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ABSTRACT The intrusion detection systems (IDSs) are essential elements when it comes to the protection
of an ICT infrastructure. A misuse IDS is a stable method that can achieve high attack detection rates (ADR)
while keeping false alarm rates under acceptable levels. However, the misuse IDSs suffer from the lack of
agility, as they are unqualified to adapt to new and “‘unknown’ environments. That is, such an IDS puts the
security administrator into an intensive engineering task for keeping the IDS up-to-date every time it faces
efficiency drops. Considering the extended size of modern networks and the complexity of big network traffic
data, the problem exceeds the substantial limits of human managing capabilities. In this regard, we propose a
novel methodology which combines the benefits of self-taught learning and MAPE-K frameworks to deliver
a scalable, self-adaptive, and autonomous misuse IDS. Our methodology enables the misuse IDS to sustain
high ADR, even if it is imposed on consecutive and drastic environmental changes. Through the utilization
of deep-learning based methods, the IDS is able to grasp an attack’s nature based on the generalized feature
reconstructions stemming directly from the unknown environment and its unlabeled data. The experimental
results reveal that our methodology can breathe new life into the IDS without the constant need for manually
refreshing its training set. We evaluate our proposal under several classification metrics and demonstrate that
the ADR of the IDS increases up to 73.37% in critical situations where a statically trained IDS is rendered
totally ineffective.

INDEX TERMS Adaptive intrusion detection systems, artificial neural networks, deep learning, information

systems security, MAPE-K, sparse auto encoders.

I. INTRODUCTION
Intrusion detection systems (IDSs) are one of the most impor-
tant entities when it comes to Information and communi-
cations technology (ICT) infrastructure protection against
cyberattacks. IDSs weaponize defenders with fundamental
means to detect offensive events and consequently trigger
optimal counteraction plans against them [1], [2]. In fact,
the everlasting battle between defenders and attackers has
taken the form of an “arm race”’, where both sides constantly
upgrade their arsenals in order to prevail against each other.
The emergence of new attacks spurs the academia and indus-
try to investigate for novel methodologies which are able to
closely monitor this race and adapt rapidly to the changes in
the field.

In principle, IDSs fall into two major categories, namely
Anomaly Detection Systems and Misuse Detection Systems.

The former regulate their detection engine to identify as
intrusive incidents those that exhibit deviations from a pre-
defined normal behavioral profile. This kind of IDSs are
able to identify previously unseen attacks, but are known to
produce high false alarm rates, rendering them a questionable
solution especially for complex infrastructures, where the
standardization of the normal profile is challenging. On the
other hand, misuse IDSs rely on known signatures trying
to designate traffic instances to legitimate or attack traffic
classes. This kind of IDS lacks the ability of identifying new
attack patterns or deviations from known ones, and their per-
formance depends on the freshness of the signatures database.
Hence, the IDSs administrator needs to put significant effort
to keep the misuse detection model up to date. If we addi-
tionally consider the fact that the protected environment is a
dynamic ecosystem where new devices and/or services may

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 1

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-9471-5415
https://orcid.org/0000-0001-6348-5031

IEEE Access

D. Papamartzivanos et al.: Introducing Deep Learning Self-Adaptive Misuse Network IDSs

appear or leave the network at any moment (e.g., the Inter-
net of Things), it becomes clear that the adaptability issue
becomes a burden on administrators’ shoulders. This burden
becomes even heavier as the growth of communication net-
works pushes IDSs into the big data era, where the increased
volume of the transmitted data surpasses the limits of human
processing capabilities.

In view of the above, adaptive IDSs are becoming an active
research field as new researches [3], [4] aim to address the
inherent limitations of legacy intrusion detection systems.
So far, interesting artificial intelligence-based methods that
bear the feature of adaptability have been reported as promis-
ing approaches. To name a few, Learning Classifier Sys-
tems (LCS) [5], Artificial Immune Systems [6] and Swarm
Intelligence [7] combine adaptation and evolution aspects.
However, this research topic has still many challenges to face
as systems and attacking tactics become more sophisticated.

Keeping any type of IDS up-to-date is a demanding task
for several reasons where most of them pertain to the envi-
ronmental changes. The latter term refers to any aspect of a
network that can change and consequently affect the profile
of the generated network traffic. In practice, the addition (or
disengagement) of a device in a network can affect different
network aspects, including the topology, the running services,
the open ports, the communication protocols and/or appli-
cations, the network traffic load, and others. In turn, these
environmental changes affect fundamental security features
such as the vulnerabilities appearing in the network, which
can generate multiple penetration paths for the attackers.
Considering a more dynamic network like an IoT environ-
ment, an Ad Hoc network, or even a corporate network with
a Bring your own device (BYOD) policy applied, one can
understand that the attack surface of the network can be
increased unexpectedly. It is plausible that, say, the newly
introduced device might be already infected by a malware and
act as a stepping stone for an attacker to conquer more assets
within the network. Yet, new devices are not the only enemies
of an IDS in a network, as also already installed devices
will eventually proceed with software/OS updates or new
software installations that again will bring in alterations in
the environment.

Overall, the above mentioned changes are routine actions
that constantly appear in every common network, rather than
unusual events. Actually, virtually all sort of modifications
can significantly affect the performance of an IDS which is
placed to protect an ever-changing infrastructure. This reality,
combined with the lack of adaptable detection engines, forces
the IDS to become quickly outdated and inadequate as it
inevitably has to operate in new and “‘unknown’ or unfore-
seen environments for which its engine was not trained.
Thus, security administrators undertake the task of constantly
retraining the IDS by considering all the new environmental
changes to regain the reliability and the performance of the
detection system. All in all, the cardinal challenge for any IDS
designer, namely find proper ways to automatize at least to a
certain degree the retrain process, remains largely unsolved.
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To this end, this work proposes a novel adaptive method-
ology which can significantly boost the performance of a
misuse IDS when it is dragged into new, previously unseen
environmental states. Our novel solution brings in intelli-
gence in the detection engine update process with the aim of
extending its lifetime and sustain the detection ratio above
considerably higher levels than it would reach without such
intelligence. At least, in network setup transition periods,
this ability gives the necessary time to the administrators to
smoothly retrofit the IDS to fully meet the new environmental
conditions. To do so, we take advantage of the benefits of the
Self-Taught Learning (STL) methodology [8], for enabling
Transfer Learning from unlabeled data for the sake of assist-
ing the IDS when dealing with unknown environments. Our
evaluation proves that the qualities of the STL methodol-
ogy can fit well in the particular problem and address the
challenges raised in the field of adaptive IDSs. Our adaptive
methodology is also supported by the MAPE-K model [9] for
delivering a self-adaptive IDS that follows the sound practices
of autonomic computing.

In short, the contributions of the work at hand are as
follows:

« We propose a novel methodology for designing a scal-
able, self-adaptive and autonomous misuse intrusion
detection systems based on advanced artificial intelli-
gence (Al) techniques.

o« We take advantage of deep learning methodologies
to identify new data feature representations that stem
from the unknown environment where the IDS operates.
These new representations are used to retrain the IDS in
an automated way so as to adapt to the new environment.

o We integrate our proposal in the context of MAPE-K
methodology that draws the frame for autonomous and
self-adaptive systems.

