
Android Forensic Data Analyzer (AFDA):

An Opensource Tool to Automatize Event Correlation Analysis on Android Devices

Dimitrios Kasiaras

University of the Aegean

Samos, Greece

Nathan Clarke

Plymouth University

Plymouth, UK

Thomas Zafeiropoulos

University of the Aegean

Samos, Greece

Georgios Kambourakis

University of the Aegean

Samos, Greece

Abstract

Forensic analysis on mobile devices in general and

smartphones in particular is on the rise. Naturally, this is

because these devices are more than ever used by criminals

of all kinds to perform a variety of offensive actions. The

mushrooming of mobile services and the way people use

their smartphones in their daily activities results in a

plethora of valuable and private data stored in the device,

which of course can be extremely helpful towards resolving

a criminal case. The automatic or semi-automatic

correlation of end-user events as recorded in the mobile

device can be of great value to the investigator in their

struggle to resolve a case. Unfortunately, existing forensic

tools targeted to Android lack of such a functionality. To fill

this gap, we propose the Android Forensic Data Analyzer

(AFDA), a tool that is able to gather end-user’s data stored

in critical system areas and then inter-correlate them in

terms of a time and location-based series of events. We

argue that this type of analysis not only saves time and

effort from an investigator’s viewpoint but also can reveal

the interrelationship between artifacts providing a more

robust and comprehensive approach.

1. Introduction

During the last few years we have witnessed a rapid
evolution in the technology of mobile devices, where the
emergence of the so-called smartphones has revolutionized
the way we work, travel and keep in touch with others.
Indeed, a recent survey shows that 97% of adult Americans
own at least one mobile phone, with more than half of them
using smartphones [1]. From all the mobile Operating
Systems (OS) available in the market today, the Android
platform seems to possess a significant and increasing
market share. Considering smartphone capabilities and the
services that they can offer, it is inevitable that such devices
could be exploited in criminal activities. Specifically,
smartphones amass and broadcast personal information and
are frequently used in e-transactions [2]. This fact makes
them a very enticing target for various kinds of aggressors to
attack and steal information for financial gain. On the other
hand, criminals always relied on mobile devices to exercise
their daily operations. Therefore, smartphones are sure to be

a powerful tool for them because of the variety of services
they offer. As a result, from a forensic investigator
viewpoint, these devices store valuable information for
solving a case. In fact, Mobile Forensics (MF) is on the rise
receiving more attention from researchers and practitioners.
A smartphone can be the instrument, the target or just be the
source of valuable information related to a crime. So, few
would disagree that unlike personal computers, smartphones
can eventually reveal additional information and provide
stronger evidence about a user's behavior. This is due to the
sophisticated hardware these devices embed; for example,
high-resolution cameras and GPS interfaces that can be
utilized for taking photos or acquiring location-based
services (LBS).

Considering all the above, the need for advanced forensic
tools that focus on smartphones and can help examiners to
solve a case in a timely and efficient manner is deemed
imperative. Even though existing MF tools have been greatly
enhanced, as discussed in section II, to our knowledge, none
of them is able to produce a comprehensive analysis about
the hidden evidence contained in the device without
significant out-of-tool effort from the investigator. This
means that the great majority of tools occupy themselves
with the acquisition of raw evidence rather than their
subsequent analysis. So, ultimately a great deal of the
analysis of the collected evidence needs to be undertaken
manually.

Our contribution: To contribute to the aforementioned
need, in this paper, we propose a novel forensic tool for the
Android platform that concentrates on users data and thus
advocates a more passive role for the examiner. A key
contribution of the proposed tool is that of the automatic or at
least semi-automatic inter-correlation of user’s data
pertaining to the different events that have been logged by
the device in both the file system and application layer. This
can significantly assist an investigator by highlighting the
relationship between the various artifacts, rather than relying
upon the investigator to manually identity them. It may also
reveal latent information related to the particular case at
hand.

The rest of paper is structured as follows. The next
section addresses previous work. Section 3 details on our

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 501

proposal, namely the Android Forensic Data Analyzer
(AFDA). The latter is evaluated through some case studies in
Section 4. The last section concludes and provides pointers
to future work.

