A cloud-based architecture to crowdsource mobile app
privacy leaks

Dimitrios
Papamartzivanos
University of the Aegean
Karlovasi, Samos, Greece
dpapamartz@aegean.gr

ABSTRACT

Most would agree that modern app-markets have been flooded with
applications that not only threaten the security of the OS superfi-
cially, but also in their majority, trample on user’s privacy through
the exposure of sensitive information not necessarily needed for
their operation. In this context, the current work revolves around 3
key questions: Is there a way for the end-user to easily track - the
many times - hidden privacy leaks occurring due to the way mo-
bile apps operate? Can crowdsourcing provide the end-user with a
quantitative assessment per app in terms of privacy exposure level?
And if yes, in which way a cloud-based crowdsourcing mechanism
can detect and alert for changes in the apps’ behavior? Motivated
by the aforementioned questions, we design a cloud-based system
that operates under a crowdsourcing logic, with the aim to provide
i) a real-time privacy-flow tracking service, ii) a collaborative in-
frastructure for exchanging information related to apps’ privacy ex-
posure level, and iii) potentially a behavior-driven detection mech-
anism in an effort to take advantage of the crowdsourcing data to
its maximum efficasy.

Categories and Subject Descriptors

[Security and privacy]: Malware and its mitigation, Mobile plat-
form security, Mobile and wireless security; [Computer systems
organization]: Cloud computing

Keywords
Mobile Security and Privacy; Crowdsourcing; IDS; Behavior-driven
Detection; Cloud Computing.

1. INTRODUCTION

Today, more and more users rely on smartphones and other ultra-
mobile devices to meet their everyday needs. As a result, the use
of such mobile devices to store sensitive personal data, carry out fi-
nancial transactions, and even socialize with other people becomes
significantly more frequent for virtually everyone of us. In fact,
mobile devices has become an integral part of people’s life, result-
ing in attracting the attention of ill-motivated entities who intend
to exploit the devices and the data stored in it for their own profit.

Dimitrios Damopoulos
Stevens Institute of
Technology
Hoboken, New Jersey

ddamopou@stevens.edu

Georgios Kambourakis
University of the Aegean
Karlovasi, Samos, Greece
gkamb@aegean.gr

A characteristic example of this situation is that of the flooding of
mobile app markets with malicious apps, aiming either to expose
user privacy or manipulate services and data stored on the device.
It is therefore more than obvious that there is an urgent need for the
design of robust detection mechanisms capable of deterring, if not
eliminating, malicious actions and thus offer end-users the oppor-
tunity to protect their data and preserve their privacy.

According to recent reports [9], Android seems to be the most
widely used mobile platform since it currently holds 75% of the
total mobile market share. This popularity, along with the certain
augment in malicious apps destined to it, has rendered Android
quite vulnerable when it comes to user privacy. This is actually
fairly prominent as the vast majority of Android apps require from
the user an - often extravagant - large number of permissions for its
installation. Unfortunately, this allegation is confirmed by recent
researches [10] reporting that the 98% of malicious applications in
the wild target to Android. The reasons why this happens are quite
a few, but the cardinal one is that the market is deluged with 3rd
party app repositories which unfortunately do not fall in step with
the appropriate security policies. Overall, the decision on whether
or not to install a given app is left entirely up to the user.

On the other hand, there are more than a few cases where even ap-
proved apps from Google Play act maliciously and do not respect
users’ privacy. As already pointed out, every app, malicious or
not, asks for many privacy-sensitive permissions and in most of the
cases the Android market does not perform any privacy-exposure
related control. Nevertheless, this negligent attitude motivates the
research community to take external measures for safeguarding the
privacy of the end-user. This usually pertains to Intrusion Detection
Systems (IDS) that is lately on the rise in the mobile ecosystem.
However, implementing a robust detection mechanism for such de-
vices is not straightforward. This is mainly to the inherent limita-
tions of these devices, including memory and storage constraints,
limited battery capacity, etc. For this reason, early approaches on
this topic invest on cloud’s "unlimited" processing capabilities in
order to deal with the aforementioned impediments. Yet, as dis-
cussed further down in section 3, most of them aim to provide de-
tection mechanisms under sophisticated architectures, not concen-
trating on protecting from privacy leaks.