+ We extensively evaluate our system over several metrics
and diverse environmental states to deliver a proof of
concept, which is supported by experimental results and
demonstrates its potentiality for further extension.

The rest of the paper is organized as follows. The next
section includes all the necessary information to introduce
the reader in our methodology. In Section III we present
our methodology and elaborate on its beneficial charac-
teristics, while in Section IV we provide the evaluation
results. Section V provides a discussion on the key findings.
Section VI reviews the related works in the field. The last
achieved section concludes and provides pointers to future
research.

Il. PRELIMINARIES

Our work recruits two different concepts to provide a holistic
framework for self-adaptive and autonomous misuse detec-
tion systems. Before introducing the reader to our idea,
we first provide an overview of the basic concepts related
to our methodology. That is, the following subsections elab-
orate on the MAPE-K [9] and Self-Taught Learning [8]
methodologies.
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FIGURE 1. MAPE-K methodology sets the principles for an adaptive and
autonomous IDS.

A. MAPE-K CONTROL LOOP

MAPE-K control loop is a reference model in autonomic
computing firstly introduced by IBM [9]. Since then,
MAPE-K is used to set the principles for self-adaptive sys-
tems and significant effort has been put to standardize and
formalize the methodology [10], [11]. MAPE-K is a control
loop comprised of five activities, namely, Monitor, Analyze,
Plan, and Execute over a Knowledge base, as can be seen in
FIGURE 1. As further explained in subsection III-B, these
activities provide a general framework for developing self-
adaptive systems which are able to sense changing events
from their environment. This is done via the use of specialized
Sensors, and eventually harmonize their behavior by taking
actions through Actuators.

More specifically, the Monitor senses the environment and
collects data/events of interest where their presence indicates
the need of system adaptation. The collected data/events are
gathered in the Knowledge database for later reference. Next,
the Analyzer undertakes the task of processing the collected
events to identify patterns of failure or critical events and
act upon by initiating a proper adaptation strategy. The Plan
activity orchestrates the decision making and determines the
changes which should be taken for keeping the system aligned
with its objectives. Finally, the Executor instructs the appro-
priate alterations to the system through the Actuators. The
control loop described above is initiated whenever the system
identifies the need to adapt its behavior to the underlying
environment and always aims to meet the objectives which
- in principle - are set by the administrator.

Every single activity in the MAPE-K control loop can con-
tain other autonomic elements that can be used to fulfill sub-
objectives of the main activities. These elements can inter-
act among each other by exchanging signals and messages.
Overall, the system and its sub-components are coordinated
with the aim of providing a fault tolerant self-adaptive system,
which is driven by pre-determined objectives.

B. SELF-TAUGHT LEARNING

Self-Taught Learning (STL) is a machine learning frame-
work which is able to exploit unlabeled data with the pur-
pose of improving a supervised classification problem [8].
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The motivation of the authors in [8] derives from the fact
that labeled data are an “‘expensive’ source of information,
as it requires a significant investigation budget to acquire and
update them. The question posed was whether unlabeled data
could be used to improve a given classification task.

In the STL concept, one is provided with both labeled
and unlabeled data. The labeled data are used as the initial
training set of m samples for a given classification task 7 =
{(x(l), yy, (x(z),y(z)), weees (x(m , y™)}, where xP e R s

l i l i
the i-th sample with n features, y(i) e {1, ..., C} is the class
label, and the / symbol stands for “labeled”’. On the other
hand, the set of k unlabeled samples U = {x,(ll), xf,z), ...xb(,k) } e
R", where xf,') € R”" is the i-th unlabeled sample with n
features, and u stands for ““unlabeled”. U is given as input
to a sparse coding algorithm to learn a higher level structure
of those data. This structure is then used as a basis to trans-
form the initial labeled dataset 7" and obtain a new training
set T = {(agw,y(l)), (agz), Y, ., (agm),y(m))}, where aE’
represents the i-th new training example. In consequence,
the new training dataset T can be used to train a supervised
learning algorithm.

More specifically, sparse coding is a type of unsupervised
methods that aims to reconstruct input data as accurately as
possible and express them as linear combinations of a basis
vector b. The basis vector b enables to accurately capture the
inherent information of the input and identify strong patterns
in it. Additionally, sparse coding regulates the sparsity of the
data by using coefficients (or activations) a; and encourages
most of the coefficients to be zero. In fact, this is an opti-
mization problem that aims to reconstruct the input data by
minimizing the reconstruction error, and at the same time to
maximize the sparsity of the output. Given the bases b and the
training set 7', the STL algorithm transforms the inputs xl(l) to
sparse non-linear combinations of the basis b to form a new,
but more informative, training set T.

The interested reader can refer to [8] for more details
regarding the STL method. In the following section, we fur-
ther elaborate on the beneficial features of the STL and
explain how these features in conjunction with MAPE-K
control loop can deliver a holistic methodology for building
a misuse adaptive IDS.

Ill. PROPOSED METHODOLOGY

This section details on our methodology for adaptive mis-
use IDSs. With reference to Section I, we first define the
term ‘“‘environmental state” and elaborate on the challenges
that IDSs face whenever a change appears in the underlying
network topology. Next, we combine the two methodologies
described in subsections II-A and II-B for the purpose of pre-
senting our full-fledged approach along with its advantages.

A. ENVIRONMENTAL STATES AND NETWORK FLOWS

Undoubtedly, computer networks are highly volatile environ-
ments, which can be characterized as a mosaic of diverse
interconnected devices usually from different vendors. On top
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of that, one needs to consider that modern networks like IoT
networks, Wireless Sensor Networks (WSN), VANETS, and
others come with such an extended size, dynamics and com-
plexity that far exceed the limits of human managing capa-
bilities. Similarly, IDSs which aim to protect such dynamic
networks are unable to automatically adapt to the changes
occurring to their environment and their adjustment requires
significant human effort. In fact, there are several reasons that
can lead a network to a new state, and therefore lower the
efficiency of the deployed IDS.

At any given time, a new device can join a network. This is
the most common situation, especially in wireless networks,
but this event alone can lead to a set of subsequent events
that can bring instability. That is, the newcomer may be
a host of new services, ports, applications, communication
protocols, communication patterns, network workload, and
even new vulnerabilities. In the worst case scenario, the new
device may be also infected by some ilk of malware that
can attempt to exploit other network assets to penetrate the
network. A join operation is not the only reason for facing
network state changes. The already existing network assets
can modify their operational profile as they can be subjected
to OS/application upgrades and new application installations.
These modifications, apart from introducing changes in the
network state, can sometimes increase the attack surface of
the network as they can bring in new and zero-day vulner-
abilities. The aforementioned changes, even when occurring
individually, can significantly affect the decision engine of an
IDS and produce a high level of false alarms. Even worse,
if the IDS is not retrained to deal with these changes it
can become the single point of failure of the infrastructure’s
security planning.