2. State of the Art

2.1. Prior Art within Android Forensics

Considering the latest developments in the area of MF, it

is for sure that one has to cope with several challenges that

require further research. In fact, the complexity of the

problem is mainly due to (a) the fast-evolving pace of the

mobile technology, (b) the mushrooming of mobile services

offered to the end-user, and (c) the non-convergence between

the various mobile platforms and the absence of mature

specifications and practices in the field. So far, the majority

of research in the MF ecosystem concentrates on techniques

destined to the acquisition of evidence and the maintenance

of the file system’s integrity. There is only a limited number

of studies that cope directly with methods for the analysis

and presentation of the collected evidence to the investigator.

The most promising of them are briefly analyzed in the

following paragraphs.

Work by Lessard reports on the acquisition procedure

from an HTC Hero device and the examination of the

evidence using two commercial MF tools [3]. The authors

draw their attention to the acquisition methods that can be

used, and the evidence that can be examined by existing MF

tools. However, there is no reference to the way that the

collected evidence will be displayed to the investigator.

Similar work elaborates on two main MF acquisition

methods (physical - logical), by showing the advantages and

the disadvantages of each one as well as the importance of

preserving the integrity of the data [4]. In the same context,

the work by Vidas introduces a data collection methodology,

in which data integrity is sustained [5]. The proposed

methodology capitalizes on the recovery mode partition of

the Android platform for acquiring an image of the device’s

file system. Moreover, other authors build upon the previous

methodology by presenting a simple GUI tool written in C++

that simplifies the procedure of the extraction of evidence

[6].

More recently, the work by Mahajan examines two

Instant Messaging (IM) apps, namely Viber, and What’s Up,

using the Universal Forensics Extraction Device (UFED)

physical analyzer and subsequently describes the valuable

information that can be retrieved from such an app [7] [8].

Furthermore, Andriotis et al. examine four scenarios based

on real crime cases that have been committed by utilizing

wireless connections [9]. They focus upon what evidence can

be found in app databases and log files. However, as the

authors correctly point out, log files are not always reliable

as they depend on the time and the usage prior to the seizure

and what’s happening because of the internal mechanism that

manages the log files.

A couple of further works given by Maus and Kramer

concentrate on the analysis of geo-data [10] [11]. In the

former study, the authors describe some of the difficulties

that arise during the examination of user’s geo-data, and

propose an approach to perform a comprehensive analysis of

such data contained in smartphones. In the latter, the authors

present a tool that dynamically searches for geo-data

generated in the mobile device by the corresponding apps.

On the other hand, their tool merely presents static data as it

does not attempt to offer any correlation of geo and non-geo

tagged artefacts. Nevertheless, as explained further down in

section III, a closer analysis of geo-data could lead to a richer

set of clues, such as the comparison of user's routes spread

across different dates, which could thus unveil unusual

behaviors regarding the user of the device.

There are also a number of studies that focus on the

admissibility, organization and presentation of evidence in a

chronological order. However, these studies are not specific

to MF, but rather applicable to computer forensics in

general. Buchholz el al. present a timeline editor (Zeitline)

that is designed as an extensible tool capable of using

various app data sources to automatically collect and

process system events [12]. Although this tool provides

some useful functionality, it does not offer a graphical

timeline. Other work presents a tool that collects the

timestamps from a hard disk of a personal computer and

visualizes them in a graphical timeline [13]. Whereas this

tool does includes a graphical timeline view, it is destined

for desktop machines, thus it cannot be used for smartphone

devices where the file system has an entirely different

structure. Perhaps, the most relevant research to ours is that

given by Jin [14]. The author implements a tool for the

Android platform that produces a graphical timeline

representing the activity of each application of interest. On

the other hand, this software only takes as input the time that

each application was used and not the information related to

events, e.g., the message communicated in an SMS

transaction or the caller and callee IDs in a phone call. So,

this timeline can be very useful for revealing unusual

behavior of apps that may indicate the presence of malware.

2.2. Analysis of Forensic Tools

An examination of the currently available open source

MF tools developed for Android reveals that the majority of

them have limited functionality and sometimes are quite

complicated even for the experienced examiner to use.

Perhaps, the most well-known tools in this category are the

so-called Autopsy – Sleuth Kit and OSAF (Open source

Android Forensics) [15] [16]. On the other hand, there are

tools such as the ViaExtract or Oxygen Forensics that do not

analyze an image file, but install an agent in the device in

order to retrieve valuable data [17] [18]. This however

results in altering the integrity of the file system, which in

turn creates admissibility problems.