In this context, this paper details on a host and cloud-based syn-
ergistic mechanism for preserving mobile users’ privacy. Specifi-
cally, our approach comprises an easily implementable architecture
for sharing apps’ behavioral profile among the participating users
and thus offer them the ability to control privacy exposures. Also,
gives them the ability to immediately get informed about any sus-

Privacy inspection \
module \ module

Client

At Cloud Detection
communication

Response

Figure 1: Overview of the architecture

picious app activity and block it if needed. The highlights of our
solution are:

e The formation and diffusion of a common knowledge about
virtually any mobile app. This knowledge is dynamically and
constantly updated to not only reflect the attitude of the app
during its interaction with privacy-sensitive assets, but also
the user’s preferences regarding its operation.

e In continuation to the previous point, the decisions on the
user’s side on how to handle an app during its installation
or operation (per event of interest), is the continually revised
product of a collaborative effort fusing the user’s preferences,
the common knowledge about that app, and the feedback re-
ceived during its operation. Note that the latter also affects
the former.

e The solution at the client side is not self-sufficient, but it re-
lies on the cloud. Nonetheless, it is practical to implement
and discharges the smartphone from resource intensive tasks.

The rest of this paper is organized as follows. The architecture of
the proposed system is given in the next section. The same sec-
tion also offers some preliminary evaluations of the proposed so-
lution in terms of CPU and memory utilization. The related work
is addressed in section 3. The last section concludes and provides
pointers to future work.

2. ARCHITECTURE

Figure 1 illustrates a high-level overview of the proposed archi-
tecture composed of two main components; the client and cloud.
Overall, three main services are provided to the participating users
for enabling them to be in charge and keep control of their privacy;
privacy-flow tracking, crowdsourcing, and detection and reaction
against privacy violations. These services are conceived to get ma-
terialized by the synergistic operation of both the components. The
client app has been implemented in Android ver. 4.1.2, while the
cloud infrastructure has been deployed on the Greek Research and
Academic Community cloud service Okeanos.

2.1 The Client

This section details on the client app running on the mobile device.
This app is responsible for tracking and recording privacy-sensitive
events, inform users about privacy leaks, and exchange information
with the cloud infrastructure. To do so, the client comprises of five
collaborating modules discussed in the following.

Event sensor module: The starting point of every monitoring ser-
vice is the event sensing mechanism. In our case, to record a
privacy-sensitive event, the monitoring service has to be notified
whenever an app attempts to access any resource associated with
users’ privacy. Naturally, these privacy-sensitive assets need to
be decided beforehand. Here, we follow an approach based on
method invocation and object creation hooking. It is stressed that

Crowdsourcing User DB

App Data

LS I
module ‘_‘A ' communication module
module e dul
Event sensor | Configuration © Hook
module module g update module
Client Cloud

os

MS.hookClassLoad (
new MS.ClassLoadHook() {
pub void classLoaded(Class<?> resources) {
Method m;
try {
m = resources.getMethod(
" 5 tring
g 7 Long.TYEE, Float
H > LocationListen
& S) catch (NoSuchMethodExcep
@ © m = null;
3 g ,
= o s
£ 2
Q if (m != null) {(
al MS.MethodPointer old = new MS.MethodPointer();
MS.hookMethod (resources, m, new MS.MethodHook() {
| bitc object invoked(object
4 object r h:
id =
D ng time = System
log(
A i .
| return old.invoke (resources, args);
N |)
[}, old);
)
|)
| N
Hooks

Figure 2: Hooks and hooking process

the hooking of OS operation aims solely to have one get notified
about privacy intrusive events and not to modify the app behavior
per se. In an effort to collect more accurate information regarding
the exact way each app behaves, our approach takes into account
app layer calls along with kernel and core service ones. This situ-
ation is characteristically shown in figure 2 providing also an ex-
ample of a typical hook. For more information about the hooking
process the interested reader can refer to [5].