In the context of our work, we perceive any of the above
mentioned events to lead the network into a new state, and
thus affect the IDS’s operational environment. Such changes
also affect the network’s behavioral profile, which in turn is
reflected in the network flows. According to RFC 2722 [12],
a network flow can be seen as an artificial logical equiva-
lent to a call or connection, which has as attribute values
aggregated quantities which reflect the events that take place
during this connection. These attribute values can bear valu-
able information regarding numerous aspects of the network’s
behavior ranging from the topology to the workload and the
active services. Thus, network flows are a rich source of
information that can improve the network security visibility
as they can be leveraged by security analysts to identify and
assess hostile actions, new attacks, and the network’s security
state in general. As a result, when a network is overwhelmed
by unknown and previously unseen network flows, an IDS
which has been trained to defend a network based on a static
training set needs to be retrained in order to sustain a credible
security level. This however implies the need of a demanding
process on behalf of the security analyst to identify and label
manually new network instances for creating a new dataset
that can be used to retrain the IDS. Considering that most
of the network changes are common actions that can happen

4

regularly, it becomes clear that there is a need for methods
capable of automating the retraining process.

To this end, our methodology aims to offer an automated
way to keep the detection ratio of a misuse IDS to accept-
able levels regardless of the environmental changes that may
indicate the presence of previously unknown attacks. In a
nutshell, our methodology can empower autonomous and
self-adaptive misuse IDSs by enabling them to adapt to
their environment and significantly contribute in keeping a
high or at least acceptable security level. This quality also
significantly alleviates security experts from the demanding
task of retraining the IDS.

B. BLENDING MAPE-K AND SELF-TAUGHT LEARNING

As described in Section II, MAKE-K is a reference model to
build autonomous and self-adaptive systems. This subsection
details on the ways the benefits of MAPE-K and STL can
co-work toward coping with the challenges of this particular
field and building a solid basis for misuse adaptive IDSs.

As observed from FIGURE 1, MAPE-K comprises 5 activ-
ities that operate over a Domain Specific System (DSS) and a
Context. In our case, the DSS is the IDS per se, while the
Context can be adjusted to any given type of network where
there is a need of an adaptive IDS. FIGURE 2 depicts the
proposed system and details on its components, which are
described next.

1) MONITOR

This activity undertakes the task of coordinating the sensors
for acquiring the basic knowledge that will reveal the need of
triggering the adaptive control loop. Network mappers can be
used as the basic sensors for network inventory. Such entities
are able to determine a gamut of network characteristics,
including its topology, the available hosts, the running ser-
vices, open ports, the operating systems, and even potential
vulnerabilities. By collecting such information, the Monitor
is able to determine any alteration event that requires an
IDS adaptation. The monitoring activity is able to grasp the
environmental changes in collaboration with the Knowledge
activity, which serves as a repository for reference purposes.
The Monitor can schedule the network mapping process
to occur periodically according to the characteristics of the
network.

In parallel, another sensor type which is controlled by the
Monitor is the Network Sniffers. The latter are used to capture
the network traffic. This traffic is used as the basis to extract in
a later stage the network flows which have to pass through the
detection engine of the IDS. Additionally, the network traffic
is stored in the Knowledge component to serve the purpose of
adaptivity as it is described further down in the Plan/Execute
activities.

2) ANALYZE

After collecting the necessary data, the Analyzer performs
the transformation of the raw network traffic into net-
work flows. By using the stored traffic of the knowledge
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FIGURE 2. Architectural overview of the proposed system.

component, the Analyzer utilizes network audit tools such as
Argus [13] and CICFlowMeter [14] in order to generate the
network flows. These tools are able to analyze large amounts
of network traffic even in an in-line manner and process them
accordingly to generate highly informative network flows
with various features. These features comprise the machine
learning features of the network traffic instances, which are
fed into the IDS engine for detection purposes. Note that
these flows constitute the unlabeled dataset, which on the one
hand are given into the supervised model of the IDS to detect
potential attacks, while on the other are used as the unlabeled
data fed to the STL to fuel the adaptive process. This implies
that during the IDS operation, the adaptive process is simul-
taneously executed with the aim of coming up with a new
detection model that will replace the existing one.

3) PLAN

The planning activity undertakes the key process of lever-
aging the unlabeled data for initiating the machine learning
adaptive process. Until that point, the Monitor and the Ana-
lyzer identified environmental changes in the network, while
the Knowledge component consolidated the network flows,
which were generated by the time that the change(s) occurred.
This moment is the beginning of a crucial time interval when
the IDS may face unknown network traffic instances that
can undermine its performance. In this direction, the Plan
activity aims to cope with this ambiguity by utilizing unsuper-
vised feature learning techniques. In the context of our work,
we utilize a Sparse autoencoder as the unsupervised learning
algorithm to learn informative and sparse new representations
of the unlabeled data, and thus benefit the supervised task of
the misuse IDS.

a: Sparse autoencoder
An autoencoder is a neural network that applies backpropa-
gation [15] and aims to reconstruct a given input to an output
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that approximately resembles to the initial input. That is,
the neural network attempts to learn a function Ay ,(x) = x,
where the W, b vectors denote the Weights and Biases among
the layers and their units of the neural network. This process
can be driven also by other objectives apart from minimizing
solely the reconstruction error. As already pointed out, in our
work we utilize a Sparse autoencoder in order to learn sparse
representations of the input data. In practice, the backpropa-
gation process is driven by the following cost function.

k
1 1 . N
JW. by =23 (Enxfﬂ - xf;)n%)
i=1
A 2 sp SL+1 o 5
L5 (w)

L=1i=1 j=1

52
+BY KL(pll5) )

J=1

e x; € R"is the i-th input unlabeled example.

e X, € R"is the i-th output given the i-th input example.

« k is the number of the examples in the unlabeled training
set.

o A is the weight decay parameter.

o L index denotes the number of a layer.

« sz is the number of nodes in the L-th layer.

o [ 1is the weight of the sparsity penalty.

o ||xL(,i) - fc,si)H% is the squared L? norm.

Through backpropagation the Sparse autoencoder aims
to minimize equation (1). As can be seen, the equation
consists of three terms (one per line). The first term rep-
resents the average accumulated squared error among the
input and the reconstructed output. That is, the network tries
to reconstruct the output and achieve high similarity with
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the input. Note that, )?L(,i> € R”" is a vector of n features,
: NOBENTNORN U] U Th h ~0) _ h @)y _
LC, Xy = XuysXupy» -+ - xu,,}- us, each x,, = W,b(xup) =
F(Z2 Wzgj.z)ajz) +b%),p = 1,...,n and a](.z) are the

activations of the hidden units (2nd layer). The sigmoid func-

tion f(z) = —————

1 + exp(—2)
function for the neurons. This activation function gives values
between 0 and 1, while it regulates the weights of the network
to change gradually and output better results. Additionally,
the sigmoid function introduces non-linearity into the model,
thus aiding in capturing non-linear combinations of the input
data. The second line refers to the weight decay term that
tries to decrease the magnitude of the weights (Wj(iL)) among
the nodes of the layers, while A controls the importance
of the weight decay term. The last term is a function that
applies the sparsity penalty, where KL(p||p}) = p logp@ +

i

p is the Kullback-Leibler (KL) divergence

~

has been chosen as the activation

(1 — p)log 1
that can determiné the difference between two distributions
having p and §; mean values respectively. That is, o defines
a desired level of sparsity, while p; is the average activation
of the j-th hidden unit. The magnitude of the sparsity penalty
is regulated by the 8 weight.

b: Feedforward autoencoder

The training process of the Sparse autoencoder will define the
Weights and Biases vectors (W, b) = (W(l), D, W@, b(z)).
Next, these vectors can be used in a Feedforward manner over
a new input for finding a new and more informative structure
of this input. In other words, the knowledge acquired from
the unlabeled data U that fed into the Sparse autoencoder
can now be exploited for restructuring another dataset. This
reconstruction is driven by a new representation which is
learned out from unlabeled data, i.e., data that stem from an
unknown environment.

