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ABSTRACT

Keystroke dynamics is a well-investigated behavioral biometric based on the way and rhythm in which someone interacts
with a keyboard or keypad when typing characters. This paper explores the potential of this modality but for touchscreen-
equipped smartphones. The main research question posed is whether “touchstroking” can be effective in building the
biometric profile of a user, in terms of typing pattern, for future authentication. To reach this goal, we implemented a
touchstroke system in the Android platform and executed different scenarios under disparate methodologies to estimate its
effectiveness in authenticating the end-user. Apart from typical classification features used in legacy keystroke systems, we
introduce two novel ones, namely, speed and distance. From the experiments, it can be argued that touchstroke dynamics
can be quite competitive, at least when compared to similar results obtained from keystroke evaluation studies. As far as
we are aware of, this is the first time this newly arisen behavioral trait is put into focus.
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1. INTRODUCTION

Modern mobile devices (smartphones) has rapidly evolved,
getting at the same time a lot of attention due to their
drastically improved hardware and software capabilities.
However, this prevalence has draw the attention of
aggressors who, among others, desire to gain access
into these devices for stealing or manipulating private
information. This growing trend is also backed up by
the rise of mobile malware. In fact, malicious software
especially designed for smartphones relies upon the lack of
strong security mechanisms, thus allowing the exposition
of sensitive data, the leak of private information and the
exploitation of well-known services. In a recent report
[1] it is stated that 33.9% of free of charge third-party
iOS applications had some sort of hidden capability to
eavesdrop on user’s location and 11.2% of them to access
personal contacts. DroidDream (for Android) [2] and
iSAM (for iOS) [3] are only some characteristic examples
of such malicious software that endeavor to steal sensitive

data directly from the device. Others, like that in [4],
have been designed to compromise popular services like
Apple’s Siri voice assistant. According to [1], malware
attacks have been increased by 155% across all mobile
platforms only in 2011.

Additionally, while the number of stolen or lost
smartphones has augmented rapidly over the last few years,
some of these devices may be used as a stepping stone [5]
to spoof the real identity of the attacker. This may be done
by taking advantage of the sensitive personal information
stored in the device corresponding to its legitimate user.
Ireland recently reported that nearly 8,000 smartphones
were stolen in the first 6 months of 2012 [6]. Also, only in
London, there are around 300 mobile devices stolen every
day, while in USA more than 113 mobile phones are lost
or stolen every minute [7, 8].

Hence, knowing the increasing risk of mobile threats,
designing robust security mechanisms destined to modern
mobile devices remains a very demanding task. Gen-
erally, there are several important security and privacy
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parameters which must be taken into careful consider-
ation; user authentication, access control, data integrity,
non-repudiation, and content protection are only some of
them. Focusing on user authentication, it is undebatable
that the current authentication systems offered by major
smartphone platforms concentrate solely on point-of-entry
mechanism, namely, Personal Identification Number (PIN)
authentication. That is, the user is required to enter the
correct PIN, usually a number between 4 to 8 digits, before
access to the device is granted. As a result, PIN is a security
mechanism used only the first time a mobile device is
booting into the OS and until the next reboot. Over the
years, PINs have evolved to take advantage of the full
alpharithmetic keyboards that modern mobile platforms
incorporate in an effort to provide complex and secure
passcodes. For instance, the latest iOS version supports
passphrases of up to 52 characters to be inserted by the
user instead of the classic 4-digit PIN. Moreover, with the
increasing hardware availability, up-to-date mobile devices
are equipped with new sensors such as touchscreens and
high-resolution built-in cameras. As discussed in the next
section, such advanced hardware has also influenced the
mobile OS authentication techniques, which nowadays
provide graphical password patterns along with the tradi-
tional passcodes.

It is also well-known that PIN authentication systems
are facing a number of weaknesses, while remaining
vulnerable to brute force and social engineering kind of
attacks [9]. Moreover, due to the fact that, at least for the
time being, smartphones do not support multiple users,
only the one that enters the correct PIN is recognised as
the owner of the device, gaining access to all sensitive
information stored on it. More importantly, in many cases,
mobile users do not adhere to PIN “golden practices”, as
they never change the PIN, they share it with friends or
they write it down on scraps of papers. This makes the PIN-
based authentication method inadequate as a protection
method for mobile devices [10].

From the above it becomes clear that there is an
urgent need for multi-factor intelligent authentication
mechanisms, such as those based on keystroke dynamics.
It is true that over the last few years researchers
have increased their interest in developing intelligent
authentication controls relying on biometric technologies
for strengthening the security of these devices. To this end,
as detailed in section 2, keystroke analysis has been widely
used as a fruitful means of profiling (with the intention of
authenticating) the legitimate user of a mobile device. In
fact, keystroke-powered authentication has been broadly
explored in the past but only for mobile devices equipped
with physical keyboards neglecting modern smartphones
having a touchscreen and a virtual keyboard. Although
some recent works in the literature attempted to infer
keystroke data from smartphones, none of them actually
uses classification features common to legacy keystroke
systems for creating typing profiles which can later be

used for authenticating the user. Instead, they rely on side-
channels (such as motion or sound sensor) to identify the
pressed key rather than authenticate the user.

