SnoopyBot:
An Android spyware to bridge the mixes in Tor

Evangelos Mitakidis, Dimitrios Taketzis, Alexandros Fakis, Georgios Kambourakis
Department of Information and Communication Systems Engineering,
University of the Aegean, Karlovassi, Greece

Abstract—We present a moderately simple to implement but
very effective and silent deanonymization scheme for Tor traffic.
This is done by bridging the mixes in Tor, that is, we control both
the traffic leaving the Onion Proxy (OP) and the traffic entering
the Exit node. Specifically, from a user’s viewpoint, our proposal
has been implemented in the popular Android platform as a
spyware, having the dual aim to manipulate user traffic before it
enters the Tor overlay and explicitly instruct OP to choose an exit
node that is controlled by the attacker. When the user traffic is
received by the rogue exit node it is filtered, and the sender’s 1P
details become visible. Notably, apart from deobfuscating normal
http traffic, say, send via the Tor browser, the proposed scheme
is able to manipulate hitps requests as well.

I. INTRODUCTION

Internet was not created and designed with anonymity in
mind [1]. So, normally, if two parties want to communicate
it is mandatory to provide their routable source IP addresses
to each other. This situation however is subject to traffic
analysis by potential eavesdroppers. Typically, disclosure of
IP address is necessary across all applications communicat-
ing over IP protocol, however most of the well-established
network security protocols fail to provide full anonymity. For
instance, Transport Layer Security (TLS) succeeds in perfectly
encrypting and authenticating packet contents, but fails to
protect the identities of the involved parties. On the other hand,
IPsec achieves to protect the anonymity of the communicating
parties, but this stands true only when used in. ESP/Tunnel
mode and only for data traveling between the two ends of the
tunnel. That is, the links between the sender and the one end
of the tunnel, and between the other end of the tunnel and the
final destination do not afford protection from traffic analysis.
However, to fully block traffic analysis, one needs a solution
which will provide anonymity in a cross-layer fashion.

One of the most prominent anonymization systems today
is the Onion Router network (TOR) [2], which consists of a
group of volunteer-operated servers, each of them working as a
proxy. Its main purpose is to allow individuals to protect their
anonymity, by means of deterring traffic analysis. In fact, Tor
is an overlay network that among others can be used as a cen-
sorship circumvention tool. Namely, Tor is particularly useful
to certain parties, including journalists trying to communicate
safely with whistle-blowers or dissidents, activist groups that
endorse maintaining civil liberties online, and people living in
countries with restricted freedom of information and access
to websites [3]. On the other hand, Tor can also be used
for malicious purposes. Apart from using Tor with the aim

of obfuscating the forensic signal behind attacks like Denial
of Service (DoS), aggressors employ Tor’s capability to build
the so-called hidden services to accomplish illegal or mali-
cious actions, such as drug dealing or illegal gun trafficking.
This has spurred research on methods to deanonymize Tor
traffic. Usually, such deanonymization schemes focus on the
exploitation of the Exit node. Nevertheless, better results can
be achieved if traffic analysis performed at the exit node is
bridged with either the Entry node or an even precedent point
of entry, namely before the outgoing data reach the Onion
Proxy (OP).

Our Contribution: In this paper, we present a new stealthy
way of instantly deanonymizing specific or random Tor users.
Specifically, the proposed attack relies on (a) a user-side
spyware called SnoopyBot we specifically created for the
Android platform, and (b) on the very plausible assumption
that the attacker is in control of at least one Tor Exit node.
Precisely. among others, SnoopyBot’s main purpose is to inject
user-identifying information in every request the infected user
channels through the Tor network. In this way, when the rogue
Exit node receives the corresponding request, the sender’s true
identity in terms of their public IP address will be revealed.
Putting it another way, by controlling both ends of the circuit,
SnoopyBot achieves to bridge the mixes in Tor. This also
means that the assault does not capitalize on an inherent Tor
vulnerability, but entirely on the ability of the attacker to
control the two ends of the Tor circuit.

The rest of this paper is structured as follows. The next
section offers a succinct discussion on Tor. Section III details
on our implementation. The limitations of our scheme as well
as possible countermeasures are given in Section IV. Section
V briefly presents the related work. The last section concludes
the paper and presents directions for future work.