Another important aspect here is that some MF tools

target specific apps such as the browsing history (database)

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 502

and not only legacy artefacts (e.g., call, SMS) found in

mobile phones. ADEL is an open source tool that uses ADB

shell to retrieve such sorts of data (contacts,

calls/SMS/MMS, browser history, media, IM accounts, e-

mail, contacts, accounts, and so on) [19]. It can also create a

map with user’s geographical locations as logged by the

device. A notable limitation of the tool is related to the

incompatibility issues caused by newer Android versions,

and the one that require the device to be rooted in order to

get access to the file system. An interesting commercial tool,

IEF (Internet Evidence Finder) also targets specific

applications, including both pre-installed and installed

applications by the user (Facebook, Instagram, etc.). This is

very important because broad swaths of users employ these

apps and therefore the corresponding databases may contain

valuable data for solving a case. The tool is also able to

create a timeline of events that have occurred in the device,

including received calls and e-mails [20].

A succinct analysis of the aforementioned tools along

with their key characteristics is included in Table 1. It should

be noted that the tools contained in the table are open source

or commercial in trial version mode. For testing the tools,

two rooted Android devices were utilised. The first was a

Samsung Galaxy Nexus with EXT4 file system running

Android version 4.3, and the other was a Sony Ericsson

XPERIA Neo V MT11i with YAFFS2 file system running

Android 4.0.4. As observed from the table, although several

commercial tools have started to develop aggregation

mechanisms designed for better analysis of the evidence

(frequently based on popular applications, as that of social

networks) there are no dedicated and comprehensive

mechanisms for the correlation and visualization of evidence

stemming from different sources.

Table 1. Forensic Tools Main Characteristics

 Main

Feature

Plus Minus OS Android

Focus

Open

Autopsy Search

engine

YAFFS

2

support

Struggli

ng to

find

evidenc

e

Win,

Mac,

Linu

x

No Yes

ADEL Exports

db

Map

with

Locatio

ns

Works

till

v.2.X

Just

Pyh

on

Yes Yes

OSAF Forensi

c,

malwar

e

For best results

requires familiarity

VM Yes Yes

Via

Extract
Exports

artefact

s

Quick Alters

file

system

VM Yes No

Oxygen Eviden

ce long

list

Detaile

d

report,

Timelin

e

Alters

file

system

Win,

Mac

Yes No

IEF Graphi

cal

TimeLi

ne

Filterin

g

evidenc

es

Modera

te

filtering

Win,

Mac

Yes No

3. The AFDA System

As previously highlighted, most studies on Android

forensics concentrate on finding better ways to acquire the

data from the device rather than on how to present the data to

the investigator in a simple and intelligible fashion.

Additionally, most research that refers to “a timeline of

events” has been conducted for digital forensics in general,

and thus they are not specific to the Android platform. To the

best of our knowledge, no research focuses upon the inter-

correlation of events pertaining to a users’ activity. This

means that the investigator needs to undertake this work by

manually examining the corresponding log files.

Therefore, taking into account the existing forensic tools

and related literature there is a need for advanced MF tools

that will target specific applications and be able to display

the artifacts independent of the app in a comprehendible and

usable manner. However, this should be achieved without

removing the investigator’s ability to perform manual

searches and navigate through the file system of a given

image file. This is because fully automatic procedures may

miss a considerable mass of evidence.

To respond to this need, AFDA was designed and

implemented - an open source MF tool designed for the

Android platform. The tool specifically targets the user’s

data partition of the Android platform. This partition contains

all the artifacts generated by the installed apps. The interface

of the tool has been designed to be user friendly and as

intuitive as possible, developing a similar design to that of

well-known commercial tools. Furthermore, AFDA provides

the investigator with an automated mechanism for basic

artifact examination and also a separate one for performing

correlation analysis among the artifacts. Finally, AFDA

offers the ability for a manual examination of the file system

structure in order for the investigator to be able to locate

specific information depending on the case. The tool has

been implemented in JAVA for the Linux platform and does

not require the mobile device to be rooted. Linux was

selected because AFDA uses UNIX shell commands for

conducting the extraction of the artifacts from the image file,

and mainly uses the well-known shell command “mount” for

mounting the image on the host machine. For the latter we

used an Ubuntu OS v. 13.10.