Following this principle, our methodology can gener-
ate a new representation of the labeled dataset T =
(G M), Gy @), s ™, y™)), that was initially
used to train the IDS. Note that, xl(')

O 50,
tation is a new labeled training set 7 that has as features
the activations of the hidden units. That is, given T as the
new input in a Feedforward autoencoder, we can calculate
the new activation vectors using the Weights and Biases of
the first layer W, () by applying the activation func-
tion. As a result, the system produces a new dataset T =
{(a;]), yy, (afz), Y, ., (a;m), y™)}, where afl) represents
the i-th new training example. Thus, each agl) example is a
vector of s activations, agi) = {ag), ag), -
activation is given as follows:

S1
ag;)zf(Zng;)x;;)—i—bl(,l)), p=1...,5 2)
j=1

€ R" is a vector of n

features, i.e., x xl(')}. The new represen-
n

agi) }, and each
$2

Finally, the new training dataset T can be used to train a
supervised learning algorithm. Note that, the acquisition of
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T can occur virtually indefinitely as long as the planning
activity is fed with new unlabeled network traffic.

The reader may notice that the Feedforward autoencoder
adds an extra layer of data transformation. That is, any
instance which will be subjected into the supervised learning
algorithm for detection purposes needs to pass first through
the Feedforward autoencoder to acquire the same transforma-
tion properties.

4) EXECUTE

The outcome of the planning activity is a Feedforward
autoencoder which is used for reconstructing the initial
labeled dataset 7' and acquire T. Hence, the execution activ-
ity undertakes the training of a supervised model based on
the new dataset 7. This step does not impose any con-
strains regarding the supervised algorithm that can be used
to empower the detection model. In our case, we make use of
Softmax Regression to deliver a multi-classification detection
module. After training the new model, the old one, which due
to the environmental changes had started facing efficiency
problems, can be replaced through the actuators.

5) KNOWLEDGE

During the adaptive control loop, the Knowledge component
is accountable for storing purposes. In fact, Knowledge is
a repository that supports the adaptive functions and helps
exchanging the inputs and outputs of each activity among
them. More specifically, the repository stores the sniffed
network traffic during the monitoring phase. Upon the adapta-
tion signal of the network mapper, these captures will become
the input of the network audit tool for generating the network
flows. Additionally, the repository holds the initial labeled
dataset T', which is used as a basis every time the adaptive
control loop is triggered.

C. DISCUSSION

FIGURE 2 provides a high-level view of the proposed system
by highlighting the building blocks of the MAPE-K adaptive
control loop. Additionally, in the figure, we can observe the
interconnections among the diverse components and follow
the flow of the system’s actions. As already pointed out at the
beginning of this subsection, the combination of MAPE-K
and STL serves as the basis for building adaptive and auto-
nomic misuse IDSs. That is, while MAPE-K provides the
essential principles to realise such an IDS, STL contributes
several features that cover the missing parts of the misuse IDS
adaptation puzzle.

o STL is destined to utilize unlabeled data with the aim of
improving a supervised learning task. This feature fits
directly in the nature of the problem. Once a misuse
IDS is powered, it faces unlabeled network instances
and tries to classify them. Inevitably, due to environ-
mental changes, the statically trained IDS will face
efficiency issues. Nevertheless, since STL is able to
capture informative structures from unlabeled data, the
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ambiguity of the new environment is exploited to gener-
ate new knowledge. This, in turn, will reinforce the mis-
use IDS by generating a new representation of the initial
dataset.

o STL cannot be seen as an unsupervised feature learn-
ing or a semi-supervised technique, but as a more power-
ful setup. This is because the unlabeled data x,, can: 1) be
of any class and not necessarily coincide with the classes
of the labeled data x;, and 2) be drawn from a different
distribution from the labeled data x;. Crucially, these are
two essential qualities that advocate the suitability of
STL as in practice, in an unknown environment, an IDS
will face both known and unknown attacks, which both
stem from different distributions. Thus, our methodol-
ogy guarantees the adaptability and autonomy of the
misuse IDS.

o When put in the frame of MAPE-K, the characteristics of
STL can significantly alleviate the burden of retraining
the IDS every time a change appears in its environment.
For the retraining process, one needs also to consider the
significant effort required to assign labels by hand to Big
Data such as network data. That is, if the IDS is trained
with a basic labeled dataset, the proposed methodology
can significantly extend its autonomy. Though, a rea-
sonable requirement is that the basic labeled dataset
needs to be representative enough and this requirement
is delegated to the administrator. It is to be stated that
we do not claim that our approach eliminates completely
the need for human intervention, but it can significantly
diminish it.

o STL is able to handle big data in a scalable manner.
In fact, the more unlabeled data are given as input to
the autoencoder, the more informative will be the new
representation.

e STL can significantly uncover strong structures in the
data, especially when the data features are statistically
correlated.

Overall, the aforementioned characteristics of the combi-
nation of STL and MAPE-K address to a great extent the
major limitation of misuse IDSs, namely their inability to
deal with unknown situations. Considering the fact that mis-
use IDS are widely used over anomaly detection IDSs, our
approach becomes even more impactful.

IV. EVALUATION

In this section we evaluate our novel methodology. More
specifically, we define the metrics used to evaluate the per-
formance of the adaptive misuse IDS, we detail on the used
dataset and the setup of our evaluation experiments.

A. EVALUATION METRICS

To highlight the advantages of our proposal and to make it
comparable to other approaches, we present our results under
a variety of legacy classification metrics. More specifically,
we use the following metrics.
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a: Accuracy

This metric measures the frequency of correct decisions. It is
a fraction of the correct decisions made among all the classes
(C) (true positives, or TPs) divided by the total number of
instances in the dataset (V).

Ziczl TP

N 3)

Accuracy =

b: Mean F-Measure (MFM)

It is used to measure the balance between the precision and
the recall. In the case of a multi-classed problem, this metric
is calculated by the following formulas:

€ | FMeasure;

MeanFMeasure = B E— “4)
2 - Recall; - Precision;
FMeasure; = — Q)
Recall; + Precision;
. TP;
Precision; = —— (6)
TP; + FP;
TP;
Recall; = ——— @)
TP; + FN;

where:

« FP;, or false positives, represent the number of instances
with actual class other than the i-th, but wrongly pre-
dicted to belong in the i-th class.

e« FN;, or false negatives, represent the number of
instances with i-th being the actual class, but falsely
predicted to belong to another class.

c: Average Accuracy

It is calculated as the average recall among all the classes of
the dataset.

c
1
AvgAccuracy = Pl ZRecall,- 8)
i=1

d: Attack Accuracy
This metric is used to measure the ability of a model to detect
solely the attack classes by neglecting the normal traffic.
Index i = 1 stands for the normal traffic class.
1 C
AttackAccuracy = c_1 ;Recalll ©)]

e: Attack Detection Rate (ADR)
It stands for the accuracy rate for the attack classes.