But how is this event sensing mechanism configured? Naturally,
this has to do with one’s perspective on what she considers to lead
in privacy leaks. In this direction, we have to track down certain
API calls and parameterize the event sensor to listen to their invo-
cation event. Therefore, the event sensor wakes up only when a
sensitive invocation happens, making it more effective for devices
with limited processing power and battery capacity. To imple-
ment the aforementioned event sensing mechanism and get noti-
fied when an app attempts to access critical resources, we capital-
ize on the Cydia substrate framework [5]. Table 1 contains a list
of all the methods currently hooked by our scheme. As observed,
all these hooks represent important operations invoked by virtu-
ally every app, and specifically those that matter most in terms of
privacy. Putting it another way, these methods seem to be a point
of reference not only for spying and malicious apps, but also for a
plethora of benign ones.

All the sensors store an Event Vector (EV) in the local database.
This vector has the following structure:

EV={appID, hookID, hookedMethodID, hookMode, rFlag, timestamp}

where applD is the unique identifier of the app, hookID is the
ID of the accessed resource, hookedMethodID is the ID of the
method used to access the resource, hookMode is the configured
access mode as activated by the user (described in the next mod-
ule), rFlag designates the user’s response to this event, and times-
tamp is the exact time of the generation of the event.

Configuration module: This module enables the users to parame-
terize the execution environment of any app, thus providing them
a straightforward way of blocking privacy intrusive actions. In
this direction, the current module offers a GUI where users can
personalize their resource accessing preferences per application.
Also, the module provides 3 possible modes of operation for ev-
ery available hook.

e Mode 1: Always Allowed (default permit)

e Mode 2: Ask me first
e Mode 3: Always Blocked (default deny)

Table 1: Hooks list related to user’s privacy

Hooks Class Method Tag
Contacts ContentResolver Query(...) contacts
SMS/MMS/Photo Album ContentResolver Query(...) sms/mms
Photo Album ContentResolver Query(...) images
Sending SMS SMSManager sendTextMessages(...) sendSMS
SMSManager sendDataMessages(...) sendSMS
SMSManager sendMultipartTextMessages(...) sendSMS
Location LocationManager requestSingleUpdate((...) location
LocationManager requestLocationUpdates(...) location
Location getLatitude() location
Location getLongitude() location
Subscriber ID TelephonyManager getSubscriberID() subscriberID
Location TelephonyManager getCellLocation() cellLocation
SIM Serial Number TelephonyManager getSimSerialNumber() simSerialNum
Device ID TelephonyManager getDeviceID() devicelD
Camera Camera Open(...) Camera
Camera takePicture(...) Camera
Command Execution Runtime Exec() commandExec
Audio Recording AudioRecord startRecording() audioRecording
Accounts AccountManager getAuthToken() accounts
AccountManager getAccounts() accounts

When the first mode is selected, the module is not involved in
the app’s execution process (rFlag=0). Opposite to that, when
the third mode is activated, the hooked process is always blocked
(rFlag=1). The second mode displays a prompt to the users al-
lowing them to decide about the execution of the process at hand
(rFlag=0/1). It has to be mentioned that no matter what is the
hook mode, the corresponding method invocation is logged in or-
der to store the actual behavior of the app for later reference and
transmission to the cloud.

The users’ preferences about the above mentioned modes are based
on decisions taken by either inspecting the locally-generated knowl-
edge pertaining to the behavior of a given app and the crowd-
sourced one as stored in the cloud. So, every time an app is
installed on the device, this module prompts the user to accept
the recommended hook parameterization as it is generated by the
cloud. If agreeing to this recommendation the hook modes are
configured automatically. Naturally, users can revise their prefer-
ences for a given app at any time by taking under consideration
the behavior profile provided by the privacy inspection module as
described in the following.

Privacy inspection module: This module undertakes the seman-
tic interpretation of system calls triggered by apps to human un-
derstandable form. In this respect, the goal of this module is to
provide a privacy flow tracking service able to inform users about
their privacy exposure level. Putting it another way, this service
is responsible for quantifying and visualizing events happening
on privacy-sensitive assets. To do so, it provides a GUI where
the behavior profile of an app can be displayed in timeline format
aiming to inform users about its attitude. An example of such a
GUI screen is given in figure 3. The timeline is generated by read-
ing and processing the events list logged for that app by the event
sensor module. The module enables the user to select among three
presentation modes; daily, weekly, and monthly.