Furthermore, AFDA requires the alteration of the

“sudoer” file of the Linux OS. Usually, this file is located in

/etc/ folder and contains the rules that users must follow

when using the sudo command. Specifically, this file must be

changed so that the system does not require from the user

their password when they run the sudo command. In fact,

this modification is necessary due to the fact that the sudo

command is called inside the Java code and currently there is

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 503

no effective way to pass the password as a variable to the

command.

To sum up, the tool requires a binary image file to be

extracted from the Android device under investigation. This

refers to a bit-by-bit copy of a certain partition from the

device memory. Actually, Android uses several partitions to

organize files and folders on the device, including /boot,

/system, /recovery, /userdata, /cache, /misc, /sdcard, and

others. Currently, AFDA is able to only examine Android

devices that contain EXT file system. This is because Linux

cannot mount YAFFS and YAFFS2 file systems by default.

In order for the investigator to examine such a file system

they would have to modify the Linux kernel to support it. For

the interested reader, a comprehensive guide to help

understand YAFFS2 and recompile the Linux kernel aiming

to mount YAFFS file system is described in Regan [2009].

Also, it is to be noted that the partition AFDA uses is

/userdata.

3.1. AFDA GUI

Few would argue that one of the main requirements for

any software tool pertains to its usability. That is, the user

must not struggle with a complicated interface to launch

specific functionalities. Furthermore, the functionalities of

any MF tool should be as automated as possible, thus

assuring optimized performance and straightforward use.

As illustrated in Fig. 1, the AFDA GUI is divided in five

areas of interest that help toward the best analysis of a case.

The first one is the menu bar that contains all the

functionalities offered by the tool. Next is the “structure

view” that displays the file system structure of the partition

containing the user’s data. The investigator is able to

navigate around this area by selecting among the included

data. There is also a “content display” area that presents the

contents of the selected file/folder. The “processing details”

area is used to present information about the running

processes and other pieces of data regarding the currently

selected items in the structure area. Finally, the “common

data” area includes all the artifacts that are extracted during

the acquisition procedure.

Figure 1. GUI of AFDA

3.2. AFDA core Functionalities

The core functionality of AFDA comprises of five

distinct phases. That is, case creation, mounting of an image,

extraction of artifacts, generation of the hash file, and

generation of reports. Whilst there is no novelty here, these

common functionalities to any MF tool are necessary for

conducting a constructive and acceptable forensic

investigation, from which the advanced correlation

functionality is built upon.

 The creation of a new case includes the construction of a

log file that records the processing details and the general

information about the case and the mounting of the image is

needed for the analysis of the user data partition. Once

complete, the structure of the file system is displayed in the

“structure area” and the analyst is able to locate the files of

interest depending on the case at hand. After the mounting

procedure takes place, the investigator can process, extract

and analyze app-level data. The extraction functionality aims

at specific apps that may offer special forensic value. During

this procedure, the app-related artifacts are extracted from

the image file and stored in a local database, namely

“commonData.db”. Also, as depicted in Fig. 2, the artifacts

are displayed in the “common data” area. These pieces of

data will be also used at a later stage for performing the

advanced analysis.

As it is well-known, each Android application stores its

data in corresponding databases. However, it is not to be

taken for granted (especially for new apps) that the

investigator knows details about how this is done (i.e., the

name of a table the data is stored in, the names of the

columns of the table, what type of data are contained, etc).

Hence, usually a reconnaissance stage to examine the way

the data is stored in the device is required. Currently, this

examination should be performed manually Based on

publicly available data and facts about the apps most people

use or have download from the Android market, the

following apps were chosen to be included in AUDA tool:

Contacts, SMS, Telephone calls, Browsing history, Viber,

Skype, What’s Up, and Twitter. Notably, however, the tool

has been developed to make this extendable to meet the

needs of future apps.

Generally, the data acquisition process triggered by

AFDA unfolds in the following way. First, AFDA connects

to the appropriate database in the mounted image file. After a

connection has established, the program executes some SQL

SELECT statements to retrieve the required information.

Next, it connects to the local database and executes some

INSERT SQL statements for storing the retrieved

information to the appropriate tables. Finally, the tool fetches

the artifacts that were stored in the local database and

displays them in the “common data” area using a different

tab per app.

