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Optimizing Automated Gas Turbine
Fault Detection Using Statistical
Pattern Recognition

A method enabling the automated diagnosis of gas turbine compressor blade faults,
based on the principles of statistical pattern recognition, Is initially presented. The
decision making is based on the derivation of spectral patterns from dynamic meas-
urement data and then the calculation of discriminants with respect (o reference
spectral patterns of the faults while it takes into account their statistical properties.
A method of optimizing the selection of discriminants using dynamic measurement
data is also presented. A few scalar discriminanits are derived, in such a way that
the maximum available discrimination potential is exploited. In this way the success
rate of automated decision making is further improved, while the need for intuitive
discriminant selection is eliminated. The effectiveness of the proposed methods is
demonstrated by application to data coming from an industrial gas turbine while

extension to other aspects of fault diagnosis is discussed.

1 Introduction

Gas turbine engine condition monitoring and fault diagnosis
methods have found a wide use among gas turbine users re-
cently. At the same time their philosophy and basic features
have undergone a significant change. It is recognized today
that such methods no longer rely on simple observations of
directly measured quantities. They have become more sophis-
ticated and incorporate processing of some level in order to
provide information of direct significance about component
conditions or faults. Also economical and practical reasons
led to the requirement of as little as possible empirical back-
ground from the engine user. There is a tendency to minimize
the required skills of the engine operator and to have computer
procedures that perform most of the “*skilled’” work, in order
to provide the user with information that needs minimal or
no interpretation, and even with hints about required action
(Doel, 1990). Expert system environments, available today even
for personal computers, contribute to this direction, allowing
the integration of data processing and decision making.

Another practical problem recognized by engine users, in
the effort to perform efficient monitoring and fault diagnosis,
is associated with the restrictions in instrumenting an engine.
Installing and employing a large number of measuring instru-
ments is not only difficult and costly but also requires special
care in maintaining them and avoiding false alarms. From this
point of view, it is desirable to use a minimal set of instruments,
with maximum fault detection capabilities. The methodologies
introduced in the present paper cover needs related to the
above-mentioned desired features and requirements, at the
same time being suitable for computerized fault detection.
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" It has been established today that dynamic measurements
allow the identification of minor gas turbine blade faults, which
would remain hidden to performance monitoring techniques.
Revealing blade faults, although they may not significantly
disturb overall performance, becomes important since it can
prevent the sudden occurrence of catastrophic failures (a typ-
ical example being the loss of a damaged rotating blade). Lou-
kis et al. (1991) have examined a variety of possible dynamic
measurements and discussed their suitability for the detection
of blade faults. On the other hand, a set of data from implanted
faults on an industrial gas turbine has served as a basis for a
first development of automated fault detection methods by
Loukis et al. (1992).

The work presented in this paper is based on the observations
and the conclusions reached in the above-mentioned works of
the authors. The purpose is to derive a methodology that gives
the possibility to overcome practical problems encountered in
the application of fault diagnosis methods and to provide tools
that allow extension of the findings from the particular set of
experimental information to other situations as weli. In order
to achieve these targets, principles that have already been used
in other technological domains are for the first time applied
to data from faults in an industrial gas turbine and are adapted
to particular features of such data. In particular, principles of
pattern recognition that have been applied in various other
domains, as for example monitoring of machine tools (Emel
and Kannatey-Asihm, 1988), are employed.

2 Prior Experience in Gas Turbine Fault Identification
Using Measured Patterns

The possibility of establishing fault signatures from dynamic

measurement data has been demonstrated by Mathioudakis et
al. (1990), from tests performed on an industrial gas turbinc

1IARITIADY 10004 \/Al 440 | A0

PR



and further discussed by Loukis et al. (1991, 1992). The test
program included the study of various representative com-
pressor blade faults by performing dynamic measurements with
different measuring instruments. For reasons of completeness
the description of the experiments is repeated here, in Appendix
I. A first procedure for automated identification of faults,
based on this data set, has already been described by Loukis
et al. (1992). Before describing the present procedure it is useful
to summarize the main points of that work. The procedure
consists of two phases, the learning phase and the decision
phase.

The learning phase includes all actions necessary to establish
the background for fault identification. For each instrument
the following steps are implemented:

(@) Measurements are performed on an engine in healthy

condition as well as containing the faults of interest.