Our contribution: By paraphrasing the term “keystroke”
this work introduces touchstroke dynamics (also referred
to as “touchstroking” in the rest of this paper). Our
basic aim is to explore the potential of this advanced
biometric trait in serving as a second verification factor
when authenticating the user of a smartphone. In essence,
this means that such a system can be used jointly with
the login passphrase to make a decision if the person
that entered the passphrase is truly the legitimate user
of the device. Toward this goal we explore typical
scenarios used by the majority of legacy keystroke
systems. However, because touchscreen presents a quite
different input method (regarding the user behavior when
they interact with it) we also consider novel classification
features and methodologies along with that employed in
typical keystroke analysis. A second major contribution
of the work at hand is that the entire experimental
procedure has been carried out on a real smartphone in
the Android platform. Hence, all results including training
and classification times, are directly associated with a
typical smartphone hardware and OS. The same applies to
performance metrics corresponding to CPU and memory
consumption produced by the activation of the proposed
solution. In summary, to the best of our knowledge,
this work is the first to consider touchstroking and also
provide real evidences about its feasibility as a two-factor
authentication method in modern smartphones.

The rest of paper is organised as follows. The next
section addresses related work. Section 3 details on the
authentication scenarios employed, the classification fea-
tures examined, and the different classification methodolo-
gies taken into consideration. Section 4 offers evaluation
results, including classification times, and CPU, memory
consumption. The last section concludes and provides
future directions for this work.

2. RELATED WORK

So far, several research works have directly or indirectly
occupied themselves with keystroke dynamics in the realm
of mobile devices. In this section we categorise them into
three groups: those conducted for devices equipped with a
hardware keyboard, touchscreen, and motion sensors.

Studies throughout literature that use keystroke as
means to generate better User Interface (UI) models in the
context of Human-to-Computer Interaction (HCI) like [11,
12] and others that evaluate keystroke on desktop (fixed)
keyboards or computer mouse like those in [13, 14] have
been intentionally neglected. The same policy has been
followed for works exploiting covert (side) channels, such
as electromagnetic and optical emanations, in an attempt to
leak out information about which key has been pressed on
a keyboard [15, 16]. All the approaches discussed in the
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following subsections are arranged in chronological and
thematic order in Fig. 1.

2.1. Hard keyboard-oriented Keystroke
Proposals

In an effort to evaluate the potential to authenticate
users by the way they type text messages on a qwerty
mobile hardware keyboard, Clarke et al. examined a
number of classification algorithms based on Feed-
Forward Multi-Layered Perceptron (FF MLPS) perceptron
neural networks [17]. Their results have been promising,
showing an average classification of 18% Equal Error Rate
(EER) and individual users achieving an EER as low as
3.2%. A following work by Clarke and Furnell reports
on experimental results conducted on a mobile device
interconnected to a laptop [18]. In this experiment, 30
participants were asked to enter data for three scenarios:
entry of 11-digit telephone number, 4-digit PINs, text
messages. Once more, the classification process has been
based on the one developed for the needs of [17], but in
this research the authors presented two novel algorithms,
namely, Best Case Neural Network and Gradual Training
Algorithm, aiming to improve the results. From the study,
it is inferred that the second algorithm represents a more
plausible technique. On the other hand, the 4-digit and the
11-digit input scenarios achieved an EER of 9 and 8%
respectively. Lastly, the 6-digit input scored an EER of
19%. Another research by the same authors explored three
input scenarios: entry of a fixed 4-digit number, a fixed
11-digit number, and an alphabetic input [19]. FF MLPs,
Radial Basis Function network (RBF) and Generalised
Regression Neural Networks (GRNNs) algorithms have
been used to classify users in this experiment. It was
found that neural network classifiers were able to perform
classification with an average EER of 12.8%. Karatzouni
and Clarke identified that the hold-time was not a
beneficial feature for use on a qwerty mobile device.
However, they showed that a combination of both inter-
key and hold-time measures would provide better results
[20].

The work by Buchoux and Clarke reported on an
enhanced keystroke-driven user authentication system.
They employed a mobile device not only for capturing typ-
ing samples but also to perform the actual authentication
[21]. For this purpose, they designed a software able to
run on Microsoft Windows Mobile 5. Two types of input
password have been proposed; a simple PIN and a strong
alphanumeric password. Three classifiers were evaluated:
Euclidean distance, Mahalanobis distance and FF MLP.
The results suggested that the performance of the classi-
fiers when the password was employed was substantially
better than that of PIN due to the increased number of input
data.

