
 1

An ontology for secure e-government applications
M. Karyda1, T. Balopoulos1, S. Dritsas2, L. Gymnopoulos1, S. Kokolakis1, C. Lambrinoudakis1, S. Gritzalis1*

1Laboratory of Information and Communication Systems Security (Info-Sec-Lab), Department of
Information and Communication Systems Engineering, University of the Aegean, Samos, GR-83200,
Greece, {mka, tbalopoulos lazaros.gymnopoulos, sak, clam, sgritz}@aegean.gr
2Department of Informatics, Athens University of Economics and Business, GR-10434, Greece,
sdritsas@aueb.gr
*Corresponding author

ABSTRACT
This paper addresses the issue of accommodating

security requirements in application development. It
proposes the use of ontologies for capturing and depicting
the security experts’ knowledge. In this way developers
can exploit security expertise in order to make design
choices that will help them fulfill security requirements
more effectively. We have developed a security ontology
for two different application scenarios to illustrate its use.
To validate the ontology we have used queries.

KEYWORDS
security ontology, application development, e-government

1. INTRODUCTION
The increasing need to employ secure applications has

driven researchers to explore possible solutions for
incorporating security features to applications as early as
possible in the design and implementation processes.
However, acquaintance and selection of the required
security features and mechanisms often pose severe
difficulties both to application developers and system
owners.

This paper presents a relatively new approach to
developing secure applications. This approach entails the
use of a security ontology that can facilitate the
communication between security experts, users and
developers. The rest of the paper is structured as follows:
Section two elaborates on security ontologies, and section
three describes two different application contexts where
security ontologies can be employed. Section four uses the
two instantiations of the security ontology to present a set
of exemplary cases of its use. Finally, the last section
summarizes the conclusions, the major limitations, and the
potential of this approach.

2. SECURITY ONTOLOGIES
In the domain of knowledge sharing, an ontology is an

“[e]xplicit specification of a conceptualization” [1]. Thus,
an ontology is the attempt to express an exhaustive

conceptual scheme within a given domain, typically a
hierarchical data structure containing all the relevant
entities, their relations and the rules within that domain.

In the context of this paper, the domain of a security
ontology comprises of security-related issues. The purpose
of the security ontology is to facilitate software developers
to better understand the domain of their software, so that
they can be able to address its security requirements early
in the software development process, and make informed
choices as far as security solutions and mechanisms are
concerned.

2.1 Related Work
To the best of our knowledge, there is no related work

that aims to develop a security ontology to be used as a
common base for the development of secure applications.
Other related work focuses only on access control issues
[2]. KAON [3] focuses mostly on the managing
infrastructure of generic ontologies and metadata, whereas
in [4] authors present a policy-ontology. Raskin et al.
describe an ontology-driven approach to information
security [5] in order to organize security attacks and
support the reaction to these attacks by relating certain
controls with specific attack characteristics, as well as
attack prediction. The KAoS Policy and Domain Services
is another approach based on ontologies for the
representation of security related concepts [6].

2.2 Development Method
To develop the security ontology used in this paper,

we followed the steps provided in [7]; emphasis was given
in the iterative process proposed therein. Each cycle in
this procedure has roughly four phases: determining
competency questions, enumerating important terms,
defining classes and class hierarchy, and instantiating.

Competency questions are loosely structured questions
that a knowledge base built on the ontology should be able
to answer. Setting and elaborating on competency
questions is an efficient way to identify and then focus on
the desired area. Enumerating important terms within the
scope set by competency questions and the respective
answers is a prerequisite for defining ontology classes.

 2

We gathered a large number of related terms. The most
important of them, formed ontology classes; others
formed properties of classes and some were not used at
all.

In the next phase, classes and the class hierarchy were
developed. There are three different approaches in
developing a class hierarchy: the top-down approach, the
bottom-up approach, and a combination of the two. To
develop a class hierarchy following the top-down
approach, one starts with the definition of the most
general concepts in the domain and proceeds with the
specialization of the concepts. Bottom-up development,
on the other hand, starts with the definition of the most
specific classes that constitute the leaves of the hierarchy,
while grouping of these classes into more general
concepts follows.

 Asset

Countermeasure

Data_Asset (7)

Hardware_Data (3)

…….

Identification and Authentication (6)

Network Management (4)

Auditing Services (3)

Physical Protection (4)

Objective (7)

…….

Person

Insider

Stakeholder (5)

Attacker (2)

Outsider

Attacker

Threat

Errors (4)

Deliberate_Attacks (10)

Technical_Failure (3)

…….