II. TOR OPERATION

Today, Tor is probably the most popular open source
implementation of a distributed overlay network which aims
to anonymize TCP-based traffic. The Tor software installed
on the client device, namely Onion Proxy (OP), chooses a
random path through the available Onion Routers (OR) in the
network and constructs a circuit, in which each OR in the path
knows only its predecessor and successor, but no other nodes.
After that, the user’s traffic flows down the selected circuit
using onion routing which is based on layered encryption.
To further impede the analysis of data streams based on

(NORMAL OPERATION)

Orbot
(A) =)\
HTTP Port W |
- 2118 Bind Port
Smart Device a 5050 Destination
(Orweb) J 'l
HTTP Prox
(Polipo) . Socks Proxy
(Privoxy)
- &
(MALICIOUS OPERATION)
{ B) Orbot .
SnoopyBot 1
HTTP Port
: Port 8118 | Bind Fort
Smart Device 8119 2 2050 TOR Destination
{Orweb) 'l
HTTP Proxy
(Polipo) Socks Prery
(Privoxy)
A

Fig. 1: Tor operation at the client side: (a) Normal, (b) After infection by SnoopyBot

traffic characteristics, Tor overlay uses cells of fixed size to
communicate its users’ data among the different ORs. Overall,
this approach blocks traffic analysis because no single entity
is aware of the full path a packet has traveled.

A Tor user, say, Alice needs to have locally installed the Tor
software, which in a desktop environment is the Tor browser.
In Android environment, Tor software is provided by means
of two separate apps, namely, Orbot [4] and Orweb [5]. Any
mobile browser that offers http proxy support can also be used
with Orbot if properly configured, but Orweb is configured
out-of-the-box. Orbot is used to create an OP and construct
a circuit to realize the anonymization of client data into the
Tor overlay. The necessary information for the available ORs is
obtained from the Tor’s Directory Server. The ORs are proxies
that relay data between the two endpoints, Alice and the actual
destination, say, a web server. Each OR maintains a TLS
connection to other ORs in the constructed circuit. By default
a Tor circuit consists of three ORs known as Entry/Guard
Node, Relay Node, and Exit Node. Typically, to construct a
circuit, Alice’s OP chooses three ORs and starts negotiating
a symmetric key with each one of them by means of Diffie-
Hellman handshakes. After the circuit is ready, a service, e.g.,
web browsing, is achieved when Alice’s browser establishes a
TCP connection with the corresponding web server. To avoid
DNS resolution queries (which may reveal information about
Alice’s identity) sent directly by the web browser over the
Internet, Alice’s OP uses an HTTP proxy so that her traffic can
be diverted through Tor. Therefore, in a properly configured
Tor installation, the exit node is responsible to make DNS
resolution of, say, the user’s http requests.

II1. IMPLEMENTATION
A. Architecture

The architecture of our implementation consists of two
main components. The first one, is a user’s side spyware,
coined as SnoopyBot, which is essentially a malicious Android
application that must be installed on user’s smart device. At
present, SnoopyBot is developed for Android v4.4 and has
also been successfully tested on Android 5.1.1.

The second component of our architecture is at least one
specially configured Tor Exit node that sniffs user traffic
passing through it. When the Exit node receives data having
the signature of SnoopyBot it instantly logs and deanonymizes
1t.

Itis to be emphasized that for the needs of the work at
hand the guidelines for ethical Tor research [6] were strictly
tfollowed. Specifically, SnoopyBot was developed and used on
the test smartphone and the only traffic that was logged on the
Exit node was solely the one stemming from that smartphone.

B. SnoopyBot

At a high level, assuming an http or https connection,
SnoopyBot has three main goals. First, it modifies the default
settings of any Tor application running on the smart device and
are necessary to access Tor network. As already pointed out,
these applications are, Orbot and Orweb. Second, it obtains the
public IP of the user, and third, it hijacks (acting as a man-in-
the-middle) the connection in order to inject user’s personal
information to the requested URL.

