phases (i.e. Phases 1− 5) support
Tag identification, authentication and secret key/value update
on the Server side, while the last three phases (i.e. Phases
6 − 8) lead to Server authentication and secret value update
on the Tag side.

The protocol requires the implementation of a secure hash
function h(·) and a random number generator, while it makes
use of simple operations, like XOR (⊕) and concatenation
(‖). Each tag T stores an 96-bit identifier IDT and the current
96-bit secret value sj , shared with the server. The secret value
is updated with every protocol execution. For each managed
tag the server S stores the IDT , the current secret value sj
and the previous secret value sj−1. For brevity, we treat the
back-end server and the reader as one entity (Table III). The
nine phases of CYK are as follows.

Phase 0: Initialisation
For each managed tag (T) the server (S) stores the triplet
{IDT , sj , sj−1}; i.e. the tag identifier, the current secret and
previous secret. The tag stores {IDT , sj}.

Phase 1: Read request
When a tag T approaches the vicinity of the server (actually
the server’s RFID reader device), S generates a 96-bit random
number Rr and transmits it to T .

Phases 2-4: Tag response
• T generates a 96-bit random number Rt and the corre-

sponding identifier for Rt’s number group

RIDi = (Rt −Rtmodsj + 1)(0 : 47)

‖ (Rt + sj −Rtmodsj)(48 : 95)). (1)

• It then computes the authentication message

α = h(IDT ⊕Rt ⊕Rr ⊕RIDi), (2)

76

Server/Reader Attacker
[IDT , sj , sj−1] [Rr, α,M1]

R̂r ∈R {0, 1}96
R̂r

−−− → d = R̂r ⊕Rr
M̂1 =M1 ⊕ d

β = sj(0 : 47) ‖ IDT (48 : 95)
α,M̂1
← −−−

R̂t = M̂1 ⊕ β
ˆRIDi = (R̂t − R̂tmodsj + 1)(0 : 47) ‖ (R̂t + sj − R̂tmodsj)(48 : 95)

α̂ = h(IDT ⊕ R̂t ⊕ R̂r ⊕ ˆRIDi)

if α̂
?
= α, then M̂2 = h(β ⊕ ˆRIDi)

sj+1 ∈R {0, 1}96, M̂3 = sj+1 ⊕ R̂t
M̂2,M̂3
−−− → X

store [IDT , sj+1, sj]

TABLE IV
EXECUTION PHASE OF THE TAG IMPERSONATION ATTACK.

a blinding factor

β = s(0 : 47) ‖ IDT (48 : 95) (3)

and calculates message

M1 = Rt ⊕ β. (4)

• T sends to the server messages α and M1.
Phase 5: Tag authentication & secret update

For each managed tag, the server S:
• Computes the corresponding β
• Extracts Rt =M1 ⊕ β.
• Calculates group identifier RID′i, using the extracted sj

and Rt .
• Generates α′. If α′ is equal to the received α, then T has

been successfully identified and authenticated.
After the tag has been authenticated the server updates the
tag’s data as follows:
• Generates a new secret value sj+1 using the random

number generator and modifies the stored tag triplet
{IDT , sj+1, sj}.

• Computes the authentication message
M2 = h(β ⊕RIDi) and the secret update message
M3 = (Rt ⊕ sj+1).

If no matching tag was found, S repeats the search using
the previous secret values sj−1. This might happen, if a
synchronisation problem occurred in the previous execution
of the protocol with T . After successfully authenticating the
tag, the server S produces messages M2 and M3 and stores
the new tag’s triplet {IDT , sj+1, sj−1}. If the authentication
process fails again, then the tag is considered alien.

Phases 6-7: Server response
The server S sends to T messages M2 and M3.

Phase 8: Secret update
• T authenticates the server by calculating h(β ⊕ RIDi)

and comparing it to M2.

• T extracts the new secret from M3, sj+1 =M3⊕Rt and
replaces the previous secret value sj = sj+1.

B. A tag impersonation attack against the CYK protocol

We will now describe a tag impersonation attack that a ma-
licious user can mount against the protocol with overwhelming
probability. This is a passive attack, meaning that the attacker
needs only to eavesdrop a protocol execution between the
server and a legitimate tag to impersonate the tag; without
extracting any of the secret values stored in it. The attack
exploits the way group identifiers RID and the corresponding
authentication message α are computed. Let T be a legitimate
tag, with current secret value sj and identity number IDT .
The attack is divided in two phases as follows:

1) Preparation phase: The attacker passively eavesdrops a
protocol execution (Table III) between the server and the
legitimate tag T and she stores the messages exchanged
during phases 1 and 3; i.e. Rr, α and M1. At the end,
the tag and reader share a new secret value sj+1, while
the old secret sj is stored by the server for protection
from desynchronisation.