Figure 1: The ontology hierararchy

To develop the ontology presented in this paper, we

found that using a combination of the two approaches

described above was the most effective approach: our rich
set of competency questions fitted well with the top-down
approach and resulted in a class hierarchy close the final.
Then the bottom-up approach was employed to fit in the
remaining concepts.

After developing the class hierarchy, the next step was
to come up with the slots (class properties) and their facets
(slot properties, such as value type, allowed values and
cardinality). Some of the question that were used in this
phase, are included in Section 4. The last phase in each
cycle was that of instantiation; each class was given
specific instances. Two e-government domains were
chosen: an e-tax and an e-vote domain (see Section 3).
This gave rise to two instantiated ontologies sharing the
same schema.

The four phases described above were repeated
several times. The ontology was validated after each
iteration (see Section 4), and iterations ended only when
the results obtained were considered satisfactory.

Figure 1 depicts a part of the developed ontology
hierarchy; numbers in parenthesis give the number of
instances for each leaf-level class. The classes of the
depicted ontology, i.e. Asset, Countermeasure, Objective,
Person etc. and their corresponding subclasses cover the
basic concepts that describe the context of a secure
application. For example, the class Objective has been
instantiated with seven different types (or values), which
are not depicted; these values include, among others the
terms Availability, Data_Confidentiality, Data_Integrity
and other security related objectives, or requirements, that
secure applications typically need to fulfil.

3. APPLICATION SCENARIOS
Most applications nowadays need to exhibit some

fundamental security features, e.g. authorization/
authentication. In some cases, however, security is of
critical importance, not only for the functionality of the
application, but also to provide a trust environment for
end users, who would otherwise refrain from using these
applications. Such cases include, for example,
applications used to provide electronic government
services. The next paragraphs describe two such
application scenarios, that are encountered increasingly
often by developers and users.

3.1 Developing e-tax applications
E-government aims to provide citizen-oriented

services, and to address the demands of citizens and
businesses for accessibility, responsiveness, simplicity
and transparency of public services.

Applications that provide e-government services need
to have increased security and privacy features. A typical
case in this domain is, for example, the provision of on-
line tax paying and managing services to citizens. The

 3

latter will be able to make, from their home, declarations
of income and manage their tax obligations. The tax
collecting authority should therefore be in position to
verify income declarations, to make cross-checks and to
ask additional information from taxpayers. All this
communication should be protected in terms of its
confidentiality, privacy and integrity.

The process involved in such a scenario can be the
following:
• Users manage their personal information.
• Users view the declarations they have made in

previous years.
• Users process their income tax declaration.
• The system notifies the users that additional

information is needed.
• Users update their tax declaration with the needed

information.
In this scenario, the major security requirements that

e-taxing applications need to meet are authentication,
authorization, privacy, auditing and integrity.

3.2 Developing e-voting applications
Regional administration strives to use e-government

applications, so as to enhance citizens’ participation and
accessibility to public services. Participating in local
elections from their home or workplace has been made
possible for many citizens in numerous countries,
including France, Switzerland, Estonia, the US, Brazil and
Italy. In this way, participation in the election process is
facilitated for many people, especially those facing
difficulties to leave their home or work.

A possible application scenario would include the
following processes:
• Local officials set up the election process.
• Independent bodies can audit/supervise the election

process.
• The set of eligible voters is established.
• Eligible voters have access to the electronic election

process.
• Eligible voters cast their votes within the specified

election time framework, following the designated
procedures.

• Vote tally can be verified.
The security challenges associated with this case are

several: Firstly, voters need to trust the electronic voting
system. Secondly, the election organizers need to be
assured that the voting application is trustworthy and does
not perform any unwanted functionality. Thirdly, voters
need to be assured that their votes remain secret and that
they have been calculated in the right way. Fourthly,
organizers need to make sure that only eligible voters
have voted, that they have voted in the way they are
supposed to, and that the votes have been tallied correctly.
Finally, all stakeholders want to be sure that no

unauthorized entities can have access to the electronic
voting application.

According to this scenario, the major security
requirements that e-voting applications need to meet are
integrity, auditing, confidentiality, traceability,
authentication and authorization.

4. USING THE SECURITY
ONTOLOGY

This section illustrates how the security ontology for
the application scenarios described in the previous section
can facilitate the development of secure applications. It
also illustrates how the ontology was validated during its
development.