SnoopyBot is designed to instantly launch right after its
installation, as well as after every reboot of the smart device.
Upon its successful installation, SnoopyBot masquerades itself
as Adobe Flash v2.0, which is a well-known software and
will normally present itself as a benign application to the
owner of the smart device. Also, it removes any application
(SuperSU, Superuser) that gives root permissions to the user,
including pop-up permission request dialogs. Pop-up dialogs
are shown to the user with the use of toast messages, every
time an application requests root permissions. This kind of
action can attract the victim’s attention, and such a suspicion
could eventually lead to have SnoopyBot uninstalled. In ad-
dition, we particularly concentrated on the stealthy operation
of SnoopyBot to make harder its detection by anti-spyware
software. Towards this goal, we minimized the number of
connections SnoopyBot makes outside the Tor network. More
specifically, SnoopyBot generates only one request to a public
web service, to obtain the user’s public IP, while the rest of
the communication remains within the Tor network. Naturally,

lII%H%HiHHiHHH'II

Fig. 2: High-level description of the attack for a http request

Smart Device
(Orweb)

Destination

hrm:#mw.'.example.mmf&sourneip=55.65_65.65—O[TGI' Overlay | Maliﬂg:r;Exit | hitp:/fwww.example.com/

1) https:/fwww, example.com/ SnoopyBot | 2) http:/fwww.example.com/&sourceiphttps=65.65.65.65 —M
5) https:/fwww.example.com/ |——————— 3] https./iwww.example.com ————————¥
Malicious Exit Tor Slueriay
€ 4 https:/fwww.example.com node

Orbot

0

Fig. 3: High-level description of the attack for a https request (basic steps)

every time the IP of the user changes the same request must
be repeated.

As already pointed out, the spyware needs to modify Tor
settings at the client side. Figure 1A depicts a typical http
or https GET transaction when processed by Tor at the client
side. The spyware invades this procedure and modifies Orbot
configuration settings inside the torrc file, to always use the
attacker’s exit node during the creation of any Tor circuit.
After that, it prohibits any further modifications to torrc. It is
to be noted that Orbot consists of two main components. The
Polipo [7] http proxy that listens on port 8118, and Privoxy
SOCKS proxy [8] that listens on port 9050. Essentially,
Polipo forwards the http traffic to Privoxy, which subsequently
forwards the traffic to Tor. Additionally, as depicted in fig:
1B, SnoopyBot changes the http proxy settings of Orweb to
point to destination port 8119 instead of the default 8118. This
forces all victim traffic to be proxied through the SnoopyBot
HTTP proxy. After manipulating the GET request, SnoopyBot
will forward it to HTTP port 8118 as normal, which is Orbot’s
HTTP Port. Putting it another way, SnoopyBot HTTP proxy
acts as a man-in-the-middle between Orweb and Orbot, thus
it is able to sniff and modify any data passing through this
link. After that, SnoopyBot triggers a connection to a public
service (e.g., www.myip.com) to get the public IP of the user
(victim). Since this is the only outbound connection made by
the spyware, its footprint on the system is minimal. Having the
public IP of the victim, the SnoopyBot proxy injects it along
with a certain identification string (i.e., SnoopyBot’s signature)
into all URLs requested by the victim.

For example, assuming that the requested URL is
http://www.example.com before injection, it will be modi-
fied to http://www.example.com/&sourceip=65.65.65.65 and
be forwarded to Orbot. Note that SnoopyBot signature’s in
this case is the “&sourceip” string. Of course, this string is
entirely up to the spyware coder and can be changed between
the different versions of the spyware. As illustrated in fig. 2,
this signature will be removed at the Exit node. Also, as shown
in fig. 3, in case a HTTPS request is detected, SnoopyBot
momentarily blocks it and then constructs and forwards an
identical HTTP one, injected with the victim’s public IP as
normal. At nearly the same time, it forwards the original
HTTPS request to Orbot to be dispatched via the Tor overlay.
This time however, SnoopyBot’s signature in the http bogus

request is changed to “&sourceiphttps”. As explained further
down in section III.C, this alteration will enable the Exit node
to log and then discard the corresponding GET message. After
installing SnoopyBot-on a smartphone, we have performed
several scans using popular mobile anti-virus applications
(including Kasperksy, Bitdefender and CleanMaster) and all
of them showed no sign of infection.

2016-03-07 22132:09+8200 ============g= MALWARE CLIENT START ====z==z==z==z==
2016-03-07 22¢32:09+0200 Source IP: 85.72.283.92

2016-03<87 22:32:09+0200 Requested Host: mobdle. in.gr/
2016-43=07 22:32: MALWARE CLIENT END =
2016-03-07 22:32: ALWARE CLIENT START
2016=03~-87 22:32: «712.203.92
2016-03-07,22:32:10+0200 Requested Host: mobile.in.gr/styles/carousel.css
2016-03-0F 22:32:10+0200 == = MALWARE CLIENT END ==
2016-03-07 22432: 10+0200 == = MALWARE CLIENT START =
2016-03-07 22:32116+0200 Source IP: 85.72.203.92