The extraction procedure uses different functions for the

extraction of artifacts per application, so in case of an error,

the extraction procedure will continue unattended for the

rest of them. This approach also makes it simple to include

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 504

additional functions for the extraction of artifacts for any

new application. Legacy hashing is used for assuring the

integrity of the file. As illustrated in Fig. 3, during this

procedure a separate file is generated that contains all the

original filenames along with the file path from the mounted

image and the corresponding MD5 hash value. The final

basic functionality of AFDA is the generation of the

corresponding report. This is a comma-delimited file (csv)

that contains the details of the case, the procedures that were

conducted (e.g., the title of the case, a unique id based upon

a timestamp, the path of the mounted image, etc) and the

artifacts that were extracted from the examined apps. An

example of such a examination is given in Fig. 4. Such a

report can be used for the presentation of forensic analyses

within court.

As already mentioned, the investigator is able to use the

“content display” area for viewing the contents of files, and

analyze them manually depending on the case. However,

before processing the files for viewing, there exist two

restrictions. The first is related to the size of the file and the

other with its type. As for the size, some files are too large

for the tool to process thus an external software should be

used. Fortunately, it seems that the files that need such a

special treatment are usually not important for forensic

purposes. On the other hand, the restriction that has to do

with the file format stems from the fact that while normal

files, including text documents and images can be displayed,

a filter needs to be used for preventing others to be

processed for viewing purposes. This category refers mainly

to .apk and other binary data files. This typically does not

present an issue as they hold little value from a forensic

point of view. Of course, there are also some other types of

files that have been intentionally rejected for viewing,

including those of SQLite databases. Such files cannot be

directly viewed inside AFDA, requiring an external program

to parse them (e.g., an SQLite Editor).

Figure 2. Hash File

Figure 3. csv File Sample Report

3.3. Advanced Functionality of AFDA

The advanced inter-correlation functionality that AFDA

offers comprises of two modules, namely the Graphical

Timeline representation, and the Geodata Chronology.

3.3.1. Graphical Timeline. The graphical timeline of events

is designed to provide the investigator with a succinct view

of the occurred events in chronological order. To do so, the

module uses the timestamps stored in the database of the

corresponding app. This functionality allows for better

understanding of when (and how) the owner of the device

used the application. Most apps in the Android platform

realize the current time (timestamp) in milliseconds. Also, a

timestamps is based on the local time zone. For example, if

a timestamp is to be created in Greece at 7:00 am, it will be

different from that generated in UK at 7:00 am on the same

date. So, after a timestamp is retrieved it is interpreted into

the time zone of the local machine. So if an event occurred

in Greece but the case is investigated in UK the investigator

will have the events in their local time zone and

consequently they have to assign them to the Greek time

zone manually.

This timeline of events can be created for two different

ranges of time. First, it can be outputted for a single day

where the investigator can obtain a concise view of the

events and be informed about the duration of each one of

them. The second option, described in Fig. 5, is for one

month where a general view of the events can be concluded

and specific behavior patterns can be spotted related to the

application(s) of interest. As observed from Fig. 6, the

graphical timeline represents each application using a

different axis and color and each event is displayed with a

line where its thicknesses is proportional to the duration of

the event. For the graphical representation of the events

related to the time it occurred, the Google visualization

JavaScript API was used. This API provides a chart gallery,

which provides a plethora of charts designed to

accommodate a variety of data visualization needs. These

charts are based on pure HTML5/SVG technology (adopting

VML for old IE versions), so no plugins are required. All of

them are interactive, and most of them are pan-able and

zoom-able as well.

During the construction of a timeline two other

informational objects are created. The first one is a table that

contains the contacts of other persons the user interacted with

more frequently, while the second is another table

summarizing the events displayed in the graphical timeline,

but with more information. An example of this situation is

presented in Figs. 7 and 8. The investigator can use these two

tables in conjunction for achieving the best results.

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 505

Figure 4. Sample Timeline per App

The analyst is also able to select which apps will be

displayed and enter search terms for filtering the messages

corresponding to events. Moreover, they are able to search

for information by specifying the contacts of persons that

may have used the app. All these functionalities can be used

in tandem to reveal correlations among the events generated

by different apps as well as possible interrelationships

between the persons who use them. The first time the

investigator selects to create the graphical timeline a new

database is created (normalized.db). This database contains

all the artifacts that were extracted during the acquisition

process. This is important because there is a need for the

events to be in a specific format so as to be used in the

graphical timeline and the geo-data chronology views. For

instance, pieces of data that are stored in a table of a given

database that the app of interest is using, e.g., location

(latitude, longitude), are not always in the expected format.