() The data sets for each fault are processed and fault

indices are calculated from them by appropriate com-
bination with data from healthy condition. Each fault
index has the form of a vector P=(P,, Py, . . ., Pu),
whose components come from algebraic combinations
of spectra from healthy and faulty engine at shaft ro-
tational frequency harmonics. This vector is termed a
reduced spectral difference pattern (or simply pattern).
(c) For each fault, a reference pattern is established using
the patterns from all the data sets coming from exper-
iments with this particular fault. The reference pattern
constitutes a signature of the fault.

The decision phase includes all actions necessary for iden-
tifying an engine fault. The steps are:

(@) A data set is acquired from measurements on the engine,

which has to be examined.

{b) A pattern is calculated, by appropriate processing of this

data set and the corresponding data of healthy condition.

{(¢) The values of a discriminant are calculated for this pat-

tern, with respect to available reference patterns of the.

faults, established during the learning phase.

() The diagnostic decision is made by algebraically com-
paring these discriminant values and classifying to the
fault corresponding to the minimum distance.

An example of reference fault patterns derived and used as
signatures in this procedure is shown in Fig. -1, where patterns
for different instruments used and faults examined during the
experimental investigation are shown.

This kind of procedure can be characterized as a ‘‘geomet-
ric’’ one, since the diagnostic decision is based on a minimum
distance criterion from the reference patterns of the faults.
The feasibility of applying this procedure has been demon-
strated to be effective, with a certain degree of success for each
individual instrument used as source of information.

There are, however, certain disadvantages of such a pro-
cedure for practical application in industrial environments:

(a) The statistical properties of the data used for establishing
the signatures are not taken into account.

(b) The parameters used as discriminants are derived intu-
itvely. This does not provide the possibility of improving the
effectiveness of the method, unless the user has a better insight
in choosing them.
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Fig. 1 Fault signatures derived from various dynamic measurements

and faults: (i) accelerometer A5, (ii), (iii) pressure transducer PTZ2, (iv)
microphone
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Fig.2 Qualitative picture for effectiveness of geometric and statistical
approaches: (a) both approaches succeed; (b) geometric pracedure fails

(¢) The conclusion is in a form such that it does not provide
the possibility of assigning to it a level of confidence.

(d) Use of different discriminants does not lead always to
the same conclusion for the kind of fault.

These drawbacks have the practical implication that in some
cases false decisions can be made and there are no means of
comparing the relative similarities of the examined case to the
faults. This can be understood from the situations shown for
the simplified case of two-dimensional patterns (N =2) in Fig.
2. In case (a) the regions occupied by points corresponding to
patterns of each fault, in the two compenents P, and P, plane,
are of such a shape and position, that using a geometric pro-
cedure leads for all points to a correct decision. In case (b),
however, the regions are of such a shape and position, that
some points of fault 2 can be assigned to fault 1 by a geometric
procedure. Such points are for example the ones contained in
the shaded region of the figure. In order to handle such sit-
uations successfully, a statistical approach to making the clas-
sification decision is required.

C, = covariance matrix for fault i,
Eq. (J) pr = conditional probability
D, = ith opumal linear discrimi- N, = the number of independent P; = reference spectral difference
nant data sets available for fault i pattern for fault
D,y = discriminant i, calculated N = number of COmponcntsruf re- X = discriminant vector, Eq. (1)

with respect to the reduced
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pattern of fault & M =
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3 A Statistical Procedure for Fault Pattern Classifi-
cation

The main feature of this procedure is that it is based not on
a single discriminant calculated with respect 1o the available
ault signatures, but on a vector X, which has as components
a number of discriminants with respect to available signatures:

X=[D, Doy oo -5 Praw o - 0 Diste Dasts + + +» Drndl
(1)

where Dj; is the ith discriminant calculated with respect to the
signature of the jth fault, for a particular data set. This vector
has K x M components when K discriminants are used for M
faults. ' ’

For the classification, known principles of statistical pattern
recognition (e.g., Sing-Tze Bow, 1984) are employed. The pro-
cedure consists in evaluating the M conditional probabilities
of having the particular vector X, which is calculated using
the data set acquired from the examined engine, if each of the
faults exists. The decision is made classifying the vector to the
fault that corresponds to the maximum probability, while the
rest of the faults are ranked according 10 their relative prob-
abilities:

xefault-i 1F:

M
pr(X/fault = [pr(X/fault )] (2)

i=1

We can see that for the implementation of a statistical pro-
cedure the possibility of calculating the conditional probability
functians of having a given vector X pr (X/faultpi=12. ..,
M, for each of the faults is required. In order (0 obtain this
possibility, a learning phase has to be carried out. During this
phase, using a number of data sets for each of the faults, the
corresponding vectors X are derived. From these, it is selected
which kind of statistical distribution function is the most ap-
propriate for statistically modeling them and then its param-
eters are calculated. In our case a multidimensional normal
distribution has been selected. Therefore the probability of
having a given vector X when fault i is present is expressed by
an equation of the form:

1 Cxoxg-clex - x0T
pr(X/fault I)ZWE R - X)X - X 3)

where X; and C,, i=1, 2, ..M are the average vector and the
covariance matrix for each of the faults.

During the learning phase the average vectors X;, i=1,
2,. .. Mareestablished for each fault by arithmetic averaging:

N
] 1
Xi=y 2% (4)
i
where X, is the vector calculated from the Jth data set of the
ith fault and A, are the numbers of the independent darta sets,
which are available for the ith fault. Also the covariance mat-
rices C,, for each fault, are evaluated through the equation:
N
] !
Gy Z, (X5 = X)T(X;5— X)) ©)
=
From the above we can sec that for the application of the
statistical procedure, a data base is required, containing for
each fault not only the healthy spectra and the reference pat-
terns P;, but also the corresponding discriminant vectors X;
and covariance matrices C;. This data base is created during
the learning phasc. The flow chart of both the learning and
decision phases of the statistical procedure is shown in Fig. 3.
The statistical procedure has been applied to data that were
acquired from a number of different instruments, during the
experiments with four compressor blade faults on an industrial
gas turbine described in Appendix 1. Two discriminants were
used, the ones described by Loukis et al. (1992), whose defi-
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Fig. 3 Flow chart of statistical procedure: () learning phase; (b) de-
cision phase
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Fig.4 Rate of success for statistical procedure for all the instruments

nitions are repeated in Appendix 1. Therefore the dimension
of vector X was M«N=2x4=38. For the learning phase 16
data sets (4 data sets for each of the operating points A, B,
C, D) were used. The testing was performed during the decision
phase using the same data sets employed during the learning
phase. The rate of success for each fault was calculated for
each of the instruments. These rates of success are shown in
Fig. 4. It can be seen that the rates of success are very high
and reach 100 percent for almost all the cases, which is much
higher compared with the corresponding results of the geo-
metric procedure (Loukis et al., 1992).

4 Qptimal Selection of Fault Discriminants

The question posed nexlt is whether it is possible to improve
the effectiveness of a classification procedure by choosing dif-
ferent discriminants. In order to try to give an answer to this
problem, we rely on previous experience about fault patterns.

In the work of Loukis et al. (1991) it was established that

JANUARY 1994, Vol. 116 / 187

i,

s esstengasny s

P g e Lt




Calculation of covariance
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Fig. 5 Flow chart of optimal selection procedure

the diagnostic information for blade faults lies mainly in a
number of discrete frequencies, which are harmonics of the
shalt rotational frequency. This information is incorporated
in the reduced spectral difference pattern P, consisting of val-
ues of a fault index calculated at these shaft harmonics. How-
ever, the information at the different shaft harmonics may not
be of the same value with respect to the different faults of
interest.

1n order to have an efficient and reliable diagnosis, the whole

of this information has to be exploited. One approach (o’

achieving this target was the one previously mentioned, based
on discriminants that are derived intuitively. This approach,
however, is empirical and it is not certain that it will be suc-
cessful in the general case. For this reason a systematic ap-
proach for selecting discriminants is needed, according to
predefined criteria.

Establishing the methods of statistical classification of fault
signatures from measurement data, enables the introduction
of such criteria. From the nature of the problem two criteria
are employed for the selection. If the pattern P coming from
each data set is represented as a point in the discriminant space,
the two criteria have the following form:

() Points coming from experiments with the same fault should
be very close together.