2) Execution phase: The server initiates a protocol run and
the attacker attempts to impersonate the legitimate tag
T . The Execution phase appears in Table IV.

a) Phase 1: The attacker receives the new random
value R̂r from the reader.

b) Phase 2: The attacker computes the difference
d = Rr ⊕ R̂r and calculates a new message
M̂1 =M1 ⊕ d.

c) Phase 3: The attacker sends messages α, M̂1; i.e.
the stored value α from the Preparation phase and
the new message M̂1.

d) Phases 4-7: If the reader authenticates the attacker
as the legitimate tag, it computes and transmits the
messages M̂2 and M̂3 and the attacker ignores both
messages. If the authentication fails, the attacker
repeats the attack.

77

Next, we show that the success probability Psucc of the tag
impersonation attack is greater or equal to 1/4,

Psucc ≥
1

4
,

i.e. the attacker has to repeat the two phases of the attack only
4 times on average in order to succeed. We are going to need
Lemma 1.

Lemma 1: Two group numbers RIDi and ˆRIDi computed
from (1) with random numbers Rt and R̂t, respectively, are
equal with probability at least 1

4 ,

P (RIDi = ˆRIDi) ≥
1

4

when the same random secret key sj is used.
Proof: Let the two group numbers, computed from (1),

given by

RIDi = (Rt −Rt mod sj + 1)(0 : 47)

‖ (Rt + sj −Rt mod sj)(48 : 95)

and

ˆRIDi = (R̂t − R̂t mod sj + 1)(0 : 47)

‖ (R̂t + sj − R̂t mod sj)(48 : 95).

Let Rt, R̂t < sj . In that case, it is straightforward to verify
that

Rt −Rt mod sj = R̂t − R̂t mod sj = 0 ,

and that

RIDi = (1)(0 : 47) ‖ (sj)(48 : 95) = ˆRIDi .

Thus, the probability P (RIDi = ˆRIDi) is lower bounded by

P (RIDi = ˆRIDi) ≥ P (Rt, R̂t < sj) .

Since, Rt, R̂t, sj are random 96-bit numbers, for a given
secret value sj , it holds that

P (Rt < sj) = P (R̂t < sj) =
sj
N

,

where N = 296. Given that values Rt and R̂t are independent,
it follows that

P (Rt, R̂t < sj) =
(sj)

2

N2
.

Finally, since the average value of sj is N
2 , we have that

P (RIDi = ˆRIDi) ≥ P (Rt, R
′
t < sj) =

1

4
.

Theorem 1: The success probability Psucc of the tag im-
personation attack is greater or equal to 1/4,

Psucc ≥
1

4
.

Proof: After the Preparation phase, the server has stored
the identity of the tag IDT and the two secret values; viz. the
current sj+1 and the old one sj , and accepts both as valid. The
attacker wants to impersonate the tag T and responds to the

server in Phase 3 by producing a pair of messages (α̂, M̂1),
pretending that he knows the secret value sj . In order for the
pair to be valid, from (2), it must hold that

α̂ = h(IDT ⊕ R̂r ⊕ R̂t ⊕ ˆRIDi). (5)

The attacker sends the pair of messages (α,M1 ⊕ d); i.e. the
eavesdropped messages from the Preparation phase. The first
one is left as it is and the second is modified by d, where
d = Rr ⊕ R̂r. From (3) and (4) we have that message M̂1

depends on R̂t, sj and the tag identity IDT . Since, the last
two values remain the same during the Preparation phase and
the Execution phase of the attack, the specific choice of the
message M̂1 =M1 ⊕ d implies that

R̂t = Rt ⊕ d. (6)

From (5) and (6) we have that,

α̂ = h(IDT ⊕Rr ⊕ d⊕Rt ⊕ d⊕ ˆRIDi)

= h(IDT ⊕Rr ⊕Rt ⊕ ˆRIDi). (7)

Thus, the attack is successful when α̂ = α; i.e. the probability
of success is given by

Psucc = P (α̂ = α). (8)

From (2) and (7), it holds that α̂ = α, only when RIDi =
ˆRIDi. That is,

P (α = α′) ≥ P (RIDi = ˆRIDi) .

Finally, from Lemm 1, it holds that

P (α = α′) ≥ P (RIDi = ˆRIDi) ≥
1

4
,

and from (8) we have that

Psucc ≥
1

4
.

Note 1: The impersonation attack causes also a desynchro-
nisation between the server and the legitimate tag T . At the
end of the Preparation phase, the server has stored the triplet
{IDT , sj+1, sj}, while the tag T has the secret value sj+1.
After, the successful completion of the Execution phase, the
server has stored the triplet {IDT , ŝj+1, sj}, while the tag T
still has the secret value sj+1. Thus, the server will not be
able to authenticate the legitimate tag T after the attack. This
side effect is not usually desirable as it reveals the existence
of the impersonation attack.