The tools used for developing and querying the
security ontologies were Protégé and Racer. The Protégé
Ontology Editor [8] has a modular design and itself
provides only basic functionality; numerous plug-ins exist
depending on the task in hand. For our work, we chose the
Protégé plug-in, which targets OWL [9] and RDF [10]
ontologies. Racer [11] is an inference engine that can be
used for query answering over RDF documents. Racer
was used to statically check our ontologies for
inconsistencies, and for submitting queries in order to
verify their validity. The queries were expressed in the
new Racer Query Language (nRQL).

nRQL is a description logic query language for
retrieving individuals from an A-box (a set of assertions
about individuals) according to specific conditions. It
allows the use of variables within queries which are bound
against those A-box individuals that satisfy these
conditions. A description of nRQL’s syntax is beyond the
scope of this paper, but the interested reader is referred
to [12]. The communication between Protégé and Racer
was made possible through the RQL Tab plug-in.

An indicative set of nRQL queries with their answers is
provided in the following, illustrating the use of the
security ontology.

4.1 nRQL Queries and Results
For an ontology to be considered useful, it must give

consistent answers to real-world questions. This section
lists a number of questions a developer involved in an e-
tax or an e-vote application development project is likely
to come up with. These questions should not be regarded
as exhaustive, but as indicative of what the ontologies can
deal with and reason about. Each of the questions is firstly
expressed formally as an nRQL query, then the result of
executing this query is presented, and furthermore, where
appropriate, the result is commented upon, or justified.
The questions which guided the nRQL queries were used
in the iterative development of the hierarchy ontology,

 4

while the nRQL queries were used for validating the
ontology.

4.1.1 Example Queries: e-Tax Environment

Q1. Which are the typical objectives of an e-tax
system?

nRQL
Query:

(retrieve (?obj) (?obj |Objective|))

nRQL
Result:

(((?OBJ |Data_Confidentiality|))
 ((?OBJ |Availability|))
 ((?OBJ |Data_Integrity|))
 ((?OBJ |User_Eligibility|))
 ((?OBJ |User_Accountability|))
 ((?OBJ |User_Non_Repudiation|))
 ((?OBJ |Accuracy|)))

Q2. Which assets are confidential in an e-tax system?
nRQL
Query:

(retrieve (?asset) (and
(|Confidentiality| ?threat
|is_threatened_by|) (?asset ?threat
|damaged_by|)))

nRQL
Result:

(((?ASSET |Tax_Data|))
 ((?ASSET |Personal_Data|))
 ((?ASSET |Cryptographic_Keys|)))

To answer this question, we first find the possible threats
to the confidentiality objective and then list the assets that
may be damaged by these threats. For example,
confidentiality is threatened by user errors; and a user
error may disclose the user’s cryptographic keys.

Q3. Which countermeasures protect the personal data
of a tax-paying citizen?

nRQL
Query:

(retrieve (?cm)
 (|Voter_Data| ?cm |protected_by|))

nRQL
Result:

(((?CM |Encryption|))
 ((?CM |Access_Control|))
 ((?CM |Certificates|))
 ((?CM |Intrusion_Detection|))
 ((?CM |Malicious_SW_Detection|)))

Q4. Which countermeasures address threats that are
realized by vandals?

nRQL
Query:

(retrieve (?cm) (and (?cm ?threat
|address|) (|Vandal| ?threat
|realizes|)))

nRQL
Result:

(((?CM |Access_Control|))
 ((?CM |Firewall|))
 ((?CM |Backup_Policy|))
 ((?CM |OS_Security_Updates|))
 ((?CM |Intrusion_Detection|)))

4.1.2 Example Queries: e-Vote Environment

Q5. Which are the typical objectives of an e-vote
system?

nRQL
Query:

(retrieve (?obj) (?obj |Objective|))

nRQL
Result:

(((?OBJ |Voter_Anonymity|))
 ((?OBJ |Vote_Confidentiality|))
 ((?OBJ |Availability|))
 ((?OBJ |Vote_Integrity|))
 ((?OBJ |Voter_Eligibility|))
 ((?OBJ |Voter_Accountability|))
 ((?OBJ |Accuracy|)))

Q6. Which assets are confidential in an e-vote system?
nRQL
Query:

(retrieve (?asset) (and
(|Vote_Confidentiality| ?threat
|is_threatened_by|) (?asset ?threat
|damaged_by|)))

nRQL
Result:

(((?ASSET |Voter_List|))
 ((?ASSET |Voter_Data|))
 ((?ASSET |Voter_Credentials|))
 ((?ASSET |Vote|))
 ((?ASSET |Cryptographic_Keys|)))

Q7. Which threats might compromise the anonymity of
a voter?

nRQL
Query:

(retrieve (?threat)
(|Voter_Anonymity| ?threat
is_threatened_by|))

nRQL
Result:

(((?THREAT |Impersonation|))
 ((?THREAT |Malicious_Code|))
 ((?THREAT |User_Error|))
 ((?THREAT |OS_Bugs|))
 ((?THREAT |Application_Bugs|))
 ((?THREAT |Terminal_Highjack|)))

Q8. Which countermeasures can protect against vote
replay?

nRQL
Query:

(retrieve (?cm)
 (?cm |Vote_Replay| |address|))

nRQL
Result:

(((?CM |Identification|))
 ((?CM |Authentication|))
 ((?CM |Auditing|)))

Using identification and authentication we can audit the
persons that have voted. To prevent them from voting
again, we need to check the audit before accepting any
vote.