(ii} The clusters of points corresponding to different faults
should be far apart.

The problem of selecting the discriminants according to these
criteria can be formulated mathematically using the principles
of optimal linear feature selection, from pattern recognition
theory (see, for example, Karagiannis and Steinhauer, 1983).
According to these principles, parameters that arc linear com-
binations of the pattern P components are considered as pos-
sible discriminants:

H=Z}\;‘Pk (f}]

k=1

The values of the linear multipliers A, k=1,2 , N are then
calculated during a learning phase, by using the available data,
in such a way that a quantity expressing the discrimination
between the faults becomes maximum. We term such a pa-
rameter a Discrimination Potential Indicator (DPI). From these
values of the linear multipliers, the optimal linear discriminant

P2

Ouraction of aotimal
Discrimination
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a

P1

Fig. 6 Qualltative picture of the physical meaning of direction with
maximum discriminability

is determined. Similarly the second, the third best, etc., dis-
criminants can be determined.

In our case we found that a suitable DPI according to the
above two criteria is the Fisher Ratio (Appendix 11). It is known
that when M reference patterns are available, then the max-
imization of the Fisher Ratio leads to M — 1 independent linear
combinations Dy, Dy, . . .Dy_; (their DPI values are in de-
scending order). These linear combinations are then chosen as
discriminants. The flow chart of such a procedure is shown in
Fig. 5.

A qualitative picture of the underlying idea for this proce-
dure can be given through Fig. 6. In this figure a simplified
case of two-dimensional patterns (N=2) is presented, each
pattern being represented by asingle point in atwo-dimensional
space, with coordinates the values of the pattern components.
In this space we can see two groups of points, each group
corresponding to data from one particular fault. Each linear
combination of pattern components corresponds to a direction
in this space. From this figure we can see that different di-
rections are characterized by different discrimination potential.
For example, the directions of P, and P, are characterized by
low discrimination potential and the clusters of the two faults
overlap, when projected on these directions. On the contrary,
we can see that there are directions, along which there is no
overlapping of the clusters, one of them giving the maximum
discrimination potential, as indicated on the figure.

5 Application to Experimental Data

The optimal selection procedure has been applied to the'data
set acquired during the experiments with the four faults on an
industrial gas turbine, using a number of different instruments
as described in Appendix [. The number of optimal discrim-
inants derived was M — 1 =3. The same 16 different measure-
ments sets were used here as well.

The points from the different experiments represented on
the plane D,-D, for the data from pressure transducer PT2
are shown in Fig. 7. It is observed from this figure that points
from experiments with the same fault are grouped in clusters.
These clusters are well separated from each other and therefore
provide the possibility of making diagnostic decisions with a
hign confidence level.

The points from the different experiments represenied on
the plane Dy-Ds, for the data from accelerometer Al are shown
in Fig. 8. If we compare these results to the results of Fig. 7,
it can be noticed that the clusters of points are still discrete,
but (a) a larger scattering of the points within each cluster is
abserved, and (b) the clusters are generally closer to each other.
This indicates that the discrimination on the basis of acceler-
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the discriminants D,, O,; measurement data trom accelerometer Al

ometer data should be less effective than on the basis of pres-
sure transducer data.

The same picture for microphone data is shown in Fig. 9
on the D)-D; and D\-D;. It is interesting to observe here that
the scattering of points in each cluster is larger than it is for
the accelerometer and the pressure transducer. It can also be
seen that faults 2 and ¢ clusters overlap on the D-D plane

25T
+ (1)
el +
T
e
1.5
+e o+
s
05} D‘é
e’
N CQ
or o
A‘%%AO
o
-05} 9
a °Bo
ol ®
_.E 5 1 1 1 L ] 1 ]
-1.5 =] 0.5 0] 0.5 1 15 2
D1
D3
3 e
e (ii)
2 B Fay A
Q
[NV
A VAN
1} ’-‘%A
AT
+ o gp
+ + [a®
ot + DD g‘%“
+* £ a
o O
{00#
4 =
&
oo
) L L I ! ; | )
1.5 =1 -0.9 0 Q.5 1 1.5
D1
C (a) + (o) & {c) g (0