Client communication module: This module always connects to
the corresponding one residing on the cloud side. So, in the up-
link this module transmits Enhanced EVs (EEVs), i.e., the orig-
inal EVs logged by the client plus some additional data used to
uniquely identify an event per client. That is, the original EV is
populated with the client’s device identifier (devicelD), the name
of the app that triggered the event (appName), and an SHA-1 hash
of the the app’s executable (apkDigest). Note that these pieces of
data are not logged for every event by the sensor module for rea-
sons of optimization.

EEV= {devicelD, appID, appName, apkDigest, hookID, hookedMetho-
dID, hookMode, rFlag, timestamp}

lﬁ' Privacy Timeline

D ©o owv [a) om < <
A e I] g 9
— o 0000 N o0 < wn
o N oaN o] a0
a a N (] N (] a
g 9 @ g) 2 &
o o oo o oo o o
g 2 & 9 a2 3 &
c c cc c cc c c
3 3 33 3 33 3 3
i3 Q Lw 3 Lo Q Q
=) =l 33 =4 33 3 =)
g‘ = - e [(=
A\ ‘ocation sMs W sendsms A AudioRec] Device ID
. Contacts Images Camera ‘ Cell Location
[App: MILC]

[Digest: efe57980949c532efcc410eb3498d686bfb60057]

Figure 3: Timeline of events for a given app

On the downlink, this module receives the crowdsourced knowl-
edge as generated by the cloud. This common knowledge is used
to inform the receiver about the actual behavior of the app as
perceived by the others and for providing recommendation about
configuring preferences per app. Ideally, the client should be al-
ways connected to the cloud for sharing information correspond-
ing to apps, but also for retrieving behavior statistics contributed
by other participants in realtime. However, in most of the cases,
this is not a realistic scenario. Therefore, this module only wakes
up when the device gets online.

Response module: This module is fed from the privacy settings
configured per app per hook, and provides counteraction to each
occurring event depending on the mode of operation. Specifically,
based on the privacy preferences provided by the user with the
help of the configuration module, this one acts upon any privacy
sensitive method invocation. Also, in case of a "Mode 2" setting,
this module constantly tracks the user response for that app, hook.
If the user mostly selects to block the corresponding event, this
module intervenes and suggests the user to automatically change
that mode to the strictest one. The opposite situation happens
when the majority of user’s responses in a "Mode 2" setting is
"allow". Simply put, the current module monitors the user’s re-
sponses and through them tries to calibrate the privacy settings
per app, per hook.

2.2 The Cloud

The cloud offers a central point where aggregated knowledge (statis-
tics) for every smartphone app can be generated taking as input the
behavioral data submitted by all the participating clients. Specifi-
cally, it is comprised of the following modules used to correspond-
ingly display, analyze and disseminate the cumulative knowledge
to the community.

Cloud communication module: It is responsible for enabling com-
munication with the participating clients. On the one hand, it re-
ceives data related to the behavior of the various apps running on
the clients, and on the other, disseminates collective data about
the apps. A downlink communication may happen due to the re-
quest of a client or independently. For example, in the first of the
aforementioned cases, the client needs to install a new app and
requests collective behavior data about it, while in the other the
cloud multicasts an update for one or several apps to a group of
clients.

Crowdsourcing module: It receives information pertaining to the
behavior of the apps running in every client. Bear in mind that
this information reflects the privacy exposure level of any given

app. More specifically, the information submitted to this module
include app EVs collected by the Event sensor module as detailed
in section 2.1, and user’s privacy preferences related to the level
of access she allows (tolerate) each app to have. The latter is col-
lected and contributed by the Configuration module on the client
side. Based on the collected data, this module makes an overall
assessment of the level of privacy for every app running on the
clients. From that, it is also possible to provide privacy configura-
tion suggestions upon request from a client (e.g., when installing
a new app), thus helping the users to take optimal decisions re-
garding their privacy.

However, for the module to be able to estimate the level of trust
that can be assigned to an app, it needs to perform some basic cal-
culations taking as input the EEVs sent per app by the population
of users. Recall that the structure of such an EEV is discussed in
detailed in section 2.1. Also, as already pointed out, every hook
can have one of the values 1, 2, or 3 corresponding to the three
modes of operation imposed by the Configuration module. Hence,
for N hooks pertaining to an app the maximum level of trust could
be succeeded if all of them are set at the first operation mode, thus
allowing always the event to occur. However, each user can set a
different value for every hook leading to different levels of trust
per app among the users. In this respect, the current module is
responsible for calculating the mean value of the level of trust for
every app as this has been measured from the users’ preferences.
This metric is provided in percentage form.