Q9. Which threats are present in a mixnet-based voting
scheme?

nRQL
Query:

(retrieve (?threat) (|Mixnet|
?threat |damaged_by|))

nRQL
Result:

(((?THREAT |Vote_Selling|))
 ((?THREAT |DoS_Attack|)))

In mixnet schemes [13], when the domain of the possible
votes is sufficiently large, a voter may effectively uniquify
his/her vote (e.g. by altering the vote’s low-significance
bits) and sell it to a buyer who had pre-chosen it.
Furthermore, as mixnet schemes operate, they necessarily
perform a massive amount of communication between the
different parties. This makes them much more vulnerable
to a denial-of-service attach than other schemes.

Τhis section demonstrated how the security ontology
can be exploited in the development of complex security

 5

critical applications. Application development can be thus
be facilitated through the use of ontologies. Developers
can create hierarchy ontologies for different application
contexts, as this paper has shown, by collaborating with
experts in each domain.

5. CONCLUSIONS
Ontologies provide an effective mechanism to capture,

describe and exploit knowledge and practice in the wide
and rapidly evolving area of security. This paper presents
the use of a security ontology, instantiated in two different
application contexts in the area of electronic government,
for developing security critical applications.

One drawback of the approach presented in this paper
is that, developing and maintaining ontologies adds
workload to the process of application development.
However, once a security ontology has been developed, it
can be instantiated and applied in different contexts, as
this paper has showed. Moreover, it can assist developers
to save time and make better choices in applying security
features, since it allows them to exploit security expertise
and accumulated knowledge.

ACKNOWLEDGMENTS
This work was co-funded by 75% from the European

Union and 25% from the Greek Government, under the
framework of the “EPEAEK: Education and Initial
Vocational Training Program—Pythagoras”.

REFERENCES
1. Gruber T. Toward principles for the design of ontologies

used for knowledge sharing, in Formal Ontology in
Conceptual Analysis and Knowledge Representation, Kluwer
(1993).

2. Denker, G., Access Control and Data Integrity for
DAML+OIL and DAML-S, SRI International, USA, (2002)

3. Bozsak, E., Ehrig, M., Handschub, S., Hotho: KAON -
Towards a Large Scale Semantic Web. In: Bauknecht, K.;
Min Tjoa, A.; Quirchmayr, G. (Eds.): Proc. of the 3rd
International Conference on E-Commerce and Web
Technologies, (2002), pp. 304-313

4. Kagal, L., Finin, T., Joshi, A.: “A policy language for a
pervasive computing environment”. In IEEE 4th International
Workshop on Policies for Dis¬tributed Systems and
Networks, (2003)

5. Raskin, V., Hempelmann, C., Triezenberg, K., and Nirenburg,
S.: Ontology in Information Security: A Useful Theoretical
Foundation and Methodological Tool. In Viktor Raskin and
Christian F. Hempelmann, editors, Proceedings of the New
Security Paradigms Workshop, New York. ACM, (2001)

6. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P.,
Breedy, M., Bunch, L., Johnson, M., Kulkarni, S. and Lott, J.
KAoS Policy and Domain Services: Toward a Description-
Logic Approach to Policy Representation, Deconfliction and

Enforcement. In Proceedings of the IEEE Workshop on
Policy (2003)

7. Noy, N.F. and Mc Guinness, D.L. "Ontology Development
101: A Guide to Creating Your First Ontology", Stanford
Knowledge Systems Laboratory Technical Report KSL-01-
05. (2001)

8. Protégé, http://protege.stanford.edu/
9. Web Ontology Language (OWL),

http://www.w3.org/2001/sw/WebOnt/
10.O. Lassila, Ralph Swick (eds).: Resource Description

Framework (RDF) Model and Syntax Specification, W3C
Recommendation 22 February 1999,
http://www.w3.org/TR/REC-rdf-syntax/

11. Racer Inference Engine,
http://www.sts.tu-harburg.de/~r.f.moeller/racer/

12. The New Racer Query Language,
http://www.cs.concordia.ca/~haarslev/racer/racer-queries.pdf

13. Smith, W.: Cryptography Meets Voting,
http://www.math.temple.edu/~wds/homepage/cryptovot.pdf