Fig.9 Points corresponding to data from faults (a)-(d ), (i) on the plane
of the discriminants D,, Ds, (i) plane D,, Dy; measurement data from
microphone

while they arc separated on the D\-D; plane. A similar obser-
vation is valid for faults @ and b.These observations show that
if the decision is based on only two discriminants it can lead
to a low success rate, while the success rate will be much higher
when all three discriminants are used. On the other hand the
clusters of faults a, b, ¢ are close to each other but all of them
well separated from the one of fault d. This constitutes a
quantitative verification of observations based on visual in-
spect of fault signatures, reported by Loukis ct al. (1991). (The
visual inspection had shown that stator faults are easily dis-
criminable from microphone measurements, while no visual
discrimination was possible for rotor blade faults.)
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An additional feature of the method is that the DP1 can be
used as a quantitative measure for the discrimination capability
of discriminants. As an application first a quantitative as-
sessment of the discrimination capability of the three optimal
discriminants D,, D,, D; was done for all measuring nstru-
ments. The DPI values for D,, D,, D; and each measuring
instrument are presented in Fig. 10. [t can be observed that
D, performs better than D; and D, better than D;. This was
expected since D, Dy, Dy are by definition in descending order
of DPI. On the other hand, DPI values for the discriminants
of Appendix 11 with respect to the four fault signatures, are
shown in Fig. 11. These results provide a comparative picture
of the potential of the intuitively chosen discriminants. Com-
parison to Fig. 10 shows that the intuitive discriminants are
characterized by much poorer performance than the system-
atically selected ones, since they exhibit much lower DPI val-
ues. This fact verifies the usefulness of the above systematic
selection procedure.

The discriminants D,, D, and D; have been used for the
implementation of a statistical procedure of fault classifica-
tion. This procedure has been based on a vector X of the form
X =[D,. D, D;]. The learning phase and the decision phase
were according to Section 3. The rate of success for each fault,
calculated for each of the instruments, was 100 percent for all
cases. These results are a further confirmation of the improved
performance achieved when systematic selection of discrimi-
nants is used.

6 Discussion

The procedures presented in the above sections possess fea-
tures that make them very useful for implementation in prac-
tical industrial situations of fault diagnosis. Their most useful
feature is that they incorporate data processing and decision
making, while they can be implemented by a computer system.

The statistical procedure of classifying fault signatures con-
tributes to the modern requirements mentioned in the intro-
duction by increasing the efficiency and the reliability of
diagnosis and giving the advantage of associating prohabilities
to the fault diagnosis. This feature makes the procedure more
realistic for industrial application, in comparison with the geo-
metric method.

The procedure of systematic discriminant sclection offers
the flexibility to define parameters that fulfill predefined dis-
crimination criteria, increasing in this way the efficiency and
reliability of the diagnosis as well. This systematic selection
ensures that the classification procedure will be organized in
accordance with the peculiarities of the specific problem, in-
stead of a priori choosing discriminants intuitively and finding

HE
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Fig. 11 DPI values for the discriminants DG, ., DG,,, calculaled with

respect to the four fault signatures for all instruments

whether they are effective or not. On the other hand this
procedure offers the possibility to redefine the discriminants
when new data are available or new faults have to be intro-
duced. This means that when extension of the data base to
include new faults is effected, the procedure can be adapted
to the new data, ensuring that discrimination capabilities will
still be optimal.

Another useful product of the optimal selection procedure
is the possibility to rank not only the discriminants, but also
the various measuring instruments as well, according to the
discrimination possibility they offer. Figure 10 can be inter-
preted in such a way if the values of DPI for the same dis-
criminant are compared for the various instruments. We see
that some instruments have higher DPI values than others,
indicating better discrimination capabilities. Pressure trans-
ducer PT2 is characterized by the maximum DPI from all the
instrurnents. This agrees with the conclusion reported by Lou-
kis et al. (1991), from observations of various instrumental
data, that pressure transducers are best suited for blade fault
identification. The procedure above is therefore very useful in
selecting the minimal and most appropriate set of instruments.

Finally, it should be mentioned that the procedure described
above has been derived from one set of experiments on one
engine. In order to examine generalization aspects, more data
from other faults and other engines should be used.

7 Conclusions S

In order to develop a sound procedure for automated gas
turbine blade fault diagnosis the principles of pattern recog-
nition theory have been employed. It was shown that when
the statistical properties of fault signatures are taken into ac-
count advanced possibilities of decision making are provided.