Nevertheless, this metric alone is not enough to offer an objec-
tive estimation of an app’s level of trust. Different users may
have varying preferences and opinions about the nature and the
behavior of an app or even a different perspective of what action
is considered to be privacy-offensive. In this regard, the compu-
tation of the standard deviation metric over the mean trust values
contributed by all users is needed. The calculated standard de-
viation value is displayed in one of three colors: green, orange,
and red. This way it is easier for the end-user to perceive the de-
gree of concordance between the contributors about that app. The
aforementioned knowledge is delivered to every client (e.g.,when
installing an app) in an effort to assist the receiver in making the
safest decisions.

To exemplify the above process, let us assume that the framework
has currently 10 hooks in use. So, the maximum level of negative
trust for an app is 10*3. Also, suppose that one of the users has
configured the hooks in the following modes: 3 to Mode 3, 5 to
Mode 2, and the rest to Model. As a result, the local level of neg-
ative trust for the same app is 3*%3+5%242=21, which corresponds
to a percentage of 70% (also meaning that the user’s confidence in
this app is 30%). Recall that the module computes the mean value
of trust submitted by all the participants. Hence, if this app has
been rated by 5 users with percentages 30, 80, 90, 95, and 85%
correspondingly, then the average level of trust for it is 76%. On
the other hand, the st. deviation is approximately 26.3, thus classi-
fying the app as "orange". The exact values for transitioning from
the one category (color) to the other can be a matter of debate, but
naturally depend on the system and situation at hand.

Detection module: The crowdsourcing of app execution traces de-
scribed previously contributes toward the design of a behavior-
based detection mechanism for exposing suspicious and/or sud-
den changes in the behavior of an app. Under this prism, the cur-
rent module is destined to deliver such a service by detecting new
undocumented privacy threats and zero-day attacks when an app
gets updated or a new feature is added. We envisage this module
to use machine learning to make decisions about an app, however

RAM (MB)
i
)

CPU (%)

Time (sec)

Figure 4: RAM and CPU usage

its implementation is left for future work. In fact, recent research
[3] has shown that the use of popular classifiers in behavior-based
detection can deliver quite accurate results when it comes to the
identification of the real nature of an app.

Hook update module: As discussed in section 2.1, the efficiency
of the proposed architecture is directly associated with the se-
lected app hooks on the client side. Therefore, a module that
allows the update of the hooks list in the client is deemed nec-
essary. This functionality is also directly associated with the open
nature of the Google’s Android platform which allows smartphone
manufactures to design their own custom APIs to meet their spe-
cific needs. This calls for a hook update module enabling custom
hooks depending on the situation and the device at hand. Over-
all, the current module is responsible for adapting the hooks to
device’s custom OS API after, say, an OS update.

2.3 Hooking performance evaluation

In this section we present some preliminary performance results
for our mechanism. As already pointed out, our goal is to design
a lightweight client app capable of performing efficiently on even
low-end mobile devices. So, its operation solely relies on the de-
tection and logging of privacy sensitive events. By doing so, its
performance is directly associated with the Cydia Substrate tool
which is used to detect any method call pertaining to a privacy sen-
sitive resource. Our tests have been conducted using a Sony Xperia
L device which incorporates a dual core 1 GHz CPU and 1 GB of
RAM.

Some pilot results on CPU and memory utilization for our app is
presented in figure 4. As observed from the figure, we monitored
the application for about 8 secs. From time moment 0 to 6.587
the app was idle, consuming about 7% of the CPU for maintaining
its services running in the background. During the same period of
time, the total free memory on the device was 264 MB. From time
moment 6.587 to 7.067 the app detects a privacy-sensitive event and
takes action to handle it. The maximum CPU consumption during
this time interval is 38% while the memory increased by 10 MB.
From time moment 7.067 to 7.187 the application logs the detected
event in the database. In this interval the CPU consumption was
about 17%-20% while the memory usage was being gradually de-
creased. Considering the above observations one can argue that the
application performs efficiently. Overall, we can say that although
there exists a noticeable augment in CPU and memory usage dur-
ing the detection and logging of events, this happens only for a tiny
period of time.