So, these data need to be normalized in the default format

prior to be used by AFDA.

3.3.2. Geodata Chronology. As previously highlighted,

most Android apps store information about the occurring

events in a corresponding database. As known, such events

frequently include information about the geographical

location of the device at that point of time. AFDA

capitalizes upon this fact and provides an option that enables

the investigator to automatically seek for such information,

create the (geo) route of the user’s device, and present it in

chronological order. As shown in Fig. 9, for each position

on the map, information about the corresponding event is

available for the investigator to evaluate. This functionality

is of great help to an investigator for not only perceiving the

positions of a suspect along with the associative events, but

also for revealing any unusual user behavior. This results

because some points on the map may expose considerable

differences from others included in the user’s normal routine

(i.e., via the comparison of routes across different dates).

Figure 5. A snapshot of user’s route with the associated

events

Although many applications may access the user’s

location, this piece of data is not always stored in the

corresponding app’s database. Typical apps that do so are

Twitter, Viber, and What’s Up. Moreover, while a lot of

events may have occurred, only a small fraction of them are

directly associated with geo-location data (event and

geolocation in the same record). So, AFDA performs a

correlation of events having no available location, with

others that do in an effort to reveal possible locations or

proximities about where these events have taken place. For

example, let’s assume a Skype call that occurred at a given

time. This event is stored in the corresponding database, but

by default there is no information about its location.

However, there is another event approximately at the same

time, say, a Viber call, which does hold location

information. Hence, it is easily deduced that the Skype call

took place at about the same geographical position to that of

the Viber call. More specifically, as observed from Fig. 10,

the algorithm searches all app databases for events (event A)

that include both geo-data and the associated timestamp.

Then, given a threshold (time t), it searches for events (event

B) stored in app databases that only include the timestamp

of the event. In a final stage, the software attempts to

correlate between events A and B that are found to have

nearby timestamps ((time x of event A, location) ∩ (time x

± threshold t of Event B, no location available)) in an effort

to reveal the location of event B. Naturally, this procedure

heavily depends on the threshold the forensic analyst

provides but as the tool enables the investigator to vary the

time value, this is left to the investigator to determine.

In order to create a map containing the location where an

event has occurred, Google Maps JavaScript API v3 has

been used. The results are exported to a HTML file which

holds the corresponding locations as points on the map. This

well-known API was utilized because it offers a lot of

functionality and a plethora of options that can be really

helpful to both the implementer as well as the forensic

analyst. The limitation however is that the tool requires

Internet access.

The central database (“commonData.db”) contains a

variety of data and events. To collect only those

corresponding to locations, AFDA searches the

aforementioned database and transfers location data to

another called “location.db”. After that, the records of the

latter database are added in chronological order to the map,

all connected by a red timeline. For showing the

chronological sequence of the events included in the map, a

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 506

green arrow points from one location to another. As some of

the events may happened on the exact same point on the

map, the markers that point toward the location of an event

can be moved. However, the green arrow that shows the

direction is not affected. For every point that is included in

the map, the forensic analyst is able to click on the marker

and retrieve information about the event. Also, because the

forensic analyst may not be interested in viewing all the

locations that are stored in the “locations.db”, and instead

target only to a specific period of time, AFDA is able to

adjust the map accordingly.

4. Evaluation

A preliminary evaluation of AFDA was conducted with

the aim to assess its usability and effectiveness as compared

to other well-known forensic tools.

4.1. EnCase

EnCase is one of the most popular forensic tools [21].

However, it is used for general digital forensics and not

specifically for smartphones. Although this tool is able to

examine an Android image, the investigator has to struggle

to locate the traces that they need. This happens because

EnCase does not focus specifically on the installed apps and

the evidence that they may bear, but merely on the file

system. Moreover, EnCase can be used directly on the

device. That is, by installing an agent it makes possible to

retrieve specific information about the mobile device. On

the downside, this information is limited and does not

include app artifacts. During the examination of an image

some EnCase filters helped us to concentrate on specific

time intervals. However, the presented information was

enormous and it was very hard to find specific events in a

timely manner. Finally, EnCase does not provide any

module to visualize the locations visited by the user within a

window of time. While EnCase offers the ability to navigate

the file structure, it does not include any automated

procedure for the representation of artifacts that may be

forensically significant.