A procedure for the systematic discriminant selection was
developed. This procedure gives the possibility to select dis-
criminants according to a priori set criteria and eliminates the
need of selecting them intuitively. 1t was shown that this pro-
cedure further improves the decision making. .

The procedure above also provides a possibility of assessing
guantitatively the diagnostic effectiveness of (@) parameters
used as discriminants, (b) instruments used as a source of
information. Such a possibility is very useful in diagnostic
systems design.
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APPENDIX 1
Experimental Faults and Instrumentation

The present investigation was based upon dynamic meas-
urements on an industrial gas turbine into which a number of
different representative blade faults were introduced. The test
engine was the Ruston Tornado, described by Charchedi and
Wood (1982). The instrumentation layout and measurement
conditions described by Loukis et al. (1991).

During the experiments four categories of measurements
were performed simultaneously:

(/) Unsteady internal wall pressure, using two unsteady pres-
sure transducers facing the first four rotors of the compressor,
named PT2-PTS5 respectively.

(ify Casing vibration, with the accelerometers Al to A6
mounted at the outside compressor casing.

(ii) Shaft displacement at compressor inlet bearings, with
a Bently Nevada system (named BPP).

{iv) Sound pressure levels, with a double-layer microphone
(named MIC).

Five experiments were performed testing the datum healthy
engine and engines with the following four faults:

Fault a. Rotor fouling; all stage 2 rotor blades were coated
with textured paint in order to roughen blade surface and alter
their contour, in order to simulate a fault of all the blades of
a rotor.

Faulr b. Individual rotor blade fouling; two blades of stage
| rotor separated by five intact blades, were coated by textured
paint in order to simulate a slight individual rotor blade fault.

Fauwlt c. Individual rotor blade twisted; a single blade of
stage 1 rotor was twisted in order to simulate a severe individual
rotor blade fault.

Fault d. Stator blade restaggering; three stage 1 stator blades
were mistuned in order to simulate a stator fault.

All numbered references to faults and instruments in the
text will correspond to the nomenclature above.

Tests were performed at four different engine loads: full
load, half load, quarter load, and no load (termed operating
points A, B, C, D, respectively, hereafter).

APPENDIX II
Formulas for Evaluation of Pattern Properties

Definition of Discriminants. The discriminants used for
pattern classification by Loukis et al. (1992) are defined through
the following relations:
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Formulas for Optimal Linear Feature Selection. The prin-
ciples we employ for optimal linear feature selection are briefly
described below. Extensive descriptions can be found in text-
books (e.g., Karagiannis and Steinhauer, 1988).

The Fisher ratio expresses the classification capabilities for
data if they are projected on one direction in the feature space.
For a given direction, defined by its unit vector u, it is defined
by a quotient that has as numerator the variance of the centers
of the classes, if data points are projected on this direction.
Its denominator is the average internal variance of the classes,
if data points are projected on this direction. It is calculated,
through the relation:

Flu) u'-B-u
W=
ur-Weu
where:
u = the unit vector along the directional examined
B = between-classes covariance matrix
2F i Doy~ mge —m)"
Ads —m _
. k=1 N i
M = number of classes
N, = number of available patterns of the kth class
pe = mean pattern of the kth class
N = total number of available patterns (for all the classes)
m = overall mean pattern (of all the classes)
W = within-class covariance matrix, equal to the arithmetic

average of the covariance matrices W, k=1, ..., M,
of all the classes:

M
W=Zwk
k=1

N

W=, 30 (X~ (X~ 07
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It can be shown that the sum of the within-classes covariance
matrix W and the between-classes covariance matrix B gives
the overall covariance matrix T, which takes into account the
patterns of all classes, defined by the following equation:

K < -

oy Z (X;— m)(X;—m)

It can be shown that the direction characterized by the max-
imum value of the above Fisher Ratio is the eigenvector of the
T-'.B matrix corresponding to its highest eigenvalue. Gen-
erally there are M—1 linearly independent directions maxi-
mizing the Fisher ratio, which are the eigenvectors ofthic T '+B
matrix. Their Fisher ratios decrease with the corresponding
eigenvalues.
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