Saevanee and Bhattarakosol introduced a new metric,
namely, finger pressure and combined it with the already
existed hold-time and inter-key features to authenticate
mobile users [22]. In order to measure the finger pressure

the authors used the touchpad of a common netbook acting
as a touchscreen. Their study conducted on a sample of 10
participants had an EER of 9% using keystroke dynamics
and k-Nearest Neighbors (KNN) classifier.

Zahid et al. collected and analysed keystroke data
produced by a sample of 25 mobile device users [23].
The authors proposed a user authentication system that
takes into account 6 distinct keystroke features. They
demonstrated that these features for different users are
diffused and therefore a fussy classifier is well-suited for
clustering and classification of those data. The authors
argued that their system has a (surprisingly) low average
error rate of 2%.

Furthermore, Hwang et al. proposed a Keystroke
Dynamics-based Authentication (KDA) system for mobile
devices that was able to classify users based on a 4-digit
PIN [24]. They correctly highlighted that 4-digit number
cannot provide sufficient data for a reliable authentication
system. So, they came up with the idea that one way to
cope with the lack of data quantity is to improve data
quality. For this reason, the authors adopted an input
method supported by “artificial rhythms” and “tempo
cues”. They experimented with a standard keypad mobile
device and found that the proposed strategy reduces EER
from 13% to 4%.

The work by Campisi et al. focused on keystroke
dynamics within the context of secure user authentication
using a numeric mobile hardware keyboard [25]. They
employed a statistical methodology able to produce
satisfactory verification rates of 14.46% EER even in
cases where the number of samples contributed by the
participants is low. The authors worked with data taken
from a sample of 40 users who have typed each password
20 times during 4 distinct sessions.

Maxion and Killourhy conducted an experiment of
typing a 10-digit number using only the right-hand index
finger [26]. A number of 28 users contributed to the
experiments by typing 10-digit number on a numeric
external keyboard. Capitalising on the random forest
classifier and some other statistical techniques to handle
the extreme deviations of the collected data, they achieved
a detection rate of 99.97% with a corresponding false-
alarm rate of 1.51%.

Maiorana et al. introduced a new statistical approach
and examined which feature can be used towards
differentiating users’ samples best [27]. The authors
proposed a keystroke-based verification method with
application to mobile devices. They analysed the
verification performances achieved when varying several
parameters like the time distance between keypress and
key release events, the number of enrollment acquisitions,
as well as the number of characters contained in the
passwords used.

More recently, Saevanee et al. investigated the
potential of fusing three different biometric methods,
namely behavior profiling, keystroke dynamics, and
linguistic profiling, into a multi-modal behavior biometric
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authentication system [28]. The results they succeeded
indicate that such fusion techniques can improve the
classification performance with an overall EER of 8%.

2.2. Motion-oriented Keystroke Proposals

The very first work on keystroke using motion sensors
appeared in 2011 by Cai and Chen [29]. They proposed a
new keylogging scheme based on mobile device motion.
They argue that typing (touching) on different locations
on the screen causes different vibrations (motion data)
which in turn can be used to infer the keys being pressed.
Their evaluation shows that the proposed system is able
to correctly infer more than 70% of the keystrokes on a
numeric virtual keypad when used in landscape mode.

Inspired by the work in [29], several other authors
discuss and evaluate their proposals designed with the aim
to extract sequences of text entered on virtual keyboards.
This is done by taking advantage of only the in-built
motion sensors of a smartphone, i.e. the accelerometer
and gyroscope. More specifically, Aviv et al. capitalise on
the accelerometer sensor as a side-channel to acquire user
tap- and gesture-based input, required to unlock mobile
devices either when using PIN/password or the Android’s
graphical password pattern [30]. In controlled settings,
while a user is stationary (sitting), their prediction model
was able to classify the PIN entered with a percentage up to
43% and the graphical password pattern with 73% within 5
attempts. On the other hand, in uncontrolled settings, while
users are pedestrian, their model was able to classify 20%
of the PINs and 40% of the graphical password patterns
within the same number of attempts. The work by De Luca
et al. presented a method to authenticate smartphone users
based on the way they interact with the touchscreen. To
do so, they cross-evaluated several types of unlock screens
and graphical password patterns supported by Android
smartphones [31]. Using features such as pressure, size
and speed they succeeded an overall accuracy of 77%
with a 19% False Rejection Rate (FRR) and 21% False
Acceptance Rate (FAR).

Based on their previous work [32], Cai et al. evaluated
the way in which device motions caused by keystroking
can be exploited in a real attack. More precisely, they
developed a prototype attack and applied it on keystroking
data and its associated vibrations gathered by a sample
of 21 participants. According to their research, the attack
remains fruitful even though the accuracy is affected by
several factors such as user habits, device dimension,
screen orientation, keystroke data and its associated motion
information (vibrations), keyboard layout etc. Moreover,
Kolly et al. tried to identify users, based on their behavior
while playing games on their smartphone [33]. When the
user is playing a given game, the touch events occurred
on the UI elements are send to a server for offline
evaluation analysis. Using the naive Bayes classifier and
touch features such as mean hold-time and pressure, the
authors were able to successfully identify a given user in a
set of 5 individuals with a precision of about 80%.