3. RELATED WORK

So far, a considerable mass of works in the literature have been
devoted to the preservation of user’s privacy and/or the detection
of malware in the smartphone ecosystem. Therefore, in a high-
level, the contributed solutions can be classified into those aiming
at detecting malware, and ones focusing on preserving user’s pri-
vacy. Other classification is also possible, for example based on
the behavior of the app when interacting with either low-level or
high-level system assets, but in the following we opt to select the
former.

3.1 Malware detection

The work in [12] presents one of the first network-based intru-
sion detection services. According to the authors, their scheme
is able to provide enhanced protection capabilities to mobile de-
vices, while achieving reduced complexity and resource consump-
tion at the same time. Precisely, the authors propose an off-device
network service employing multiple virtualized antivirus engines
to protect the devices from new undocumented malware. In the
same context, the authors in [13] propose an alternative solution
for malware detection, where security checks are applied on re-
mote security servers. The latter entities are used to host an exact
replica of each smartphone participating in the infrastructure. The
servers are able to apply multiple detection techniques simultane-
ously, supporting more than a hundred replicas running on a single
server. So, rather than running the security measures locally, the
smartphone records a minimal execution trace, and transmits it to
the corresponding security server, which is in charge of replaying
the original execution.

The collection of Linux kernel system calls is the cornerstone of the
proposal given in [12]. Actually, the system described uses crowd-
sourcing to obtain traces of app’s behavior and distinguish between
benign ones and those containing malware. This is done by utiliz-
ing anomaly detection techniques. More specifically, the authors
choose the k-means algorithm with a known number of k=2 clus-
ters to distinguish between legitimate and privacy-invasive apps.
A cloud-based intrusion detection and recovery system for smart-
phones devices is given in [8]. According to the authors, their sys-
tem provides continuous in-depth forensics analysis to detect any
misbehavior in the network. The proposed scheme performs in-
vestigations on emulated smartphone devices residing in the cloud
with the aim to take the optimal counteractions. Another interesting
work is presented in [2]. The authors proposed a crowdsourcing ar-
chitecture towards a behavior-based malware detection system for
Android based on system call traces. Contrary to our approach
which offers a privacy preservation scheme, this one aims at pro-
viding a detection mechanism.

The work in [1] advocates the idea of C2C, a peer-to-peer network
of smartphone clones running in the cloud. According to the au-
thors, this architecture can be used to prevent worm attacks spread-
ing from one device to another. The authors try to apply a healing
strategy by providing a software patch to a relatively low number of
smartphones in order to reduce the probability of worm spreading.
The authors in [15] proposed a permission-based scheme to de-
tect new samples of already known Android malware and applied
a heuristics-based technique to reveal new ones. Their framework,
called DroidRanger, was able to unveil 211 malicious apps among
204,040 ones collected from different Android markets. The au-
thors argue that generally the marketplaces are functional and rela-
tively healthy, but there is a need for stricter security policies. An-
other proposal focusing on malware detection for mobile devices is

given in [14]. Specifically, the authors describe and evaluate a de-
tection framework destined to mobile malware in the Android plat-
form. This solution is capable of analysing immutable information
ranging from app permissions to API calls in an effort to portray
apps’ behavior. To evaluate their framework, the authors employed
several machine learning classifiers aiming to identify the detection
mechanism that profiles malicious apps more efficiently.

The authors in [17] also detail on a cloud IDS solution for smart-
phones, namely Secloud. The latter is able to emulate any regis-
tered smartphone with the help of a virtual machine running in the
cloud. That is, Secloud mirrors all of the events happening on the
device (e.g., user input, communications, etc) to the emulated en-
vironment for keeping the emulated version synchronized with the
actual device. The process of the events occurs mainly in the cloud
in an effort to alleviate the smartphone from computationally in-
tensive tasks. A hybrid host/cloud IDS able to detect malware and
privacy invasive software is contributed in [3]. The proposed archi-
tecture can support diverse anomaly-based mechanisms to be con-
currently applied, either directly on the device, or in the cloud, thus
maximizing the synergy between the two endpoints. The prototype
presented by the authors was evaluated in terms of CPU load, mem-
ory and battery consumption, and timeliness (i.e., the time it takes
for the IDS to respond to an attack).