Y, TP;

ADR = e
Zi=2 TP; + FP;

(10)

f: False Alarm Rate (FAR)
This metric focuses on the normal traffic and quantifies the
FNs, i.e., normal instances misclassified as attacks. Index i =
1 stands for the normal traffic class.

FNy

FAR= ————
TP + FNy

(1)
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TABLE 1. Normal and attack classes in KDDCup’99 and NSL-KDD.

Class KDDCup’99 and NSL-KDD subclasses and the number of instances #Instances

Normal Normal traffic is not divided into sub-classes 936,152

DoS back (2,633), neptune (297,085), smurf (6,688), teardrop (1,828), land (46), 312,293
pod (448), apache2 (1,531), mailbomb (601), processtable (1,429), udpstorm (4)

PRB satan (10,226), portsweep (6,787), ipsweep (7.411), nmap (3,200), 30,351
mscan (2,044), saint (683)

R2L ftp_write (22), warezclient (1,783), spy (4), named (34), warezmaster (1,986), 7,661
multihop (50), xsnoop (8), sendmail (29), snmpguess (690), imap (25), snmpge-
tattack (357), worm (4), xlock (18), phf (12), guess_passwd (2,639)

U2R buffer_overflow (102), httptunnel (278), loadmodule (22), perl (10), 519
rootkit (46), xterm (26), ps (31), sqlattack (4)

Total 40 subclasses 1,286,976

B. KDDCUP'99 AND NSL-KDD DATASETS

KDDCup’99 [16] and NSL-KDD [17] constitute well-known
benchmarks for evaluating whether an IDS is able to detect
network abuses. In fact, NSL-KDD is a newer version of the
KDDCup’99 that deals with some of its shortcomings [17].
Despite KDDCup’99 limitations, it is still considered a stan-
dard and it is used by recent studies in the field [18], [19].
This work does not aim to evaluate a detection algorithm
per se. Instead, we aim to prove that our methodology is
able to exploit unknown network flows to boost the detec-
tion efficiency in ambiguous environments. This means that
the inherent limitations of KDDCup are orthogonal to our
testbed.

Precisely, in the context of this work, we merged all the
datasets provided by KDDCup’99 and NSL-KDD for cre-
ating a single voluminous dataset that bears as many net-
work traffic instances and as many attack classes as possible.
TABLE 1 presents the instances of the used dataset. In total,
the compiled dataset has of proximately 1.3 million network
instances and comprises 40 classes (1 normal + 39 attacks),
which come under different probability distributions and fall
into the following 5 major categories:

o Normal: Normal traffic instances.

o DoS: Denial of Service.

« PRB: Probing - Surveillance and other means of prob-
ing.

o R2L: Remote to Local - Unauthorized access from a
remote machine.

o U2R: User to Root - Unauthorized access to local supe-
ruser (root) privileges.

We removed all duplicates from the merged dataset to
avoid any bias to the classification end-model. KDDcup
dataset has some beneficial characteristics. To begin with,
its variety in attack classes seems ideal for evaluating our
methodology. Its 39 attack classes can be used to emulate
a realistic and challenging testbed, where an IDS has to
face unknown traffic instances every time an environmental
change occurs. Additionally, the fact that the attack instances
are drawn from different probability distributions directly
challenges the STL method. Recall that according to its prop-
erties, STL is destined to handle efficiently large amounts of
unlabeled data with that exact property. Moreover, KDDCup

8

dataset has an imbalanced number of instances among its
classes and this feature reflects a realistic network condition.
Finally, the KDDCup dataset created over a network experi-
ment that lasted for 9 weeks and the final result was a dataset
of approximately 7 million network instances with duplicates.
Our compiled dataset consists of 1.3 million instances with-
out duplicates. This implies that our dataset corresponds to a
data collection period of at least 12 days. Hence, apart from
the beneficial characteristics mentioned above, the compiled
dataset comprises a realistic collection of network traffic
that spans adequately over time and it is thus suitable for
evaluating an adaptive mechanism.

C. TESTBED AND PARAMETERS

To emulate an ever-changing environment for the adaptive
IDS, we came up with the following strategy. To emulate
the initial state of the IDS, we train the IDS using Softmax
Regression with an initial dataset 7, which consists of a
fraction of 10% of normal traffic and a randomly chosen
subset of attack traffic. This attack-focused subset consists
of 3, 3, 3 and 4 attacks subclasses of the major classes DoS,
PRB, U2R, and R2L respectively. As it is the case with any
legacy machine learning-based IDS, we cross-evaluate the
IDS for achieving a robust end-model of more than 99%
prediction accuracy. In a legacy situation, this end-model
would be the one to defend any future environmental state
of the network. Consequently, for emulating a new envi-
ronmental state, we randomly select another piece of the
dataset U which consists of 10% of normal traffic and 5,
5, 5, 8 attacks subclasses of the major classes DoS, PRB,
U2R and R2L, respectively. U might or might not contain
the classes or the instances gathered in 7. Hence, depending
on the divergence between 7" and U the new environment can
be slightly or to very different from the initial one. That is,
it is expected to witness a low or even high drop of the IDS
efficiency respectively. However, according to the proposed
methodology, the adaptive IDS is able to exploit the U in
order to obtain a better representation of the new environment
by transforming the initial dataset 7', and thus resisting to this
efficiency drop. Note that U is in practice an unlabeled set of
instances which is fed to the detection engine for prediction.
Naturally this applies also in our case, but we are beforehand
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FIGURE 3. In the initial network state, a statically trained IDS can achieve an acceptable performance P;;; (left).
In new network states, the adaptive IDS has the ability to sustain an acceptable performance in contrast to the
statically trained IDS. The goal of our methodology is to improve the efficiency of the IDS so that Pggqpt > Pstatic

(right).

TABLE 2. Parameters’ setup.

Parameter Value
Sparse autoencoder

¢ Number of hidden neurons 30

* Number of optimization iterations 500
LEDY 0.0008
°p 0.06

. IB 3
Softmax Regression

* Weight decay parameter 0.0001
* Number of optimization iterations 100

aware of the hidden classes of the instances for being able
to measure the efficiency of the adaptive IDS contrary to
the static one. If we denote the performance of the IDS in
the initial phase, in the new but static phase, and after the
adaptation as Piyir, Pyaric, Padapr T€SPectively, the goal of our
methodology is to improve the efficiency of the IDS so that
Padapt > Pgaric. The evaluation strategy described in this
section is presented intuitively in FIGURE 3.

As described in Section III, the Planning activity is based
on the Sparse autoencoder for identifying the new struc-
ture out of the unlabeled data. The autoencoder has to be
tuned beforehand by the security administrator. This process
requires an initial tuning period on behalf of the administrator
that relies basically on the nature of the network and the
utilized data features. In our case, we selected the testbed’s
parameters (TABLE 2) based on an empirical study and our
knowledge on the domain of the problems.