In order for the attacker to avoid the desychronisation, an
active step must be added in the Preparation phase. More pre-
cisely, during phase 7, the attacker has to interfere and prevent
messages M2 and M3 from reaching the tag; disallowing thus
the secret value update. This means that after the Preparation
phase tag T maintains the same secret value sj . By design the
server retains the triplet {IDT , ŝj+1, sj}, containing the old
value; thus the tag remains synchronized and recognizable.
The modified version of the Preparation phase appears in
Table V.

78

Server/Reader Attacker Tag T
[IDT , sj , sj−1] [IDT , sj]
Rr ∈R {0, 1}96

Rr
−−− →

Rt ∈R {0, 1}96
M1 = Rt ⊕ β
α = h(IDT ⊕Rt ⊕Rr ⊕RIDi)

β = sj(0 : 47) ‖ IDT (48 : 95)
α,M1
← −−−

Rt =M1 ⊕ β
RIDi = (Rt −Rtmodsj + 1)(0 : 47) ‖ (Rt + sj −Rtmodsj)(48 : 95))
α′ = h(IDT ⊕Rt ⊕Rr ⊕RIDi)
if α′

?
= α, then M2 = h(β ⊕RIDi)

sj+1 ∈R {0, 1}96, M3 = sj+1 ⊕Rt
M2,M3

−/→
store [IDT , sj+1, sj] The tag does not update the secret.

It stores [IDT , sj]

TABLE V
MODIFIED PREPARATION PHASE OF THE TAG IMPERSONATION ATTACK.

Note 2: The desynchronization attack devised against the
SM-2 protocol (v.s. II-B) can also be used against CYK,
rendering the tag completely unmanageable by permanently
desynchronizing it. As stated before the adversary must have
the ability to manipulate messages exchanged between the tag
and the reader during the ‘Server Response’ phase; i.e. Phases
6-7. More specifically, the attacker needs only to tamper with
the secret update message M3.

From the protocol, we know that M3 is calculated, at the
server, as the XOR of Rt and the new secret sj+1. The tag
authenticates the reader using (only) message M2, and then
it updates the secret key to sj+1, which it extracts from M3.
The protocol does not protect the integrity of both messages
(M2, M3), which, as in the case of SM-2, proves to be fatal.

The attacker needs to modify message M3 by a random
value f ; so that the tag receives message M ′3 =M3 ⊕ f . The
length of f needs to be equal or less than that of M3. As
long as message M2 remains intact the tag will authenticate
the reader successfully and update its secret value to
M ′3⊕Rt = sj+1⊕f . Thus, the tag is fooled to store a different
value than the one in the server, rendering any further protocol
runs inoperative.

As stated previously, this attack is based solely on the
linearity of the XOR and function and the fact that the protocol
fails to protect the integrity of all its messages.

IV. COMMENTS AND CONCLUSIONS

In this article, we have provided a security analysis of
two new and fairly recent, lightweight RFID authentication
protocols. The first one by Song and Mitchell, is a mature
work as it has well studied predecessors. The second is
a more fresh idea by Cho et al. We show that there are
efficient attacks against both the protocols. More precisely,
there is a desyncronization attack against both protocols, where
the attacker must be able to manipulate the communication
between the honest reader and tag, while a passive attacker
can impersonate a legitimate tag in the Cho et al. scheme.

We believe that the Cho et al. protocol is very weak
and there is no simple fix that can make it secure, without

redesigning the whole protocol. On the other hand, the scheme
proposed by Song and Mitchell is much more well documented
and we believe that it can be relatively easily protected against
our desynchronization attack. Using well known techniques,
like sending with M3 the keyed hash digest gk(M3), using
the common secret key k, the tag can verify the integrity of
M3. However, we are still a little bit puzzled by the fact that
the authors require the implementation of four different hash
functions on the tag. This design choice is peculiar, especially
if one takes into account a) the implementation costs, b)
the difficulty of devising secure hash functions, suitable for
lightweight tags (or secure hash functions in general) and c)
the fact that two of the keyed hash functions have identical
input and output requirements. We feel that a lightweight
protocol should reuse as much of its hardware as possible,
especially when it comes to costly crypto-IC.