3.2 Detection of privacy leaks

The work in [4] presents TaintDroid. This solution aims to provide
a way of tracking the personal information accessed by the run-
ning apps. To meet its purpose, TainDroid merges analysis done
in four axes (levels), namely variable, message, method, and file.
The authors used TaintDroid to study the behavior of 30 randomly
selected popular apps and arrive to the conclusion that the two-
thirds of them indicated suspicious activity. Also, after experimen-
tation, TaintDroid was found to achieve 14% performance over-
head. A couple of other interesting works were introduced in [16],
[7], aiming to protect the user from privacy violations. The first
one contributes a privacy solution called TISSA for smartphones
in the Android platform. According to the authors, their frame-
work empowers the end-user to control the exact kind of personal
information is made accessible to the different apps. They evalu-
ate their scheme by testing apps which are known to leak private
information. The second work proposes an architecture called Ap-
plnspector aiming to analyze apps submitted to a marketplace. The
authors correctly point out that this centralized way of app distri-
bution gives the chance for large-scale validation. In this respect,
Applnspector analyzes apps and reports back potential security and
privacy shortcomings.

Another proposal focusing on privacy leaks on Android platform is
given in [6]. The authors present a static analysis tool called An-
droidLeaks for examining potential leaks of personal information
in massive scale. They created a mapping between the API calls
and Android permissions. During their experiments they exam-
ined 24,350 different apps and were able to found 57,299 leaks in
7,414 of them. Moreover, the authors in [11] introduced a privacy
model called Privacy As Expectations. The cardinal idea behind
this model is that users are usually able to tell whether or not a
privacy-susceptible resource should be allowed to be accessed by
an app. The authors try to crowdsource such users’ expectations
and provide through it a service that is able to distinguish those
that seem to violate the conventional expectation. Lastly, the work
in [2] attempts to quantify privacy for mobile users through the def-
inition of appropriate metrics. To do so, the authors try to estimate

the sensitivity of each asset in terms of privacy and produce a user
understandable rating. Their approach takes into account three cat-
egories of personal data, namely Location, Contacts, and Content.
Nevertheless, the authors conclude that the proposed privacy met-
rics are by no means foolproof.

3.3 Discussion

As discussed above, several IDS-s have been proposed in the lit-
erature of smartphone security to cope with the detection of suspi-
cious, aggressive or privacy-invasive behavior caused by different
kind of apps. Generally, as analysed in this section, this timely
problem remains in large part open to exploration. One can argue
that this is mainly due to impediments imposed by (a) the great di-
versity of mobile apps, (b) the plethora of third-party app markets,
especially for the Android platform, (c) the open nature of some
mobile OS, (d) the various restrictions which originate from the
idiosyncrasies of mobile hardware, and (e) the privacy awareness
level of mobile users and their perception of security. That is, in
relation to the latter parameter, the design of a truly effective mo-
bile IDS needs to take into account the human factor along with
the technological aspect. Under these circumstances, in this paper,
we offer a solution which tries to optimize the decisions taken by a
user on how to manage its privacy settings related to any given app.

That is, our proposal relies on the cloud to crowdsource privacy re-
lated information about virtually any app. This has the triple benefit
of (a) sharing a common knowledge (the more participants the bet-
ter the quality of this knowledge), (b) the decisions about an app
stem from both the user’s personal preferences and the cloud (this
relationship is bilateral; the former affects the latter and vice versa),
and (c) the device is relieved from resource demanding tasks. This
is actually the main difference of the work at hand in relation to all
the others in this area. Precisely, it tries to equally distribute the task
and responsibility of controlling app privacy to all the community,
rather than dealing with specific issues in an isolated manner. On
top of that, our solution is flexible enough, practical to implement
and shows promising results regarding the utilization of resources
on the client device.