Miluzzo et al. introduce TapPrints, a framework to
infer the exact location one taps and what one types on
the touchscreen based on accelerometer and gyroscope
sensor readings [34]. In their experiments, engaging 10
participants and three different mobile platforms, the
authors demonstrate that TapPrints is able to attain up to
90% and 80% accuracy in inferring tap locations across
the display and letters respectively. Xu et al. presented
TapLogger a stealth trojan destined to Android platform
which is able to log not only the screen lock password
but also the numbers entered during a phone call [35].
TapLogger implements two schemes: (a) a tap event
detection mechanism to discover and utilise the user’s
tapping pattern with statistical measurements based on
acceleration, and (b) an approach of deducing a tap
position with observed gesture changes. In another study,
Owusu et al. showed that the accelerometer can be used
to extract 6-character passwords in as few as 4.5 trials
(median) [36].

In a technical report, Zheng et al. propose a verification
system able to identify if the user who is typing a passcode
on a touchscreen numeric keypad is the true owner of
the mobile device or an impostor [37]. To quantify a
given’s user tapping behavior four different features have
been collected via the corresponding sensors: acceleration,
pressure, size, and time. In all the experiments the authors
utilised empirical data stemming from both 4-digit and
8-digit PINs. The results showed that their verification
system achieves an average EER of 3.65%. Lastly, Rao
et al. explored keystroke dynamics as the major factor in
behavioral authentication. The authors proposed a method
that uses the accelerometer sensor along with the motion
one to authenticate the legitimate user of a mobile device
[38].

2.3. Proposals based on Gestures

Aviv et al. examined the feasibility of “smudge attacks” on
touchscreens for mobile devices [39]. They argued that oily
residues (smudges) on the touchscreen surface are one side
effect of touches from which frequently used patterns such
as a graphical password might be inferred. They focused on
Android password patterns and investigated the conditions
under which a smudge can be easily extracted. The authors
also described the way an ill-motivated person could use
the information obtained from a smudge attack to augment
the chances of guessing users’ touching patterns. Although
this work didn’t use any on-device software for extracting
gestures, it proposed an interesting method for attacking
mobile devices with touchscreens.

Angulo and Wastlund studied the use of graphical lock
patterns on smartphones and invested on lock pattern bio-
metrics (as a second-factor authentication method) towards
identifying users [40]. Using R statistical software, they
cross-evaluated 5 machine learning classifiers to identify
legitimate users while they form their password graph-
ically. Using the Random Forest classifier, the authors
achieved an average EER of approximately 10.39% in
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the case an impostor already knows the user’s secret
pattern. The work by Feng et al. proposed a touchscreen-
based authentication method for mobile devices coined as
Finger-gestures Authentication System using Touchscreen
(FAST) [41]. FAST uses the touchscreen and a custom
digital sensor collector to gather information about user
gestures. According to the authors, FAST is able to support
continuous user post-login authentication in a transparent
manner. Specifically, their proposed system achieved a
FAR, FRR of 4.66% and 0.13% respectively. The work
by Sae-Bae et al. introduced a five-finger gesture-based
authentication technique able to recognise unique gesture
characteristics of an individual [42]. They achieved an
accuracy of 90% with only single gestures, while they per-
ceived a significant improvement when multiple gestures
were performed in sequence.

Damopoulos et al. introduced the first (software)
touchlogger for modern mobile devices [43]. Through
experiments the authors showed that touch events collected
by a touchlogger can be a reliable and very accurate
means of profling the legitimate user(s) of a device.
Their results were very promising showing an accuracy in
identifying misuses, and thus post-authenticating the user,
in an amount that exceeds 99%. Also, using real-use cases
they demonstrated the virulent personality of their software
when it is used maliciously. Li et al. proposed another user
authentication scheme destined to smartphones aiming to
continuously re-authenticate the user of the device via the
employment of touch gestures [44]. As expected, their
system needs to first build the gesture pattern of the owner
of the device. After that, it is able to authenticate the
current user’s finger movements and make an assessment
about their authenticity. The system the authors propose
is divided into two modules; the training and the re-
authentication ones. The former is executed on a PC, while
the latter is deployed on a smartphone as a service.

The work by Kambourakis and Damopoulos introduced
a fair post-authentication and non-repudiation scheme
for mLearning [45]. The proposed scheme can be
straightforwardly applied to devices equipped with a
touchscreen. Their scheme, based on the biometric
modality known as dynamic signature, is able to correctly
classify a signature produced in the touchscreen in an
amount that exceeds 95% via the use of machine learning
algorithms. Yi et al. proposed another user authentication
scheme called PassWindow that allows the user to enter
their PIN in a secure way. This is done with the help of
a window moving on the virtual keypad while utilising an
input method based on multimodal sensors [46].