D. RESULTS

This subsection elaborates on the results and compares
the performance of the adaptive IDS against the static
approach, based on the metrics presented in subsection [V-A.
In total, we subjected the IDS to 100 environmental changes,
i.e., 100 diversely compiled datasets, blended with diverse
attacks of each major class of the compiled KDDCup dataset.
Figures 4 to 8 provide a graphical representation of the
recorded metrics over the 100 environmental states.
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As can be seen in FIGURE 4, our adaptive approach
surpasses the static one in most of the environmental states.
More specifically, in 84% of the states the adaptive approach
achieved a higher accuracy score compared to the static one.
The average accuracy of the static approach is 59.71%, while
the adaptive’s one is 77.99%. This means that in average our
approach performs better by 18.28% over the 100 unknown
states. Additionally, the standard deviation is 30.79% and
18.78% for the static and the adaptive approaches respec-
tively. This fact quantifies what intuitively can be observed
from FIGURE 4, where the adaptive curve witnesses less
and smaller efficiency drops over the vast majority of the
states. It is important to note that the maximum positive
accuracy difference between the two approaches is 56.92%
(state #8), while the maximum negative difference is -1.6%
(state #36). In fact, as can be seen in FIGURE 4, in critical
cases where the IDS accuracy drops significantly due to a
state’s high deviation with respect to the initial training set
(T), the adaptive methodology demonstrates a significantly
higher contribution that can sustain the IDS to acceptable
detection levels. In total, 38% of the states present higher
accuracy difference than the standard deviation (18.77%),
and for these states, the average accuracy is increased by
almost 48%. Hence, we can safely argue that the adaptive
approach can significantly contribute to the overall security
level in sudden network environmental changes (including
attack incidents), while in cases where the IDS accuracy
drops to some extent, the adaptive approach achieves almost
the same performance as the static one. More precisely, for
those 46 states where the accuracy difference per state is
positive and less than the standard deviation, the average
accuracy of the adaptive approach is greater than the static
one by 0.51%. However, only for the 16 out of 100 states
where the static approach performs better than the adaptive
one, the average performance is 0.57% in favour of the static
approach. All in all, the adaptive approach greatly outper-
forms the static one especially when it comes to critical
states.
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FIGURE 4. Deviation of IDS accuracy over 100 consecutive environmental states.
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FIGURE 5. Deviation of IDS Attack Detection Ratio (ADR) over 100 consecutive environmental states.

FIGURE 5 presents the ADR performance over the
100 environmental states. Recall from subsection IV-A that
ADR measures the accuracy in detecting exclusively attacks
instances, and thus reveals the performance in offensive
incident detection. Overall, the adaptive approach scores an
average ADR of 60.34% and outweighs the static one by
23.8%, as the latter scores an average ADR of 36.54%. The
standard deviations are 28.34% and 19.69% for the static
and the adaptive approach respectively. In total, the adaptive
approach is proved better for the 86% of the states and,
notably, the maximum ADR increment is 73.37% (state #8),
while the maximum deficient percentage is -5.67% (state
#36). As in the case of the accuracy metric, ADR achieves
high scores for those states where the static approach wit-
nesses significant performance drops. For those 38 critical
states, where the ADR difference between the two approaches
is greater than the standard deviation (19.69%), the average
increment in the adaptive approach is 60.83%. Additionally,
48 states present an ADR difference smaller than the standard
deviation, but again the adaptive approach performs better
by 1.84% on average. Finally, only in 14 states the static
approach performed better by 2.14% on average. Since ADR
is considered a cardinal metric to measure the performance of
an IDS, our results suggest that our adaptive method can sig-
nificantly contribute in sustaining the detection ability of an
IDS to high levels. The value of our novel proposal lies in the

fact that it can breathe new life into the IDS in critical/sudden
situations and increase ADR by up to 73.37%. In principle,
in critical situations where the IDS performance drops sig-
nificantly there is an urgent need for human intervention.
Namely, in these cases, ADR can drop to such deficient levels
that most of the attacks occurring in the network can go
completely unnoticed. Hence, instead of triggering a process
of manually retraining the IDS, our solution provides a self-
adaptive and autonomous way to keep the IDS’s operational
ability to high levels.

Furthermore, FIGURE 7 gives an overview of the aver-
age accuracy (recall) per class included in the dataset. For
each class, we offer a side-by-side comparison of the perfor-
mance of the static versus the adaptive method. In the figure,
the accuracy for the Normal class is almost identical for the
two methods. In fact, there is a tiny difference of 0.2% in favor
of the static approach. Given that this accuracy is the average
of the recall over 100 states, this difference is characterized
as minor. On the bright side, the difference concerning the
accuracy of the DoS attack class is significant. More specif-
ically, the adaptive method achieves an average accuracy
of 39.67% in contrast to the static one that achieves 13.94%.
This difference of 25.73% on an average metric is noteworthy.
The maximum difference of DoS accuracy recorded among
all the 100 states is 80.34% and is perceived in state #8.
Actually, in that state, the static IDS witnessed a critical

VOLUME 7, 2019



IEEE Access

D. Papamartzivanos et al.: Introducing Deep Learning Self-Adaptive Misuse Network IDSs

100%-
Method

80% - 77.99%

59.71% 60.34%

60% -

Performance

45.77%
41.29%
40%- 36.51%

42.02%
N . I l I
OO/D - ' " '

Accuracy MFM

32.31%

27.57% I

Att.Accuracy ADR FAR

0.2%_ _0.4%

Avg.Accuracy
Metrics

FIGURE 6. Performance comparison over all average metrics.

. 99.8%  99.6%
100% = 87.76%  89.57%

80%-

60%-

40% 39.67%

20%- 13.94% .
0% |

Norlmal DcI)S P}I?B
Classes

{0static ns[Adaptive IDS

FIGURE 7. Accuracy (Recall) of all classes over the 100 states.

Recall

situation as the accuracy in DoS detection was only 0.52%
due to the high deviation induced by the new environment.
On the other hand, the adaptive approach was able to acquire
the necessary knowledge for the unknown network traffic and
boost the accuracy metric to 80.87%. Additionally, regard-
ing PRB attack detection accuracy, once again the adaptive
approach achieves an average score of 89.57% against the
static one, which scored 87.76%. Regarding the attack classes
of U2R and R2L, both methods were incapable of detecting
any attack vector of those classes. The reason behind this fact
is that the aforementioned classes have a small number of
instances. Recall from subsection I'V-C that any new environ-
mental state stems from a sampling technique. Apparently,
the small numbers of instances of those normal/attack classes
and the sampling technique to simulate the new environment
do not provide adequate instances to build a solid ground truth
for the classifier. Overall, the adaptive approach is capable of
keeping a stable accuracy on identifying the normal traffic,
while its attack detection performance is originated primarily
from the DoS attack accuracy and secondarily from the PRB
attacks detection accuracy.

The overall performance of the adaptive and the static
methods is illustrated in FIGURE 6. The dominance of the
adaptive method is verified by all the metrics. Apart from the
accuracy and the ADR metrics analyzed above in detail, also
the rest of metrics prove the superiority of our methodology.
The difference of 4.78% in the MFM metric reveals that the
adaptive approach is able to keep the balance between Recall
and Precision among all the dataset classes to a greater extent.
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Note that the MFM metric, as defined in subsection IV-A,
is the unweighted average of recall and precision. That is,
the unweighted MFM constitutes a more strict metric to eval-
uate our method, as it treats all classes equally independently
of the classes’ size. This means that the adaptive method
is not only able to provide better attack detection rates, but
it is also capable of identifying with higher precision the
correct class where the attack instances belong to. Finally,
the small deficiency (0.2%) reported in the accuracy metric
of the Normal class for the adaptive approach is reflected in
the slightly increased FAR of 0.4% in contrast to the 0.2%
achieved by the static approach.