4. CONCLUSIONS

Today, with the proliferation of smartphones and related services,
the need for end-user privacy is fast becoming a sine qua non. Un-
fortunately, the mushrooming of legacy and third party app markets
has put the user in a constant dilemma on whether or not to install
a downloaded app. Also, it creates excess worries about the be-
havior of the app after installation. This is especially prominent
for Android app markets, but it seems to propagate to iOS and
others as well. So, few would argue that the need for advanced
mechanisms that put the user in control of their privacy is appar-
ent. Motivated by this fact, in this paper, we propose a cloud-based,
crowdsourcing-driven privacy monitoring mechanism that relies on
the synergistic action of both a local knowledge base kept in the
device and the disseminated data stemming from the population of
participants. In this way, the proposed scheme is able to detect pri-
vacy violations caused by the running apps and alert the user of
the device and the community about any misbehaviors. This can
contribute towards stopping, say, the propagation of malware, and
narrow down privacy violations in a promptly manner.

5. REFERENCES
[1] M. Valerio Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei.
Cloudshield: Efficient anti-malware smartphone patching
with a p2p network on the cloud. In P2P, 2012.

[2] 1. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid:
Behavior-based malware detection system for android. In
Proc. of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices. ACM, 2011.

[3] D. Damopoulos, G. Kambourakis, and G. Portokalidis. The

best of both worlds: A framework for the synergistic

operation of host and cloud anomaly-based ids for

smartphones. In Proc. of EuroSec '14. ACM, 2014.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. Taintdroid: An

information-flow tracking system for realtime privacy

monitoring on smartphones. In proc. of the 9th USENIX conf.

on Operating Systems Design and Implementation, 2010.

J. Freeman. Cydia substrate - hacking and tweaking tool.,

2011.

C. Gibler, J. Crussell, J. Erickson, and H. Chen.

Androidleaks: Automatically detecting potential privacy

leaks in android applications on a large scale. In proc. of the

Sth Int’l conf. on Trust and Trustworthy Computing.

Springer-Verlag, 2012.

P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung. Vision:

Automated security validation of mobile apps at app

markets. In proc. of the Second Int’l Workshop on Mobile

Cloud Computing and Services. ACM, 2011.

[8] A.Houmansadr, S. A. Zonouz, and R. Berthier. A
cloud-based intrusion detection and response system for
mobile phones. In proc. of the 2011 IEEE/IFIP 41st Int’l
conf. on Dependable Systems and Networks Workshops.
IEEE CS, 2011.

[9] IDC. Worldwide smartphone os market in 4q12, May 2013.

[10] Kaspersky. Kaspersky security bulletin. overall statistics for
2013.

[11] J. Lin, S. Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and
J. Zhang. Expectation and purpose: Understanding users’
mental models of mobile app privacy through
crowdsourcing. In proc. of the 2012 ACM conf. on
Ubiquitous Computing. ACM, 2012.

[12] J. Oberheide, K. Veeraraghavan, E. Cooke, J. Flinn, and
F. Jahanian. Virtualized in-cloud security services for mobile
devices. In proc. of the First Workshop on Virtualization in
Mobile Computing. ACM, 2008.

[13] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos.
Paranoid android: Versatile protection for smartphones. In
proc. of the 26th Annual Computer Security Applications
conf. ACM, 2010.

[14] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu.
Droidmat: Android malware detection through manifest and
api calls tracing. In proc. of the 2012 Seventh Asia Joint conf.
on Information Security. IEEE CS, 2012.

[15] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and
alternative Android markets. In proc. of the 19th Annual
Network & Distributed System Security Symposium, 2012.

[16] Y. Zhou, X. Zhang, X. Jiang, and V. W. Freeh. Taming
information-stealing smartphone applications (on android).
In proc. of the 4th Int’l conf. on Trust and Trustworthy
Computing, 2011.

[17] S. A. Zonouz, A. Houmansadr, R. Berthier, N. Borisov, and
W. H. Sanders. Secloud: A cloud-based comprehensive and
lightweight security solution for smartphones. Computers &
Security, 37, 2013.

[4

—_

(5

—

[6

—_

[7

—

	Introduction
	Architecture
	The Client
	The Cloud
	Hooking performance evaluation

	Related Work
	Malware detection
	Detection of privacy leaks
	Discussion

	Conclusions
	References