REFERENCES

[1] OECD, “Radio-Frequency identification (RFID): drivers, challenges
and public policy considerations,” Organisation for Economic
Co-operation and Development (OECD), Paris, Tech. Rep.
DSTI/ICCP(2005)19/FINAL, Mar. 2006, last visited May 2011.
[Online]. Available: http://www.oecd.org/dataoecd/57/43/36323191.pdf

[2] S. E. Sarma, S. A. Weis, and D. W. Engels, “Rfid systems and
security and privacy implications,” in CHES, ser. LNCS, B. S. K.
Jr., Çetin Kaya Koç, and C. Paar, Eds., vol. 2523. Redwood
Shores, CA, USA: Springer, Aug. 2003, pp. 1–19. [Online]. Available:
http://dx.doi.org/10.1007/3-540-36400-5

[3] T. van Deursen and S. Radomirovi, “Attacks on RFID protocols,”
Tech. Rep. 310, 2008, last revised 6 Aug 2011, last visited May 2011.
[Online]. Available: http://eprint.iacr.org/2008/310

[4] G. Avoine, E. Dysli, and P. Oechslin, “Reducing time complexity
in RFID systems,” ser. Lecture Notes in Computer Science,
B. Preneel and S. Tavares, Eds., vol. 3897. Kingston, Canada:
Springer-Verlag, Aug. 2005, pp. 291–306. [Online]. Available:
http://dx.doi.org/10.1007/11693383 20

[5] S. Kumar and C. Paar, “Are standards compliant elliptic curve cryp-
tosystems feasible on RFID?” Graz, Austria, Jul. 2006, workshop on
RFID Security – RFIDSec 06.

[6] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Estevez-Tapiador,
and A. Ribagorda, “Advances in ultralightweight cryptography for
low-cost RFID tags: Gossamer protocol,” in Workshop on Information
Security Applications, ser. Lecture Notes in Computer Science.
Jeju Island, Korea: Springer-Verlag, Sep. 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00306-6 5

79

[7] P. Kitsos and Y. Zhang, Eds., RFID Security: Techniques, Protocols and
System-On-Chip Design. Springer, 2009, isbn: 978-0-387-76480-1.

[8] Y. Oren and M. Feldhofer, “A Low-Resource Public-Key Identification
Scheme for RFID Tags and Sensor Nodes,” in Proceedings of the
2nd ACM Conference on Wireless Network Security – WiSec’09,
D. A. Basin, S. Capkun, and W. Lee, Eds., ACM. Zurich,
Switzerland: ACM Press, March 2009, pp. 59–68. [Online]. Available:
http://dx.doi.org/10.1145/1514274.1514283

[9] G. Avoine and U. Information Security Group (GSI), “RFID security
& privacy lounge,” last visited May 2011. [Online]. Available:
http://www.avoine.net/rfid/

[10] E. Rekleitis, P. Rizomiliotis, and S. Gritzalis, “A holistic approach to
RFID security and privacy,” in 1st International workshop on the security
of the Internet of Things, SecIoT’10, Tokyo, Japan, Nov. 2010.

[11] B. Song and C. J. Mitchell, “Scalable RFID security protocols
supporting tag ownership transfer,” Computer Communications, vol. 34,
no. 4, pp. 556–566, Apr. 2011. [Online]. Available: http://dx.doi.org/
10.1016/j.comcom.2010.02.027

[12] J. Cho, S. Yeo, and S. K. Kim, “Securing against brute-force attack: A
hash-based RFID mutual authentication protocol using a secret value,”
Computer Communications, vol. 34, no. 3, pp. 391–397, Mar. 2011.
[Online]. Available: http://dx.doi.org/10.1016/j.comcom.2010.02.029

[13] B. Song and C. J. Mitchell, “RFID authentication protocol for low-cost
tags,” in ACM Conference on Wireless Network Security, WiSec’08, V. D.
Gligor, J. Hubaux, and R. Poovendran, Eds. Alexandria, Virginia, USA:
ACM Press, Apr. 2008, p. 140147.

[14] P. Rizomiliotis, E. Rekleitis, and S. Gritzalis, “Security analysis of
the song-mitchell authentication protocol for low-cost RFID tags,”
Communications Letters, IEEE, vol. 13, no. 4, pp. 274–276, 2009.
[Online]. Available: http://dx.doi.org/10.1109/LCOMM.2009.082117

[15] S. Cai, Y. Li, T. Li, and R. H. Deng, “Attacks and improvements
to an RIFD mutual authentication protocol and its extensions,” in
Proceedings of the second ACM conference on Wireless network
security. Zurich, Switzerland: ACM, Mar. 2009, pp. 51–58. [Online].
Available: http://dx.doi.org/10.1145/1514274.1514282

[16] P. Peris-Lopez, J. C. Hernandez-Castro, J. M. Tapiador, T. Li, and Y. Li,
“Vulnerability analysis of RFID protocols for tag ownership transfer,”
Computer Networks, vol. 54, no. 9, pp. 1502–1508, Jun. 2010.

80