2.4. Discussion

Without doubt, existing authentication methods utilised
by modern mobile platforms rely on the “something
the user knows” authentication factor, that is, the
typical PIN or password. Despite the fact that all the
aforementioned researches have significantly contributed
to keystroke analysis for mobile devices, several important

problems remain unsolved before a full-fledged multi-
factor authentication system can be applicable. It is
made clear, for example, that the potential of traditional
keystroke analysis, as it is utilised on mobile devices
with a hardware keyboard, has not yet been assessed for
smartphones equipped with a touchscreen. When we refer
to traditional keystroke analysis, we mean to utilise only
behavioral features, such as Hold-time or Inter-time, that
correspond to the way someone interacts with the virtual
keyboard. This is exactly where the contribution of the
current work lies. Instead, as it is depicted in Fig. 1, most
work presented in the literature exploit behavioral features
that stem from gestures and readings coming from the
motion sensors of the device.

3. TOUCHSTROKING

From the above discussion it is clear that the research
community seeks advanced controls for strengthening
user authentication in the smartphone realm. Ideally,
such controls should be multifactor based as the more
the factors, the better security can be attained. As
already mentioned, in this paper we consider a two-factor
touchstroke user authentication method to discriminate
between the legitimate user and intruders. That is, we
consider a threat model where everybody may know the
valid PIN (first-factor) but the system is able to identify
by means of the way and rhythm in which this person
interacts with the touchscreen when typing characters, if
she is the legitimate user of the device (second-factor).
This also means that a training period on how a person - the
legitimate user in our case - enters alphanumeric sequences
via the touchscreen is needed. As it is explained later in
this section, by the term PIN we refer to a password PIN
and not to standard 4-digit ones. In this section we provide
information on the data collection process, the type and
structure of data we are going to analyse as well as on the
selected classification methods.

3.1. Authentication scenarios

To assess the efficiency of keystroke dynamics on
smartphones, we consider two authentication scenarios
widely used in the literature of legacy keystroke anaylsis.
This will allow the direct comparison of our results
with those obtained by works on keystroke dynamics
performed on mobile devices equipped with hardware
keyboards. Specifically, in the first scenario, the users
need to type down the following password consisted of
10 alphanumeric characters: 7q56n5ll44. This test was
designed to explore if user authentication can be imposed
based on typical alphanumeric passwords. Bear in mind
that modern smartphones allow the user to replace the 4-
digits standard PIN by a password of arbitrary length. Also,
the sequence of “7q56n5ll44” was selected due to the fact
that the keys a user should press are well spread on the
virtual keyboard and user’s fingers have to move from the
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one side to the other. In addition, “56”, “ll” and “44” are
used to capture users’ behavior on very close and repeated
keys. It has to be noted that no mistakes were allowed and
the input process repeated for 12 times for each user. This
means that in case a mistake had been made the participant
had to repeat that password entering round.

In the second scenario, the users had to type down
the phrase “the quick brown fox jumped over the lazy
ghost.” 12 times each. This particular dummy phrase is
considered a standard in keystroke analysis and has been
employed by many research works in the field. This is due
to its length and the variety of characters it contains. It
is therefore generally argued that leads to more accurate
typing behavior assessment. It has to be noted that the
last word of this particular phrase was initially “dog”, but
chanced to “ghost” in order to create a phrase including
all 26 possible letters of the alphabet. Overall, the phrase
consists of 47 characters, including spaces, and a final dot
which is used as an indicator to terminate the input process.
In this case, the users were allowed to make mistakes
under the belief that repeated mistakes could reveal a user’s
tendency or other specific typing behavior. Figure 2 depicts
the UI of the corresponding software as it is displayed on
the smartphone during the data collection phase.

3.2. Touchstroke features

In the experiments we employed the following four
touchstroking biometric features as input data to machine
learning classifiers.

• Hold-time: is a commonly used feature in keystroke
analysis and refers to the amount of time each key
is pressed. It is calculated as the time starting from
pressing a given key down until its release.

• Inter-time: this is another standard feature widely
employed in keystroke dynamics. It refers to the
time between the release of a key until pressing the
next.

The following two features are specific to this study as,
to the best of our knowledge, it is the first time they are
considered in the literature of keystroking.

• Distance: it represents the distance in pixels
between two successively pressed virtual buttons.
Note that this feature relies on the size of the soft-
keyboard which in turn is affected by the size of the
touchscreen.

• Speed: it is calculated as the quotient of the distance
between two successively pressed virtual buttons
divided by the inter-time for this event to complete.
This feature is mostly affected by the size of the
touchscreen, but also by the way one holds the
device (i.e., with one or both hands) and how many
fingers one uses when typing.

3.3. Methodology and data structure

Twenty participants have contributed their data for both
scenarios described in section 3.1. All participants were
selected to be nearly in the same age of 19 to 21 years
old and be owners of an Android smartphone equipped
with a touchscreen. Each user executed repeatedly for
12 times both scenarios. This enables the creation of the
corresponding behavioral typing (touching) profiles based
on the four features described in the previous subsection.
Bear in mind that these profiles will be used to train the
classifiers.