Additionally, in order to better understand the distribu-
tional characteristics of our results over the chosen metrics for
the two methods, FIGURE 8 provides a side-by-side compar-
ison of the boxplots of the metrics. Note that the FAR metric
is absent since its deviation is minor. In fact, FIGURE 8 puts
in a nutshell the behavior of the two methods as it was already
portrayed in FIGURE 4 and FIGURE 5. The dominance
of the adaptive approach becomes clear as in all boxes the
medians are comparatively higher than those in the static
approach. Especially for the boxes representing the Accuracy
and ADR metrics, we can notice a significant difference.
Regarding the static method, the long size of the second
quartile, both for the Accuracy and the ADR, reveals the
inefficiency of this method to sustain an acceptable detection
level for the IDS in critical situations. This is not the case for
the adaptive method, as the concise inter-quartile reveals an
overall high stability in both metrics. Additionally, it can be
observed that the box of the Accuracy metric of the adaptive
approach is slightly higher for the observations above the
median (third quartile). Regarding the box of the ADR metric,
the adaptive approach achieves significantly higher scores
as it is noteworthy that its third quartile starts at that point
where the third quartile of the static approach ends. This
proves the higher robustness of the adaptive method in detect-
ing offensive incidents in previously unseen environments.
Regarding the Attack Accuracy, Average accuracy, and the
MEFEM metrics, once again the boxplots reveal the benefits of
the adaptive approach. Note that the aforementioned metrics
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FIGURE 8. Side-by-side Boxplots of metrics for both methods.

are average metrics, and thus it is normal to present a lower
deviation in contrast to the Accuracy and the ADR metrics.
It is noteworthy that the concise size of the MFM boxplot
demonstrates the ability of the adaptive approach to keep the
balance between the recall and precision over all the classes
and across all the environmental states.

E. TIME PERFORMANCE ANALYSIS

Since our proposal aims to provide an autonomous method
for IDS self-adaptation it is critical to analyse the time
performance and scalability of its core components. More
specifically, the Sparse autoencoder (SAE) and the FeedFor-
ward autoencoder (FFAE) of the planning activity are those
components that enable the IDS to adapt to a new envi-
ronmental state. Hence, we measured the time performance
of the autoencoders using an incrementing size of dataset
instances to evaluate also their scalability. As can can be
seen in FIGURE 9, we fed the autoencoders with dataset
pieces ranging from 10k to 500k instances having a pivot step
of 10k instances. FIGURE 9 reveals that the SAE behaves
linearly, while the FFAE (both in the training and testing
phase) needs less that 1 sec to obtain the transformation of
the whole dataset. The SAE training phase needed 2.977 secs,
i.e., ~49.5 min. given a dataset of 500k instances. The linear
performance behavior of the SAE advocates the ability of our
approach to scale in big data network environments. From our
analysis, one could say that the adaptation cycle can occur
virtually indefinitely, while the extra transformation layer
added by the FFAE is negligible. Our python implementation
was executed on a server empowered with an Intel Xeon E5-
2630 v4 @ 2.20GHz CPU. For measuring the time perfor-
mance, we exclusively utilized only one thread of the CPU.
Naturally, the training time could be significantly reduced
with the use of GPU accelerators.

V. DISCUSSION

The novel methodology described and evaluated in the
previous sections combines the benefits of STL [8] and
MAPE-K [9] to deliver a holistic deep learning-based
methodology toward self-adaptive and autonomous misuse
IDSs. Our solution addresses the challenges of this particular
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field to a great extent and, to the best of our knowledge, it is
the first one to evaluate an IDS under consecutive environ-
mental changes. That is, we prove its ability not only to adapt
to new and unknown environments, but to achieve signifi-
cantly higher scores contrary to a static approach. In fact,
as detailed in section IV-C, the compiled dataset which con-
sists of 39 attack classes along with the strategy of simu-
lating new environmental states out of it, reflects with high
consistency a realistic situation. The robustness and agility
of the proposed methodology is advocated by its superiority
over a wide range of legacy classification metrics and over
100 different environmental states. It is worth mentioning that
across the vast majority of states our novel approach was able
to deliver a significantly higher detection ratio surpassing the
static IDS by up to 73.37%. In few states we achieved better
but comparable results with the static approach, while only in
a handful of states the static approach proved better for a small
percentage (2.14% on average). In a nutshell, the acquired
results demonstrate that the proposed methodology can revi-
talize a misuse IDS and boost its ADR by up to 73.37% in
critical situations.

Additionally, our simulation posit practical challenges to
our methodology. In realistic occasions, an IDS will have
to deal with unknown attacks of any class, where their fea-
tures might be drawn of different probability distributions.
Our sampling approach tries to imitate such a challenge and
stresses our method over consecutive environment changes.
However, this challenge is compensated inherently by the
STL properties. Moreover, our evaluation is given in the
context of a multi-classification instead of a binary one
(Attack/Normal). This provides deeper insights about the per-
formance of the presented approach. Namely, it is important
for an IDS solution, not only to be able to detect an attack,
but also to designate the class where the attack belongs to in
order to aid well-defined counteraction plans [1].

Our proposal comes to deal with a well-known disadvan-
tage of misuse IDSs, namely their stiffness to adapt upon
changes. Note that we do not claim that our proposal is able
to identify new attack classes, but it is indeed able to grasp an
attack’s nature based on generalized features reconstructions
stemming directly from the unknown environment and its
unlabeled data. Crucially, this reconstruction is a product of
a scalable method which is able to handle big network data.
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We prove that given an initial labeled training set that serves
as a basis, the proposed solution is able to revitalize the effi-
ciency of the IDS without the constant need to refresh it, and
then retrain the IDS. The transformation of the initial training
set — based on the knowledge acquired directly from the cur-
rent state of the network — provides a high lever of automation
in the retraining process. That is, the presented methodology
addresses the inherent limitation of misuse IDSs to adapt to
new environments, while it significantly alleviates the burden
of administrators of constantly refreshing its training set.

V1. RELATED WORK

Machine learning IDSs is a research topic that attracted the
attention of the research community for decades. In the recent
years, several neural networks-based solutions arose and
offered promising solutions. This section offers an overview
of deep and shallow learning methods, while it also elaborates
on whether they bear any adaptable features. This section also
refers to methodologies that aim to provide a level of automa-
tion in the IDS adaptation and discusses our contributions
over them.

A. NEURAL NETWORKS-BASED APPROACHES

The work in [20] introduces a deep learning solution for
NIDSs. The authors utilize the self-taught learning methodol-
ogy exclusively as an unsupervised feature learning method
for supporting a statically trained IDS. Instead, our solution
provides a more powerful setup of the STL in conjunc-
tion with MAPE-K methodology to deliver a deep learning
methodology for adaptive IDSs. In fact, contrary to [20],
we pass the IDS through environmental changes to prove that
our approach is able to generate knowledge out of unknown
environments.

Ma et al. [21] propose an IDS algorithm based on Spectral
Clustering (SC) [22] and Deep Neural Networks (DNN) [23].
Through SC the proposed method is able to identify cluster
centers that divide a raw dataset into data clusters with similar
features. Those data clusters are fed as training data into
DNN’s of multiple layers. The algorithm trains as many
DNN’s as the clusters identified by the SC and aggregates the
final result in an ensembled way. However, the proposed deep
learning approach does not provide any kind of adaptiveness
to the system.