2016-03-07 22:32:1040200 Requested Host: mobile,in.gr/styles/big-styles.css
2016-03-07 22:32710402P0 ====s=s==s=ss=== MALWARE CLIENT END =s=sszzsssszzszs

Fig. 4: Filtered log file records at the Exit node for http traffic

2016-03-08 12:42:1140200 =========——=== MALWARE CLIENT START =======s=======
2016-03-08 12:42:11+0200 Source IP: 195.251.166.150

2016-03-08 12:42:11+0200 Requested Host: mobile.twitter.com/
2016-03-08 12:42:11+0200 == MALWARE CLIENT END ===
2016-03-08 12:42:14+0200 = MALWARE CLIENT START ==
CB16-03-08 12:42:14+0200 Source IP: 195,251.166.150
2016-03-08 12:42:14+0200 Requested Host: ma.twimg.com/
2016-03-08 12:42:14+0200 == MALWARE CLIENT END =
2016-03-08 12:42:17+0200 = MALWARE CLIENT START
2016-03-08 12:42:17+0200 Source IP: 195,251.166.158
2016-03-08 12:42:17+0200 Requested Host: ma.twimg.com/
2016-03-08 12:42:17+0200 =s============== MALWARE CLIENT END ================

Fig. 5: Filtered log file records at the Exit node for https traffic

C. Exit node

For the exit node, we used the official Tor software on a
Linux Ubuntu server, and configured the torrc file so as for our
server to be able to operate as a trusted Exit node. In particular,
we configured the torrc file in the Exit node to route HTTP and
HTTPS traffic (ExitPolicy accept *:80 and ExitPolicy accept
*:443). We also adjusted the amount of bandwidth that will
be made available to Tor and finally provided a name for the
Exit node.

Moreover, a Python HTTP proxy was implemented. This
proxy listens on a different port on the same box as Tor
and eavesdrops on incoming traffic. By using iptables we
redirected all the incoming traffic with destination port 80
or 8080 (http-alt) to our HTTP proxy. As observed from
fig. 3, upon the reception of any http request that carries
one of the SnoopyBot’s signatures, the HTTP proxy logs

it, strips the signature from the request, and forwards the
request to its destination, say, a webserver as normal. An
exception to this rule is any incoming bogus http request
which is blocked in order for the destination not to receive
an extra http request corresponding to the original https one.
As explained in section IIL.B, all bogus http requests carry a
special SnoopyBot’s signature. The HTTP response from the
webserver is forwarded to the Tor network with no further
manipulation.

Finally, as shown in fig. 4 and 5, a bash script was created
to filter the logged traffic and present the results containing
the victim’s source IP to the attacker.

IV. LIMITATIONS & COUNTERMEASURES

We acknowledge the following three limitations that the
current version of SnoopyBot faces. Actually, the first two
are considered out of scope of the paper at hand and are left
for future work.

« SnoopyBot needs to somehow infect and spread amongst
users. One way to do so is to bundle the spyware apk
setup file with another apk. belonging to an app that
requires root permissions during installation. The latter
apk may belong to a legitimate app that the user would
download from an alternative Android app market. Using
this method, during apk installation, the root permissions
that the legitimate app would ask from the user for
performing its tasks would also be given to the spyware
after installation. A second way of spreading SnoopyBot
is to make an on-the-fly bundle and injection of the
spyware when a user makes a request to our Exit node
for an .apk download. This method however; increases
the chances of the malevolent Exit node to be detected by
Tor. It is also implied that the infection of specific users
is considered more difficult than spreading SnoopyBot
among the public at large.

o Currently, SnoopyBot works only with Orweb. However,
there are several other web browsers that can be used in
cooperation with Orbot, and thus SnoopyBot needs to be
modified to co-work with each one of them.

e The user’s smart device must be rooted. This condition
is necessary for the spyware to perform its actions.

Basically, to cope with the attack deseribed in this paper,
one needs to take precautions for both the Exit node and the
mobile device. This is because the only thing the attack does
is to build a covert channel between the mobile device and the
Exit node, which are both controlled by the attacker. Regarding
the Exit node, traffic sniffing is very hard to detect; practically,
there is no safe way for the Tor network to tell if an Exit node
monitors traffic (and of course this is not a Tor insecurity).
This means that the only effective countermeasure against a
rogue Exit node is to only use Exit nodes that are known to
be trusted, at least to certain degree (e.g., by consulting [9]).