Two different data analysis methodologies have been
evaluated. According to the first one, every pair of
successively pressed (virtual) keys are analysed by the
classifier. Once all keys of the password/phrase have been
entered, the final decision is taken. For the second one, the
average values of all the pressed keys per biometric feature
are calculated as soon as the user finishes the key typing
process. After that, the data are fed to the classifier for the
training phase.

Twenty data files have been created per scenario per
methodology, i.e., 80 files in total. Each file contains
the data of the corresponding legitimate user and those
of 17 randomly selected users that represent potential
intruders. This means that for each user in the dataset
the corresponding data file contains: a) the user’s personal
data, referred to as normal typing (touching) behavior data,
b) 17 other users’ data that represent potential intrusive
typing behaviors. As noticed, the remaining 2 users’ files,
out of 19, have been left out of the training body in an
effort to examine the efficiency of our system against
unknown typing behaviors as well. More specifically, our
system needs to be tested against 3 different direct or
indirect attack scenarios. First off, the case of a legitimate
user rejected by the system, i.e., a false positive, needs
to be considered. The second attack has to do with an
intruder accepted by the system despite the system has
been trained to identify her. The latter addresses the case
where a previously unknown person is falsely accepted
by the system. Both the last two cases comprise a false
negative.

Overall, the data files created for the first methodology
contain a number of records depending on the scenario,
where each of them corresponds to a vector of related
features per key pressing event. Every record contained in
the data file is composed of collected features represented
by the following quintuplet: {Speed, Distance, Inter-
time, Hold Time, Intruder/Legit}. On the other hand, the
data files that correspond to the second methodology are
composed of the average (avg) value of the collected
features represented by the following single quintuplet:
{Avg. Speed, Avg. Distance, Avg. Inter-time, Avg. Hold
Time, Intruder/Legit}. The last feature (Intruder/Legit) in
the aforementioned quintuplets is the binary representation
of the two nominal classes, i.e., if this piece of data
belongs to the legitimate user (False) or the intruder (True).
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An example of such a record is given by the following
quintuplet {618.02, 272.23, 0.47, 0.05, TRUE}.

3.4. Software Architecture

A prototype of the proposed authentication system
based on touchstroke dynamics has been implemented
in Google’s Android OS. Figure 3 depicts its overall
architecture. The bottom part of Fig. 3 depicts the UI of
our keystroke analysis mechanism, essentially the mobile
device’s screen. The upper part of the same figure provides
an abstract representation of the basic sub-mechanisms
running in the background. These mechanisms are
responsible to create the user profile, store it, and finally
authenticate the user.

For constructing keystroke profiles, it is important to
collect and analyse the user’s typing behavior happening
on the mobile device’s touchscreen. In most cases, an
application cannot acquire touchstrokes unless it is active
and receives the focus on the screen. By default, Android
does not provide any framework to monitor the keyboard
behavior, except the IDs of the pressed keys. This is due
to security reasons (for instance, the implementation of a
spyware or keylogger would be otherwise easy). However,
in our case, features like pressing or releasing of a button,
the location in which the user touches the (virtual) key,
and the timestamp a touch action took place are required
for the creation of such a behavior profile. To tackle the
aforementioned limitation it was necessary to design and
implement our own custom keyboard views, depicted in
the bottom side of Fig. 3, and connect them with the appro-
priate key listeners within our application. Furthermore,
to be able to listen to touching events stemming from
the virtual keyboard, the implementation of OnKeyboard-
ActionListener, OnKeyListener and OnTouchListener Java
interfaces as defined in the Android API and their abstract
methods was important. This way we were able to take
advantage of the features, as they are described in section
3.2, deriving from user’s keystrokes, and use them to build
this user typing (touch) profile (see Fig. 3, cases 1-3).

Although our method can be applied only to applica-
tions that utilise the custom keyboard view, it is straight-
forward to provide a complete solution using the Cydia
Substrate library for overwriting any native Android key-
board view [47]. Specifically, we argue that the proposed
mechanism can be straightforwardly adapted for use with
a variety of applications (e.g., e-banking apps, mobile web
browsers) that support any type of soft-keyboard and run-
ning on virtually any device equipped with a touchscreen.
Mobile devices with different screen size or keyboard can
also be supported, as soon as a new user typing profile is
created for them. The exploration of ways a user’s typing
profile can be automatically migrated to any soft-keyboard
or touchscreen size is also an interesting research direction
for future work.

Moreover, machine learning classifiers need to run
directly on the device for being able to create the
user’s typing behavior profile, learn from it, and finally

attempt to authenticate the user (see Fig. 3, case 4). The
well-known machine learning software package, namely
Waikato Environment for Knowledge Analysis (Weka),
has been employed as the classification engine for our
solution (see Fig. 3, case 5). As illustrated in Fig. 4, our
mechanism, consists of two main analysis sub-systems;
the Enrolment Process, which allows a user to create their
typing profile and train the classifiers with it, and the
Authentication Process, which is in charge of examining
the legitimacy of a given user. As soon as the user’s
behavior profile is created, and the classifier is trained, the
user profile is stored in a local database.