Figure 6. The Threshold Procedure

4.2. Autopsy

Autopsy is one of the most popular open source tools for

digital forensics, including many interesting functionalities,

such as file structure navigation and filtering, in its arsenal.

During the analysis of an image, the most valuable

characteristic of Autopsy was its search engine, as it can

traverse the unallocated space to find deleted files. Although

this tool offers great functionalities and a plethora of options

it does not enable one to search for specific apps and

artifacts. Furthermore, it does not include any module for the

graphical representation of the evidence. The newer Autopsy

ver. 3.0.9 for Windows does incorporate a beta procedure to

retrieve the user’s timeline, but this is limited to the events

per se, without including any details about them. One can

conclude that while this tool offers great potential to conduct

manual analysis, it still needs significant improvement

regarding the representation of artifacts to the investigator.

4.3. Internet Evidence Finder

Internet Evidence Finder (IEF) is perhaps the most

similar tool to AFDA. This tool targets specific applications

and artifacts that can be extracted from the installed apps.

Further, it offers a dynamic app finder that searches for

additional apps (databases) besides the ones defined by

default. However, after trying it repeatedly with different

images it was not able to locate and retrieve any valuable

artifacts from the device (although there were some). Also,

this app provides a well-designed timeline view along with

filtering functionalities and a geo-data one that includes the

geographical coordinates per event. Despite these modules

can contribute towards a comprehensive analysis of a given

image, it seems that the investigator is only able to analyze

the artifacts that were extracted from specific applications

and they do not have the ability to navigate the file structure

of the image. Summarizing, we can say that IEF provides

effective mechanisms for the examination of specific

artifacts; however, some improvements are needed to ease

the work done by the forensic analyst. Most importantly, it

should include the ability of navigation through the image

and to perform correlation among the various artifacts.

4.4. AFDA

As already pointed out, AFDA has been designed with

usability in mind. So, it includes automated mechanisms for

the representation of app data to the investigator in a clear

and straightforward fashion. It also provides several options

for the analysis of the file system of a given image. In our

opinion, the graphical timeline and the geo-data chronology

views can greatly assist in the analysis of artifacts produced

by the various apps. Bearing in mind the discussion of

section III, it is clear that the investigator is not only able to

obtain a luminous view of the possible relationships

between the various artifacts, but also can reveal obscured

correlations among the events. This is achieved without

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 507

struggling with a vast amount of data. Similarly, the geo-

data chronology view allows the investigator to easily

perceive the route followed by the user of the device. To

sum up, the examination of the image with AFDA is a much

simpler task due to the automated mechanisms it offers.

However, this is not limited to app data as the structure of

the file system is provided for examination as well.

5. Conclusions & Future Work

Developments on mobile technology and forensic

research and practice are more or less meant to go hand in

hand [22]. This is because the advancements in mobile

hardware and services are sure to facilitate and therefore

increase criminal activities. So far, research on MF

concentrates mainly on the acquisition methods and the

selection of data that may be of forensic value. Little have

been completed focusing upon optimizing the way the

various artifacts are presented to an investigator. Motivated

by this fact, in this paper, we present AFDA, an MF tool

that incorporates some advanced features targeting to

automatize and streamline the presentation of artifacts that

present forensic value to the investigator. Also, AFDA aims

to improve the exposure of hidden information of forensic

value by taking advantage of the correlations among the

various events recorded by the same or different apps. An

evaluation of the tool showed that AFDA includes many

useful mechanisms that can aid the investigator to analyze a

given image more effectively and more efficiently.

However, it is acknowledged that the tool needs further

improvements and additional functionality in order to be

considered an integrated forensic tool. Future research is to

make the tool compatible with several image formats and

mobile platforms [14]. Furthermore, AFDA has to be

evaluated from an investigator’s point of view. Given the

huge explosion in the number of mobile apps, a dynamic

procedure for finding app databases and locating relevant

forensic data is required. Finally, an option that will not only

return the events that are correlated with a keyword, but also

those that are in the vicinity of that time or geo-location

would be much appreciated. This would allow for a better

comprehension of the analyzed data.

Availability

AFDA source code is available on GitHub:

https://github.com/msildigitalrage/project.

6. References

[1] Cell Phone Statistics,http://www.accuconference.com/blog/

Cell-Phone-Statistics.aspx, 2014 (accessed 2014).