In the context of MAPE-K control loop, Lee and Park [4]
proposed an adaptive IDS in terms of network environmen-
tal changes. By exploiting the MAPE-K model, the authors
were able to perceive the environment changes and plan
appropriate update actions in the Snort IDS detection rules.
Lee and Park [4] utilize MAPE-K model for regulating the
adaptive process. However, our approach goes beyond that
point and exploits MAPE-K model to build a deep learning
misuse IDSs in the adaptive frame.

Fernandez Maim6 et al. [24] use deep learning techniques
to detect network anomalies in 5G networks. The authors uti-
lize DNN and Long Short-Term Memory (LSTM) Recurrent
Networks to empower the anomaly detection. Their proposal
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takes self-adaptation actions with respect to the network load
requirements by applying management policies. Neverthe-
less, the adaptation policies are applied to the network load
management rather the detection framework per se.

The work in [25] proposes a deep learning method
for detecting DoS attacks based on Restricted Boltz-
mann Machine (RBM). Specifically, the authors used
a Gaussian-Bernoulli RBM with 7 hidden layers with
100 neurons each. Through the aforementioned setup the
proposed method learns a reduced set of new features
of the NSL-KDDTrain+_20Percent dataset [17] (train:
25,194 instances, test: 4,508 instances). According to the
authors, the Gaussian—Bernoulli RBM is able to outperform
the deep learning approach of Bernoulli-Bernoulli RBM
and Deep Belief Network, and the legacy machine learn-
ing methods of SVM (radial basis), SVM (epsilon-SVR),
and decision tree. Even though the proposed method learns
new features representation out of unlabeled data, it is
not exposed to unknown data for supporting an adaptable
approach.

Yu et al. [26] designed an IDS model by stacking dilated
convolutional autoencoders (DCAEs) for learning features
representations from unlabeled data. In their experiments,
the authors tested the generalization ability of their detec-
tion model by testing it with previously unknown attacks.
Even though the authors pose their trained model against
new attacks, they do not proceed to any automated retraining
method. Rather they aim to exclusively test the generalization
ability of the learned features employed to statically train
the IDS. Additionally, the authors approach the problem as
a binary one (normal/attack), while in our classification case
we deliver a multi-classification method.

Shone et al. [27] propose a new type of autoencoder
namely non-symmetric deep autoencoder (NDAE) and they
utilized it in a classification model using stacked NDAEs.
According to the authors, the NDAE engaged only an encod-
ing phase for reducing the complexity of the network with
minor effect on the accuracy of the model. At the end of the
stacked NDAE, the authors attach Random Forest algorithm
that undertakes the classification task based on the features
learned from the NDAESs. The proposed setup achieves high
accuracy rates, but the author’s methodology does not bear
adaptability characteristics.

B. ADAPTIVE METHODOLOGIES IN IDS REALM

Although the IDS research on IDS has offered an large
amount of works [18], [19], [28], [29] the vast majority
of them focus on providing highly accurate end-models
with minor false alarm rates. Thus, the adaptability property
remains an open issue and it is a well-known drawback,
especially for the misuse IDS domain. Still, there are method-
ologies that, according to the literature [3], could provide
the necessary foundations to adaptive IDSs. Among them,
Learning Classifier Systems (LCS) [5], Artificial Immune
Systems (AIS) [6], Swarm intelligence [7], Evolutionary
computing [30] and Reinforcement learning [31]. There
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is no doubt that all of these approaches can offer their
principles to build adaptive systems for practical prob-
lems. However, the intrusion detection problem has some
inherent characteristics that one has to take into considera-
tion when aiming to build a self-adaptive and autonomous
IDS. That is, a self-adaptive and autonomous approach
implies the complete disengagement of the human fac-
tor or at least a minimal interaction in the form of a
supervision.

The self-adaptation property implies that an IDS should be
able to adapt itself to the needs of a new environment even
without the need of feedback from the administrators. This
means that the adaptation process of an IDS cannot be based
on labeled data because labeling network data of a new envi-
ronment is a demanding engineering task. That is, approaches
that base their adaptation on labeled data can be considered
adaptive, but not self-adaptive. As a result, to support self-
adaptation in the context of intrusion detection, we need to
invest on methods that can exploit unlabeled data to improve
the detection performance.

Additionally, in an on-line machine learning problem,
where new instances need to be classified instantly and
accurately, there is a need of approaches that can adapt to
new environments also in a realtime fashion. This entails
that solutions that rely their adaptation on a trial-and-error
approach as those based on reinforcement learning, seem to
be impractical for this nature of problems. In fact, an IDS
cannot learn in the same way that, say, a robot does. For
example, if a robot encounters an obstacle then it learns
out of this incident and proceeds to an adaptation of its
objectives. Unfortunately, in the intrusion detection context,
the only entity that can identify a mis-classification (i.e.,
an obstacle) is the administrator who notices an ongoing
attack. An IDS is not in position to know if a new instance
is misclassified or not. In other words, the IDS cannot see
the “obstacles”, but the “obstacles” are in practice attacks
that go unreported or normal instances which are detected
as attacks and increase the false alarm rate. In this sense,
we need to invest on methods that can learn from the unknown
environment in an autonomous way.

To this end, our proposal tries to address the aforemen-
tioned challenges. The combination of Self-taught learn-
ing [8] and MAPE-K [9] brings together the benefits of
transfer learning from unlabeled data and places this ability
in the frame of autonomic computing. That is, our self-
adaptive and autonomous method enables an IDS to extract
new features out of the unlabeled and unknown traffic of
a new environment and exploit them for retraining in an
autonomous way its detection engine. Furthermore, our solu-
tion enables the IDS to adapt according to the dynamics of the
new environment even if this is overwhelmed by previously
unseen traffic. Given an initial training set, a new features
construction is learned using a neural networks-based sparse
autoencoder, and via a feed-forward autoencoder the initial
training set is updated to meet the challenges of the new
environment.
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VIi. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel methodology that advances the
state-of-the-art in the literature of misuse IDS. The highlight
of our scheme is that it can practically render any misuse IDS
autonomous, i.e., self-adaptive to the ever-lasting changes
made in its network environment. This means that in such
frequently occurring (and sometimes sudden) transition peri-
ods, the IDS is able to maintain an at least acceptable attack
detection rate, which otherwise is fated to drop abruptly,
rendering the IDS useless. This quality is also a great relief
to the security administrators who after a network environ-
ment change are granted enough time to possibly update the
IDS’s detection model. The proposed methodology uniquely
blends the MAPE-K reference model and a deep-learning
technique called self-taught learning to enable an IDS to iden-
tify previously unseen attacks via reconstructions made on
unlabeled data. The linear performance behavior for acquir-
ing the aforementioned reconstructions, renders our proposal
suitable for contemporary big data network environments.
The effectiveness of our proposal is demonstrated through
extensive experimentation considering several metrics and a
plethora of attacks included in widely used datasets. As future
work, we aim to test our methodology with more contempo-
rary datasets, while we aim to investigate ways to improve
detection rates for small dataset classes. We additionally aim
to experiment with other methodologies like sparse RBMs,
K-means clustering and Gaussian mixture models (GMMs)
to investigate further improvement of our method.
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