Upon user authentication, say, the user enters their
password to unlock the device, the authentication system
running in the background will feed the Classifier with
the legitimate user’s profile as retrieved from the database,
plus the current user typing (touching) behavior in terms
of a vector of features as discussed in sections 3.2 and 3.3.
Then, the Classifier will make an assement and categorise
the user into one of the two possible classes; intruder
or non-intruder. It will also take the appropriate action
depending on the case.

4. EVALUATION

In an effort to select the most appropriate machine learning
algorithm per methodology to be used as the classification
engine for the proposed system we conducted some
preliminary classification experiments considering three
popular classifiers; Random Forest, KNN, and MLP. As
reported in [48], these three classifiers seem to be the
most prominent in terms of performance when mobile
devices are concerned. Putting it another way, one needs
to select not only the most effective algorithm in terms
of classification, but also the one that is able to execute
fast on a smartphone having limited CPU and memory
resources. Thus, to perform these initial experiments we
provided the aforementioned classifiers with an upper
bound of 512 MB memory, which is a common value
across modern smartphones. The results showed that MLP
was not able to run with this memory restriction, so it
was rejected outright. On the other hand, as discussed
further in this section, Random Forest and KNN obtained
favorable results, and thus constitute promising options for
our classification engine running directly on the device.

4.1. Effectiveness

Legacy biometric systems effectiveness analysis makes use
of two error rates, namely False Acceptance Rate (FAR)
in which an intruder is accepted by the system, and False
Rejection Rate (FRR) in which the authorised user is
rejected by the system. In addition, a third metric known as
Equal Error Rate (EER) is generally employed to examine
the performance of similar to ours biometric systems.
Specifically, EER is a kind of percentage rate which both
accepts and rejects errors as equals (EER=(FAR+FRR)/2).
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This metric is employed to quantify the detection accuracy
by a single number.

Tables I and II, summarise the results logged for
the previously mentioned metrics per scenario, per
methodology and per classifier. It can easily observed that
the best results for the first scenario have been obtained
when using Random Forest and the first methodology.
For the second scenario KNN scores better when the
second methodology is considered. More specifically, the
average FAR%, FRR% and EER% values for the first and
second scenario are (12.5, 39.4, 26) and (23.7, 3.5, 13.6)
respectively.

Having the above results, one can argue that for the
second scenario, i.e., when the user authenticates itself
by entering a passphrase, the second methodology along
with the KNN classifier seem to be the best choice
towards implementing an authentication system based on
touchstroke dynamics. In this case, the system accepts an
intruder with a percentage equal to 23.7%, while rejects
the legitimate user with that of 3.5%. Note that the latter
percentage is the most important here as it is directly
associated with the legitimate user. So, while an impostor
would gain access after about 4 attempts, the legitimate
user would be rejected rarely. The results obtained for the
first scenario follow the opposite norm as it seems that the
legitimate user is rejected with 39.4%, while an intruder
is accepted with a percentage of 12.5%. These results
are not come as a surprise because simply they verify
the rule that the more the characters in the passphrase
the better the classification outcome. As a result, some
very low percentages regarding the error rates spotted by
some studies [23, 24, 26] do come unexpectedly. In any
case, in terms of EER, the values we obtained are directly
comparable with those reported by other studies in the area
of keystroking. This situation is shown in the leftmost part
of Fig. 1 which summarises in a chronological order all
keystroking works already presented in section 2 along
with their EER. Note that comparison with works related
to motion- or gesture-based proposals is in fact aimless
due to the different methodologies and biometric features
used by these studies to observe keystroking events. In
short, as it can be easily observed from Fig. 1, most EER
values fluctuate between 8 and 14.4%. Lastly, regarding the
methodology, it can be said that the longer the passphrase,
the better the second methodology scores. On the other
hand, the first methodology seems to perform better when
a shorter passphrase is in use.

4.2. Performance

Although high efficiency remains the first goal when
designing a security system, performance metrics are
also of major importance. By the term performance we
refer to the time period a security mechanism needs to
reach a decision, but also the computational and memory
resources it consumes. While modern smartphones do
not afford considerable CPU and memory resources, at
least when compared to those of former generations,

performance still remains decisive. Past researches on
keystroke dynamics and closely related literature as they
discussed in section 2 systematically neglect to occupy
themselves with performance. This is because while the
data were collected on the mobile device, the experiments
have been conducted on desktop systems. So, an important
contribution of this work is that evaluates the proposed
mechanism directly on the smartphone in terms of speed,
CPU and memory. The experiments have been conducted
for both classifiers (RF, KNN) considering also both
scenarios and methodologies. The device used throughout
the experiments was a Sony Ericsson Xperia ray equipped
with 1 GHz CPU processor, 512 MB RAM, 3.3 inches
touchscreen and the Ice Cream Sandwich Android OS.
During the experiments only our application was running
on the smartphone. However, keep in mind that due to the
Android multitasking environment all metrics regarding
the classification time, CPU and memory consumption
may have been negatively affected by the various OS native
services running in the background of the device.