As already pointed out, SnoopyBot requires a rooted device,
which in turn means that a non-rooted device is not vulnerable.
If the mobile device is rooted, then the settings for Orbot can
be stored in an encrypted database to avoid being manipulated

by an evil-doer. Barring the situation that a great number of
malicious Exit nodes exist, if SnoopyBot cannot access Orbot
settings, the probability for a mobile user to get infected by
SnoopyBot and use a malicious Exit node is tiny. Naturally,
another defensive measure is to alert the end-user upon de-
tecting any unprovoked change to the mobile browser settings.
This would be enough to raise the user’s suspicion, making
them to initiate a device scan for malicious apps. Also, the
user should avoid installing any app that is not in, say, the
Play Store and/or its origin is nebulous.

Lastly, provided that there is an Intrusion Detection System
(IDS) installed in the device (or on the same network with the
mobile device), there should be an alert for any internal IP
that queries sites for obtaining the user’s public IP, especially
if it is a frequent request from the same internal IP.

V. RELATED WORK

According to the literature, the most powerful deanonymiza-
tion attacks on Tor are based on some scheme that makes
possible the correlation of the data between two points
(preferably the Entry and Exit node) of the Tor overlay. This
strategy is also followed by SnoopyBot. In the following, we
briefly discuss the related work and point out the additional
contributions introduced by SnoopyBot.

It is true that the weakest node in a Tor circuit is the Exit
node. This is because at this node the actual data send by the
Tor user are decrypted and forwarded to its final destination.
An Exit node can behave in a malicious way by various means
and plays an essential role to the identification of a Tor user.
For instance, as described by FortConsult Security [10], it
can be used for injecting software that will be executed by
the victim’s browser. Another approach that makes use of a
malicious Exit node was given by X. Wang et al. [11]. In their
approach, the authors injected a forged web page back to the
Entry node (forged web page injection attack) or they modified
the HTTP traffic passing through it, thus exercising a web page
modification attack. Other contributions like the one described
by Z. Ling et al. [12] concentrate on timing attacks exercised
by a malicious Entry node. Similarly to the previous one, the
scheme proposed by X. Fu et al. [13] places the attacker at
both a malicious entry and exit OR. The aggressor manipulates
the outbound cells stemming from the various OPs, causing
them to be determined at the exit node, and thus eventually
confirming the communication relationship between the sender
and the receiver.

A second category of deanonymization methods capitalizes
on web browsers with enabled Javascript, Flash or other
similar technologies. Although these features are designed to
enhance user’s experience when browsing, they are potentially
harmful to privacy, as described by T. Abbott et al. [14].
An attack taking advantage of this fact can use a malicious
Exit node for modifying web pages through the injection of
JavaScript code that repeatedly connects to a logger server
sending a distinctive signal.

To sum up, most of the attacks on the bibliography are
mainly based on infected Entry or Exit nodes, considering

that even security-savvy users are not able to detect any un-
trustworthy node in the Tor Network. Whereas the cornerstone
of SnoopyBot’s operation is also the interlinking of two Tor
endpoints, the way it does so differs from the related work in
two major aspects. First, the manipulation of data is performed
at the client before the user data reach OP. Secondly, it does
not require the attacker to possess special equipment or a large
mass of computing resources. On top of that, its operation at
both ends, i.e., the client and the Exit node, is as silent as
possible.

VI. CONCLUSION

Tor’s major weakness is the Exit node of each circuit,
as all traffic that passes through this node is potentially
unprotected. This shortcoming attracted several researchers
to develop methods of tracking and avoiding malicious Exit
nodes. However, as with SnoopyBot, this is hard to achieve
in cases where the Exit node just silently logs the traffic
passing via it, leaving no other trace of its privacy-invasive
activity. In this case, countermeasures need to be taken on the
client side as well. For instance, the apps that provide access
to Tor, like Orbot or Orweb, must encrypt their settings or
use a secure database for storing them. In any case, however,
the root cause of the Exit node’s problem is not due to the
internal workings of Tor, but to end-users not employing https
connections or other means of protection at the application
layer. This problem is even aggravated by badly configured
web browsers or other applications and the rise of privaey-
invasive software as in our case.

Moreover, one of the most prominent security issues that
can occur during Tor installation on, say, a smartphone is
the root permissions Tor requires to anonymize outgoing
traffic stemming from any application other than Tor’s official
browser. This requirement leads many users to root their smart
device, which, as a direct consequence gives the ability to any
malicious application to gain access to critical files on the
Android system.