[2] Goel, A., Tyagi, A., &Agarwal, A. (2012).Smartphone Forensic

Investigation Process Model. International Journal of Computer

Science & Security (IJCSS),6(5), 322-341.

[3] Lessard, J., & Kessler, G. (2010). Android Forensics:

Simplifying Cell Phone Examinations.

[4] Abalenkovs, D., Bondarenko, P., Pathapati, V. K., Nordbø, A.,

Piatkivskyi, D., Rekdal, J. E., & Ruthven, P. B. (2012). Mobile

Forensics: Comparison of extraction and analyzing methods of iOS

and Android.

[5] Vidas, T., Zhang, C., &Christin, N. (2011).Toward a general

collection methodology for Android devices. Digital

investigation, 8, S14-S24.

[6] Son, N., Lee, Y., Kim, D., James, J. I., Lee, S., & Lee, K.

(2013).A study of user data integrity during acquisition of Android

devices. Digital Investigation,10, S3-S11.

[7] Mahajan, A., Dahiya, M. S., &Sanghvi, H. P. (2013).Forensic

Analysis of Instant Messenger Applications on Android

Devices. arXiv preprint arXiv:1304.4915.

[8] UFED, “UFED Physical Analyzer”,

http://www.cellebrite.com/, 2013

[9] Andriotis, P., Oikonomou, G. C., &Tryfonas, T. (2012,

December).Forensic analysis of wireless networking evidence of

Android smartphones.In WIFS (pp. 109-114).

[10] Maus, S., Höfken, H., &Schuba, M. (2011, June). Forensic

Analysis of Geodata in Android Smartphones.In International

Conference on Cybercrime, Security and Digital Forensics,

http://www.schuba. fh-aachen. de/papers/11-cyberforensics. pdf.

[11] Kramer, J. A. (2013). DroidSpotter: A Forensic Tool for

Android Location Data Collection and Analysis.

[12] Buchholz, F. P., & Falk, C. (2005, August).

Design and Implementation of Zeitline: a Forensic Timeline

Editor. In DFRWS.

[13] Olsson, J., &Boldt, M. (2009).Computer forensic timeline

visualization tool.digital investigation, 6, S78-S87.

[14] Jin, Y. (2013). Timeline analysis for Android-based

systems (Doctoral dissertation, MS thesis, Technical University of

Denmark, DTU Compute, E-mail: compute@ compute. dtu. dk,

Matematiktorvet, Building 303-B, DK-2800 Kgs. Lyngby,

Denmark. DTU supervisor: Robin Sharp, robs@ dtu. dk, DTU

Compute).

[15] Sleuthkit – Autopsy, “Autopsy Digital Forensic Platform”,

http://www.sleuthkit.org/autopsy/, 2013

[16] OSAF, “OSAF community”, http://osaf-community.org/, 2013

[17] ViaExtract, “Android Forensics Software”, Available at:

https://viaforensics.com/products/viaextract/, 2013

[18] Oxygen Forensics (2013): “Oxygen Forensics Suite”,

Available at: http://www.oxygen-forensic.com/en/

[19] Spreitzenbarth, M. (2013). Dissecting the Droid: Forensic

Analysis of Android and Its Malicious Applications (Doctoral

dissertation, Erlangen, Universit tErlangen-N rnberg, Diss., 2013).

[20] Magnet Forensics, “Internet Evidence Finder”,

http://www.magnetforensics.com/software/internet-evidence-

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 508

https://github.com/msildigitalrage/project
http://www.cellebrite.com/
http://www.sleuthkit.org/autopsy/
http://osaf-community.org/
https://viaforensics.com/products/viaextract/
http://www.oxygen-forensic.com/en/
http://www.magnetforensics.com/software/internet-evidence-finder/ief-advanced/

finder/ief-advanced/, 2013Nichols, D., &Twidale, M. (2003).The

usability of open source software. First Monday, 8(1).

[21] EnCase, “EnCase Forensic Tool”,

http://guidancesoftware.com/, 2014.

[22] Barmpatsalou, K., Damopoulos, D., Kambourakis, G., &

Katos, V. (2013). A critical review of 7 years of Mobile Device

Forensics. Digital Investigation, 10(4), 323-349.

International Journal for Information Security Research (IJISR), Volume 4, Issues 1/2/3/4, Mar/Jun/Sep/Dec 2014

Copyright © 2014, Infonomics Society 509

http://guidancesoftware.com/