Figures 4 and 5 contain all performance metrics as
they recorded on the smartphone device. It is obvious
that machine learning algorithms have consumed 100% of
CPU during the classification procedures. For the training
ones this percentage varies between 91 and 100%. On
the other hand, memory consumption fluctuates between
67.5 and 80.2% depending on the methodology, scenario
and classification algorithm used. From Table III it can be
inferred that the first methodology requires substantially
more memory to execute. This is however expected as
this methodology produces far more data than the second
one. It is worth noting here that this particular smartphone
shows 52% of its memory to be occupied just after
rebooting. Table III offers an aggregated comparative view
of the various classification times in seconds. The average
percentage metrics for CPU and memory consumption are
included in the same table as well. From the table it can be
brought forward that both algorithms were able to execute
directly on the device, authenticating the user in less than
a second in all cases. As expected, the training phase was
the one with the longest duration, while the classification
phase utilised 100% of CPU. Random Forest’s training
phase was longer compared to that of KNN’s, while for
the testing phase the opposite behavior was observed.
The first methodology seems to consume more memory
irrespective of the classifier employed. Generally, we can
argue that Random Forest consumes more time during the
training phase but is faster in producing the decision on an
authentication attempt. Regarding the second scenario and
methodology, KNN seems to be the optimal choice as it
scores best in all efficiency and performance tests.

5. CONCLUSIONS & FUTURE WORK

Mobile devices have evolved and experienced an immense
popularity over the last few years. Nevertheless, this
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growth has exposed smartphones to an augmenting
number of security threats. It is thus for sure that
despite the variety of peripheral protection mechanisms
described in the literature and the authentication and access
control techniques imposed by the OS of such devices,
integral protection against advanced intrusions cannot
be adequately enforced. The review of the smartphone
security ecosystem on biometrically-inspired methods
included in this article reveals that while a critical mass
of works have been done during the last few years, there
is still need for advanced protection mechanisms with
particular focus on user (post)authentication procedure.

Compelled by this fact, in this paper, we make a
first attempt to assess keystroke dynamics in the realm
of smartphones equipped with a touchscreen. So, by
paraphrasing the previous standard term we can say that
this work is involved with “touchstroke dynamics”. By
the use of legacy scenarios used in keystroke analysis
but also via the exploration of novel biometric features
and methodologies we concluded that touchstroking has
significant potential in designing enhanced authentication
systems destined to future smartphones. Specifically,
when considering the best results achieved during the
experiments, one can argue that the FAR value of 3.5 is
very promising. The same applies for the minimum EER
value of 12.5. While these results are not a breakthrough,
they are very close - and some times better - to those
recorded by previous studies in the area of keystroke
dynamics for mobile devices having hardware keypads.

Another contribution of this work is that it reports on
test results contacted directly on an Android smartphone.
Thus, it is expected that the outcomes of the current paper
may serve as a pilot for future studies in the field. It
is however certain that further research in this area is
needed to better assess the power of this newly introduced
biometric modality. So, as a future work, we would like
to extend this study by (a) considering more classifiers,
(b) taking into account advanced scenarios, methodologies
and features, (c) designing automatically adjusted user
typing profiles that hopefully can be applicable to any soft-
keyboard or touchscreen size, (d) exploring the possibility
of of touchstroking as a mechanism to support continuous
authentication, and (e) increasing the number of and
diversity participants in future experiments to better assess
the outcomes associated with this particular behavioral
trait.
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Table I. Results regarding the first scenario (best scores are in bold red)

Table II. Results regarding the second scenario (best scores are in bold red)

Table III. CPU and Memory performace results (the bold red values correspond to those from tables I, II also in bold red)

KNN Random Forest
Methodology Scenario Time (sec) Memory (%) CPU (%) Time (sec) Memory (%) CPU (%)

Train Test Train Test Train Test Train Test Train Test Train Test

1
1 1.17 0.06 79.0 79.3 98.0 100 2.43 0.07 79.4 79.7 96.5 100
2 3.78 0.10 79.0 79.2 95.8 100 9.00 0.06 80.0 80.2 94.5 100

2
1 0.52 0.02 68.1 68.3 100 100 0.83 0.01 67.7 67.8 100 100
2 0.03 0.58 67.5 67.6 100 100 0.32 0.01 66.9 66.9 91.0 100
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Figure 1. Major approaches related directly or indirectly to keystroke dynamics in chronological order.

Figure 2. UI corresponding to the first (a) and second (b) scenario
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Figure 3. Abstract architecture of the proposed touchstroke solution
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Figure 4. Performance results for the first methodology

Figure 5. Performance results for the second methodology
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