In this paper, we presented a spyware targeting the Android
platform. SnoopyBot is able to infect Tor users with the
purpose of deanonymizing them. After this spyware gets
installed on the device, it has the ability to change the settings
of torrc file according to attacker’s will. After deactivating any
root application that can notify user of its actions, SnoopyBot
alters the Exit node option, setting one or more Exit nodes that
are controlled by the attacker. Having successfully changed
the torrc settings, the spyware starts working as a proxy. In
every request the user makes, the proxy intervenes, and adds
an extra field containing the victim’s public IP and one of
the spyware signatures in it. The request is forwarded to Tor
network and passes through the rogue Exit node, which logs
it. In that way, every user infected by SnoopyBot can be
deanonymized. Once more, it is stressed that SnoopyBot has
been developed with stealth operation in mind. That is, while a
malware in general may have numerous capabilities (including
user deanonymization), most of them need to connect to some
outside server to fully perform their operations, which renders

them more easily detectable by defensive mechanisms, such as
IDS or anti-malware software. SnoopyBot, on the other hand,
does not create extra traffic as it avoids any communication
with C&C servers (both inside and outside Tor network).
Instead, it uses the malicious Exit node per se as a C&C
server, which however is a valid OR and is explicitly selected
for infected clients. Therefore, from a defensive mechanism
point of view, the traffic seems perfectly legitimate.

Our intention is to extend this work by creating more Exit
nodes and updating the user-side spyware, so it will be able
to alter periodically the address of the Exit node, e.g., each
time a new Tor circuit is created. This would further obfuscate
SnoopyBot’s trails and make its detection harder. An additional
direction for future work would be the implementation of a
covert communication channel between the Exit node and
SnoopyBot. Such a covert channel can capitalize on the
parameters carried by http requests and replies for achieving
private extensive information leakage. Last but not least, it
would be interesting for one to modify SnoopyBot operation
to scan for and modify aceordingly all browsers found on the
device after every boot. In this way, irrespective of the web
browser the user employs, SnoopyBot will be in position to
exercise the attack.

REFERENCES

[1] G. Kambourakis, “Anonymity and closely related terms in the cy-
berspace: An analysis by example,” Journal of information security and
applications, yol. 19, no. 1, pp. 2-17, 2014,

[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21-21. [Online]. Available
at: htp:// r/citation.cfm?id=1251375.1251396

G. Karopoulos, A. Fakis, and G. Kambourakis, “Complete sip message

obfuscation: Privasip over tor.” in Availability, Reliability and Security

(ARES), 2014 Ninth International Conference on. IEEE, 2014, pp.

[3

[4] Guardian-Project. Orbot: Tor for android. [Online]. Available at:
https://guardianproject.info/apps/forbot/
Guardian-Project. Orweb: Private web browser. [Online]. Available at:
https://guardianproject.info/apps/orweb/
[6] 1. The-Tor-Project. Ethical tor research: Guidelines. [Online]. Available

at: https://blog.torproject.org/blog/ethical-tor-research-guidelines

[5

[7] J. Chroboczek. Polipo - a caching web proxy. [Online]. Available at:
https:/fwww.irif.univ-paris-diderot.fr/ jch/software/polipo/
[8] Privoxy-Developers. Privoxy. [Online]. Available at:

hitps://'www.privoxy.org
[9] J. B. Kowalski. Torstatus - tor network status. [Online]. Available at:
https://torstatus.blutmagie.de/
[10] A. Christensen, “Practical onion hacking: finding the
real address of twor clients,” FortConsults advisory
http://www.fortconsult.net/images/pdf/Practical_Onion_Hacking.pdf,
2009.
X. Wang, J. Luo, M. Yang, and Z. Ling, “A potential http-based
application-level attack against tor,” Future Generation Computer Sys-
tems, vol. 27, no. 1, pp. 67-77, 2011.
Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia, “A new cell counter
based attack against tor,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 578-589.
X. Fu, Z. Ling, J. Luo, W. Yu, W. Jia, and W. Zhao, “One cell is enough
to break tors anonymity,” in Proceedings of Black Hat Technical Security
Conference, 2009, pp. 578-589.
T. G. Abbott, K. J. Lai, M. R. Lieberman, and E. C. Price, “Browser-
based attacks on tor,” in Privacy Enhancing Technologies. Springer,
2007, pp. 184-199.

[11]

[12]

[13]

[14]

